Linux-libre 5.7.6-gnu
[librecmc/linux-libre.git] / drivers / md / dm-thin.c
1 /*
2  * Copyright (C) 2011-2012 Red Hat UK.
3  *
4  * This file is released under the GPL.
5  */
6
7 #include "dm-thin-metadata.h"
8 #include "dm-bio-prison-v1.h"
9 #include "dm.h"
10
11 #include <linux/device-mapper.h>
12 #include <linux/dm-io.h>
13 #include <linux/dm-kcopyd.h>
14 #include <linux/jiffies.h>
15 #include <linux/log2.h>
16 #include <linux/list.h>
17 #include <linux/rculist.h>
18 #include <linux/init.h>
19 #include <linux/module.h>
20 #include <linux/slab.h>
21 #include <linux/vmalloc.h>
22 #include <linux/sort.h>
23 #include <linux/rbtree.h>
24
25 #define DM_MSG_PREFIX   "thin"
26
27 /*
28  * Tunable constants
29  */
30 #define ENDIO_HOOK_POOL_SIZE 1024
31 #define MAPPING_POOL_SIZE 1024
32 #define COMMIT_PERIOD HZ
33 #define NO_SPACE_TIMEOUT_SECS 60
34
35 static unsigned no_space_timeout_secs = NO_SPACE_TIMEOUT_SECS;
36
37 DECLARE_DM_KCOPYD_THROTTLE_WITH_MODULE_PARM(snapshot_copy_throttle,
38                 "A percentage of time allocated for copy on write");
39
40 /*
41  * The block size of the device holding pool data must be
42  * between 64KB and 1GB.
43  */
44 #define DATA_DEV_BLOCK_SIZE_MIN_SECTORS (64 * 1024 >> SECTOR_SHIFT)
45 #define DATA_DEV_BLOCK_SIZE_MAX_SECTORS (1024 * 1024 * 1024 >> SECTOR_SHIFT)
46
47 /*
48  * Device id is restricted to 24 bits.
49  */
50 #define MAX_DEV_ID ((1 << 24) - 1)
51
52 /*
53  * How do we handle breaking sharing of data blocks?
54  * =================================================
55  *
56  * We use a standard copy-on-write btree to store the mappings for the
57  * devices (note I'm talking about copy-on-write of the metadata here, not
58  * the data).  When you take an internal snapshot you clone the root node
59  * of the origin btree.  After this there is no concept of an origin or a
60  * snapshot.  They are just two device trees that happen to point to the
61  * same data blocks.
62  *
63  * When we get a write in we decide if it's to a shared data block using
64  * some timestamp magic.  If it is, we have to break sharing.
65  *
66  * Let's say we write to a shared block in what was the origin.  The
67  * steps are:
68  *
69  * i) plug io further to this physical block. (see bio_prison code).
70  *
71  * ii) quiesce any read io to that shared data block.  Obviously
72  * including all devices that share this block.  (see dm_deferred_set code)
73  *
74  * iii) copy the data block to a newly allocate block.  This step can be
75  * missed out if the io covers the block. (schedule_copy).
76  *
77  * iv) insert the new mapping into the origin's btree
78  * (process_prepared_mapping).  This act of inserting breaks some
79  * sharing of btree nodes between the two devices.  Breaking sharing only
80  * effects the btree of that specific device.  Btrees for the other
81  * devices that share the block never change.  The btree for the origin
82  * device as it was after the last commit is untouched, ie. we're using
83  * persistent data structures in the functional programming sense.
84  *
85  * v) unplug io to this physical block, including the io that triggered
86  * the breaking of sharing.
87  *
88  * Steps (ii) and (iii) occur in parallel.
89  *
90  * The metadata _doesn't_ need to be committed before the io continues.  We
91  * get away with this because the io is always written to a _new_ block.
92  * If there's a crash, then:
93  *
94  * - The origin mapping will point to the old origin block (the shared
95  * one).  This will contain the data as it was before the io that triggered
96  * the breaking of sharing came in.
97  *
98  * - The snap mapping still points to the old block.  As it would after
99  * the commit.
100  *
101  * The downside of this scheme is the timestamp magic isn't perfect, and
102  * will continue to think that data block in the snapshot device is shared
103  * even after the write to the origin has broken sharing.  I suspect data
104  * blocks will typically be shared by many different devices, so we're
105  * breaking sharing n + 1 times, rather than n, where n is the number of
106  * devices that reference this data block.  At the moment I think the
107  * benefits far, far outweigh the disadvantages.
108  */
109
110 /*----------------------------------------------------------------*/
111
112 /*
113  * Key building.
114  */
115 enum lock_space {
116         VIRTUAL,
117         PHYSICAL
118 };
119
120 static void build_key(struct dm_thin_device *td, enum lock_space ls,
121                       dm_block_t b, dm_block_t e, struct dm_cell_key *key)
122 {
123         key->virtual = (ls == VIRTUAL);
124         key->dev = dm_thin_dev_id(td);
125         key->block_begin = b;
126         key->block_end = e;
127 }
128
129 static void build_data_key(struct dm_thin_device *td, dm_block_t b,
130                            struct dm_cell_key *key)
131 {
132         build_key(td, PHYSICAL, b, b + 1llu, key);
133 }
134
135 static void build_virtual_key(struct dm_thin_device *td, dm_block_t b,
136                               struct dm_cell_key *key)
137 {
138         build_key(td, VIRTUAL, b, b + 1llu, key);
139 }
140
141 /*----------------------------------------------------------------*/
142
143 #define THROTTLE_THRESHOLD (1 * HZ)
144
145 struct throttle {
146         struct rw_semaphore lock;
147         unsigned long threshold;
148         bool throttle_applied;
149 };
150
151 static void throttle_init(struct throttle *t)
152 {
153         init_rwsem(&t->lock);
154         t->throttle_applied = false;
155 }
156
157 static void throttle_work_start(struct throttle *t)
158 {
159         t->threshold = jiffies + THROTTLE_THRESHOLD;
160 }
161
162 static void throttle_work_update(struct throttle *t)
163 {
164         if (!t->throttle_applied && jiffies > t->threshold) {
165                 down_write(&t->lock);
166                 t->throttle_applied = true;
167         }
168 }
169
170 static void throttle_work_complete(struct throttle *t)
171 {
172         if (t->throttle_applied) {
173                 t->throttle_applied = false;
174                 up_write(&t->lock);
175         }
176 }
177
178 static void throttle_lock(struct throttle *t)
179 {
180         down_read(&t->lock);
181 }
182
183 static void throttle_unlock(struct throttle *t)
184 {
185         up_read(&t->lock);
186 }
187
188 /*----------------------------------------------------------------*/
189
190 /*
191  * A pool device ties together a metadata device and a data device.  It
192  * also provides the interface for creating and destroying internal
193  * devices.
194  */
195 struct dm_thin_new_mapping;
196
197 /*
198  * The pool runs in various modes.  Ordered in degraded order for comparisons.
199  */
200 enum pool_mode {
201         PM_WRITE,               /* metadata may be changed */
202         PM_OUT_OF_DATA_SPACE,   /* metadata may be changed, though data may not be allocated */
203
204         /*
205          * Like READ_ONLY, except may switch back to WRITE on metadata resize. Reported as READ_ONLY.
206          */
207         PM_OUT_OF_METADATA_SPACE,
208         PM_READ_ONLY,           /* metadata may not be changed */
209
210         PM_FAIL,                /* all I/O fails */
211 };
212
213 struct pool_features {
214         enum pool_mode mode;
215
216         bool zero_new_blocks:1;
217         bool discard_enabled:1;
218         bool discard_passdown:1;
219         bool error_if_no_space:1;
220 };
221
222 struct thin_c;
223 typedef void (*process_bio_fn)(struct thin_c *tc, struct bio *bio);
224 typedef void (*process_cell_fn)(struct thin_c *tc, struct dm_bio_prison_cell *cell);
225 typedef void (*process_mapping_fn)(struct dm_thin_new_mapping *m);
226
227 #define CELL_SORT_ARRAY_SIZE 8192
228
229 struct pool {
230         struct list_head list;
231         struct dm_target *ti;   /* Only set if a pool target is bound */
232
233         struct mapped_device *pool_md;
234         struct block_device *data_dev;
235         struct block_device *md_dev;
236         struct dm_pool_metadata *pmd;
237
238         dm_block_t low_water_blocks;
239         uint32_t sectors_per_block;
240         int sectors_per_block_shift;
241
242         struct pool_features pf;
243         bool low_water_triggered:1;     /* A dm event has been sent */
244         bool suspended:1;
245         bool out_of_data_space:1;
246
247         struct dm_bio_prison *prison;
248         struct dm_kcopyd_client *copier;
249
250         struct work_struct worker;
251         struct workqueue_struct *wq;
252         struct throttle throttle;
253         struct delayed_work waker;
254         struct delayed_work no_space_timeout;
255
256         unsigned long last_commit_jiffies;
257         unsigned ref_count;
258
259         spinlock_t lock;
260         struct bio_list deferred_flush_bios;
261         struct bio_list deferred_flush_completions;
262         struct list_head prepared_mappings;
263         struct list_head prepared_discards;
264         struct list_head prepared_discards_pt2;
265         struct list_head active_thins;
266
267         struct dm_deferred_set *shared_read_ds;
268         struct dm_deferred_set *all_io_ds;
269
270         struct dm_thin_new_mapping *next_mapping;
271
272         process_bio_fn process_bio;
273         process_bio_fn process_discard;
274
275         process_cell_fn process_cell;
276         process_cell_fn process_discard_cell;
277
278         process_mapping_fn process_prepared_mapping;
279         process_mapping_fn process_prepared_discard;
280         process_mapping_fn process_prepared_discard_pt2;
281
282         struct dm_bio_prison_cell **cell_sort_array;
283
284         mempool_t mapping_pool;
285
286         struct bio flush_bio;
287 };
288
289 static void metadata_operation_failed(struct pool *pool, const char *op, int r);
290
291 static enum pool_mode get_pool_mode(struct pool *pool)
292 {
293         return pool->pf.mode;
294 }
295
296 static void notify_of_pool_mode_change(struct pool *pool)
297 {
298         const char *descs[] = {
299                 "write",
300                 "out-of-data-space",
301                 "read-only",
302                 "read-only",
303                 "fail"
304         };
305         const char *extra_desc = NULL;
306         enum pool_mode mode = get_pool_mode(pool);
307
308         if (mode == PM_OUT_OF_DATA_SPACE) {
309                 if (!pool->pf.error_if_no_space)
310                         extra_desc = " (queue IO)";
311                 else
312                         extra_desc = " (error IO)";
313         }
314
315         dm_table_event(pool->ti->table);
316         DMINFO("%s: switching pool to %s%s mode",
317                dm_device_name(pool->pool_md),
318                descs[(int)mode], extra_desc ? : "");
319 }
320
321 /*
322  * Target context for a pool.
323  */
324 struct pool_c {
325         struct dm_target *ti;
326         struct pool *pool;
327         struct dm_dev *data_dev;
328         struct dm_dev *metadata_dev;
329         struct dm_target_callbacks callbacks;
330
331         dm_block_t low_water_blocks;
332         struct pool_features requested_pf; /* Features requested during table load */
333         struct pool_features adjusted_pf;  /* Features used after adjusting for constituent devices */
334 };
335
336 /*
337  * Target context for a thin.
338  */
339 struct thin_c {
340         struct list_head list;
341         struct dm_dev *pool_dev;
342         struct dm_dev *origin_dev;
343         sector_t origin_size;
344         dm_thin_id dev_id;
345
346         struct pool *pool;
347         struct dm_thin_device *td;
348         struct mapped_device *thin_md;
349
350         bool requeue_mode:1;
351         spinlock_t lock;
352         struct list_head deferred_cells;
353         struct bio_list deferred_bio_list;
354         struct bio_list retry_on_resume_list;
355         struct rb_root sort_bio_list; /* sorted list of deferred bios */
356
357         /*
358          * Ensures the thin is not destroyed until the worker has finished
359          * iterating the active_thins list.
360          */
361         refcount_t refcount;
362         struct completion can_destroy;
363 };
364
365 /*----------------------------------------------------------------*/
366
367 static bool block_size_is_power_of_two(struct pool *pool)
368 {
369         return pool->sectors_per_block_shift >= 0;
370 }
371
372 static sector_t block_to_sectors(struct pool *pool, dm_block_t b)
373 {
374         return block_size_is_power_of_two(pool) ?
375                 (b << pool->sectors_per_block_shift) :
376                 (b * pool->sectors_per_block);
377 }
378
379 /*----------------------------------------------------------------*/
380
381 struct discard_op {
382         struct thin_c *tc;
383         struct blk_plug plug;
384         struct bio *parent_bio;
385         struct bio *bio;
386 };
387
388 static void begin_discard(struct discard_op *op, struct thin_c *tc, struct bio *parent)
389 {
390         BUG_ON(!parent);
391
392         op->tc = tc;
393         blk_start_plug(&op->plug);
394         op->parent_bio = parent;
395         op->bio = NULL;
396 }
397
398 static int issue_discard(struct discard_op *op, dm_block_t data_b, dm_block_t data_e)
399 {
400         struct thin_c *tc = op->tc;
401         sector_t s = block_to_sectors(tc->pool, data_b);
402         sector_t len = block_to_sectors(tc->pool, data_e - data_b);
403
404         return __blkdev_issue_discard(tc->pool_dev->bdev, s, len,
405                                       GFP_NOWAIT, 0, &op->bio);
406 }
407
408 static void end_discard(struct discard_op *op, int r)
409 {
410         if (op->bio) {
411                 /*
412                  * Even if one of the calls to issue_discard failed, we
413                  * need to wait for the chain to complete.
414                  */
415                 bio_chain(op->bio, op->parent_bio);
416                 bio_set_op_attrs(op->bio, REQ_OP_DISCARD, 0);
417                 submit_bio(op->bio);
418         }
419
420         blk_finish_plug(&op->plug);
421
422         /*
423          * Even if r is set, there could be sub discards in flight that we
424          * need to wait for.
425          */
426         if (r && !op->parent_bio->bi_status)
427                 op->parent_bio->bi_status = errno_to_blk_status(r);
428         bio_endio(op->parent_bio);
429 }
430
431 /*----------------------------------------------------------------*/
432
433 /*
434  * wake_worker() is used when new work is queued and when pool_resume is
435  * ready to continue deferred IO processing.
436  */
437 static void wake_worker(struct pool *pool)
438 {
439         queue_work(pool->wq, &pool->worker);
440 }
441
442 /*----------------------------------------------------------------*/
443
444 static int bio_detain(struct pool *pool, struct dm_cell_key *key, struct bio *bio,
445                       struct dm_bio_prison_cell **cell_result)
446 {
447         int r;
448         struct dm_bio_prison_cell *cell_prealloc;
449
450         /*
451          * Allocate a cell from the prison's mempool.
452          * This might block but it can't fail.
453          */
454         cell_prealloc = dm_bio_prison_alloc_cell(pool->prison, GFP_NOIO);
455
456         r = dm_bio_detain(pool->prison, key, bio, cell_prealloc, cell_result);
457         if (r)
458                 /*
459                  * We reused an old cell; we can get rid of
460                  * the new one.
461                  */
462                 dm_bio_prison_free_cell(pool->prison, cell_prealloc);
463
464         return r;
465 }
466
467 static void cell_release(struct pool *pool,
468                          struct dm_bio_prison_cell *cell,
469                          struct bio_list *bios)
470 {
471         dm_cell_release(pool->prison, cell, bios);
472         dm_bio_prison_free_cell(pool->prison, cell);
473 }
474
475 static void cell_visit_release(struct pool *pool,
476                                void (*fn)(void *, struct dm_bio_prison_cell *),
477                                void *context,
478                                struct dm_bio_prison_cell *cell)
479 {
480         dm_cell_visit_release(pool->prison, fn, context, cell);
481         dm_bio_prison_free_cell(pool->prison, cell);
482 }
483
484 static void cell_release_no_holder(struct pool *pool,
485                                    struct dm_bio_prison_cell *cell,
486                                    struct bio_list *bios)
487 {
488         dm_cell_release_no_holder(pool->prison, cell, bios);
489         dm_bio_prison_free_cell(pool->prison, cell);
490 }
491
492 static void cell_error_with_code(struct pool *pool,
493                 struct dm_bio_prison_cell *cell, blk_status_t error_code)
494 {
495         dm_cell_error(pool->prison, cell, error_code);
496         dm_bio_prison_free_cell(pool->prison, cell);
497 }
498
499 static blk_status_t get_pool_io_error_code(struct pool *pool)
500 {
501         return pool->out_of_data_space ? BLK_STS_NOSPC : BLK_STS_IOERR;
502 }
503
504 static void cell_error(struct pool *pool, struct dm_bio_prison_cell *cell)
505 {
506         cell_error_with_code(pool, cell, get_pool_io_error_code(pool));
507 }
508
509 static void cell_success(struct pool *pool, struct dm_bio_prison_cell *cell)
510 {
511         cell_error_with_code(pool, cell, 0);
512 }
513
514 static void cell_requeue(struct pool *pool, struct dm_bio_prison_cell *cell)
515 {
516         cell_error_with_code(pool, cell, BLK_STS_DM_REQUEUE);
517 }
518
519 /*----------------------------------------------------------------*/
520
521 /*
522  * A global list of pools that uses a struct mapped_device as a key.
523  */
524 static struct dm_thin_pool_table {
525         struct mutex mutex;
526         struct list_head pools;
527 } dm_thin_pool_table;
528
529 static void pool_table_init(void)
530 {
531         mutex_init(&dm_thin_pool_table.mutex);
532         INIT_LIST_HEAD(&dm_thin_pool_table.pools);
533 }
534
535 static void pool_table_exit(void)
536 {
537         mutex_destroy(&dm_thin_pool_table.mutex);
538 }
539
540 static void __pool_table_insert(struct pool *pool)
541 {
542         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
543         list_add(&pool->list, &dm_thin_pool_table.pools);
544 }
545
546 static void __pool_table_remove(struct pool *pool)
547 {
548         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
549         list_del(&pool->list);
550 }
551
552 static struct pool *__pool_table_lookup(struct mapped_device *md)
553 {
554         struct pool *pool = NULL, *tmp;
555
556         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
557
558         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
559                 if (tmp->pool_md == md) {
560                         pool = tmp;
561                         break;
562                 }
563         }
564
565         return pool;
566 }
567
568 static struct pool *__pool_table_lookup_metadata_dev(struct block_device *md_dev)
569 {
570         struct pool *pool = NULL, *tmp;
571
572         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
573
574         list_for_each_entry(tmp, &dm_thin_pool_table.pools, list) {
575                 if (tmp->md_dev == md_dev) {
576                         pool = tmp;
577                         break;
578                 }
579         }
580
581         return pool;
582 }
583
584 /*----------------------------------------------------------------*/
585
586 struct dm_thin_endio_hook {
587         struct thin_c *tc;
588         struct dm_deferred_entry *shared_read_entry;
589         struct dm_deferred_entry *all_io_entry;
590         struct dm_thin_new_mapping *overwrite_mapping;
591         struct rb_node rb_node;
592         struct dm_bio_prison_cell *cell;
593 };
594
595 static void __merge_bio_list(struct bio_list *bios, struct bio_list *master)
596 {
597         bio_list_merge(bios, master);
598         bio_list_init(master);
599 }
600
601 static void error_bio_list(struct bio_list *bios, blk_status_t error)
602 {
603         struct bio *bio;
604
605         while ((bio = bio_list_pop(bios))) {
606                 bio->bi_status = error;
607                 bio_endio(bio);
608         }
609 }
610
611 static void error_thin_bio_list(struct thin_c *tc, struct bio_list *master,
612                 blk_status_t error)
613 {
614         struct bio_list bios;
615
616         bio_list_init(&bios);
617
618         spin_lock_irq(&tc->lock);
619         __merge_bio_list(&bios, master);
620         spin_unlock_irq(&tc->lock);
621
622         error_bio_list(&bios, error);
623 }
624
625 static void requeue_deferred_cells(struct thin_c *tc)
626 {
627         struct pool *pool = tc->pool;
628         struct list_head cells;
629         struct dm_bio_prison_cell *cell, *tmp;
630
631         INIT_LIST_HEAD(&cells);
632
633         spin_lock_irq(&tc->lock);
634         list_splice_init(&tc->deferred_cells, &cells);
635         spin_unlock_irq(&tc->lock);
636
637         list_for_each_entry_safe(cell, tmp, &cells, user_list)
638                 cell_requeue(pool, cell);
639 }
640
641 static void requeue_io(struct thin_c *tc)
642 {
643         struct bio_list bios;
644
645         bio_list_init(&bios);
646
647         spin_lock_irq(&tc->lock);
648         __merge_bio_list(&bios, &tc->deferred_bio_list);
649         __merge_bio_list(&bios, &tc->retry_on_resume_list);
650         spin_unlock_irq(&tc->lock);
651
652         error_bio_list(&bios, BLK_STS_DM_REQUEUE);
653         requeue_deferred_cells(tc);
654 }
655
656 static void error_retry_list_with_code(struct pool *pool, blk_status_t error)
657 {
658         struct thin_c *tc;
659
660         rcu_read_lock();
661         list_for_each_entry_rcu(tc, &pool->active_thins, list)
662                 error_thin_bio_list(tc, &tc->retry_on_resume_list, error);
663         rcu_read_unlock();
664 }
665
666 static void error_retry_list(struct pool *pool)
667 {
668         error_retry_list_with_code(pool, get_pool_io_error_code(pool));
669 }
670
671 /*
672  * This section of code contains the logic for processing a thin device's IO.
