Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / md / bcache / extents.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Copyright (C) 2010 Kent Overstreet <kent.overstreet@gmail.com>
4  *
5  * Uses a block device as cache for other block devices; optimized for SSDs.
6  * All allocation is done in buckets, which should match the erase block size
7  * of the device.
8  *
9  * Buckets containing cached data are kept on a heap sorted by priority;
10  * bucket priority is increased on cache hit, and periodically all the buckets
11  * on the heap have their priority scaled down. This currently is just used as
12  * an LRU but in the future should allow for more intelligent heuristics.
13  *
14  * Buckets have an 8 bit counter; freeing is accomplished by incrementing the
15  * counter. Garbage collection is used to remove stale pointers.
16  *
17  * Indexing is done via a btree; nodes are not necessarily fully sorted, rather
18  * as keys are inserted we only sort the pages that have not yet been written.
19  * When garbage collection is run, we resort the entire node.
20  *
21  * All configuration is done via sysfs; see Documentation/admin-guide/bcache.rst.
22  */
23
24 #include "bcache.h"
25 #include "btree.h"
26 #include "debug.h"
27 #include "extents.h"
28 #include "writeback.h"
29
30 static void sort_key_next(struct btree_iter *iter,
31                           struct btree_iter_set *i)
32 {
33         i->k = bkey_next(i->k);
34
35         if (i->k == i->end)
36                 *i = iter->data[--iter->used];
37 }
38
39 static bool bch_key_sort_cmp(struct btree_iter_set l,
40                              struct btree_iter_set r)
41 {
42         int64_t c = bkey_cmp(l.k, r.k);
43
44         return c ? c > 0 : l.k < r.k;
45 }
46
47 static bool __ptr_invalid(struct cache_set *c, const struct bkey *k)
48 {
49         unsigned int i;
50
51         for (i = 0; i < KEY_PTRS(k); i++)
52                 if (ptr_available(c, k, i)) {
53                         struct cache *ca = PTR_CACHE(c, k, i);
54                         size_t bucket = PTR_BUCKET_NR(c, k, i);
55                         size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
56
57                         if (KEY_SIZE(k) + r > c->sb.bucket_size ||
58                             bucket <  ca->sb.first_bucket ||
59                             bucket >= ca->sb.nbuckets)
60                                 return true;
61                 }
62
63         return false;
64 }
65
66 /* Common among btree and extent ptrs */
67
68 static const char *bch_ptr_status(struct cache_set *c, const struct bkey *k)
69 {
70         unsigned int i;
71
72         for (i = 0; i < KEY_PTRS(k); i++)
73                 if (ptr_available(c, k, i)) {
74                         struct cache *ca = PTR_CACHE(c, k, i);
75                         size_t bucket = PTR_BUCKET_NR(c, k, i);
76                         size_t r = bucket_remainder(c, PTR_OFFSET(k, i));
77
78                         if (KEY_SIZE(k) + r > c->sb.bucket_size)
79                                 return "bad, length too big";
80                         if (bucket <  ca->sb.first_bucket)
81                                 return "bad, short offset";
82                         if (bucket >= ca->sb.nbuckets)
83                                 return "bad, offset past end of device";
84                         if (ptr_stale(c, k, i))
85                                 return "stale";
86                 }
87
88         if (!bkey_cmp(k, &ZERO_KEY))
89                 return "bad, null key";
90         if (!KEY_PTRS(k))
91                 return "bad, no pointers";
92         if (!KEY_SIZE(k))
93                 return "zeroed key";
94         return "";
95 }
96
97 void bch_extent_to_text(char *buf, size_t size, const struct bkey *k)
98 {
99         unsigned int i = 0;
100         char *out = buf, *end = buf + size;
101
102 #define p(...)  (out += scnprintf(out, end - out, __VA_ARGS__))
103
104         p("%llu:%llu len %llu -> [", KEY_INODE(k), KEY_START(k), KEY_SIZE(k));
105
106         for (i = 0; i < KEY_PTRS(k); i++) {
107                 if (i)
108                         p(", ");
109
110                 if (PTR_DEV(k, i) == PTR_CHECK_DEV)
111                         p("check dev");
112                 else
113                         p("%llu:%llu gen %llu", PTR_DEV(k, i),
114                           PTR_OFFSET(k, i), PTR_GEN(k, i));
115         }
116
117         p("]");
118
119         if (KEY_DIRTY(k))
120                 p(" dirty");
121         if (KEY_CSUM(k))
122                 p(" cs%llu %llx", KEY_CSUM(k), k->ptr[1]);
123 #undef p
124 }
125
126 static void bch_bkey_dump(struct btree_keys *keys, const struct bkey *k)
127 {
128         struct btree *b = container_of(keys, struct btree, keys);
129         unsigned int j;
130         char buf[80];
131
132         bch_extent_to_text(buf, sizeof(buf), k);
133         pr_err(" %s", buf);
134
135         for (j = 0; j < KEY_PTRS(k); j++) {
136                 size_t n = PTR_BUCKET_NR(b->c, k, j);
137
138                 pr_err(" bucket %zu", n);
139                 if (n >= b->c->sb.first_bucket && n < b->c->sb.nbuckets)
140                         pr_err(" prio %i",
141                                PTR_BUCKET(b->c, k, j)->prio);
142         }
143
144         pr_err(" %s\n", bch_ptr_status(b->c, k));
145 }
146
147 /* Btree ptrs */
148
149 bool __bch_btree_ptr_invalid(struct cache_set *c, const struct bkey *k)
150 {
151         char buf[80];
152
153         if (!KEY_PTRS(k) || !KEY_SIZE(k) || KEY_DIRTY(k))
154                 goto bad;
155
156         if (__ptr_invalid(c, k))
157                 goto bad;
158
159         return false;
160 bad:
161         bch_extent_to_text(buf, sizeof(buf), k);
162         cache_bug(c, "spotted btree ptr %s: %s", buf, bch_ptr_status(c, k));
163         return true;
164 }
165
166 static bool bch_btree_ptr_invalid(struct btree_keys *bk, const struct bkey *k)
167 {
168         struct btree *b = container_of(bk, struct btree, keys);
169
170         return __bch_btree_ptr_invalid(b->c, k);
171 }
172
173 static bool btree_ptr_bad_expensive(struct btree *b, const struct bkey *k)
174 {
175         unsigned int i;
176         char buf[80];
177         struct bucket *g;
178
179         if (mutex_trylock(&b->c->bucket_lock)) {
180                 for (i = 0; i < KEY_PTRS(k); i++)
181                         if (ptr_available(b->c, k, i)) {
182                                 g = PTR_BUCKET(b->c, k, i);
183
184                                 if (KEY_DIRTY(k) ||
185                                     g->prio != BTREE_PRIO ||
186                                     (b->c->gc_mark_valid &&
187                                      GC_MARK(g) != GC_MARK_METADATA))
188                                         goto err;
189                         }
190
191                 mutex_unlock(&b->c->bucket_lock);
192         }
193
194         return false;
195 err:
196         mutex_unlock(&b->c->bucket_lock);
197         bch_extent_to_text(buf, sizeof(buf), k);
198         btree_bug(b,
199 "inconsistent btree pointer %s: bucket %zi pin %i prio %i gen %i last_gc %i mark %llu",
200                   buf, PTR_BUCKET_NR(b->c, k, i), atomic_read(&g->pin),
201                   g->prio, g->gen, g->last_gc, GC_MARK(g));
202         return true;
203 }
204
205 static bool bch_btree_ptr_bad(struct btree_keys *bk, const struct bkey *k)
206 {
207         struct btree *b = container_of(bk, struct btree, keys);
208         unsigned int i;
209
210         if (!bkey_cmp(k, &ZERO_KEY) ||
211             !KEY_PTRS(k) ||
212             bch_ptr_invalid(bk, k))
213                 return true;
214
215         for (i = 0; i < KEY_PTRS(k); i++)
216                 if (!ptr_available(b->c, k, i) ||
217                     ptr_stale(b->c, k, i))
218                         return true;
219
220         if (expensive_debug_checks(b->c) &&
221             btree_ptr_bad_expensive(b, k))
222                 return true;
223
224         return false;
225 }
226
227 static bool bch_btree_ptr_insert_fixup(struct btree_keys *bk,
228                                        struct bkey *insert,
229                                        struct btree_iter *iter,
230                                        struct bkey *replace_key)
231 {
232         struct btree *b = container_of(bk, struct btree, keys);
233
234         if (!KEY_OFFSET(insert))
235                 btree_current_write(b)->prio_blocked++;
236
237         return false;
238 }
239
240 const struct btree_keys_ops bch_btree_keys_ops = {
241         .sort_cmp       = bch_key_sort_cmp,
242         .insert_fixup   = bch_btree_ptr_insert_fixup,
243         .key_invalid    = bch_btree_ptr_invalid,
244         .key_bad        = bch_btree_ptr_bad,
245         .key_to_text    = bch_extent_to_text,
246         .key_dump       = bch_bkey_dump,
247 };
248
249 /* Extents */
250
251 /*
252  * Returns true if l > r - unless l == r, in which case returns true if l is
253  * older than r.