673  * Much of the code depends on pool object resources (lists, workqueues, etc)
674  * but most is exclusively called from the thin target rather than the thin-pool
675  * target.
676  */
677
678 static dm_block_t get_bio_block(struct thin_c *tc, struct bio *bio)
679 {
680         struct pool *pool = tc->pool;
681         sector_t block_nr = bio->bi_iter.bi_sector;
682
683         if (block_size_is_power_of_two(pool))
684                 block_nr >>= pool->sectors_per_block_shift;
685         else
686                 (void) sector_div(block_nr, pool->sectors_per_block);
687
688         return block_nr;
689 }
690
691 /*
692  * Returns the _complete_ blocks that this bio covers.
693  */
694 static void get_bio_block_range(struct thin_c *tc, struct bio *bio,
695                                 dm_block_t *begin, dm_block_t *end)
696 {
697         struct pool *pool = tc->pool;
698         sector_t b = bio->bi_iter.bi_sector;
699         sector_t e = b + (bio->bi_iter.bi_size >> SECTOR_SHIFT);
700
701         b += pool->sectors_per_block - 1ull; /* so we round up */
702
703         if (block_size_is_power_of_two(pool)) {
704                 b >>= pool->sectors_per_block_shift;
705                 e >>= pool->sectors_per_block_shift;
706         } else {
707                 (void) sector_div(b, pool->sectors_per_block);
708                 (void) sector_div(e, pool->sectors_per_block);
709         }
710
711         if (e < b)
712                 /* Can happen if the bio is within a single block. */
713                 e = b;
714
715         *begin = b;
716         *end = e;
717 }
718
719 static void remap(struct thin_c *tc, struct bio *bio, dm_block_t block)
720 {
721         struct pool *pool = tc->pool;
722         sector_t bi_sector = bio->bi_iter.bi_sector;
723
724         bio_set_dev(bio, tc->pool_dev->bdev);
725         if (block_size_is_power_of_two(pool))
726                 bio->bi_iter.bi_sector =
727                         (block << pool->sectors_per_block_shift) |
728                         (bi_sector & (pool->sectors_per_block - 1));
729         else
730                 bio->bi_iter.bi_sector = (block * pool->sectors_per_block) +
731                                  sector_div(bi_sector, pool->sectors_per_block);
732 }
733
734 static void remap_to_origin(struct thin_c *tc, struct bio *bio)
735 {
736         bio_set_dev(bio, tc->origin_dev->bdev);
737 }
738
739 static int bio_triggers_commit(struct thin_c *tc, struct bio *bio)
740 {
741         return op_is_flush(bio->bi_opf) &&
742                 dm_thin_changed_this_transaction(tc->td);
743 }
744
745 static void inc_all_io_entry(struct pool *pool, struct bio *bio)
746 {
747         struct dm_thin_endio_hook *h;
748
749         if (bio_op(bio) == REQ_OP_DISCARD)
750                 return;
751
752         h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
753         h->all_io_entry = dm_deferred_entry_inc(pool->all_io_ds);
754 }
755
756 static void issue(struct thin_c *tc, struct bio *bio)
757 {
758         struct pool *pool = tc->pool;
759
760         if (!bio_triggers_commit(tc, bio)) {
761                 generic_make_request(bio);
762                 return;
763         }
764
765         /*
766          * Complete bio with an error if earlier I/O caused changes to
767          * the metadata that can't be committed e.g, due to I/O errors
768          * on the metadata device.
769          */
770         if (dm_thin_aborted_changes(tc->td)) {
771                 bio_io_error(bio);
772                 return;
773         }
774
775         /*
776          * Batch together any bios that trigger commits and then issue a
777          * single commit for them in process_deferred_bios().
778          */
779         spin_lock_irq(&pool->lock);
780         bio_list_add(&pool->deferred_flush_bios, bio);
781         spin_unlock_irq(&pool->lock);
782 }
783
784 static void remap_to_origin_and_issue(struct thin_c *tc, struct bio *bio)
785 {
786         remap_to_origin(tc, bio);
787         issue(tc, bio);
788 }
789
790 static void remap_and_issue(struct thin_c *tc, struct bio *bio,
791                             dm_block_t block)
792 {
793         remap(tc, bio, block);
794         issue(tc, bio);
795 }
796
797 /*----------------------------------------------------------------*/
798
799 /*
800  * Bio endio functions.
801  */
802 struct dm_thin_new_mapping {
803         struct list_head list;
804
805         bool pass_discard:1;
806         bool maybe_shared:1;
807
808         /*
809          * Track quiescing, copying and zeroing preparation actions.  When this
810          * counter hits zero the block is prepared and can be inserted into the
811          * btree.
812          */
813         atomic_t prepare_actions;
814
815         blk_status_t status;
816         struct thin_c *tc;
817         dm_block_t virt_begin, virt_end;
818         dm_block_t data_block;
819         struct dm_bio_prison_cell *cell;
820
821         /*
822          * If the bio covers the whole area of a block then we can avoid
823          * zeroing or copying.  Instead this bio is hooked.  The bio will
824          * still be in the cell, so care has to be taken to avoid issuing
825          * the bio twice.
826          */
827         struct bio *bio;
828         bio_end_io_t *saved_bi_end_io;
829 };
830
831 static void __complete_mapping_preparation(struct dm_thin_new_mapping *m)
832 {
833         struct pool *pool = m->tc->pool;
834
835         if (atomic_dec_and_test(&m->prepare_actions)) {
836                 list_add_tail(&m->list, &pool->prepared_mappings);
837                 wake_worker(pool);
838         }
839 }
840
841 static void complete_mapping_preparation(struct dm_thin_new_mapping *m)
842 {
843         unsigned long flags;
844         struct pool *pool = m->tc->pool;
845
846         spin_lock_irqsave(&pool->lock, flags);
847         __complete_mapping_preparation(m);
848         spin_unlock_irqrestore(&pool->lock, flags);
849 }
850
851 static void copy_complete(int read_err, unsigned long write_err, void *context)
852 {
853         struct dm_thin_new_mapping *m = context;
854
855         m->status = read_err || write_err ? BLK_STS_IOERR : 0;
856         complete_mapping_preparation(m);
857 }
858
859 static void overwrite_endio(struct bio *bio)
860 {
861         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
862         struct dm_thin_new_mapping *m = h->overwrite_mapping;
863
864         bio->bi_end_io = m->saved_bi_end_io;
865
866         m->status = bio->bi_status;
867         complete_mapping_preparation(m);
868 }
869
870 /*----------------------------------------------------------------*/
871
872 /*
873  * Workqueue.
874  */
875
876 /*
877  * Prepared mapping jobs.
878  */
879
880 /*
881  * This sends the bios in the cell, except the original holder, back
882  * to the deferred_bios list.
883  */
884 static void cell_defer_no_holder(struct thin_c *tc, struct dm_bio_prison_cell *cell)
885 {
886         struct pool *pool = tc->pool;
887         unsigned long flags;
888         int has_work;
889
890         spin_lock_irqsave(&tc->lock, flags);
891         cell_release_no_holder(pool, cell, &tc->deferred_bio_list);
892         has_work = !bio_list_empty(&tc->deferred_bio_list);
893         spin_unlock_irqrestore(&tc->lock, flags);
894
895         if (has_work)
896                 wake_worker(pool);
897 }
898
899 static void thin_defer_bio(struct thin_c *tc, struct bio *bio);
900
901 struct remap_info {
902         struct thin_c *tc;
903         struct bio_list defer_bios;
904         struct bio_list issue_bios;
905 };
906
907 static void __inc_remap_and_issue_cell(void *context,
908                                        struct dm_bio_prison_cell *cell)
909 {
910         struct remap_info *info = context;
911         struct bio *bio;
912
913         while ((bio = bio_list_pop(&cell->bios))) {
914                 if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD)
915                         bio_list_add(&info->defer_bios, bio);
916                 else {
917                         inc_all_io_entry(info->tc->pool, bio);
918
919                         /*
920                          * We can't issue the bios with the bio prison lock
921                          * held, so we add them to a list to issue on
922                          * return from this function.
923                          */
924                         bio_list_add(&info->issue_bios, bio);
925                 }
926         }
927 }
928
929 static void inc_remap_and_issue_cell(struct thin_c *tc,
930                                      struct dm_bio_prison_cell *cell,
931                                      dm_block_t block)
932 {
933         struct bio *bio;
934         struct remap_info info;
935
936         info.tc = tc;
937         bio_list_init(&info.defer_bios);
938         bio_list_init(&info.issue_bios);
939
940         /*
941          * We have to be careful to inc any bios we're about to issue
942          * before the cell is released, and avoid a race with new bios
943          * being added to the cell.
944          */
945         cell_visit_release(tc->pool, __inc_remap_and_issue_cell,
946                            &info, cell);
947
948         while ((bio = bio_list_pop(&info.defer_bios)))
949                 thin_defer_bio(tc, bio);
950
951         while ((bio = bio_list_pop(&info.issue_bios)))
952                 remap_and_issue(info.tc, bio, block);
953 }
954
955 static void process_prepared_mapping_fail(struct dm_thin_new_mapping *m)
956 {
957         cell_error(m->tc->pool, m->cell);
958         list_del(&m->list);
959         mempool_free(m, &m->tc->pool->mapping_pool);
960 }
961
962 static void complete_overwrite_bio(struct thin_c *tc, struct bio *bio)
963 {
964         struct pool *pool = tc->pool;
965
966         /*
967          * If the bio has the REQ_FUA flag set we must commit the metadata
968          * before signaling its completion.
969          */
970         if (!bio_triggers_commit(tc, bio)) {
971                 bio_endio(bio);
972                 return;
973         }
974
975         /*
976          * Complete bio with an error if earlier I/O caused changes to the
977          * metadata that can't be committed, e.g, due to I/O errors on the
978          * metadata device.
979          */
980         if (dm_thin_aborted_changes(tc->td)) {
981                 bio_io_error(bio);
982                 return;
983         }
984
985         /*
986          * Batch together any bios that trigger commits and then issue a
987          * single commit for them in process_deferred_bios().
988          */
989         spin_lock_irq(&pool->lock);
990         bio_list_add(&pool->deferred_flush_completions, bio);
991         spin_unlock_irq(&pool->lock);
992 }
993
994 static void process_prepared_mapping(struct dm_thin_new_mapping *m)
995 {
996         struct thin_c *tc = m->tc;
997         struct pool *pool = tc->pool;
998         struct bio *bio = m->bio;
999         int r;
1000
1001         if (m->status) {
1002                 cell_error(pool, m->cell);
1003                 goto out;
1004         }
1005
1006         /*
1007          * Commit the prepared block into the mapping btree.
1008          * Any I/O for this block arriving after this point will get
1009          * remapped to it directly.
1010          */
1011         r = dm_thin_insert_block(tc->td, m->virt_begin, m->data_block);
1012         if (r) {
1013                 metadata_operation_failed(pool, "dm_thin_insert_block", r);
1014                 cell_error(pool, m->cell);
1015                 goto out;
1016         }
1017
1018         /*
1019          * Release any bios held while the block was being provisioned.
1020          * If we are processing a write bio that completely covers the block,
1021          * we already processed it so can ignore it now when processing
1022          * the bios in the cell.
1023          */
1024         if (bio) {
1025                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1026                 complete_overwrite_bio(tc, bio);
1027         } else {
1028                 inc_all_io_entry(tc->pool, m->cell->holder);
1029                 remap_and_issue(tc, m->cell->holder, m->data_block);
1030                 inc_remap_and_issue_cell(tc, m->cell, m->data_block);
1031         }
1032
1033 out:
1034         list_del(&m->list);
1035         mempool_free(m, &pool->mapping_pool);
1036 }
1037
1038 /*----------------------------------------------------------------*/
1039
1040 static void free_discard_mapping(struct dm_thin_new_mapping *m)
1041 {
1042         struct thin_c *tc = m->tc;
1043         if (m->cell)
1044                 cell_defer_no_holder(tc, m->cell);
1045         mempool_free(m, &tc->pool->mapping_pool);
1046 }
1047
1048 static void process_prepared_discard_fail(struct dm_thin_new_mapping *m)
1049 {
1050         bio_io_error(m->bio);
1051         free_discard_mapping(m);
1052 }
1053
1054 static void process_prepared_discard_success(struct dm_thin_new_mapping *m)
1055 {
1056         bio_endio(m->bio);
1057         free_discard_mapping(m);
1058 }
1059
1060 static void process_prepared_discard_no_passdown(struct dm_thin_new_mapping *m)
1061 {
1062         int r;
1063         struct thin_c *tc = m->tc;
1064
1065         r = dm_thin_remove_range(tc->td, m->cell->key.block_begin, m->cell->key.block_end);
1066         if (r) {
1067                 metadata_operation_failed(tc->pool, "dm_thin_remove_range", r);
1068                 bio_io_error(m->bio);
1069         } else
1070                 bio_endio(m->bio);
1071
1072         cell_defer_no_holder(tc, m->cell);
1073         mempool_free(m, &tc->pool->mapping_pool);
1074 }
1075
1076 /*----------------------------------------------------------------*/
1077
1078 static void passdown_double_checking_shared_status(struct dm_thin_new_mapping *m,
1079                                                    struct bio *discard_parent)
1080 {
1081         /*
1082          * We've already unmapped this range of blocks, but before we
1083          * passdown we have to check that these blocks are now unused.
1084          */
1085         int r = 0;
1086         bool shared = true;
1087         struct thin_c *tc = m->tc;
1088         struct pool *pool = tc->pool;
1089         dm_block_t b = m->data_block, e, end = m->data_block + m->virt_end - m->virt_begin;
1090         struct discard_op op;
1091
1092         begin_discard(&op, tc, discard_parent);
1093         while (b != end) {
1094                 /* find start of unmapped run */
1095                 for (; b < end; b++) {
1096                         r = dm_pool_block_is_shared(pool->pmd, b, &shared);
1097                         if (r)
1098                                 goto out;
1099
1100                         if (!shared)
1101                                 break;
1102                 }
1103
1104                 if (b == end)
1105                         break;
1106
1107                 /* find end of run */
1108                 for (e = b + 1; e != end; e++) {
1109                         r = dm_pool_block_is_shared(pool->pmd, e, &shared);
1110                         if (r)
1111                                 goto out;
1112
1113                         if (shared)
1114                                 break;
1115                 }
1116
1117                 r = issue_discard(&op, b, e);
1118                 if (r)
1119                         goto out;
1120
1121                 b = e;
1122         }
1123 out:
1124         end_discard(&op, r);
1125 }
1126
1127 static void queue_passdown_pt2(struct dm_thin_new_mapping *m)
1128 {
1129         unsigned long flags;
1130         struct pool *pool = m->tc->pool;
1131
1132         spin_lock_irqsave(&pool->lock, flags);
1133         list_add_tail(&m->list, &pool->prepared_discards_pt2);
1134         spin_unlock_irqrestore(&pool->lock, flags);
1135         wake_worker(pool);
1136 }
1137
1138 static void passdown_endio(struct bio *bio)
1139 {
1140         /*
1141          * It doesn't matter if the passdown discard failed, we still want
1142          * to unmap (we ignore err).
1143          */
1144         queue_passdown_pt2(bio->bi_private);
1145         bio_put(bio);
1146 }
1147
1148 static void process_prepared_discard_passdown_pt1(struct dm_thin_new_mapping *m)
1149 {
1150         int r;
1151         struct thin_c *tc = m->tc;
1152         struct pool *pool = tc->pool;
1153         struct bio *discard_parent;
1154         dm_block_t data_end = m->data_block + (m->virt_end - m->virt_begin);
1155
1156         /*
1157          * Only this thread allocates blocks, so we can be sure that the
1158          * newly unmapped blocks will not be allocated before the end of
1159          * the function.
1160          */
1161         r = dm_thin_remove_range(tc->td, m->virt_begin, m->virt_end);
1162         if (r) {
1163                 metadata_operation_failed(pool, "dm_thin_remove_range", r);
1164                 bio_io_error(m->bio);
1165                 cell_defer_no_holder(tc, m->cell);
1166                 mempool_free(m, &pool->mapping_pool);
1167                 return;
1168         }
1169
1170         /*
1171          * Increment the unmapped blocks.  This prevents a race between the
1172          * passdown io and reallocation of freed blocks.
1173          */
1174         r = dm_pool_inc_data_range(pool->pmd, m->data_block, data_end);
1175         if (r) {
1176                 metadata_operation_failed(pool, "dm_pool_inc_data_range", r);
1177                 bio_io_error(m->bio);
1178                 cell_defer_no_holder(tc, m->cell);
1179                 mempool_free(m, &pool->mapping_pool);
1180                 return;
1181         }
1182
1183         discard_parent = bio_alloc(GFP_NOIO, 1);
1184         if (!discard_parent) {
1185                 DMWARN("%s: unable to allocate top level discard bio for passdown. Skipping passdown.",
1186                        dm_device_name(tc->pool->pool_md));
1187                 queue_passdown_pt2(m);
1188
1189         } else {
1190                 discard_parent->bi_end_io = passdown_endio;
1191                 discard_parent->bi_private = m;
1192
1193                 if (m->maybe_shared)
1194                         passdown_double_checking_shared_status(m, discard_parent);
1195                 else {
1196                         struct discard_op op;
1197
1198                         begin_discard(&op, tc, discard_parent);
1199                         r = issue_discard(&op, m->data_block, data_end);
1200                         end_discard(&op, r);
1201                 }
1202         }
1203 }
1204
1205 static void process_prepared_discard_passdown_pt2(struct dm_thin_new_mapping *m)
1206 {
1207         int r;
1208         struct thin_c *tc = m->tc;
1209         struct pool *pool = tc->pool;
1210
1211         /*
1212          * The passdown has completed, so now we can decrement all those
1213          * unmapped blocks.
1214          */
1215         r = dm_pool_dec_data_range(pool->pmd, m->data_block,
1216                                    m->data_block + (m->virt_end - m->virt_begin));
1217         if (r) {
1218                 metadata_operation_failed(pool, "dm_pool_dec_data_range", r);
1219                 bio_io_error(m->bio);
1220         } else
1221                 bio_endio(m->bio);
1222
1223         cell_defer_no_holder(tc, m->cell);
1224         mempool_free(m, &pool->mapping_pool);
1225 }
1226
1227 static void process_prepared(struct pool *pool, struct list_head *head,
1228                              process_mapping_fn *fn)
1229 {
1230         struct list_head maps;
1231         struct dm_thin_new_mapping *m, *tmp;
1232
1233         INIT_LIST_HEAD(&maps);
1234         spin_lock_irq(&pool->lock);
1235         list_splice_init(head, &maps);
1236         spin_unlock_irq(&pool->lock);
1237
1238         list_for_each_entry_safe(m, tmp, &maps, list)
1239                 (*fn)(m);
1240 }
1241
1242 /*
1243  * Deferred bio jobs.