254  *
255  * Necessary for btree_sort_fixup() - if there are multiple keys that compare
256  * equal in different sets, we have to process them newest to oldest.
257  */
258 static bool bch_extent_sort_cmp(struct btree_iter_set l,
259                                 struct btree_iter_set r)
260 {
261         int64_t c = bkey_cmp(&START_KEY(l.k), &START_KEY(r.k));
262
263         return c ? c > 0 : l.k < r.k;
264 }
265
266 static struct bkey *bch_extent_sort_fixup(struct btree_iter *iter,
267                                           struct bkey *tmp)
268 {
269         while (iter->used > 1) {
270                 struct btree_iter_set *top = iter->data, *i = top + 1;
271
272                 if (iter->used > 2 &&
273                     bch_extent_sort_cmp(i[0], i[1]))
274                         i++;
275
276                 if (bkey_cmp(top->k, &START_KEY(i->k)) <= 0)
277                         break;
278
279                 if (!KEY_SIZE(i->k)) {
280                         sort_key_next(iter, i);
281                         heap_sift(iter, i - top, bch_extent_sort_cmp);
282                         continue;
283                 }
284
285                 if (top->k > i->k) {
286                         if (bkey_cmp(top->k, i->k) >= 0)
287                                 sort_key_next(iter, i);
288                         else
289                                 bch_cut_front(top->k, i->k);
290
291                         heap_sift(iter, i - top, bch_extent_sort_cmp);
292                 } else {
293                         /* can't happen because of comparison func */
294                         BUG_ON(!bkey_cmp(&START_KEY(top->k), &START_KEY(i->k)));
295
296                         if (bkey_cmp(i->k, top->k) < 0) {
297                                 bkey_copy(tmp, top->k);
298
299                                 bch_cut_back(&START_KEY(i->k), tmp);
300                                 bch_cut_front(i->k, top->k);
301                                 heap_sift(iter, 0, bch_extent_sort_cmp);
302
303                                 return tmp;
304                         } else {
305                                 bch_cut_back(&START_KEY(i->k), top->k);
306                         }
307                 }
308         }
309
310         return NULL;
311 }
312
313 static void bch_subtract_dirty(struct bkey *k,
314                            struct cache_set *c,
315                            uint64_t offset,
316                            int sectors)
317 {
318         if (KEY_DIRTY(k))
319                 bcache_dev_sectors_dirty_add(c, KEY_INODE(k),
320                                              offset, -sectors);
321 }
322
323 static bool bch_extent_insert_fixup(struct btree_keys *b,
324                                     struct bkey *insert,
325                                     struct btree_iter *iter,
326                                     struct bkey *replace_key)
327 {
328         struct cache_set *c = container_of(b, struct btree, keys)->c;
329
330         uint64_t old_offset;
331         unsigned int old_size, sectors_found = 0;
332
333         BUG_ON(!KEY_OFFSET(insert));
334         BUG_ON(!KEY_SIZE(insert));
335
336         while (1) {
337                 struct bkey *k = bch_btree_iter_next(iter);
338
339                 if (!k)
340                         break;
341
342                 if (bkey_cmp(&START_KEY(k), insert) >= 0) {
343                         if (KEY_SIZE(k))
344                                 break;
345                         else
346                                 continue;
347                 }
348
349                 if (bkey_cmp(k, &START_KEY(insert)) <= 0)
350                         continue;
351
352                 old_offset = KEY_START(k);
353                 old_size = KEY_SIZE(k);
354
355                 /*
356                  * We might overlap with 0 size extents; we can't skip these
357                  * because if they're in the set we're inserting to we have to
358                  * adjust them so they don't overlap with the key we're
359                  * inserting. But we don't want to check them for replace
360                  * operations.
361                  */
362
363                 if (replace_key && KEY_SIZE(k)) {
364                         /*
365                          * k might have been split since we inserted/found the
366                          * key we're replacing
367                          */
368                         unsigned int i;
369                         uint64_t offset = KEY_START(k) -
370                                 KEY_START(replace_key);
371
372                         /* But it must be a subset of the replace key */
373                         if (KEY_START(k) < KEY_START(replace_key) ||
374                             KEY_OFFSET(k) > KEY_OFFSET(replace_key))
375                                 goto check_failed;
376
377                         /* We didn't find a key that we were supposed to */
378                         if (KEY_START(k) > KEY_START(insert) + sectors_found)
379                                 goto check_failed;
380
381                         if (!bch_bkey_equal_header(k, replace_key))
382                                 goto check_failed;
383
384                         /* skip past gen */
385                         offset <<= 8;
386
387                         BUG_ON(!KEY_PTRS(replace_key));
388
389                         for (i = 0; i < KEY_PTRS(replace_key); i++)
390                                 if (k->ptr[i] != replace_key->ptr[i] + offset)
391                                         goto check_failed;
392
393                         sectors_found = KEY_OFFSET(k) - KEY_START(insert);
394                 }
395
396                 if (bkey_cmp(insert, k) < 0 &&
397                     bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0) {
398                         /*
399                          * We overlapped in the middle of an existing key: that
400                          * means we have to split the old key. But we have to do
401                          * slightly different things depending on whether the
402                          * old key has been written out yet.