1244  */
1245 static int io_overlaps_block(struct pool *pool, struct bio *bio)
1246 {
1247         return bio->bi_iter.bi_size ==
1248                 (pool->sectors_per_block << SECTOR_SHIFT);
1249 }
1250
1251 static int io_overwrites_block(struct pool *pool, struct bio *bio)
1252 {
1253         return (bio_data_dir(bio) == WRITE) &&
1254                 io_overlaps_block(pool, bio);
1255 }
1256
1257 static void save_and_set_endio(struct bio *bio, bio_end_io_t **save,
1258                                bio_end_io_t *fn)
1259 {
1260         *save = bio->bi_end_io;
1261         bio->bi_end_io = fn;
1262 }
1263
1264 static int ensure_next_mapping(struct pool *pool)
1265 {
1266         if (pool->next_mapping)
1267                 return 0;
1268
1269         pool->next_mapping = mempool_alloc(&pool->mapping_pool, GFP_ATOMIC);
1270
1271         return pool->next_mapping ? 0 : -ENOMEM;
1272 }
1273
1274 static struct dm_thin_new_mapping *get_next_mapping(struct pool *pool)
1275 {
1276         struct dm_thin_new_mapping *m = pool->next_mapping;
1277
1278         BUG_ON(!pool->next_mapping);
1279
1280         memset(m, 0, sizeof(struct dm_thin_new_mapping));
1281         INIT_LIST_HEAD(&m->list);
1282         m->bio = NULL;
1283
1284         pool->next_mapping = NULL;
1285
1286         return m;
1287 }
1288
1289 static void ll_zero(struct thin_c *tc, struct dm_thin_new_mapping *m,
1290                     sector_t begin, sector_t end)
1291 {
1292         struct dm_io_region to;
1293
1294         to.bdev = tc->pool_dev->bdev;
1295         to.sector = begin;
1296         to.count = end - begin;
1297
1298         dm_kcopyd_zero(tc->pool->copier, 1, &to, 0, copy_complete, m);
1299 }
1300
1301 static void remap_and_issue_overwrite(struct thin_c *tc, struct bio *bio,
1302                                       dm_block_t data_begin,
1303                                       struct dm_thin_new_mapping *m)
1304 {
1305         struct pool *pool = tc->pool;
1306         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1307
1308         h->overwrite_mapping = m;
1309         m->bio = bio;
1310         save_and_set_endio(bio, &m->saved_bi_end_io, overwrite_endio);
1311         inc_all_io_entry(pool, bio);
1312         remap_and_issue(tc, bio, data_begin);
1313 }
1314
1315 /*
1316  * A partial copy also needs to zero the uncopied region.
1317  */
1318 static void schedule_copy(struct thin_c *tc, dm_block_t virt_block,
1319                           struct dm_dev *origin, dm_block_t data_origin,
1320                           dm_block_t data_dest,
1321                           struct dm_bio_prison_cell *cell, struct bio *bio,
1322                           sector_t len)
1323 {
1324         struct pool *pool = tc->pool;
1325         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1326
1327         m->tc = tc;
1328         m->virt_begin = virt_block;
1329         m->virt_end = virt_block + 1u;
1330         m->data_block = data_dest;
1331         m->cell = cell;
1332
1333         /*
1334          * quiesce action + copy action + an extra reference held for the
1335          * duration of this function (we may need to inc later for a
1336          * partial zero).
1337          */
1338         atomic_set(&m->prepare_actions, 3);
1339
1340         if (!dm_deferred_set_add_work(pool->shared_read_ds, &m->list))
1341                 complete_mapping_preparation(m); /* already quiesced */
1342
1343         /*
1344          * IO to pool_dev remaps to the pool target's data_dev.
1345          *
1346          * If the whole block of data is being overwritten, we can issue the
1347          * bio immediately. Otherwise we use kcopyd to clone the data first.
1348          */
1349         if (io_overwrites_block(pool, bio))
1350                 remap_and_issue_overwrite(tc, bio, data_dest, m);
1351         else {
1352                 struct dm_io_region from, to;
1353
1354                 from.bdev = origin->bdev;
1355                 from.sector = data_origin * pool->sectors_per_block;
1356                 from.count = len;
1357
1358                 to.bdev = tc->pool_dev->bdev;
1359                 to.sector = data_dest * pool->sectors_per_block;
1360                 to.count = len;
1361
1362                 dm_kcopyd_copy(pool->copier, &from, 1, &to,
1363                                0, copy_complete, m);
1364
1365                 /*
1366                  * Do we need to zero a tail region?
1367                  */
1368                 if (len < pool->sectors_per_block && pool->pf.zero_new_blocks) {
1369                         atomic_inc(&m->prepare_actions);
1370                         ll_zero(tc, m,
1371                                 data_dest * pool->sectors_per_block + len,
1372                                 (data_dest + 1) * pool->sectors_per_block);
1373                 }
1374         }
1375
1376         complete_mapping_preparation(m); /* drop our ref */
1377 }
1378
1379 static void schedule_internal_copy(struct thin_c *tc, dm_block_t virt_block,
1380                                    dm_block_t data_origin, dm_block_t data_dest,
1381                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1382 {
1383         schedule_copy(tc, virt_block, tc->pool_dev,
1384                       data_origin, data_dest, cell, bio,
1385                       tc->pool->sectors_per_block);
1386 }
1387
1388 static void schedule_zero(struct thin_c *tc, dm_block_t virt_block,
1389                           dm_block_t data_block, struct dm_bio_prison_cell *cell,
1390                           struct bio *bio)
1391 {
1392         struct pool *pool = tc->pool;
1393         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1394
1395         atomic_set(&m->prepare_actions, 1); /* no need to quiesce */
1396         m->tc = tc;
1397         m->virt_begin = virt_block;
1398         m->virt_end = virt_block + 1u;
1399         m->data_block = data_block;
1400         m->cell = cell;
1401
1402         /*
1403          * If the whole block of data is being overwritten or we are not
1404          * zeroing pre-existing data, we can issue the bio immediately.
1405          * Otherwise we use kcopyd to zero the data first.
1406          */
1407         if (pool->pf.zero_new_blocks) {
1408                 if (io_overwrites_block(pool, bio))
1409                         remap_and_issue_overwrite(tc, bio, data_block, m);
1410                 else
1411                         ll_zero(tc, m, data_block * pool->sectors_per_block,
1412                                 (data_block + 1) * pool->sectors_per_block);
1413         } else
1414                 process_prepared_mapping(m);
1415 }
1416
1417 static void schedule_external_copy(struct thin_c *tc, dm_block_t virt_block,
1418                                    dm_block_t data_dest,
1419                                    struct dm_bio_prison_cell *cell, struct bio *bio)
1420 {
1421         struct pool *pool = tc->pool;
1422         sector_t virt_block_begin = virt_block * pool->sectors_per_block;
1423         sector_t virt_block_end = (virt_block + 1) * pool->sectors_per_block;
1424
1425         if (virt_block_end <= tc->origin_size)
1426                 schedule_copy(tc, virt_block, tc->origin_dev,
1427                               virt_block, data_dest, cell, bio,
1428                               pool->sectors_per_block);
1429
1430         else if (virt_block_begin < tc->origin_size)
1431                 schedule_copy(tc, virt_block, tc->origin_dev,
1432                               virt_block, data_dest, cell, bio,
1433                               tc->origin_size - virt_block_begin);
1434
1435         else
1436                 schedule_zero(tc, virt_block, data_dest, cell, bio);
1437 }
1438
1439 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode);
1440
1441 static void requeue_bios(struct pool *pool);
1442
1443 static bool is_read_only_pool_mode(enum pool_mode mode)
1444 {
1445         return (mode == PM_OUT_OF_METADATA_SPACE || mode == PM_READ_ONLY);
1446 }
1447
1448 static bool is_read_only(struct pool *pool)
1449 {
1450         return is_read_only_pool_mode(get_pool_mode(pool));
1451 }
1452
1453 static void check_for_metadata_space(struct pool *pool)
1454 {
1455         int r;
1456         const char *ooms_reason = NULL;
1457         dm_block_t nr_free;
1458
1459         r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free);
1460         if (r)
1461                 ooms_reason = "Could not get free metadata blocks";
1462         else if (!nr_free)
1463                 ooms_reason = "No free metadata blocks";
1464
1465         if (ooms_reason && !is_read_only(pool)) {
1466                 DMERR("%s", ooms_reason);
1467                 set_pool_mode(pool, PM_OUT_OF_METADATA_SPACE);
1468         }
1469 }
1470
1471 static void check_for_data_space(struct pool *pool)
1472 {
1473         int r;
1474         dm_block_t nr_free;
1475
1476         if (get_pool_mode(pool) != PM_OUT_OF_DATA_SPACE)
1477                 return;
1478
1479         r = dm_pool_get_free_block_count(pool->pmd, &nr_free);
1480         if (r)
1481                 return;
1482
1483         if (nr_free) {
1484                 set_pool_mode(pool, PM_WRITE);
1485                 requeue_bios(pool);
1486         }
1487 }
1488
1489 /*
1490  * A non-zero return indicates read_only or fail_io mode.
1491  * Many callers don't care about the return value.
1492  */
1493 static int commit(struct pool *pool)
1494 {
1495         int r;
1496
1497         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE)
1498                 return -EINVAL;
1499
1500         r = dm_pool_commit_metadata(pool->pmd);
1501         if (r)
1502                 metadata_operation_failed(pool, "dm_pool_commit_metadata", r);
1503         else {
1504                 check_for_metadata_space(pool);
1505                 check_for_data_space(pool);
1506         }
1507
1508         return r;
1509 }
1510
1511 static void check_low_water_mark(struct pool *pool, dm_block_t free_blocks)
1512 {
1513         if (free_blocks <= pool->low_water_blocks && !pool->low_water_triggered) {
1514                 DMWARN("%s: reached low water mark for data device: sending event.",
1515                        dm_device_name(pool->pool_md));
1516                 spin_lock_irq(&pool->lock);
1517                 pool->low_water_triggered = true;
1518                 spin_unlock_irq(&pool->lock);
1519                 dm_table_event(pool->ti->table);
1520         }
1521 }
1522
1523 static int alloc_data_block(struct thin_c *tc, dm_block_t *result)
1524 {
1525         int r;
1526         dm_block_t free_blocks;
1527         struct pool *pool = tc->pool;
1528
1529         if (WARN_ON(get_pool_mode(pool) != PM_WRITE))
1530                 return -EINVAL;
1531
1532         r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1533         if (r) {
1534                 metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1535                 return r;
1536         }
1537
1538         check_low_water_mark(pool, free_blocks);
1539
1540         if (!free_blocks) {
1541                 /*
1542                  * Try to commit to see if that will free up some
1543                  * more space.
1544                  */
1545                 r = commit(pool);
1546                 if (r)
1547                         return r;
1548
1549                 r = dm_pool_get_free_block_count(pool->pmd, &free_blocks);
1550                 if (r) {
1551                         metadata_operation_failed(pool, "dm_pool_get_free_block_count", r);
1552                         return r;
1553                 }
1554
1555                 if (!free_blocks) {
1556                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1557                         return -ENOSPC;
1558                 }
1559         }
1560
1561         r = dm_pool_alloc_data_block(pool->pmd, result);
1562         if (r) {
1563                 if (r == -ENOSPC)
1564                         set_pool_mode(pool, PM_OUT_OF_DATA_SPACE);
1565                 else
1566                         metadata_operation_failed(pool, "dm_pool_alloc_data_block", r);
1567                 return r;
1568         }
1569
1570         r = dm_pool_get_free_metadata_block_count(pool->pmd, &free_blocks);
1571         if (r) {
1572                 metadata_operation_failed(pool, "dm_pool_get_free_metadata_block_count", r);
1573                 return r;
1574         }
1575
1576         if (!free_blocks) {
1577                 /* Let's commit before we use up the metadata reserve. */
1578                 r = commit(pool);
1579                 if (r)
1580                         return r;
1581         }
1582
1583         return 0;
1584 }
1585
1586 /*
1587  * If we have run out of space, queue bios until the device is
1588  * resumed, presumably after having been reloaded with more space.
1589  */
1590 static void retry_on_resume(struct bio *bio)
1591 {
1592         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1593         struct thin_c *tc = h->tc;
1594
1595         spin_lock_irq(&tc->lock);
1596         bio_list_add(&tc->retry_on_resume_list, bio);
1597         spin_unlock_irq(&tc->lock);
1598 }
1599
1600 static blk_status_t should_error_unserviceable_bio(struct pool *pool)
1601 {
1602         enum pool_mode m = get_pool_mode(pool);
1603
1604         switch (m) {
1605         case PM_WRITE:
1606                 /* Shouldn't get here */
1607                 DMERR_LIMIT("bio unserviceable, yet pool is in PM_WRITE mode");
1608                 return BLK_STS_IOERR;
1609
1610         case PM_OUT_OF_DATA_SPACE:
1611                 return pool->pf.error_if_no_space ? BLK_STS_NOSPC : 0;
1612
1613         case PM_OUT_OF_METADATA_SPACE:
1614         case PM_READ_ONLY:
1615         case PM_FAIL:
1616                 return BLK_STS_IOERR;
1617         default:
1618                 /* Shouldn't get here */
1619                 DMERR_LIMIT("bio unserviceable, yet pool has an unknown mode");
1620                 return BLK_STS_IOERR;
1621         }
1622 }
1623
1624 static void handle_unserviceable_bio(struct pool *pool, struct bio *bio)
1625 {
1626         blk_status_t error = should_error_unserviceable_bio(pool);
1627
1628         if (error) {
1629                 bio->bi_status = error;
1630                 bio_endio(bio);
1631         } else
1632                 retry_on_resume(bio);
1633 }
1634
1635 static void retry_bios_on_resume(struct pool *pool, struct dm_bio_prison_cell *cell)
1636 {
1637         struct bio *bio;
1638         struct bio_list bios;
1639         blk_status_t error;
1640
1641         error = should_error_unserviceable_bio(pool);
1642         if (error) {
1643                 cell_error_with_code(pool, cell, error);
1644                 return;
1645         }
1646
1647         bio_list_init(&bios);
1648         cell_release(pool, cell, &bios);
1649
1650         while ((bio = bio_list_pop(&bios)))
1651                 retry_on_resume(bio);
1652 }
1653
1654 static void process_discard_cell_no_passdown(struct thin_c *tc,
1655                                              struct dm_bio_prison_cell *virt_cell)
1656 {
1657         struct pool *pool = tc->pool;
1658         struct dm_thin_new_mapping *m = get_next_mapping(pool);
1659
1660         /*
1661          * We don't need to lock the data blocks, since there's no
1662          * passdown.  We only lock data blocks for allocation and breaking sharing.
1663          */
1664         m->tc = tc;
1665         m->virt_begin = virt_cell->key.block_begin;
1666         m->virt_end = virt_cell->key.block_end;
1667         m->cell = virt_cell;
1668         m->bio = virt_cell->holder;
1669
1670         if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1671                 pool->process_prepared_discard(m);
1672 }
1673
1674 static void break_up_discard_bio(struct thin_c *tc, dm_block_t begin, dm_block_t end,
1675                                  struct bio *bio)
1676 {
1677         struct pool *pool = tc->pool;
1678
1679         int r;
1680         bool maybe_shared;
1681         struct dm_cell_key data_key;
1682         struct dm_bio_prison_cell *data_cell;
1683         struct dm_thin_new_mapping *m;
1684         dm_block_t virt_begin, virt_end, data_begin;
1685
1686         while (begin != end) {
1687                 r = ensure_next_mapping(pool);
1688                 if (r)
1689                         /* we did our best */
1690                         return;
1691
1692                 r = dm_thin_find_mapped_range(tc->td, begin, end, &virt_begin, &virt_end,
1693                                               &data_begin, &maybe_shared);
1694                 if (r)
1695                         /*
1696                          * Silently fail, letting any mappings we've
1697                          * created complete.
1698                          */
1699                         break;
1700
1701                 build_key(tc->td, PHYSICAL, data_begin, data_begin + (virt_end - virt_begin), &data_key);
1702                 if (bio_detain(tc->pool, &data_key, NULL, &data_cell)) {
1703                         /* contention, we'll give up with this range */
1704                         begin = virt_end;
1705                         continue;
1706                 }
1707
1708                 /*
1709                  * IO may still be going to the destination block.  We must
1710                  * quiesce before we can do the removal.
1711                  */
1712                 m = get_next_mapping(pool);
1713                 m->tc = tc;
1714                 m->maybe_shared = maybe_shared;
1715                 m->virt_begin = virt_begin;
1716                 m->virt_end = virt_end;
1717                 m->data_block = data_begin;
1718                 m->cell = data_cell;
1719                 m->bio = bio;
1720
1721                 /*
1722                  * The parent bio must not complete before sub discard bios are
1723                  * chained to it (see end_discard's bio_chain)!
1724                  *
1725                  * This per-mapping bi_remaining increment is paired with
1726                  * the implicit decrement that occurs via bio_endio() in
1727                  * end_discard().
1728                  */
1729                 bio_inc_remaining(bio);
1730                 if (!dm_deferred_set_add_work(pool->all_io_ds, &m->list))
1731                         pool->process_prepared_discard(m);
1732
1733                 begin = virt_end;
1734         }
1735 }
1736
1737 static void process_discard_cell_passdown(struct thin_c *tc, struct dm_bio_prison_cell *virt_cell)
1738 {
1739         struct bio *bio = virt_cell->holder;
1740         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1741
1742         /*
1743          * The virt_cell will only get freed once the origin bio completes.
1744          * This means it will remain locked while all the individual
1745          * passdown bios are in flight.
1746          */
1747         h->cell = virt_cell;
1748         break_up_discard_bio(tc, virt_cell->key.block_begin, virt_cell->key.block_end, bio);
1749
1750         /*
1751          * We complete the bio now, knowing that the bi_remaining field
1752          * will prevent completion until the sub range discards have
1753          * completed.
1754          */
1755         bio_endio(bio);
1756 }
1757
1758 static void process_discard_bio(struct thin_c *tc, struct bio *bio)
1759 {
1760         dm_block_t begin, end;
1761         struct dm_cell_key virt_key;
1762         struct dm_bio_prison_cell *virt_cell;
1763
1764         get_bio_block_range(tc, bio, &begin, &end);
1765         if (begin == end) {
1766                 /*
1767                  * The discard covers less than a block.
1768                  */
1769                 bio_endio(bio);
1770                 return;
1771         }
1772
1773         build_key(tc->td, VIRTUAL, begin, end, &virt_key);
1774         if (bio_detain(tc->pool, &virt_key, bio, &virt_cell))
1775                 /*
1776                  * Potential starvation issue: We're relying on the
1777                  * fs/application being well behaved, and not trying to
1778                  * send IO to a region at the same time as discarding it.
1779                  * If they do this persistently then it's possible this
1780                  * cell will never be granted.