403                          */
404
405                         struct bkey *top;
406
407                         bch_subtract_dirty(k, c, KEY_START(insert),
408                                        KEY_SIZE(insert));
409
410                         if (bkey_written(b, k)) {
411                                 /*
412                                  * We insert a new key to cover the top of the
413                                  * old key, and the old key is modified in place
414                                  * to represent the bottom split.
415                                  *
416                                  * It's completely arbitrary whether the new key
417                                  * is the top or the bottom, but it has to match
418                                  * up with what btree_sort_fixup() does - it
419                                  * doesn't check for this kind of overlap, it
420                                  * depends on us inserting a new key for the top
421                                  * here.
422                                  */
423                                 top = bch_bset_search(b, bset_tree_last(b),
424                                                       insert);
425                                 bch_bset_insert(b, top, k);
426                         } else {
427                                 BKEY_PADDED(key) temp;
428                                 bkey_copy(&temp.key, k);
429                                 bch_bset_insert(b, k, &temp.key);
430                                 top = bkey_next(k);
431                         }
432
433                         bch_cut_front(insert, top);
434                         bch_cut_back(&START_KEY(insert), k);
435                         bch_bset_fix_invalidated_key(b, k);
436                         goto out;
437                 }
438
439                 if (bkey_cmp(insert, k) < 0) {
440                         bch_cut_front(insert, k);
441                 } else {
442                         if (bkey_cmp(&START_KEY(insert), &START_KEY(k)) > 0)
443                                 old_offset = KEY_START(insert);
444
445                         if (bkey_written(b, k) &&
446                             bkey_cmp(&START_KEY(insert), &START_KEY(k)) <= 0) {
447                                 /*
448                                  * Completely overwrote, so we don't have to
449                                  * invalidate the binary search tree
450                                  */
451                                 bch_cut_front(k, k);
452                         } else {
453                                 __bch_cut_back(&START_KEY(insert), k);
454                                 bch_bset_fix_invalidated_key(b, k);
455                         }
456                 }
457
458                 bch_subtract_dirty(k, c, old_offset, old_size - KEY_SIZE(k));
459         }
460
461 check_failed:
462         if (replace_key) {
463                 if (!sectors_found) {
464                         return true;
465                 } else if (sectors_found < KEY_SIZE(insert)) {
466                         SET_KEY_OFFSET(insert, KEY_OFFSET(insert) -
467                                        (KEY_SIZE(insert) - sectors_found));
468                         SET_KEY_SIZE(insert, sectors_found);
469                 }
470         }
471 out:
472         if (KEY_DIRTY(insert))
473                 bcache_dev_sectors_dirty_add(c, KEY_INODE(insert),
474                                              KEY_START(insert),
475                                              KEY_SIZE(insert));
476
477         return false;
478 }
479
480 bool __bch_extent_invalid(struct cache_set *c, const struct bkey *k)
481 {
482         char buf[80];
483
484         if (!KEY_SIZE(k))
485                 return true;
486
487         if (KEY_SIZE(k) > KEY_OFFSET(k))
488                 goto bad;
489
490         if (__ptr_invalid(c, k))
491                 goto bad;
492
493         return false;
494 bad:
495         bch_extent_to_text(buf, sizeof(buf), k);
496         cache_bug(c, "spotted extent %s: %s", buf, bch_ptr_status(c, k));
497         return true;
498 }
499
500 static bool bch_extent_invalid(struct btree_keys *bk, const struct bkey *k)
501 {
502         struct btree *b = container_of(bk, struct btree, keys);
503
504         return __bch_extent_invalid(b->c, k);
505 }
506
507 static bool bch_extent_bad_expensive(struct btree *b, const struct bkey *k,