1781                  */
1782                 return;
1783
1784         tc->pool->process_discard_cell(tc, virt_cell);
1785 }
1786
1787 static void break_sharing(struct thin_c *tc, struct bio *bio, dm_block_t block,
1788                           struct dm_cell_key *key,
1789                           struct dm_thin_lookup_result *lookup_result,
1790                           struct dm_bio_prison_cell *cell)
1791 {
1792         int r;
1793         dm_block_t data_block;
1794         struct pool *pool = tc->pool;
1795
1796         r = alloc_data_block(tc, &data_block);
1797         switch (r) {
1798         case 0:
1799                 schedule_internal_copy(tc, block, lookup_result->block,
1800                                        data_block, cell, bio);
1801                 break;
1802
1803         case -ENOSPC:
1804                 retry_bios_on_resume(pool, cell);
1805                 break;
1806
1807         default:
1808                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1809                             __func__, r);
1810                 cell_error(pool, cell);
1811                 break;
1812         }
1813 }
1814
1815 static void __remap_and_issue_shared_cell(void *context,
1816                                           struct dm_bio_prison_cell *cell)
1817 {
1818         struct remap_info *info = context;
1819         struct bio *bio;
1820
1821         while ((bio = bio_list_pop(&cell->bios))) {
1822                 if (bio_data_dir(bio) == WRITE || op_is_flush(bio->bi_opf) ||
1823                     bio_op(bio) == REQ_OP_DISCARD)
1824                         bio_list_add(&info->defer_bios, bio);
1825                 else {
1826                         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1827
1828                         h->shared_read_entry = dm_deferred_entry_inc(info->tc->pool->shared_read_ds);
1829                         inc_all_io_entry(info->tc->pool, bio);
1830                         bio_list_add(&info->issue_bios, bio);
1831                 }
1832         }
1833 }
1834
1835 static void remap_and_issue_shared_cell(struct thin_c *tc,
1836                                         struct dm_bio_prison_cell *cell,
1837                                         dm_block_t block)
1838 {
1839         struct bio *bio;
1840         struct remap_info info;
1841
1842         info.tc = tc;
1843         bio_list_init(&info.defer_bios);
1844         bio_list_init(&info.issue_bios);
1845
1846         cell_visit_release(tc->pool, __remap_and_issue_shared_cell,
1847                            &info, cell);
1848
1849         while ((bio = bio_list_pop(&info.defer_bios)))
1850                 thin_defer_bio(tc, bio);
1851
1852         while ((bio = bio_list_pop(&info.issue_bios)))
1853                 remap_and_issue(tc, bio, block);
1854 }
1855
1856 static void process_shared_bio(struct thin_c *tc, struct bio *bio,
1857                                dm_block_t block,
1858                                struct dm_thin_lookup_result *lookup_result,
1859                                struct dm_bio_prison_cell *virt_cell)
1860 {
1861         struct dm_bio_prison_cell *data_cell;
1862         struct pool *pool = tc->pool;
1863         struct dm_cell_key key;
1864
1865         /*
1866          * If cell is already occupied, then sharing is already in the process
1867          * of being broken so we have nothing further to do here.
1868          */
1869         build_data_key(tc->td, lookup_result->block, &key);
1870         if (bio_detain(pool, &key, bio, &data_cell)) {
1871                 cell_defer_no_holder(tc, virt_cell);
1872                 return;
1873         }
1874
1875         if (bio_data_dir(bio) == WRITE && bio->bi_iter.bi_size) {
1876                 break_sharing(tc, bio, block, &key, lookup_result, data_cell);
1877                 cell_defer_no_holder(tc, virt_cell);
1878         } else {
1879                 struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
1880
1881                 h->shared_read_entry = dm_deferred_entry_inc(pool->shared_read_ds);
1882                 inc_all_io_entry(pool, bio);
1883                 remap_and_issue(tc, bio, lookup_result->block);
1884
1885                 remap_and_issue_shared_cell(tc, data_cell, lookup_result->block);
1886                 remap_and_issue_shared_cell(tc, virt_cell, lookup_result->block);
1887         }
1888 }
1889
1890 static void provision_block(struct thin_c *tc, struct bio *bio, dm_block_t block,
1891                             struct dm_bio_prison_cell *cell)
1892 {
1893         int r;
1894         dm_block_t data_block;
1895         struct pool *pool = tc->pool;
1896
1897         /*
1898          * Remap empty bios (flushes) immediately, without provisioning.
1899          */
1900         if (!bio->bi_iter.bi_size) {
1901                 inc_all_io_entry(pool, bio);
1902                 cell_defer_no_holder(tc, cell);
1903
1904                 remap_and_issue(tc, bio, 0);
1905                 return;
1906         }
1907
1908         /*
1909          * Fill read bios with zeroes and complete them immediately.
1910          */
1911         if (bio_data_dir(bio) == READ) {
1912                 zero_fill_bio(bio);
1913                 cell_defer_no_holder(tc, cell);
1914                 bio_endio(bio);
1915                 return;
1916         }
1917
1918         r = alloc_data_block(tc, &data_block);
1919         switch (r) {
1920         case 0:
1921                 if (tc->origin_dev)
1922                         schedule_external_copy(tc, block, data_block, cell, bio);
1923                 else
1924                         schedule_zero(tc, block, data_block, cell, bio);
1925                 break;
1926
1927         case -ENOSPC:
1928                 retry_bios_on_resume(pool, cell);
1929                 break;
1930
1931         default:
1932                 DMERR_LIMIT("%s: alloc_data_block() failed: error = %d",
1933                             __func__, r);
1934                 cell_error(pool, cell);
1935                 break;
1936         }
1937 }
1938
1939 static void process_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
1940 {
1941         int r;
1942         struct pool *pool = tc->pool;
1943         struct bio *bio = cell->holder;
1944         dm_block_t block = get_bio_block(tc, bio);
1945         struct dm_thin_lookup_result lookup_result;
1946
1947         if (tc->requeue_mode) {
1948                 cell_requeue(pool, cell);
1949                 return;
1950         }
1951
1952         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
1953         switch (r) {
1954         case 0:
1955                 if (lookup_result.shared)
1956                         process_shared_bio(tc, bio, block, &lookup_result, cell);
1957                 else {
1958                         inc_all_io_entry(pool, bio);
1959                         remap_and_issue(tc, bio, lookup_result.block);
1960                         inc_remap_and_issue_cell(tc, cell, lookup_result.block);
1961                 }
1962                 break;
1963
1964         case -ENODATA:
1965                 if (bio_data_dir(bio) == READ && tc->origin_dev) {
1966                         inc_all_io_entry(pool, bio);
1967                         cell_defer_no_holder(tc, cell);
1968
1969                         if (bio_end_sector(bio) <= tc->origin_size)
1970                                 remap_to_origin_and_issue(tc, bio);
1971
1972                         else if (bio->bi_iter.bi_sector < tc->origin_size) {
1973                                 zero_fill_bio(bio);
1974                                 bio->bi_iter.bi_size = (tc->origin_size - bio->bi_iter.bi_sector) << SECTOR_SHIFT;
1975                                 remap_to_origin_and_issue(tc, bio);
1976
1977                         } else {
1978                                 zero_fill_bio(bio);
1979                                 bio_endio(bio);
1980                         }
1981                 } else
1982                         provision_block(tc, bio, block, cell);
1983                 break;
1984
1985         default:
1986                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
1987                             __func__, r);
1988                 cell_defer_no_holder(tc, cell);
1989                 bio_io_error(bio);
1990                 break;
1991         }
1992 }
1993
1994 static void process_bio(struct thin_c *tc, struct bio *bio)
1995 {
1996         struct pool *pool = tc->pool;
1997         dm_block_t block = get_bio_block(tc, bio);
1998         struct dm_bio_prison_cell *cell;
1999         struct dm_cell_key key;
2000
2001         /*
2002          * If cell is already occupied, then the block is already
2003          * being provisioned so we have nothing further to do here.
2004          */
2005         build_virtual_key(tc->td, block, &key);
2006         if (bio_detain(pool, &key, bio, &cell))
2007                 return;
2008
2009         process_cell(tc, cell);
2010 }
2011
2012 static void __process_bio_read_only(struct thin_c *tc, struct bio *bio,
2013                                     struct dm_bio_prison_cell *cell)
2014 {
2015         int r;
2016         int rw = bio_data_dir(bio);
2017         dm_block_t block = get_bio_block(tc, bio);
2018         struct dm_thin_lookup_result lookup_result;
2019
2020         r = dm_thin_find_block(tc->td, block, 1, &lookup_result);
2021         switch (r) {
2022         case 0:
2023                 if (lookup_result.shared && (rw == WRITE) && bio->bi_iter.bi_size) {
2024                         handle_unserviceable_bio(tc->pool, bio);
2025                         if (cell)
2026                                 cell_defer_no_holder(tc, cell);
2027                 } else {
2028                         inc_all_io_entry(tc->pool, bio);
2029                         remap_and_issue(tc, bio, lookup_result.block);
2030                         if (cell)
2031                                 inc_remap_and_issue_cell(tc, cell, lookup_result.block);
2032                 }
2033                 break;
2034
2035         case -ENODATA:
2036                 if (cell)
2037                         cell_defer_no_holder(tc, cell);
2038                 if (rw != READ) {
2039                         handle_unserviceable_bio(tc->pool, bio);
2040                         break;
2041                 }
2042
2043                 if (tc->origin_dev) {
2044                         inc_all_io_entry(tc->pool, bio);
2045                         remap_to_origin_and_issue(tc, bio);
2046                         break;
2047                 }
2048
2049                 zero_fill_bio(bio);
2050                 bio_endio(bio);
2051                 break;
2052
2053         default:
2054                 DMERR_LIMIT("%s: dm_thin_find_block() failed: error = %d",
2055                             __func__, r);
2056                 if (cell)
2057                         cell_defer_no_holder(tc, cell);
2058                 bio_io_error(bio);
2059                 break;
2060         }
2061 }
2062
2063 static void process_bio_read_only(struct thin_c *tc, struct bio *bio)
2064 {
2065         __process_bio_read_only(tc, bio, NULL);
2066 }
2067
2068 static void process_cell_read_only(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2069 {
2070         __process_bio_read_only(tc, cell->holder, cell);
2071 }
2072
2073 static void process_bio_success(struct thin_c *tc, struct bio *bio)
2074 {
2075         bio_endio(bio);
2076 }
2077
2078 static void process_bio_fail(struct thin_c *tc, struct bio *bio)
2079 {
2080         bio_io_error(bio);
2081 }
2082
2083 static void process_cell_success(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2084 {
2085         cell_success(tc->pool, cell);
2086 }
2087
2088 static void process_cell_fail(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2089 {
2090         cell_error(tc->pool, cell);
2091 }
2092
2093 /*
2094  * FIXME: should we also commit due to size of transaction, measured in
2095  * metadata blocks?
2096  */
2097 static int need_commit_due_to_time(struct pool *pool)
2098 {
2099         return !time_in_range(jiffies, pool->last_commit_jiffies,
2100                               pool->last_commit_jiffies + COMMIT_PERIOD);
2101 }
2102
2103 #define thin_pbd(node) rb_entry((node), struct dm_thin_endio_hook, rb_node)
2104 #define thin_bio(pbd) dm_bio_from_per_bio_data((pbd), sizeof(struct dm_thin_endio_hook))
2105
2106 static void __thin_bio_rb_add(struct thin_c *tc, struct bio *bio)
2107 {
2108         struct rb_node **rbp, *parent;
2109         struct dm_thin_endio_hook *pbd;
2110         sector_t bi_sector = bio->bi_iter.bi_sector;
2111
2112         rbp = &tc->sort_bio_list.rb_node;
2113         parent = NULL;
2114         while (*rbp) {
2115                 parent = *rbp;
2116                 pbd = thin_pbd(parent);
2117
2118                 if (bi_sector < thin_bio(pbd)->bi_iter.bi_sector)
2119                         rbp = &(*rbp)->rb_left;
2120                 else
2121                         rbp = &(*rbp)->rb_right;
2122         }
2123
2124         pbd = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2125         rb_link_node(&pbd->rb_node, parent, rbp);
2126         rb_insert_color(&pbd->rb_node, &tc->sort_bio_list);
2127 }
2128
2129 static void __extract_sorted_bios(struct thin_c *tc)
2130 {
2131         struct rb_node *node;
2132         struct dm_thin_endio_hook *pbd;
2133         struct bio *bio;
2134
2135         for (node = rb_first(&tc->sort_bio_list); node; node = rb_next(node)) {
2136                 pbd = thin_pbd(node);
2137                 bio = thin_bio(pbd);
2138
2139                 bio_list_add(&tc->deferred_bio_list, bio);
2140                 rb_erase(&pbd->rb_node, &tc->sort_bio_list);
2141         }
2142
2143         WARN_ON(!RB_EMPTY_ROOT(&tc->sort_bio_list));
2144 }
2145
2146 static void __sort_thin_deferred_bios(struct thin_c *tc)
2147 {
2148         struct bio *bio;
2149         struct bio_list bios;
2150
2151         bio_list_init(&bios);
2152         bio_list_merge(&bios, &tc->deferred_bio_list);
2153         bio_list_init(&tc->deferred_bio_list);
2154
2155         /* Sort deferred_bio_list using rb-tree */
2156         while ((bio = bio_list_pop(&bios)))
2157                 __thin_bio_rb_add(tc, bio);
2158
2159         /*
2160          * Transfer the sorted bios in sort_bio_list back to
2161          * deferred_bio_list to allow lockless submission of
2162          * all bios.
2163          */
2164         __extract_sorted_bios(tc);
2165 }
2166
2167 static void process_thin_deferred_bios(struct thin_c *tc)
2168 {
2169         struct pool *pool = tc->pool;
2170         struct bio *bio;
2171         struct bio_list bios;
2172         struct blk_plug plug;
2173         unsigned count = 0;
2174
2175         if (tc->requeue_mode) {
2176                 error_thin_bio_list(tc, &tc->deferred_bio_list,
2177                                 BLK_STS_DM_REQUEUE);
2178                 return;
2179         }
2180
2181         bio_list_init(&bios);
2182
2183         spin_lock_irq(&tc->lock);
2184
2185         if (bio_list_empty(&tc->deferred_bio_list)) {
2186                 spin_unlock_irq(&tc->lock);
2187                 return;
2188         }
2189
2190         __sort_thin_deferred_bios(tc);
2191
2192         bio_list_merge(&bios, &tc->deferred_bio_list);
2193         bio_list_init(&tc->deferred_bio_list);
2194
2195         spin_unlock_irq(&tc->lock);
2196
2197         blk_start_plug(&plug);
2198         while ((bio = bio_list_pop(&bios))) {
2199                 /*
2200                  * If we've got no free new_mapping structs, and processing
2201                  * this bio might require one, we pause until there are some
2202                  * prepared mappings to process.
2203                  */
2204                 if (ensure_next_mapping(pool)) {
2205                         spin_lock_irq(&tc->lock);
2206                         bio_list_add(&tc->deferred_bio_list, bio);
2207                         bio_list_merge(&tc->deferred_bio_list, &bios);
2208                         spin_unlock_irq(&tc->lock);
2209                         break;
2210                 }
2211
2212                 if (bio_op(bio) == REQ_OP_DISCARD)
2213                         pool->process_discard(tc, bio);
2214                 else
2215                         pool->process_bio(tc, bio);
2216
2217                 if ((count++ & 127) == 0) {
2218                         throttle_work_update(&pool->throttle);
2219                         dm_pool_issue_prefetches(pool->pmd);
2220                 }
2221         }
2222         blk_finish_plug(&plug);
2223 }
2224
2225 static int cmp_cells(const void *lhs, const void *rhs)
2226 {
2227         struct dm_bio_prison_cell *lhs_cell = *((struct dm_bio_prison_cell **) lhs);
2228         struct dm_bio_prison_cell *rhs_cell = *((struct dm_bio_prison_cell **) rhs);
2229
2230         BUG_ON(!lhs_cell->holder);
2231         BUG_ON(!rhs_cell->holder);
2232
2233         if (lhs_cell->holder->bi_iter.bi_sector < rhs_cell->holder->bi_iter.bi_sector)
2234                 return -1;
2235
2236         if (lhs_cell->holder->bi_iter.bi_sector > rhs_cell->holder->bi_iter.bi_sector)
2237                 return 1;
2238
2239         return 0;
2240 }
2241
2242 static unsigned sort_cells(struct pool *pool, struct list_head *cells)
2243 {
2244         unsigned count = 0;
2245         struct dm_bio_prison_cell *cell, *tmp;
2246
2247         list_for_each_entry_safe(cell, tmp, cells, user_list) {
2248                 if (count >= CELL_SORT_ARRAY_SIZE)
2249                         break;
2250
2251                 pool->cell_sort_array[count++] = cell;
2252                 list_del(&cell->user_list);
2253         }
2254
2255         sort(pool->cell_sort_array, count, sizeof(cell), cmp_cells, NULL);
2256
2257         return count;
2258 }
2259
2260 static void process_thin_deferred_cells(struct thin_c *tc)
2261 {
2262         struct pool *pool = tc->pool;
2263         struct list_head cells;
2264         struct dm_bio_prison_cell *cell;
2265         unsigned i, j, count;
2266
2267         INIT_LIST_HEAD(&cells);
2268
2269         spin_lock_irq(&tc->lock);
2270         list_splice_init(&tc->deferred_cells, &cells);
2271         spin_unlock_irq(&tc->lock);
2272
2273         if (list_empty(&cells))
2274                 return;
2275
2276         do {
2277                 count = sort_cells(tc->pool, &cells);
2278
2279                 for (i = 0; i < count; i++) {
2280                         cell = pool->cell_sort_array[i];
2281                         BUG_ON(!cell->holder);
2282
2283                         /*
2284                          * If we've got no free new_mapping structs, and processing
2285                          * this bio might require one, we pause until there are some
2286                          * prepared mappings to process.
2287                          */
2288                         if (ensure_next_mapping(pool)) {
2289                                 for (j = i; j < count; j++)
2290                                         list_add(&pool->cell_sort_array[j]->user_list, &cells);
2291
2292                                 spin_lock_irq(&tc->lock);
2293                                 list_splice(&cells, &tc->deferred_cells);
2294                                 spin_unlock_irq(&tc->lock);
2295                                 return;
2296                         }
2297
2298                         if (bio_op(cell->holder) == REQ_OP_DISCARD)
2299                                 pool->process_discard_cell(tc, cell);
2300                         else
2301                                 pool->process_cell(tc, cell);
2302                 }
2303         } while (!list_empty(&cells));
2304 }
2305
2306 static void thin_get(struct thin_c *tc);
2307 static void thin_put(struct thin_c *tc);
2308
2309 /*
2310  * We can't hold rcu_read_lock() around code that can block.  So we
2311  * find a thin with the rcu lock held; bump a refcount; then drop
2312  * the lock.
2313  */
2314 static struct thin_c *get_first_thin(struct pool *pool)
2315 {
2316         struct thin_c *tc = NULL;
2317
2318         rcu_read_lock();
2319         if (!list_empty(&pool->active_thins)) {
2320                 tc = list_entry_rcu(pool->active_thins.next, struct thin_c, list);
2321                 thin_get(tc);
2322         }
2323         rcu_read_unlock();
2324
2325         return tc;
2326 }
2327
2328 static struct thin_c *get_next_thin(struct pool *pool, struct thin_c *tc)
2329 {
2330         struct thin_c *old_tc = tc;
2331
2332         rcu_read_lock();
2333         list_for_each_entry_continue_rcu(tc, &pool->active_thins, list) {
2334                 thin_get(tc);
2335                 thin_put(old_tc);
2336                 rcu_read_unlock();
2337                 return tc;
2338         }
2339         thin_put(old_tc);
2340         rcu_read_unlock();
2341
2342         return NULL;
2343 }
2344
2345 static void process_deferred_bios(struct pool *pool)
2346 {
2347         struct bio *bio;
2348         struct bio_list bios, bio_completions;
2349         struct thin_c *tc;
2350
2351         tc = get_first_thin(pool);
2352         while (tc) {
2353                 process_thin_deferred_cells(tc);
2354                 process_thin_deferred_bios(tc);
2355                 tc = get_next_thin(pool, tc);
2356         }
2357
2358         /*
2359          * If there are any deferred flush bios, we must commit the metadata
2360          * before issuing them or signaling their completion.
2361          */
2362         bio_list_init(&bios);
2363         bio_list_init(&bio_completions);
2364
2365         spin_lock_irq(&pool->lock);
2366         bio_list_merge(&bios, &pool->deferred_flush_bios);
2367         bio_list_init(&pool->deferred_flush_bios);
2368
2369         bio_list_merge(&bio_completions, &pool->deferred_flush_completions);
2370         bio_list_init(&pool->deferred_flush_completions);
2371         spin_unlock_irq(&pool->lock);
2372
2373         if (bio_list_empty(&bios) && bio_list_empty(&bio_completions) &&
2374             !(dm_pool_changed_this_transaction(pool->pmd) && need_commit_due_to_time(pool)))
2375                 return;
2376
2377         if (commit(pool)) {
2378                 bio_list_merge(&bios, &bio_completions);
2379
2380                 while ((bio = bio_list_pop(&bios)))
2381                         bio_io_error(bio);
2382                 return;
2383         }
2384         pool->last_commit_jiffies = jiffies;
2385
2386         while ((bio = bio_list_pop(&bio_completions)))
2387                 bio_endio(bio);
2388
2389         while ((bio = bio_list_pop(&bios))) {
2390                 /*
2391                  * The data device was flushed as part of metadata commit,
2392                  * so complete redundant flushes immediately.
2393                  */
2394                 if (bio->bi_opf & REQ_PREFLUSH)
2395                         bio_endio(bio);
2396                 else
2397                         generic_make_request(bio);
2398         }
2399 }
2400
2401 static void do_worker(struct work_struct *ws)
2402 {
2403         struct pool *pool = container_of(ws, struct pool, worker);
2404
2405         throttle_work_start(&pool->throttle);
2406         dm_pool_issue_prefetches(pool->pmd);
2407         throttle_work_update(&pool->throttle);
2408         process_prepared(pool, &pool->prepared_mappings, &pool->process_prepared_mapping);
2409         throttle_work_update(&pool->throttle);
2410         process_prepared(pool, &pool->prepared_discards, &pool->process_prepared_discard);
2411         throttle_work_update(&pool->throttle);
2412         process_prepared(pool, &pool->prepared_discards_pt2, &pool->process_prepared_discard_pt2);
2413         throttle_work_update(&pool->throttle);
2414         process_deferred_bios(pool);
2415         throttle_work_complete(&pool->throttle);
2416 }
2417
2418 /*
2419  * We want to commit periodically so that not too much
2420  * unwritten data builds up.
2421  */
2422 static void do_waker(struct work_struct *ws)
2423 {
2424         struct pool *pool = container_of(to_delayed_work(ws), struct pool, waker);
2425         wake_worker(pool);
2426         queue_delayed_work(pool->wq, &pool->waker, COMMIT_PERIOD);
2427 }
2428
2429 /*
2430  * We're holding onto IO to allow userland time to react.  After the
2431  * timeout either the pool will have been resized (and thus back in
2432  * PM_WRITE mode), or we degrade to PM_OUT_OF_DATA_SPACE w/ error_if_no_space.
2433  */
2434 static void do_no_space_timeout(struct work_struct *ws)
2435 {
2436         struct pool *pool = container_of(to_delayed_work(ws), struct pool,
2437                                          no_space_timeout);
2438
2439         if (get_pool_mode(pool) == PM_OUT_OF_DATA_SPACE && !pool->pf.error_if_no_space) {
2440                 pool->pf.error_if_no_space = true;
2441                 notify_of_pool_mode_change(pool);
2442                 error_retry_list_with_code(pool, BLK_STS_NOSPC);
2443         }
2444 }
2445
2446 /*----------------------------------------------------------------*/
2447
2448 struct pool_work {
2449         struct work_struct worker;
2450         struct completion complete;
2451 };
2452
2453 static struct pool_work *to_pool_work(struct work_struct *ws)
2454 {
2455         return container_of(ws, struct pool_work, worker);
2456 }
2457
2458 static void pool_work_complete(struct pool_work *pw)
2459 {
2460         complete(&pw->complete);
2461 }
2462
2463 static void pool_work_wait(struct pool_work *pw, struct pool *pool,
2464                            void (*fn)(struct work_struct *))
2465 {
2466         INIT_WORK_ONSTACK(&pw->worker, fn);
2467         init_completion(&pw->complete);
2468         queue_work(pool->wq, &pw->worker);
2469         wait_for_completion(&pw->complete);
2470 }
2471
2472 /*----------------------------------------------------------------*/
2473
2474 struct noflush_work {
2475         struct pool_work pw;
2476         struct thin_c *tc;
2477 };
2478
2479 static struct noflush_work *to_noflush(struct work_struct *ws)
2480 {
2481         return container_of(to_pool_work(ws), struct noflush_work, pw);
2482 }
2483
2484 static void do_noflush_start(struct work_struct *ws)
2485 {
2486         struct noflush_work *w = to_noflush(ws);
2487         w->tc->requeue_mode = true;
2488         requeue_io(w->tc);
2489         pool_work_complete(&w->pw);
2490 }
2491
2492 static void do_noflush_stop(struct work_struct *ws)
2493 {
2494         struct noflush_work *w = to_noflush(ws);
2495         w->tc->requeue_mode = false;
2496         pool_work_complete(&w->pw);
2497 }
2498
2499 static void noflush_work(struct thin_c *tc, void (*fn)(struct work_struct *))
2500 {
2501         struct noflush_work w;
2502
2503         w.tc = tc;
2504         pool_work_wait(&w.pw, tc->pool, fn);
2505 }
2506
2507 /*----------------------------------------------------------------*/
2508
2509 static bool passdown_enabled(struct pool_c *pt)
2510 {
2511         return pt->adjusted_pf.discard_passdown;
2512 }
2513
2514 static void set_discard_callbacks(struct pool *pool)
2515 {
2516         struct pool_c *pt = pool->ti->private;
2517
2518         if (passdown_enabled(pt)) {
2519                 pool->process_discard_cell = process_discard_cell_passdown;
2520                 pool->process_prepared_discard = process_prepared_discard_passdown_pt1;
2521                 pool->process_prepared_discard_pt2 = process_prepared_discard_passdown_pt2;
2522         } else {
2523                 pool->process_discard_cell = process_discard_cell_no_passdown;
2524                 pool->process_prepared_discard = process_prepared_discard_no_passdown;
2525         }
2526 }
2527
2528 static void set_pool_mode(struct pool *pool, enum pool_mode new_mode)
2529 {
2530         struct pool_c *pt = pool->ti->private;
2531         bool needs_check = dm_pool_metadata_needs_check(pool->pmd);
2532         enum pool_mode old_mode = get_pool_mode(pool);
2533         unsigned long no_space_timeout = READ_ONCE(no_space_timeout_secs) * HZ;
2534
2535         /*
2536          * Never allow the pool to transition to PM_WRITE mode if user
2537          * intervention is required to verify metadata and data consistency.
2538          */
2539         if (new_mode == PM_WRITE && needs_check) {
2540                 DMERR("%s: unable to switch pool to write mode until repaired.",
2541                       dm_device_name(pool->pool_md));
2542                 if (old_mode != new_mode)
2543                         new_mode = old_mode;
2544                 else
2545                         new_mode = PM_READ_ONLY;
2546         }
2547         /*
2548          * If we were in PM_FAIL mode, rollback of metadata failed.  We're
2549          * not going to recover without a thin_repair.  So we never let the
2550          * pool move out of the old mode.
2551          */
2552         if (old_mode == PM_FAIL)
2553                 new_mode = old_mode;
2554
2555         switch (new_mode) {
2556         case PM_FAIL:
2557                 dm_pool_metadata_read_only(pool->pmd);
2558                 pool->process_bio = process_bio_fail;
2559                 pool->process_discard = process_bio_fail;
2560                 pool->process_cell = process_cell_fail;
2561                 pool->process_discard_cell = process_cell_fail;
2562                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2563                 pool->process_prepared_discard = process_prepared_discard_fail;
2564
2565                 error_retry_list(pool);
2566                 break;
2567
2568         case PM_OUT_OF_METADATA_SPACE:
2569         case PM_READ_ONLY:
2570                 dm_pool_metadata_read_only(pool->pmd);
2571                 pool->process_bio = process_bio_read_only;
2572                 pool->process_discard = process_bio_success;
2573                 pool->process_cell = process_cell_read_only;
2574                 pool->process_discard_cell = process_cell_success;
2575                 pool->process_prepared_mapping = process_prepared_mapping_fail;
2576                 pool->process_prepared_discard = process_prepared_discard_success;
2577
2578                 error_retry_list(pool);
2579                 break;
2580
2581         case PM_OUT_OF_DATA_SPACE:
2582                 /*
2583                  * Ideally we'd never hit this state; the low water mark
2584                  * would trigger userland to extend the pool before we
2585                  * completely run out of data space.  However, many small
2586                  * IOs to unprovisioned space can consume data space at an
2587                  * alarming rate.  Adjust your low water mark if you're
2588                  * frequently seeing this mode.
2589                  */
2590                 pool->out_of_data_space = true;
2591                 pool->process_bio = process_bio_read_only;
2592                 pool->process_discard = process_discard_bio;
2593                 pool->process_cell = process_cell_read_only;
2594                 pool->process_prepared_mapping = process_prepared_mapping;
2595                 set_discard_callbacks(pool);
2596
2597                 if (!pool->pf.error_if_no_space && no_space_timeout)
2598                         queue_delayed_work(pool->wq, &pool->no_space_timeout, no_space_timeout);
2599                 break;
2600
2601         case PM_WRITE:
2602                 if (old_mode == PM_OUT_OF_DATA_SPACE)
2603                         cancel_delayed_work_sync(&pool->no_space_timeout);
2604                 pool->out_of_data_space = false;
2605                 pool->pf.error_if_no_space = pt->requested_pf.error_if_no_space;
2606                 dm_pool_metadata_read_write(pool->pmd);
2607                 pool->process_bio = process_bio;
2608                 pool->process_discard = process_discard_bio;
2609                 pool->process_cell = process_cell;
2610                 pool->process_prepared_mapping = process_prepared_mapping;
2611                 set_discard_callbacks(pool);
2612                 break;
2613         }
2614
2615         pool->pf.mode = new_mode;
2616         /*
2617          * The pool mode may have changed, sync it so bind_control_target()
2618          * doesn't cause an unexpected mode transition on resume.
2619          */
2620         pt->adjusted_pf.mode = new_mode;
2621
2622         if (old_mode != new_mode)
2623                 notify_of_pool_mode_change(pool);
2624 }
2625
2626 static void abort_transaction(struct pool *pool)
2627 {
2628         const char *dev_name = dm_device_name(pool->pool_md);
2629
2630         DMERR_LIMIT("%s: aborting current metadata transaction", dev_name);
2631         if (dm_pool_abort_metadata(pool->pmd)) {
2632                 DMERR("%s: failed to abort metadata transaction", dev_name);
2633                 set_pool_mode(pool, PM_FAIL);
2634         }
2635
2636         if (dm_pool_metadata_set_needs_check(pool->pmd)) {
2637                 DMERR("%s: failed to set 'needs_check' flag in metadata", dev_name);
2638                 set_pool_mode(pool, PM_FAIL);
2639         }
2640 }
2641
2642 static void metadata_operation_failed(struct pool *pool, const char *op, int r)
2643 {
2644         DMERR_LIMIT("%s: metadata operation '%s' failed: error = %d",
2645                     dm_device_name(pool->pool_md), op, r);
2646
2647         abort_transaction(pool);
2648         set_pool_mode(pool, PM_READ_ONLY);
2649 }
2650
2651 /*----------------------------------------------------------------*/
2652
2653 /*
2654  * Mapping functions.
2655  */
2656
2657 /*
2658  * Called only while mapping a thin bio to hand it over to the workqueue.
2659  */
2660 static void thin_defer_bio(struct thin_c *tc, struct bio *bio)
2661 {
2662         struct pool *pool = tc->pool;
2663
2664         spin_lock_irq(&tc->lock);
2665         bio_list_add(&tc->deferred_bio_list, bio);
2666         spin_unlock_irq(&tc->lock);
2667
2668         wake_worker(pool);
2669 }
2670
2671 static void thin_defer_bio_with_throttle(struct thin_c *tc, struct bio *bio)
2672 {
2673         struct pool *pool = tc->pool;
2674
2675         throttle_lock(&pool->throttle);
2676         thin_defer_bio(tc, bio);
2677         throttle_unlock(&pool->throttle);
2678 }
2679
2680 static void thin_defer_cell(struct thin_c *tc, struct dm_bio_prison_cell *cell)
2681 {
2682         struct pool *pool = tc->pool;
2683
2684         throttle_lock(&pool->throttle);
2685         spin_lock_irq(&tc->lock);
2686         list_add_tail(&cell->user_list, &tc->deferred_cells);
2687         spin_unlock_irq(&tc->lock);
2688         throttle_unlock(&pool->throttle);
2689
2690         wake_worker(pool);
2691 }
2692
2693 static void thin_hook_bio(struct thin_c *tc, struct bio *bio)
2694 {
2695         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
2696
2697         h->tc = tc;
2698         h->shared_read_entry = NULL;
2699         h->all_io_entry = NULL;
2700         h->overwrite_mapping = NULL;
2701         h->cell = NULL;
2702 }
2703
2704 /*
2705  * Non-blocking function called from the thin target's map function.
2706  */
2707 static int thin_bio_map(struct dm_target *ti, struct bio *bio)
2708 {
2709         int r;
2710         struct thin_c *tc = ti->private;
2711         dm_block_t block = get_bio_block(tc, bio);
2712         struct dm_thin_device *td = tc->td;
2713         struct dm_thin_lookup_result result;
2714         struct dm_bio_prison_cell *virt_cell, *data_cell;
2715         struct dm_cell_key key;
2716
2717         thin_hook_bio(tc, bio);
2718
2719         if (tc->requeue_mode) {
2720                 bio->bi_status = BLK_STS_DM_REQUEUE;
2721                 bio_endio(bio);
2722                 return DM_MAPIO_SUBMITTED;
2723         }
2724
2725         if (get_pool_mode(tc->pool) == PM_FAIL) {
2726                 bio_io_error(bio);
2727                 return DM_MAPIO_SUBMITTED;
2728         }
2729
2730         if (op_is_flush(bio->bi_opf) || bio_op(bio) == REQ_OP_DISCARD) {
2731                 thin_defer_bio_with_throttle(tc, bio);
2732                 return DM_MAPIO_SUBMITTED;
2733         }
2734
2735         /*
2736          * We must hold the virtual cell before doing the lookup, otherwise
2737          * there's a race with discard.
2738          */
2739         build_virtual_key(tc->td, block, &key);
2740         if (bio_detain(tc->pool, &key, bio, &virt_cell))
2741                 return DM_MAPIO_SUBMITTED;
2742
2743         r = dm_thin_find_block(td, block, 0, &result);
2744
2745         /*
2746          * Note that we defer readahead too.
2747          */
2748         switch (r) {
2749         case 0:
2750                 if (unlikely(result.shared)) {
2751                         /*
2752                          * We have a race condition here between the
2753                          * result.shared value returned by the lookup and
2754                          * snapshot creation, which may cause new
2755                          * sharing.
2756                          *
2757                          * To avoid this always quiesce the origin before
2758                          * taking the snap.  You want to do this anyway to
2759                          * ensure a consistent application view
2760                          * (i.e. lockfs).
2761                          *
2762                          * More distant ancestors are irrelevant. The
2763                          * shared flag will be set in their case.
2764                          */
2765                         thin_defer_cell(tc, virt_cell);
2766                         return DM_MAPIO_SUBMITTED;
2767                 }
2768
2769                 build_data_key(tc->td, result.block, &key);
2770                 if (bio_detain(tc->pool, &key, bio, &data_cell)) {
2771                         cell_defer_no_holder(tc, virt_cell);
2772                         return DM_MAPIO_SUBMITTED;
2773                 }
2774
2775                 inc_all_io_entry(tc->pool, bio);
2776                 cell_defer_no_holder(tc, data_cell);
2777                 cell_defer_no_holder(tc, virt_cell);
2778
2779                 remap(tc, bio, result.block);
2780                 return DM_MAPIO_REMAPPED;
2781
2782         case -ENODATA:
2783         case -EWOULDBLOCK:
2784                 thin_defer_cell(tc, virt_cell);
2785                 return DM_MAPIO_SUBMITTED;
2786
2787         default:
2788                 /*
2789                  * Must always call bio_io_error on failure.
2790                  * dm_thin_find_block can fail with -EINVAL if the
2791                  * pool is switched to fail-io mode.
2792                  */
2793                 bio_io_error(bio);
2794                 cell_defer_no_holder(tc, virt_cell);
2795                 return DM_MAPIO_SUBMITTED;
2796         }
2797 }
2798
2799 static int pool_is_congested(struct dm_target_callbacks *cb, int bdi_bits)
2800 {
2801         struct pool_c *pt = container_of(cb, struct pool_c, callbacks);
2802         struct request_queue *q;
2803
2804         if (get_pool_mode(pt->pool) == PM_OUT_OF_DATA_SPACE)
2805                 return 1;
2806
2807         q = bdev_get_queue(pt->data_dev->bdev);
2808         return bdi_congested(q->backing_dev_info, bdi_bits);
2809 }
2810
2811 static void requeue_bios(struct pool *pool)
2812 {
2813         struct thin_c *tc;
2814
2815         rcu_read_lock();
2816         list_for_each_entry_rcu(tc, &pool->active_thins, list) {
2817                 spin_lock_irq(&tc->lock);
2818                 bio_list_merge(&tc->deferred_bio_list, &tc->retry_on_resume_list);
2819                 bio_list_init(&tc->retry_on_resume_list);
2820                 spin_unlock_irq(&tc->lock);
2821         }
2822         rcu_read_unlock();
2823 }
2824
2825 /*----------------------------------------------------------------
2826  * Binding of control targets to a pool object
2827  *--------------------------------------------------------------*/
2828 static bool data_dev_supports_discard(struct pool_c *pt)
2829 {
2830         struct request_queue *q = bdev_get_queue(pt->data_dev->bdev);
2831
2832         return q && blk_queue_discard(q);
2833 }
2834
2835 static bool is_factor(sector_t block_size, uint32_t n)
2836 {
2837         return !sector_div(block_size, n);
2838 }
2839
2840 /*
2841  * If discard_passdown was enabled verify that the data device
2842  * supports discards.  Disable discard_passdown if not.
2843  */
2844 static void disable_passdown_if_not_supported(struct pool_c *pt)
2845 {
2846         struct pool *pool = pt->pool;
2847         struct block_device *data_bdev = pt->data_dev->bdev;
2848         struct queue_limits *data_limits = &bdev_get_queue(data_bdev)->limits;
2849         const char *reason = NULL;
2850         char buf[BDEVNAME_SIZE];
2851
2852         if (!pt->adjusted_pf.discard_passdown)
2853                 return;
2854
2855         if (!data_dev_supports_discard(pt))
2856                 reason = "discard unsupported";
2857
2858         else if (data_limits->max_discard_sectors < pool->sectors_per_block)
2859                 reason = "max discard sectors smaller than a block";
2860
2861         if (reason) {
2862                 DMWARN("Data device (%s) %s: Disabling discard passdown.", bdevname(data_bdev, buf), reason);
2863                 pt->adjusted_pf.discard_passdown = false;
2864         }
2865 }
2866
2867 static int bind_control_target(struct pool *pool, struct dm_target *ti)
2868 {
2869         struct pool_c *pt = ti->private;
2870
2871         /*
2872          * We want to make sure that a pool in PM_FAIL mode is never upgraded.
2873          */
2874         enum pool_mode old_mode = get_pool_mode(pool);
2875         enum pool_mode new_mode = pt->adjusted_pf.mode;
2876
2877         /*
2878          * Don't change the pool's mode until set_pool_mode() below.
2879          * Otherwise the pool's process_* function pointers may
2880          * not match the desired pool mode.