508                                      unsigned int ptr)
509 {
510         struct bucket *g = PTR_BUCKET(b->c, k, ptr);
511         char buf[80];
512
513         if (mutex_trylock(&b->c->bucket_lock)) {
514                 if (b->c->gc_mark_valid &&
515                     (!GC_MARK(g) ||
516                      GC_MARK(g) == GC_MARK_METADATA ||
517                      (GC_MARK(g) != GC_MARK_DIRTY && KEY_DIRTY(k))))
518                         goto err;
519
520                 if (g->prio == BTREE_PRIO)
521                         goto err;
522
523                 mutex_unlock(&b->c->bucket_lock);
524         }
525
526         return false;
527 err:
528         mutex_unlock(&b->c->bucket_lock);
529         bch_extent_to_text(buf, sizeof(buf), k);
530         btree_bug(b,
531 "inconsistent extent pointer %s:\nbucket %zu pin %i prio %i gen %i last_gc %i mark %llu",
532                   buf, PTR_BUCKET_NR(b->c, k, ptr), atomic_read(&g->pin),
533                   g->prio, g->gen, g->last_gc, GC_MARK(g));
534         return true;
535 }
536
537 static bool bch_extent_bad(struct btree_keys *bk, const struct bkey *k)
538 {
539         struct btree *b = container_of(bk, struct btree, keys);
540         unsigned int i, stale;
541         char buf[80];
542
543         if (!KEY_PTRS(k) ||
544             bch_extent_invalid(bk, k))
545                 return true;
546
547         for (i = 0; i < KEY_PTRS(k); i++)
548                 if (!ptr_available(b->c, k, i))
549                         return true;
550
551         for (i = 0; i < KEY_PTRS(k); i++) {
552                 stale = ptr_stale(b->c, k, i);
553
554                 if (stale && KEY_DIRTY(k)) {
555                         bch_extent_to_text(buf, sizeof(buf), k);
556                         pr_info("stale dirty pointer, stale %u, key: %s",
557                                 stale, buf);
558                 }
559
560                 btree_bug_on(stale > BUCKET_GC_GEN_MAX, b,
561                              "key too stale: %i, need_gc %u",
562                              stale, b->c->need_gc);
563
564                 if (stale)
565                         return true;
566
567                 if (expensive_debug_checks(b->c) &&
568                     bch_extent_bad_expensive(b, k, i))
569                         return true;
570         }
571
572         return false;
573 }
574
575 static uint64_t merge_chksums(struct bkey *l, struct bkey *r)
576 {
577         return (l->ptr[KEY_PTRS(l)] + r->ptr[KEY_PTRS(r)]) &
578                 ~((uint64_t)1 << 63);
579 }
580
581 static bool bch_extent_merge(struct btree_keys *bk,
582                              struct bkey *l,
583                              struct bkey *r)
584 {
585         struct btree *b = container_of(bk, struct btree, keys);
586         unsigned int i;
587
588         if (key_merging_disabled(b->c))
589                 return false;
590
591         for (i = 0; i < KEY_PTRS(l); i++)
592                 if (l->ptr[i] + MAKE_PTR(0, KEY_SIZE(l), 0) != r->ptr[i] ||
593                     PTR_BUCKET_NR(b->c, l, i) != PTR_BUCKET_NR(b->c, r, i))
594                         return false;
595
596         /* Keys with no pointers aren't restricted to one bucket and could
597          * overflow KEY_SIZE
598          */
599         if (KEY_SIZE(l) + KEY_SIZE(r) > USHRT_MAX) {
600                 SET_KEY_OFFSET(l, KEY_OFFSET(l) + USHRT_MAX - KEY_SIZE(l));
601                 SET_KEY_SIZE(l, USHRT_MAX);
602
603                 bch_cut_front(l, r);
604                 return false;
605         }
606
607         if (KEY_CSUM(l)) {
608                 if (KEY_CSUM(r))
609                         l->ptr[KEY_PTRS(l)] = merge_chksums(l, r);
610                 else
611                         SET_KEY_CSUM(l, 0);
612         }
613
614         SET_KEY_OFFSET(l, KEY_OFFSET(l) + KEY_SIZE(r));
615         SET_KEY_SIZE(l, KEY_SIZE(l) + KEY_SIZE(r));
616
617         return true;
618 }
619
620 const struct btree_keys_ops bch_extent_keys_ops = {
621         .sort_cmp       = bch_extent_sort_cmp,
622         .sort_fixup     = bch_extent_sort_fixup,
623         .insert_fixup   = bch_extent_insert_fixup,
624         .key_invalid    = bch_extent_invalid,
625         .key_bad        = bch_extent_bad,
626         .key_merge      = bch_extent_merge,
627         .key_to_text    = bch_extent_to_text,
628         .key_dump       = bch_bkey_dump,
629         .is_extents     = true,
630 };