2881          */
2882         pt->adjusted_pf.mode = old_mode;
2883
2884         pool->ti = ti;
2885         pool->pf = pt->adjusted_pf;
2886         pool->low_water_blocks = pt->low_water_blocks;
2887
2888         set_pool_mode(pool, new_mode);
2889
2890         return 0;
2891 }
2892
2893 static void unbind_control_target(struct pool *pool, struct dm_target *ti)
2894 {
2895         if (pool->ti == ti)
2896                 pool->ti = NULL;
2897 }
2898
2899 /*----------------------------------------------------------------
2900  * Pool creation
2901  *--------------------------------------------------------------*/
2902 /* Initialize pool features. */
2903 static void pool_features_init(struct pool_features *pf)
2904 {
2905         pf->mode = PM_WRITE;
2906         pf->zero_new_blocks = true;
2907         pf->discard_enabled = true;
2908         pf->discard_passdown = true;
2909         pf->error_if_no_space = false;
2910 }
2911
2912 static void __pool_destroy(struct pool *pool)
2913 {
2914         __pool_table_remove(pool);
2915
2916         vfree(pool->cell_sort_array);
2917         if (dm_pool_metadata_close(pool->pmd) < 0)
2918                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
2919
2920         dm_bio_prison_destroy(pool->prison);
2921         dm_kcopyd_client_destroy(pool->copier);
2922
2923         if (pool->wq)
2924                 destroy_workqueue(pool->wq);
2925
2926         if (pool->next_mapping)
2927                 mempool_free(pool->next_mapping, &pool->mapping_pool);
2928         mempool_exit(&pool->mapping_pool);
2929         bio_uninit(&pool->flush_bio);
2930         dm_deferred_set_destroy(pool->shared_read_ds);
2931         dm_deferred_set_destroy(pool->all_io_ds);
2932         kfree(pool);
2933 }
2934
2935 static struct kmem_cache *_new_mapping_cache;
2936
2937 static struct pool *pool_create(struct mapped_device *pool_md,
2938                                 struct block_device *metadata_dev,
2939                                 struct block_device *data_dev,
2940                                 unsigned long block_size,
2941                                 int read_only, char **error)
2942 {
2943         int r;
2944         void *err_p;
2945         struct pool *pool;
2946         struct dm_pool_metadata *pmd;
2947         bool format_device = read_only ? false : true;
2948
2949         pmd = dm_pool_metadata_open(metadata_dev, block_size, format_device);
2950         if (IS_ERR(pmd)) {
2951                 *error = "Error creating metadata object";
2952                 return (struct pool *)pmd;
2953         }
2954
2955         pool = kzalloc(sizeof(*pool), GFP_KERNEL);
2956         if (!pool) {
2957                 *error = "Error allocating memory for pool";
2958                 err_p = ERR_PTR(-ENOMEM);
2959                 goto bad_pool;
2960         }
2961
2962         pool->pmd = pmd;
2963         pool->sectors_per_block = block_size;
2964         if (block_size & (block_size - 1))
2965                 pool->sectors_per_block_shift = -1;
2966         else
2967                 pool->sectors_per_block_shift = __ffs(block_size);
2968         pool->low_water_blocks = 0;
2969         pool_features_init(&pool->pf);
2970         pool->prison = dm_bio_prison_create();
2971         if (!pool->prison) {
2972                 *error = "Error creating pool's bio prison";
2973                 err_p = ERR_PTR(-ENOMEM);
2974                 goto bad_prison;
2975         }
2976
2977         pool->copier = dm_kcopyd_client_create(&dm_kcopyd_throttle);
2978         if (IS_ERR(pool->copier)) {
2979                 r = PTR_ERR(pool->copier);
2980                 *error = "Error creating pool's kcopyd client";
2981                 err_p = ERR_PTR(r);
2982                 goto bad_kcopyd_client;
2983         }
2984
2985         /*
2986          * Create singlethreaded workqueue that will service all devices
2987          * that use this metadata.
2988          */
2989         pool->wq = alloc_ordered_workqueue("dm-" DM_MSG_PREFIX, WQ_MEM_RECLAIM);
2990         if (!pool->wq) {
2991                 *error = "Error creating pool's workqueue";
2992                 err_p = ERR_PTR(-ENOMEM);
2993                 goto bad_wq;
2994         }
2995
2996         throttle_init(&pool->throttle);
2997         INIT_WORK(&pool->worker, do_worker);
2998         INIT_DELAYED_WORK(&pool->waker, do_waker);
2999         INIT_DELAYED_WORK(&pool->no_space_timeout, do_no_space_timeout);
3000         spin_lock_init(&pool->lock);
3001         bio_list_init(&pool->deferred_flush_bios);
3002         bio_list_init(&pool->deferred_flush_completions);
3003         INIT_LIST_HEAD(&pool->prepared_mappings);
3004         INIT_LIST_HEAD(&pool->prepared_discards);
3005         INIT_LIST_HEAD(&pool->prepared_discards_pt2);
3006         INIT_LIST_HEAD(&pool->active_thins);
3007         pool->low_water_triggered = false;
3008         pool->suspended = true;
3009         pool->out_of_data_space = false;
3010         bio_init(&pool->flush_bio, NULL, 0);
3011
3012         pool->shared_read_ds = dm_deferred_set_create();
3013         if (!pool->shared_read_ds) {
3014                 *error = "Error creating pool's shared read deferred set";
3015                 err_p = ERR_PTR(-ENOMEM);
3016                 goto bad_shared_read_ds;
3017         }
3018
3019         pool->all_io_ds = dm_deferred_set_create();
3020         if (!pool->all_io_ds) {
3021                 *error = "Error creating pool's all io deferred set";
3022                 err_p = ERR_PTR(-ENOMEM);
3023                 goto bad_all_io_ds;
3024         }
3025
3026         pool->next_mapping = NULL;
3027         r = mempool_init_slab_pool(&pool->mapping_pool, MAPPING_POOL_SIZE,
3028                                    _new_mapping_cache);
3029         if (r) {
3030                 *error = "Error creating pool's mapping mempool";
3031                 err_p = ERR_PTR(r);
3032                 goto bad_mapping_pool;
3033         }
3034
3035         pool->cell_sort_array =
3036                 vmalloc(array_size(CELL_SORT_ARRAY_SIZE,
3037                                    sizeof(*pool->cell_sort_array)));
3038         if (!pool->cell_sort_array) {
3039                 *error = "Error allocating cell sort array";
3040                 err_p = ERR_PTR(-ENOMEM);
3041                 goto bad_sort_array;
3042         }
3043
3044         pool->ref_count = 1;
3045         pool->last_commit_jiffies = jiffies;
3046         pool->pool_md = pool_md;
3047         pool->md_dev = metadata_dev;
3048         pool->data_dev = data_dev;
3049         __pool_table_insert(pool);
3050
3051         return pool;
3052
3053 bad_sort_array:
3054         mempool_exit(&pool->mapping_pool);
3055 bad_mapping_pool:
3056         dm_deferred_set_destroy(pool->all_io_ds);
3057 bad_all_io_ds:
3058         dm_deferred_set_destroy(pool->shared_read_ds);
3059 bad_shared_read_ds:
3060         destroy_workqueue(pool->wq);
3061 bad_wq:
3062         dm_kcopyd_client_destroy(pool->copier);
3063 bad_kcopyd_client:
3064         dm_bio_prison_destroy(pool->prison);
3065 bad_prison:
3066         kfree(pool);
3067 bad_pool:
3068         if (dm_pool_metadata_close(pmd))
3069                 DMWARN("%s: dm_pool_metadata_close() failed.", __func__);
3070
3071         return err_p;
3072 }
3073
3074 static void __pool_inc(struct pool *pool)
3075 {
3076         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3077         pool->ref_count++;
3078 }
3079
3080 static void __pool_dec(struct pool *pool)
3081 {
3082         BUG_ON(!mutex_is_locked(&dm_thin_pool_table.mutex));
3083         BUG_ON(!pool->ref_count);
3084         if (!--pool->ref_count)
3085                 __pool_destroy(pool);
3086 }
3087
3088 static struct pool *__pool_find(struct mapped_device *pool_md,
3089                                 struct block_device *metadata_dev,
3090                                 struct block_device *data_dev,
3091                                 unsigned long block_size, int read_only,
3092                                 char **error, int *created)
3093 {
3094         struct pool *pool = __pool_table_lookup_metadata_dev(metadata_dev);
3095
3096         if (pool) {
3097                 if (pool->pool_md != pool_md) {
3098                         *error = "metadata device already in use by a pool";
3099                         return ERR_PTR(-EBUSY);
3100                 }
3101                 if (pool->data_dev != data_dev) {
3102                         *error = "data device already in use by a pool";
3103                         return ERR_PTR(-EBUSY);
3104                 }
3105                 __pool_inc(pool);
3106
3107         } else {
3108                 pool = __pool_table_lookup(pool_md);
3109                 if (pool) {
3110                         if (pool->md_dev != metadata_dev || pool->data_dev != data_dev) {
3111                                 *error = "different pool cannot replace a pool";
3112                                 return ERR_PTR(-EINVAL);
3113                         }
3114                         __pool_inc(pool);
3115
3116                 } else {
3117                         pool = pool_create(pool_md, metadata_dev, data_dev, block_size, read_only, error);
3118                         *created = 1;
3119                 }
3120         }
3121
3122         return pool;
3123 }
3124
3125 /*----------------------------------------------------------------
3126  * Pool target methods
3127  *--------------------------------------------------------------*/
3128 static void pool_dtr(struct dm_target *ti)
3129 {
3130         struct pool_c *pt = ti->private;
3131
3132         mutex_lock(&dm_thin_pool_table.mutex);
3133
3134         unbind_control_target(pt->pool, ti);
3135         __pool_dec(pt->pool);
3136         dm_put_device(ti, pt->metadata_dev);
3137         dm_put_device(ti, pt->data_dev);
3138         kfree(pt);
3139
3140         mutex_unlock(&dm_thin_pool_table.mutex);
3141 }
3142
3143 static int parse_pool_features(struct dm_arg_set *as, struct pool_features *pf,
3144                                struct dm_target *ti)
3145 {
3146         int r;
3147         unsigned argc;
3148         const char *arg_name;
3149
3150         static const struct dm_arg _args[] = {
3151                 {0, 4, "Invalid number of pool feature arguments"},
3152         };
3153
3154         /*
3155          * No feature arguments supplied.
3156          */
3157         if (!as->argc)
3158                 return 0;
3159
3160         r = dm_read_arg_group(_args, as, &argc, &ti->error);
3161         if (r)
3162                 return -EINVAL;
3163
3164         while (argc && !r) {
3165                 arg_name = dm_shift_arg(as);
3166                 argc--;
3167
3168                 if (!strcasecmp(arg_name, "skip_block_zeroing"))
3169                         pf->zero_new_blocks = false;
3170
3171                 else if (!strcasecmp(arg_name, "ignore_discard"))
3172                         pf->discard_enabled = false;
3173
3174                 else if (!strcasecmp(arg_name, "no_discard_passdown"))
3175                         pf->discard_passdown = false;
3176
3177                 else if (!strcasecmp(arg_name, "read_only"))
3178                         pf->mode = PM_READ_ONLY;
3179
3180                 else if (!strcasecmp(arg_name, "error_if_no_space"))
3181                         pf->error_if_no_space = true;
3182
3183                 else {
3184                         ti->error = "Unrecognised pool feature requested";
3185                         r = -EINVAL;
3186                         break;
3187                 }
3188         }
3189
3190         return r;
3191 }
3192
3193 static void metadata_low_callback(void *context)
3194 {
3195         struct pool *pool = context;
3196
3197         DMWARN("%s: reached low water mark for metadata device: sending event.",
3198                dm_device_name(pool->pool_md));
3199
3200         dm_table_event(pool->ti->table);
3201 }
3202
3203 /*
3204  * We need to flush the data device **before** committing the metadata.
3205  *
3206  * This ensures that the data blocks of any newly inserted mappings are
3207  * properly written to non-volatile storage and won't be lost in case of a
3208  * crash.
3209  *
3210  * Failure to do so can result in data corruption in the case of internal or
3211  * external snapshots and in the case of newly provisioned blocks, when block
3212  * zeroing is enabled.
3213  */
3214 static int metadata_pre_commit_callback(void *context)
3215 {
3216         struct pool *pool = context;
3217         struct bio *flush_bio = &pool->flush_bio;
3218
3219         bio_reset(flush_bio);
3220         bio_set_dev(flush_bio, pool->data_dev);
3221         flush_bio->bi_opf = REQ_OP_WRITE | REQ_PREFLUSH;
3222
3223         return submit_bio_wait(flush_bio);
3224 }
3225
3226 static sector_t get_dev_size(struct block_device *bdev)
3227 {
3228         return i_size_read(bdev->bd_inode) >> SECTOR_SHIFT;
3229 }
3230
3231 static void warn_if_metadata_device_too_big(struct block_device *bdev)
3232 {
3233         sector_t metadata_dev_size = get_dev_size(bdev);
3234         char buffer[BDEVNAME_SIZE];
3235
3236         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS_WARNING)
3237                 DMWARN("Metadata device %s is larger than %u sectors: excess space will not be used.",
3238                        bdevname(bdev, buffer), THIN_METADATA_MAX_SECTORS);
3239 }
3240
3241 static sector_t get_metadata_dev_size(struct block_device *bdev)
3242 {
3243         sector_t metadata_dev_size = get_dev_size(bdev);
3244
3245         if (metadata_dev_size > THIN_METADATA_MAX_SECTORS)
3246                 metadata_dev_size = THIN_METADATA_MAX_SECTORS;
3247
3248         return metadata_dev_size;
3249 }
3250
3251 static dm_block_t get_metadata_dev_size_in_blocks(struct block_device *bdev)
3252 {
3253         sector_t metadata_dev_size = get_metadata_dev_size(bdev);
3254
3255         sector_div(metadata_dev_size, THIN_METADATA_BLOCK_SIZE);
3256
3257         return metadata_dev_size;
3258 }
3259
3260 /*
3261  * When a metadata threshold is crossed a dm event is triggered, and
3262  * userland should respond by growing the metadata device.  We could let
3263  * userland set the threshold, like we do with the data threshold, but I'm
3264  * not sure they know enough to do this well.
3265  */
3266 static dm_block_t calc_metadata_threshold(struct pool_c *pt)
3267 {
3268         /*
3269          * 4M is ample for all ops with the possible exception of thin
3270          * device deletion which is harmless if it fails (just retry the
3271          * delete after you've grown the device).
3272          */
3273         dm_block_t quarter = get_metadata_dev_size_in_blocks(pt->metadata_dev->bdev) / 4;
3274         return min((dm_block_t)1024ULL /* 4M */, quarter);
3275 }
3276
3277 /*
3278  * thin-pool <metadata dev> <data dev>
3279  *           <data block size (sectors)>
3280  *           <low water mark (blocks)>
3281  *           [<#feature args> [<arg>]*]
3282  *
3283  * Optional feature arguments are:
3284  *           skip_block_zeroing: skips the zeroing of newly-provisioned blocks.
3285  *           ignore_discard: disable discard
3286  *           no_discard_passdown: don't pass discards down to the data device
3287  *           read_only: Don't allow any changes to be made to the pool metadata.
3288  *           error_if_no_space: error IOs, instead of queueing, if no space.
3289  */
3290 static int pool_ctr(struct dm_target *ti, unsigned argc, char **argv)
3291 {
3292         int r, pool_created = 0;
3293         struct pool_c *pt;
3294         struct pool *pool;
3295         struct pool_features pf;
3296         struct dm_arg_set as;
3297         struct dm_dev *data_dev;
3298         unsigned long block_size;
3299         dm_block_t low_water_blocks;
3300         struct dm_dev *metadata_dev;
3301         fmode_t metadata_mode;
3302
3303         /*
3304          * FIXME Remove validation from scope of lock.
3305          */
3306         mutex_lock(&dm_thin_pool_table.mutex);
3307
3308         if (argc < 4) {
3309                 ti->error = "Invalid argument count";
3310                 r = -EINVAL;
3311                 goto out_unlock;
3312         }
3313
3314         as.argc = argc;
3315         as.argv = argv;
3316
3317         /* make sure metadata and data are different devices */
3318         if (!strcmp(argv[0], argv[1])) {
3319                 ti->error = "Error setting metadata or data device";
3320                 r = -EINVAL;
3321                 goto out_unlock;
3322         }
3323
3324         /*
3325          * Set default pool features.
3326          */
3327         pool_features_init(&pf);
3328
3329         dm_consume_args(&as, 4);
3330         r = parse_pool_features(&as, &pf, ti);
3331         if (r)
3332                 goto out_unlock;
3333
3334         metadata_mode = FMODE_READ | ((pf.mode == PM_READ_ONLY) ? 0 : FMODE_WRITE);
3335         r = dm_get_device(ti, argv[0], metadata_mode, &metadata_dev);
3336         if (r) {
3337                 ti->error = "Error opening metadata block device";
3338                 goto out_unlock;
3339         }
3340         warn_if_metadata_device_too_big(metadata_dev->bdev);
3341
3342         r = dm_get_device(ti, argv[1], FMODE_READ | FMODE_WRITE, &data_dev);
3343         if (r) {
3344                 ti->error = "Error getting data device";
3345                 goto out_metadata;
3346         }
3347
3348         if (kstrtoul(argv[2], 10, &block_size) || !block_size ||
3349             block_size < DATA_DEV_BLOCK_SIZE_MIN_SECTORS ||
3350             block_size > DATA_DEV_BLOCK_SIZE_MAX_SECTORS ||
3351             block_size & (DATA_DEV_BLOCK_SIZE_MIN_SECTORS - 1)) {
3352                 ti->error = "Invalid block size";
3353                 r = -EINVAL;
3354                 goto out;
3355         }
3356
3357         if (kstrtoull(argv[3], 10, (unsigned long long *)&low_water_blocks)) {
3358                 ti->error = "Invalid low water mark";
3359                 r = -EINVAL;
3360                 goto out;
3361         }
3362
3363         pt = kzalloc(sizeof(*pt), GFP_KERNEL);
3364         if (!pt) {
3365                 r = -ENOMEM;
3366                 goto out;
3367         }
3368
3369         pool = __pool_find(dm_table_get_md(ti->table), metadata_dev->bdev, data_dev->bdev,
3370                            block_size, pf.mode == PM_READ_ONLY, &ti->error, &pool_created);
3371         if (IS_ERR(pool)) {
3372                 r = PTR_ERR(pool);
3373                 goto out_free_pt;
3374         }
3375
3376         /*
3377          * 'pool_created' reflects whether this is the first table load.
3378          * Top level discard support is not allowed to be changed after
3379          * initial load.  This would require a pool reload to trigger thin
3380          * device changes.
3381          */
3382         if (!pool_created && pf.discard_enabled != pool->pf.discard_enabled) {
3383                 ti->error = "Discard support cannot be disabled once enabled";
3384                 r = -EINVAL;
3385                 goto out_flags_changed;
3386         }
3387
3388         pt->pool = pool;
3389         pt->ti = ti;
3390         pt->metadata_dev = metadata_dev;
3391         pt->data_dev = data_dev;
3392         pt->low_water_blocks = low_water_blocks;
3393         pt->adjusted_pf = pt->requested_pf = pf;
3394         ti->num_flush_bios = 1;
3395
3396         /*
3397          * Only need to enable discards if the pool should pass
3398          * them down to the data device.  The thin device's discard
3399          * processing will cause mappings to be removed from the btree.
3400          */
3401         if (pf.discard_enabled && pf.discard_passdown) {
3402                 ti->num_discard_bios = 1;
3403
3404                 /*
3405                  * Setting 'discards_supported' circumvents the normal
3406                  * stacking of discard limits (this keeps the pool and
3407                  * thin devices' discard limits consistent).
3408                  */
3409                 ti->discards_supported = true;
3410         }
3411         ti->private = pt;
3412
3413         r = dm_pool_register_metadata_threshold(pt->pool->pmd,
3414                                                 calc_metadata_threshold(pt),
3415                                                 metadata_low_callback,
3416                                                 pool);
3417         if (r)
3418                 goto out_flags_changed;
3419
3420         dm_pool_register_pre_commit_callback(pool->pmd,
3421                                              metadata_pre_commit_callback, pool);
3422
3423         pt->callbacks.congested_fn = pool_is_congested;
3424         dm_table_add_target_callbacks(ti->table, &pt->callbacks);
3425
3426         mutex_unlock(&dm_thin_pool_table.mutex);
3427
3428         return 0;
3429
3430 out_flags_changed:
3431         __pool_dec(pool);
3432 out_free_pt:
3433         kfree(pt);
3434 out:
3435         dm_put_device(ti, data_dev);
3436 out_metadata:
3437         dm_put_device(ti, metadata_dev);
3438 out_unlock:
3439         mutex_unlock(&dm_thin_pool_table.mutex);
3440
3441         return r;
3442 }
3443
3444 static int pool_map(struct dm_target *ti, struct bio *bio)
3445 {
3446         int r;
3447         struct pool_c *pt = ti->private;
3448         struct pool *pool = pt->pool;
3449
3450         /*
3451          * As this is a singleton target, ti->begin is always zero.
3452          */
3453         spin_lock_irq(&pool->lock);
3454         bio_set_dev(bio, pt->data_dev->bdev);
3455         r = DM_MAPIO_REMAPPED;
3456         spin_unlock_irq(&pool->lock);
3457
3458         return r;
3459 }
3460
3461 static int maybe_resize_data_dev(struct dm_target *ti, bool *need_commit)
3462 {
3463         int r;
3464         struct pool_c *pt = ti->private;
3465         struct pool *pool = pt->pool;
3466         sector_t data_size = ti->len;
3467         dm_block_t sb_data_size;
3468
3469         *need_commit = false;
3470
3471         (void) sector_div(data_size, pool->sectors_per_block);
3472
3473         r = dm_pool_get_data_dev_size(pool->pmd, &sb_data_size);
3474         if (r) {
3475                 DMERR("%s: failed to retrieve data device size",
3476                       dm_device_name(pool->pool_md));
3477                 return r;
3478         }
3479
3480         if (data_size < sb_data_size) {
3481                 DMERR("%s: pool target (%llu blocks) too small: expected %llu",
3482                       dm_device_name(pool->pool_md),
3483                       (unsigned long long)data_size, sb_data_size);
3484                 return -EINVAL;
3485
3486         } else if (data_size > sb_data_size) {
3487                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3488                         DMERR("%s: unable to grow the data device until repaired.",
3489                               dm_device_name(pool->pool_md));
3490                         return 0;
3491                 }
3492
3493                 if (sb_data_size)
3494                         DMINFO("%s: growing the data device from %llu to %llu blocks",
3495                                dm_device_name(pool->pool_md),
3496                                sb_data_size, (unsigned long long)data_size);
3497                 r = dm_pool_resize_data_dev(pool->pmd, data_size);
3498                 if (r) {
3499                         metadata_operation_failed(pool, "dm_pool_resize_data_dev", r);
3500                         return r;
3501                 }
3502
3503                 *need_commit = true;
3504         }
3505
3506         return 0;
3507 }
3508
3509 static int maybe_resize_metadata_dev(struct dm_target *ti, bool *need_commit)
3510 {
3511         int r;
3512         struct pool_c *pt = ti->private;
3513         struct pool *pool = pt->pool;
3514         dm_block_t metadata_dev_size, sb_metadata_dev_size;
3515
3516         *need_commit = false;
3517
3518         metadata_dev_size = get_metadata_dev_size_in_blocks(pool->md_dev);
3519
3520         r = dm_pool_get_metadata_dev_size(pool->pmd, &sb_metadata_dev_size);
3521         if (r) {
3522                 DMERR("%s: failed to retrieve metadata device size",
3523                       dm_device_name(pool->pool_md));
3524                 return r;
3525         }
3526
3527         if (metadata_dev_size < sb_metadata_dev_size) {
3528                 DMERR("%s: metadata device (%llu blocks) too small: expected %llu",
3529                       dm_device_name(pool->pool_md),
3530                       metadata_dev_size, sb_metadata_dev_size);
3531                 return -EINVAL;
3532
3533         } else if (metadata_dev_size > sb_metadata_dev_size) {
3534                 if (dm_pool_metadata_needs_check(pool->pmd)) {
3535                         DMERR("%s: unable to grow the metadata device until repaired.",
3536                               dm_device_name(pool->pool_md));
3537                         return 0;
3538                 }
3539
3540                 warn_if_metadata_device_too_big(pool->md_dev);
3541                 DMINFO("%s: growing the metadata device from %llu to %llu blocks",
3542                        dm_device_name(pool->pool_md),
3543                        sb_metadata_dev_size, metadata_dev_size);
3544
3545                 if (get_pool_mode(pool) == PM_OUT_OF_METADATA_SPACE)
3546                         set_pool_mode(pool, PM_WRITE);
3547
3548                 r = dm_pool_resize_metadata_dev(pool->pmd, metadata_dev_size);
3549                 if (r) {
3550                         metadata_operation_failed(pool, "dm_pool_resize_metadata_dev", r);
3551                         return r;
3552                 }
3553
3554                 *need_commit = true;
3555         }
3556
3557         return 0;
3558 }
3559
3560 /*
3561  * Retrieves the number of blocks of the data device from
3562  * the superblock and compares it to the actual device size,
3563  * thus resizing the data device in case it has grown.
3564  *
3565  * This both copes with opening preallocated data devices in the ctr
3566  * being followed by a resume
3567  * -and-
3568  * calling the resume method individually after userspace has
3569  * grown the data device in reaction to a table event.
3570  */
3571 static int pool_preresume(struct dm_target *ti)
3572 {
3573         int r;
3574         bool need_commit1, need_commit2;
3575         struct pool_c *pt = ti->private;
3576         struct pool *pool = pt->pool;
3577
3578         /*
3579          * Take control of the pool object.
3580          */
3581         r = bind_control_target(pool, ti);
3582         if (r)
3583                 return r;
3584
3585         r = maybe_resize_data_dev(ti, &need_commit1);
3586         if (r)
3587                 return r;
3588
3589         r = maybe_resize_metadata_dev(ti, &need_commit2);
3590         if (r)
3591                 return r;
3592
3593         if (need_commit1 || need_commit2)
3594                 (void) commit(pool);
3595
3596         return 0;
3597 }
3598
3599 static void pool_suspend_active_thins(struct pool *pool)
3600 {
3601         struct thin_c *tc;
3602
3603         /* Suspend all active thin devices */
3604         tc = get_first_thin(pool);
3605         while (tc) {
3606                 dm_internal_suspend_noflush(tc->thin_md);
3607                 tc = get_next_thin(pool, tc);
3608         }
3609 }
3610
3611 static void pool_resume_active_thins(struct pool *pool)
3612 {
3613         struct thin_c *tc;
3614
3615         /* Resume all active thin devices */
3616         tc = get_first_thin(pool);
3617         while (tc) {
3618                 dm_internal_resume(tc->thin_md);
3619                 tc = get_next_thin(pool, tc);
3620         }
3621 }
3622
3623 static void pool_resume(struct dm_target *ti)
3624 {
3625         struct pool_c *pt = ti->private;
3626         struct pool *pool = pt->pool;
3627
3628         /*
3629          * Must requeue active_thins' bios and then resume
3630          * active_thins _before_ clearing 'suspend' flag.
3631          */
3632         requeue_bios(pool);
3633         pool_resume_active_thins(pool);
3634
3635         spin_lock_irq(&pool->lock);
3636         pool->low_water_triggered = false;
3637         pool->suspended = false;
3638         spin_unlock_irq(&pool->lock);
3639
3640         do_waker(&pool->waker.work);
3641 }
3642
3643 static void pool_presuspend(struct dm_target *ti)
3644 {
3645         struct pool_c *pt = ti->private;
3646         struct pool *pool = pt->pool;
3647
3648         spin_lock_irq(&pool->lock);
3649         pool->suspended = true;
3650         spin_unlock_irq(&pool->lock);
3651
3652         pool_suspend_active_thins(pool);
3653 }
3654
3655 static void pool_presuspend_undo(struct dm_target *ti)
3656 {
3657         struct pool_c *pt = ti->private;
3658         struct pool *pool = pt->pool;
3659
3660         pool_resume_active_thins(pool);
3661
3662         spin_lock_irq(&pool->lock);
3663         pool->suspended = false;
3664         spin_unlock_irq(&pool->lock);
3665 }
3666
3667 static void pool_postsuspend(struct dm_target *ti)
3668 {
3669         struct pool_c *pt = ti->private;
3670         struct pool *pool = pt->pool;
3671
3672         cancel_delayed_work_sync(&pool->waker);
3673         cancel_delayed_work_sync(&pool->no_space_timeout);
3674         flush_workqueue(pool->wq);
3675         (void) commit(pool);
3676 }
3677
3678 static int check_arg_count(unsigned argc, unsigned args_required)
3679 {
3680         if (argc != args_required) {
3681                 DMWARN("Message received with %u arguments instead of %u.",
3682                        argc, args_required);
3683                 return -EINVAL;
3684         }
3685
3686         return 0;
3687 }
3688
3689 static int read_dev_id(char *arg, dm_thin_id *dev_id, int warning)
3690 {
3691         if (!kstrtoull(arg, 10, (unsigned long long *)dev_id) &&
3692             *dev_id <= MAX_DEV_ID)
3693                 return 0;
3694
3695         if (warning)
3696                 DMWARN("Message received with invalid device id: %s", arg);
3697
3698         return -EINVAL;
3699 }
3700
3701 static int process_create_thin_mesg(unsigned argc, char **argv, struct pool *pool)
3702 {
3703         dm_thin_id dev_id;
3704         int r;
3705
3706         r = check_arg_count(argc, 2);
3707         if (r)
3708                 return r;
3709
3710         r = read_dev_id(argv[1], &dev_id, 1);
3711         if (r)
3712                 return r;
3713
3714         r = dm_pool_create_thin(pool->pmd, dev_id);
3715         if (r) {
3716                 DMWARN("Creation of new thinly-provisioned device with id %s failed.",
3717                        argv[1]);
3718                 return r;
3719         }
3720
3721         return 0;
3722 }
3723
3724 static int process_create_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3725 {
3726         dm_thin_id dev_id;
3727         dm_thin_id origin_dev_id;
3728         int r;
3729
3730         r = check_arg_count(argc, 3);
3731         if (r)
3732                 return r;
3733
3734         r = read_dev_id(argv[1], &dev_id, 1);
3735         if (r)
3736                 return r;
3737
3738         r = read_dev_id(argv[2], &origin_dev_id, 1);
3739         if (r)
3740                 return r;
3741
3742         r = dm_pool_create_snap(pool->pmd, dev_id, origin_dev_id);
3743         if (r) {
3744                 DMWARN("Creation of new snapshot %s of device %s failed.",
3745                        argv[1], argv[2]);
3746                 return r;
3747         }
3748
3749         return 0;
3750 }
3751
3752 static int process_delete_mesg(unsigned argc, char **argv, struct pool *pool)
3753 {
3754         dm_thin_id dev_id;
3755         int r;
3756
3757         r = check_arg_count(argc, 2);
3758         if (r)
3759                 return r;
3760
3761         r = read_dev_id(argv[1], &dev_id, 1);
3762         if (r)
3763                 return r;
3764
3765         r = dm_pool_delete_thin_device(pool->pmd, dev_id);
3766         if (r)
3767                 DMWARN("Deletion of thin device %s failed.", argv[1]);
3768
3769         return r;
3770 }
3771
3772 static int process_set_transaction_id_mesg(unsigned argc, char **argv, struct pool *pool)
3773 {
3774         dm_thin_id old_id, new_id;
3775         int r;
3776
3777         r = check_arg_count(argc, 3);
3778         if (r)
3779                 return r;
3780
3781         if (kstrtoull(argv[1], 10, (unsigned long long *)&old_id)) {
3782                 DMWARN("set_transaction_id message: Unrecognised id %s.", argv[1]);
3783                 return -EINVAL;
3784         }
3785
3786         if (kstrtoull(argv[2], 10, (unsigned long long *)&new_id)) {
3787                 DMWARN("set_transaction_id message: Unrecognised new id %s.", argv[2]);
3788                 return -EINVAL;
3789         }
3790
3791         r = dm_pool_set_metadata_transaction_id(pool->pmd, old_id, new_id);
3792         if (r) {
3793                 DMWARN("Failed to change transaction id from %s to %s.",
3794                        argv[1], argv[2]);
3795                 return r;
3796         }
3797
3798         return 0;
3799 }
3800
3801 static int process_reserve_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3802 {
3803         int r;
3804
3805         r = check_arg_count(argc, 1);
3806         if (r)
3807                 return r;
3808
3809         (void) commit(pool);
3810
3811         r = dm_pool_reserve_metadata_snap(pool->pmd);
3812         if (r)
3813                 DMWARN("reserve_metadata_snap message failed.");
3814
3815         return r;
3816 }
3817
3818 static int process_release_metadata_snap_mesg(unsigned argc, char **argv, struct pool *pool)
3819 {
3820         int r;
3821
3822         r = check_arg_count(argc, 1);
3823         if (r)
3824                 return r;
3825
3826         r = dm_pool_release_metadata_snap(pool->pmd);
3827         if (r)
3828                 DMWARN("release_metadata_snap message failed.");
3829
3830         return r;
3831 }
3832
3833 /*
3834  * Messages supported:
3835  *   create_thin        <dev_id>
3836  *   create_snap        <dev_id> <origin_id>
3837  *   delete             <dev_id>
3838  *   set_transaction_id <current_trans_id> <new_trans_id>
3839  *   reserve_metadata_snap
3840  *   release_metadata_snap
3841  */
3842 static int pool_message(struct dm_target *ti, unsigned argc, char **argv,
3843                         char *result, unsigned maxlen)
3844 {
3845         int r = -EINVAL;
3846         struct pool_c *pt = ti->private;
3847         struct pool *pool = pt->pool;
3848
3849         if (get_pool_mode(pool) >= PM_OUT_OF_METADATA_SPACE) {
3850                 DMERR("%s: unable to service pool target messages in READ_ONLY or FAIL mode",
3851                       dm_device_name(pool->pool_md));
3852                 return -EOPNOTSUPP;
3853         }
3854
3855         if (!strcasecmp(argv[0], "create_thin"))
3856                 r = process_create_thin_mesg(argc, argv, pool);
3857
3858         else if (!strcasecmp(argv[0], "create_snap"))
3859                 r = process_create_snap_mesg(argc, argv, pool);
3860
3861         else if (!strcasecmp(argv[0], "delete"))
3862                 r = process_delete_mesg(argc, argv, pool);
3863
3864         else if (!strcasecmp(argv[0], "set_transaction_id"))
3865                 r = process_set_transaction_id_mesg(argc, argv, pool);
3866
3867         else if (!strcasecmp(argv[0], "reserve_metadata_snap"))
3868                 r = process_reserve_metadata_snap_mesg(argc, argv, pool);
3869
3870         else if (!strcasecmp(argv[0], "release_metadata_snap"))
3871                 r = process_release_metadata_snap_mesg(argc, argv, pool);
3872
3873         else
3874                 DMWARN("Unrecognised thin pool target message received: %s", argv[0]);
3875
3876         if (!r)
3877                 (void) commit(pool);
3878
3879         return r;
3880 }
3881
3882 static void emit_flags(struct pool_features *pf, char *result,
3883                        unsigned sz, unsigned maxlen)
3884 {
3885         unsigned count = !pf->zero_new_blocks + !pf->discard_enabled +
3886                 !pf->discard_passdown + (pf->mode == PM_READ_ONLY) +
3887                 pf->error_if_no_space;
3888         DMEMIT("%u ", count);
3889
3890         if (!pf->zero_new_blocks)
3891                 DMEMIT("skip_block_zeroing ");
3892
3893         if (!pf->discard_enabled)
3894                 DMEMIT("ignore_discard ");
3895
3896         if (!pf->discard_passdown)
3897                 DMEMIT("no_discard_passdown ");
3898
3899         if (pf->mode == PM_READ_ONLY)
3900                 DMEMIT("read_only ");
3901
3902         if (pf->error_if_no_space)
3903                 DMEMIT("error_if_no_space ");
3904 }
3905
3906 /*
3907  * Status line is:
3908  *    <transaction id> <used metadata sectors>/<total metadata sectors>
3909  *    <used data sectors>/<total data sectors> <held metadata root>
3910  *    <pool mode> <discard config> <no space config> <needs_check>
3911  */
3912 static void pool_status(struct dm_target *ti, status_type_t type,
3913                         unsigned status_flags, char *result, unsigned maxlen)
3914 {
3915         int r;
3916         unsigned sz = 0;
3917         uint64_t transaction_id;
3918         dm_block_t nr_free_blocks_data;
3919         dm_block_t nr_free_blocks_metadata;
3920         dm_block_t nr_blocks_data;
3921         dm_block_t nr_blocks_metadata;
3922         dm_block_t held_root;
3923         enum pool_mode mode;
3924         char buf[BDEVNAME_SIZE];
3925         char buf2[BDEVNAME_SIZE];
3926         struct pool_c *pt = ti->private;
3927         struct pool *pool = pt->pool;
3928
3929         switch (type) {
3930         case STATUSTYPE_INFO:
3931                 if (get_pool_mode(pool) == PM_FAIL) {
3932                         DMEMIT("Fail");
3933                         break;
3934                 }
3935
3936                 /* Commit to ensure statistics aren't out-of-date */
3937                 if (!(status_flags & DM_STATUS_NOFLUSH_FLAG) && !dm_suspended(ti))
3938                         (void) commit(pool);
3939
3940                 r = dm_pool_get_metadata_transaction_id(pool->pmd, &transaction_id);
3941                 if (r) {
3942                         DMERR("%s: dm_pool_get_metadata_transaction_id returned %d",
3943                               dm_device_name(pool->pool_md), r);
3944                         goto err;
3945                 }
3946
3947                 r = dm_pool_get_free_metadata_block_count(pool->pmd, &nr_free_blocks_metadata);
3948                 if (r) {
3949                         DMERR("%s: dm_pool_get_free_metadata_block_count returned %d",
3950                               dm_device_name(pool->pool_md), r);
3951                         goto err;
3952                 }
3953
3954                 r = dm_pool_get_metadata_dev_size(pool->pmd, &nr_blocks_metadata);
3955                 if (r) {
3956                         DMERR("%s: dm_pool_get_metadata_dev_size returned %d",
3957                               dm_device_name(pool->pool_md), r);
3958                         goto err;
3959                 }
3960
3961                 r = dm_pool_get_free_block_count(pool->pmd, &nr_free_blocks_data);
3962                 if (r) {
3963                         DMERR("%s: dm_pool_get_free_block_count returned %d",
3964                               dm_device_name(pool->pool_md), r);
3965                         goto err;
3966                 }
3967
3968                 r = dm_pool_get_data_dev_size(pool->pmd, &nr_blocks_data);
3969                 if (r) {
3970                         DMERR("%s: dm_pool_get_data_dev_size returned %d",
3971                               dm_device_name(pool->pool_md), r);
3972                         goto err;
3973                 }
3974
3975                 r = dm_pool_get_metadata_snap(pool->pmd, &held_root);
3976                 if (r) {
3977                         DMERR("%s: dm_pool_get_metadata_snap returned %d",
3978                               dm_device_name(pool->pool_md), r);
3979                         goto err;
3980                 }
3981
3982                 DMEMIT("%llu %llu/%llu %llu/%llu ",
3983                        (unsigned long long)transaction_id,
3984                        (unsigned long long)(nr_blocks_metadata - nr_free_blocks_metadata),
3985                        (unsigned long long)nr_blocks_metadata,
3986                        (unsigned long long)(nr_blocks_data - nr_free_blocks_data),
3987                        (unsigned long long)nr_blocks_data);
3988
3989                 if (held_root)
3990                         DMEMIT("%llu ", held_root);
3991                 else
3992                         DMEMIT("- ");
3993
3994                 mode = get_pool_mode(pool);
3995                 if (mode == PM_OUT_OF_DATA_SPACE)
3996                         DMEMIT("out_of_data_space ");
3997                 else if (is_read_only_pool_mode(mode))
3998                         DMEMIT("ro ");
3999                 else
4000                         DMEMIT("rw ");
4001
4002                 if (!pool->pf.discard_enabled)
4003                         DMEMIT("ignore_discard ");
4004                 else if (pool->pf.discard_passdown)
4005                         DMEMIT("discard_passdown ");
4006                 else
4007                         DMEMIT("no_discard_passdown ");
4008
4009                 if (pool->pf.error_if_no_space)
4010                         DMEMIT("error_if_no_space ");
4011                 else
4012                         DMEMIT("queue_if_no_space ");
4013
4014                 if (dm_pool_metadata_needs_check(pool->pmd))
4015                         DMEMIT("needs_check ");
4016                 else
4017                         DMEMIT("- ");
4018
4019                 DMEMIT("%llu ", (unsigned long long)calc_metadata_threshold(pt));
4020
4021                 break;
4022
4023         case STATUSTYPE_TABLE:
4024                 DMEMIT("%s %s %lu %llu ",
4025                        format_dev_t(buf, pt->metadata_dev->bdev->bd_dev),
4026                        format_dev_t(buf2, pt->data_dev->bdev->bd_dev),
4027                        (unsigned long)pool->sectors_per_block,
4028                        (unsigned long long)pt->low_water_blocks);
4029                 emit_flags(&pt->requested_pf, result, sz, maxlen);
4030                 break;
4031         }
4032         return;
4033
4034 err:
4035         DMEMIT("Error");
4036 }
4037
4038 static int pool_iterate_devices(struct dm_target *ti,
4039                                 iterate_devices_callout_fn fn, void *data)
4040 {
4041         struct pool_c *pt = ti->private;
4042
4043         return fn(ti, pt->data_dev, 0, ti->len, data);
4044 }
4045
4046 static void pool_io_hints(struct dm_target *ti, struct queue_limits *limits)
4047 {
4048         struct pool_c *pt = ti->private;
4049         struct pool *pool = pt->pool;
4050         sector_t io_opt_sectors = limits->io_opt >> SECTOR_SHIFT;
4051
4052         /*
4053          * If max_sectors is smaller than pool->sectors_per_block adjust it
4054          * to the highest possible power-of-2 factor of pool->sectors_per_block.
4055          * This is especially beneficial when the pool's data device is a RAID
4056          * device that has a full stripe width that matches pool->sectors_per_block
4057          * -- because even though partial RAID stripe-sized IOs will be issued to a
4058          *    single RAID stripe; when aggregated they will end on a full RAID stripe
4059          *    boundary.. which avoids additional partial RAID stripe writes cascading
4060          */
4061         if (limits->max_sectors < pool->sectors_per_block) {
4062                 while (!is_factor(pool->sectors_per_block, limits->max_sectors)) {
4063                         if ((limits->max_sectors & (limits->max_sectors - 1)) == 0)
4064                                 limits->max_sectors--;
4065                         limits->max_sectors = rounddown_pow_of_two(limits->max_sectors);
4066                 }
4067         }
4068
4069         /*
4070          * If the system-determined stacked limits are compatible with the
4071          * pool's blocksize (io_opt is a factor) do not override them.
4072          */
4073         if (io_opt_sectors < pool->sectors_per_block ||
4074             !is_factor(io_opt_sectors, pool->sectors_per_block)) {
4075                 if (is_factor(pool->sectors_per_block, limits->max_sectors))
4076                         blk_limits_io_min(limits, limits->max_sectors << SECTOR_SHIFT);
4077                 else
4078                         blk_limits_io_min(limits, pool->sectors_per_block << SECTOR_SHIFT);
4079                 blk_limits_io_opt(limits, pool->sectors_per_block << SECTOR_SHIFT);
4080         }
4081
4082         /*
4083          * pt->adjusted_pf is a staging area for the actual features to use.
4084          * They get transferred to the live pool in bind_control_target()
4085          * called from pool_preresume().
4086          */
4087         if (!pt->adjusted_pf.discard_enabled) {
4088                 /*
4089                  * Must explicitly disallow stacking discard limits otherwise the
4090                  * block layer will stack them if pool's data device has support.
4091                  * QUEUE_FLAG_DISCARD wouldn't be set but there is no way for the
4092                  * user to see that, so make sure to set all discard limits to 0.
4093                  */
4094                 limits->discard_granularity = 0;
4095                 return;
4096         }
4097
4098         disable_passdown_if_not_supported(pt);
4099
4100         /*
4101          * The pool uses the same discard limits as the underlying data
4102          * device.  DM core has already set this up.
4103          */
4104 }
4105
4106 static struct target_type pool_target = {
4107         .name = "thin-pool",
4108         .features = DM_TARGET_SINGLETON | DM_TARGET_ALWAYS_WRITEABLE |
4109                     DM_TARGET_IMMUTABLE,
4110         .version = {1, 22, 0},
4111         .module = THIS_MODULE,
4112         .ctr = pool_ctr,
4113         .dtr = pool_dtr,
4114         .map = pool_map,
4115         .presuspend = pool_presuspend,
4116         .presuspend_undo = pool_presuspend_undo,
4117         .postsuspend = pool_postsuspend,
4118         .preresume = pool_preresume,
4119         .resume = pool_resume,
4120         .message = pool_message,
4121         .status = pool_status,
4122         .iterate_devices = pool_iterate_devices,
4123         .io_hints = pool_io_hints,
4124 };
4125
4126 /*----------------------------------------------------------------
4127  * Thin target methods
4128  *--------------------------------------------------------------*/
4129 static void thin_get(struct thin_c *tc)
4130 {
4131         refcount_inc(&tc->refcount);
4132 }
4133
4134 static void thin_put(struct thin_c *tc)
4135 {
4136         if (refcount_dec_and_test(&tc->refcount))
4137                 complete(&tc->can_destroy);
4138 }
4139
4140 static void thin_dtr(struct dm_target *ti)
4141 {
4142         struct thin_c *tc = ti->private;
4143
4144         spin_lock_irq(&tc->pool->lock);
4145         list_del_rcu(&tc->list);
4146         spin_unlock_irq(&tc->pool->lock);
4147         synchronize_rcu();
4148
4149         thin_put(tc);
4150         wait_for_completion(&tc->can_destroy);
4151
4152         mutex_lock(&dm_thin_pool_table.mutex);
4153
4154         __pool_dec(tc->pool);
4155         dm_pool_close_thin_device(tc->td);
4156         dm_put_device(ti, tc->pool_dev);
4157         if (tc->origin_dev)
4158                 dm_put_device(ti, tc->origin_dev);
4159         kfree(tc);
4160
4161         mutex_unlock(&dm_thin_pool_table.mutex);
4162 }
4163
4164 /*
4165  * Thin target parameters:
4166  *
4167  * <pool_dev> <dev_id> [origin_dev]
4168  *
4169  * pool_dev: the path to the pool (eg, /dev/mapper/my_pool)
4170  * dev_id: the internal device identifier
4171  * origin_dev: a device external to the pool that should act as the origin
4172  *
4173  * If the pool device has discards disabled, they get disabled for the thin
4174  * device as well.
4175  */
4176 static int thin_ctr(struct dm_target *ti, unsigned argc, char **argv)
4177 {
4178         int r;
4179         struct thin_c *tc;
4180         struct dm_dev *pool_dev, *origin_dev;
4181         struct mapped_device *pool_md;
4182
4183         mutex_lock(&dm_thin_pool_table.mutex);
4184
4185         if (argc != 2 && argc != 3) {
4186                 ti->error = "Invalid argument count";
4187                 r = -EINVAL;
4188                 goto out_unlock;
4189         }
4190
4191         tc = ti->private = kzalloc(sizeof(*tc), GFP_KERNEL);
4192         if (!tc) {
4193                 ti->error = "Out of memory";
4194                 r = -ENOMEM;
4195                 goto out_unlock;
4196         }
4197         tc->thin_md = dm_table_get_md(ti->table);
4198         spin_lock_init(&tc->lock);
4199         INIT_LIST_HEAD(&tc->deferred_cells);
4200         bio_list_init(&tc->deferred_bio_list);
4201         bio_list_init(&tc->retry_on_resume_list);
4202         tc->sort_bio_list = RB_ROOT;
4203
4204         if (argc == 3) {
4205                 if (!strcmp(argv[0], argv[2])) {
4206                         ti->error = "Error setting origin device";
4207                         r = -EINVAL;
4208                         goto bad_origin_dev;
4209                 }
4210
4211                 r = dm_get_device(ti, argv[2], FMODE_READ, &origin_dev);
4212                 if (r) {
4213                         ti->error = "Error opening origin device";
4214                         goto bad_origin_dev;
4215                 }
4216                 tc->origin_dev = origin_dev;
4217         }
4218
4219         r = dm_get_device(ti, argv[0], dm_table_get_mode(ti->table), &pool_dev);
4220         if (r) {
4221                 ti->error = "Error opening pool device";
4222                 goto bad_pool_dev;
4223         }
4224         tc->pool_dev = pool_dev;
4225
4226         if (read_dev_id(argv[1], (unsigned long long *)&tc->dev_id, 0)) {
4227                 ti->error = "Invalid device id";
4228                 r = -EINVAL;
4229                 goto bad_common;
4230         }
4231
4232         pool_md = dm_get_md(tc->pool_dev->bdev->bd_dev);
4233         if (!pool_md) {
4234                 ti->error = "Couldn't get pool mapped device";
4235                 r = -EINVAL;
4236                 goto bad_common;
4237         }
4238
4239         tc->pool = __pool_table_lookup(pool_md);
4240         if (!tc->pool) {
4241                 ti->error = "Couldn't find pool object";
4242                 r = -EINVAL;
4243                 goto bad_pool_lookup;
4244         }
4245         __pool_inc(tc->pool);
4246
4247         if (get_pool_mode(tc->pool) == PM_FAIL) {
4248                 ti->error = "Couldn't open thin device, Pool is in fail mode";
4249                 r = -EINVAL;
4250                 goto bad_pool;
4251         }
4252
4253         r = dm_pool_open_thin_device(tc->pool->pmd, tc->dev_id, &tc->td);
4254         if (r) {
4255                 ti->error = "Couldn't open thin internal device";
4256                 goto bad_pool;
4257         }
4258
4259         r = dm_set_target_max_io_len(ti, tc->pool->sectors_per_block);
4260         if (r)
4261                 goto bad;
4262
4263         ti->num_flush_bios = 1;
4264         ti->flush_supported = true;
4265         ti->per_io_data_size = sizeof(struct dm_thin_endio_hook);
4266
4267         /* In case the pool supports discards, pass them on. */
4268         if (tc->pool->pf.discard_enabled) {
4269                 ti->discards_supported = true;
4270                 ti->num_discard_bios = 1;
4271         }
4272
4273         mutex_unlock(&dm_thin_pool_table.mutex);
4274
4275         spin_lock_irq(&tc->pool->lock);
4276         if (tc->pool->suspended) {
4277                 spin_unlock_irq(&tc->pool->lock);
4278                 mutex_lock(&dm_thin_pool_table.mutex); /* reacquire for __pool_dec */
4279                 ti->error = "Unable to activate thin device while pool is suspended";
4280                 r = -EINVAL;
4281                 goto bad;
4282         }
4283         refcount_set(&tc->refcount, 1);
4284         init_completion(&tc->can_destroy);
4285         list_add_tail_rcu(&tc->list, &tc->pool->active_thins);
4286         spin_unlock_irq(&tc->pool->lock);
4287         /*
4288          * This synchronize_rcu() call is needed here otherwise we risk a
4289          * wake_worker() call finding no bios to process (because the newly
4290          * added tc isn't yet visible).  So this reduces latency since we
4291          * aren't then dependent on the periodic commit to wake_worker().
4292          */
4293         synchronize_rcu();
4294
4295         dm_put(pool_md);
4296
4297         return 0;
4298
4299 bad:
4300         dm_pool_close_thin_device(tc->td);
4301 bad_pool:
4302         __pool_dec(tc->pool);
4303 bad_pool_lookup:
4304         dm_put(pool_md);
4305 bad_common:
4306         dm_put_device(ti, tc->pool_dev);
4307 bad_pool_dev:
4308         if (tc->origin_dev)
4309                 dm_put_device(ti, tc->origin_dev);
4310 bad_origin_dev:
4311         kfree(tc);
4312 out_unlock:
4313         mutex_unlock(&dm_thin_pool_table.mutex);
4314
4315         return r;
4316 }
4317
4318 static int thin_map(struct dm_target *ti, struct bio *bio)
4319 {
4320         bio->bi_iter.bi_sector = dm_target_offset(ti, bio->bi_iter.bi_sector);
4321
4322         return thin_bio_map(ti, bio);
4323 }
4324
4325 static int thin_endio(struct dm_target *ti, struct bio *bio,
4326                 blk_status_t *err)
4327 {
4328         unsigned long flags;
4329         struct dm_thin_endio_hook *h = dm_per_bio_data(bio, sizeof(struct dm_thin_endio_hook));
4330         struct list_head work;
4331         struct dm_thin_new_mapping *m, *tmp;
4332         struct pool *pool = h->tc->pool;
4333
4334         if (h->shared_read_entry) {
4335                 INIT_LIST_HEAD(&work);
4336                 dm_deferred_entry_dec(h->shared_read_entry, &work);
4337
4338                 spin_lock_irqsave(&pool->lock, flags);
4339                 list_for_each_entry_safe(m, tmp, &work, list) {
4340                         list_del(&m->list);
4341                         __complete_mapping_preparation(m);
4342                 }
4343                 spin_unlock_irqrestore(&pool->lock, flags);
4344         }
4345
4346         if (h->all_io_entry) {
4347                 INIT_LIST_HEAD(&work);
4348                 dm_deferred_entry_dec(h->all_io_entry, &work);
4349                 if (!list_empty(&work)) {
4350                         spin_lock_irqsave(&pool->lock, flags);
4351                         list_for_each_entry_safe(m, tmp, &work, list)
4352                                 list_add_tail(&m->list, &pool->prepared_discards);
4353                         spin_unlock_irqrestore(&pool->lock, flags);
4354                         wake_worker(pool);
4355                 }
4356         }
4357
4358         if (h->cell)
4359                 cell_defer_no_holder(h->tc, h->cell);
4360
4361         return DM_ENDIO_DONE;
4362 }
4363
4364 static void thin_presuspend(struct dm_target *ti)
4365 {
4366         struct thin_c *tc = ti->private;
4367
4368         if (dm_noflush_suspending(ti))
4369                 noflush_work(tc, do_noflush_start);
4370 }
4371
4372 static void thin_postsuspend(struct dm_target *ti)
4373 {
4374         struct thin_c *tc = ti->private;
4375
4376         /*
4377          * The dm_noflush_suspending flag has been cleared by now, so
4378          * unfortunately we must always run this.
4379          */
4380         noflush_work(tc, do_noflush_stop);
4381 }
4382
4383 static int thin_preresume(struct dm_target *ti)
4384 {
4385         struct thin_c *tc = ti->private;
4386
4387         if (tc->origin_dev)
4388                 tc->origin_size = get_dev_size(tc->origin_dev->bdev);
4389
4390         return 0;
4391 }
4392
4393 /*
4394  * <nr mapped sectors> <highest mapped sector>
4395  */
4396 static void thin_status(struct dm_target *ti, status_type_t type,
4397                         unsigned status_flags, char *result, unsigned maxlen)
4398 {
4399         int r;
4400         ssize_t sz = 0;
4401         dm_block_t mapped, highest;
4402         char buf[BDEVNAME_SIZE];
4403         struct thin_c *tc = ti->private;
4404
4405         if (get_pool_mode(tc->pool) == PM_FAIL) {
4406                 DMEMIT("Fail");
4407                 return;
4408         }
4409
4410         if (!tc->td)
4411                 DMEMIT("-");
4412         else {
4413                 switch (type) {
4414                 case STATUSTYPE_INFO:
4415                         r = dm_thin_get_mapped_count(tc->td, &mapped);
4416                         if (r) {
4417                                 DMERR("dm_thin_get_mapped_count returned %d", r);
4418                                 goto err;
4419                         }
4420
4421                         r = dm_thin_get_highest_mapped_block(tc->td, &highest);
4422                         if (r < 0) {
4423                                 DMERR("dm_thin_get_highest_mapped_block returned %d", r);
4424                                 goto err;
4425                         }
4426
4427                         DMEMIT("%llu ", mapped * tc->pool->sectors_per_block);
4428                         if (r)
4429                                 DMEMIT("%llu", ((highest + 1) *
4430                                                 tc->pool->sectors_per_block) - 1);
4431                         else
4432                                 DMEMIT("-");
4433                         break;
4434
4435                 case STATUSTYPE_TABLE:
4436                         DMEMIT("%s %lu",
4437                                format_dev_t(buf, tc->pool_dev->bdev->bd_dev),
4438                                (unsigned long) tc->dev_id);
4439                         if (tc->origin_dev)
4440                                 DMEMIT(" %s", format_dev_t(buf, tc->origin_dev->bdev->bd_dev));
4441                         break;
4442                 }
4443         }
4444
4445         return;
4446
4447 err:
4448         DMEMIT("Error");
4449 }
4450
4451 static int thin_iterate_devices(struct dm_target *ti,
4452                                 iterate_devices_callout_fn fn, void *data)
4453 {
4454         sector_t blocks;
4455         struct thin_c *tc = ti->private;
4456         struct pool *pool = tc->pool;
4457
4458         /*
4459          * We can't call dm_pool_get_data_dev_size() since that blocks.  So
4460          * we follow a more convoluted path through to the pool's target.
4461          */
4462         if (!pool->ti)
4463                 return 0;       /* nothing is bound */
4464
4465         blocks = pool->ti->len;
4466         (void) sector_div(blocks, pool->sectors_per_block);
4467         if (blocks)
4468                 return fn(ti, tc->pool_dev, 0, pool->sectors_per_block * blocks, data);
4469
4470         return 0;
4471 }
4472
4473 static void thin_io_hints(struct dm_target *ti, struct queue_limits *limits)
4474 {
4475         struct thin_c *tc = ti->private;
4476         struct pool *pool = tc->pool;
4477
4478         if (!pool->pf.discard_enabled)
4479                 return;
4480
4481         limits->discard_granularity = pool->sectors_per_block << SECTOR_SHIFT;
4482         limits->max_discard_sectors = 2048 * 1024 * 16; /* 16G */
4483 }
4484
4485 static struct target_type thin_target = {
4486         .name = "thin",
4487         .version = {1, 22, 0},
4488         .module = THIS_MODULE,
4489         .ctr = thin_ctr,
4490         .dtr = thin_dtr,
4491         .map = thin_map,
4492         .end_io = thin_endio,
4493         .preresume = thin_preresume,
4494         .presuspend = thin_presuspend,
4495         .postsuspend = thin_postsuspend,
4496         .status = thin_status,
4497         .iterate_devices = thin_iterate_devices,
4498         .io_hints = thin_io_hints,
4499 };
4500
4501 /*----------------------------------------------------------------*/
4502
4503 static int __init dm_thin_init(void)
4504 {
4505         int r = -ENOMEM;
4506
4507         pool_table_init();
4508
4509         _new_mapping_cache = KMEM_CACHE(dm_thin_new_mapping, 0);
4510         if (!_new_mapping_cache)
4511                 return r;
4512
4513         r = dm_register_target(&thin_target);
4514         if (r)
4515                 goto bad_new_mapping_cache;
4516
4517         r = dm_register_target(&pool_target);
4518         if (r)
4519                 goto bad_thin_target;
4520
4521         return 0;
4522
4523 bad_thin_target:
4524         dm_unregister_target(&thin_target);
4525 bad_new_mapping_cache:
4526         kmem_cache_destroy(_new_mapping_cache);
4527
4528         return r;
4529 }
4530
4531 static void dm_thin_exit(void)
4532 {
4533         dm_unregister_target(&thin_target);
4534         dm_unregister_target(&pool_target);
4535
4536         kmem_cache_destroy(_new_mapping_cache);
4537
4538         pool_table_exit();
4539 }
4540
4541 module_init(dm_thin_init);
4542 module_exit(dm_thin_exit);
4543
4544 module_param_named(no_space_timeout, no_space_timeout_secs, uint, S_IRUGO | S_IWUSR);
4545 MODULE_PARM_DESC(no_space_timeout, "Out of data space queue IO timeout in seconds");
4546
4547 MODULE_DESCRIPTION(DM_NAME " thin provisioning target");
4548 MODULE_AUTHOR("Joe Thornber <dm-devel@redhat.com>");
4549 MODULE_LICENSE("GPL");