Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / infiniband / hw / hfi1 / qp.c
1 /*
2  * Copyright(c) 2015 - 2019 Intel Corporation.
3  *
4  * This file is provided under a dual BSD/GPLv2 license.  When using or
5  * redistributing this file, you may do so under either license.
6  *
7  * GPL LICENSE SUMMARY
8  *
9  * This program is free software; you can redistribute it and/or modify
10  * it under the terms of version 2 of the GNU General Public License as
11  * published by the Free Software Foundation.
12  *
13  * This program is distributed in the hope that it will be useful, but
14  * WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * General Public License for more details.
17  *
18  * BSD LICENSE
19  *
20  * Redistribution and use in source and binary forms, with or without
21  * modification, are permitted provided that the following conditions
22  * are met:
23  *
24  *  - Redistributions of source code must retain the above copyright
25  *    notice, this list of conditions and the following disclaimer.
26  *  - Redistributions in binary form must reproduce the above copyright
27  *    notice, this list of conditions and the following disclaimer in
28  *    the documentation and/or other materials provided with the
29  *    distribution.
30  *  - Neither the name of Intel Corporation nor the names of its
31  *    contributors may be used to endorse or promote products derived
32  *    from this software without specific prior written permission.
33  *
34  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
35  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
36  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
37  * A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
38  * OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
39  * SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
40  * LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
41  * DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
42  * THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
43  * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
44  * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
45  *
46  */
47
48 #include <linux/err.h>
49 #include <linux/vmalloc.h>
50 #include <linux/hash.h>
51 #include <linux/module.h>
52 #include <linux/seq_file.h>
53 #include <rdma/rdma_vt.h>
54 #include <rdma/rdmavt_qp.h>
55 #include <rdma/ib_verbs.h>
56
57 #include "hfi.h"
58 #include "qp.h"
59 #include "trace.h"
60 #include "verbs_txreq.h"
61
62 unsigned int hfi1_qp_table_size = 256;
63 module_param_named(qp_table_size, hfi1_qp_table_size, uint, S_IRUGO);
64 MODULE_PARM_DESC(qp_table_size, "QP table size");
65
66 static void flush_tx_list(struct rvt_qp *qp);
67 static int iowait_sleep(
68         struct sdma_engine *sde,
69         struct iowait_work *wait,
70         struct sdma_txreq *stx,
71         unsigned int seq,
72         bool pkts_sent);
73 static void iowait_wakeup(struct iowait *wait, int reason);
74 static void iowait_sdma_drained(struct iowait *wait);
75 static void qp_pio_drain(struct rvt_qp *qp);
76
77 const struct rvt_operation_params hfi1_post_parms[RVT_OPERATION_MAX] = {
78 [IB_WR_RDMA_WRITE] = {
79         .length = sizeof(struct ib_rdma_wr),
80         .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
81 },
82
83 [IB_WR_RDMA_READ] = {
84         .length = sizeof(struct ib_rdma_wr),
85         .qpt_support = BIT(IB_QPT_RC),
86         .flags = RVT_OPERATION_ATOMIC,
87 },
88
89 [IB_WR_ATOMIC_CMP_AND_SWP] = {
90         .length = sizeof(struct ib_atomic_wr),
91         .qpt_support = BIT(IB_QPT_RC),
92         .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
93 },
94
95 [IB_WR_ATOMIC_FETCH_AND_ADD] = {
96         .length = sizeof(struct ib_atomic_wr),
97         .qpt_support = BIT(IB_QPT_RC),
98         .flags = RVT_OPERATION_ATOMIC | RVT_OPERATION_ATOMIC_SGE,
99 },
100
101 [IB_WR_RDMA_WRITE_WITH_IMM] = {
102         .length = sizeof(struct ib_rdma_wr),
103         .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
104 },
105
106 [IB_WR_SEND] = {
107         .length = sizeof(struct ib_send_wr),
108         .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
109                        BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
110 },
111
112 [IB_WR_SEND_WITH_IMM] = {
113         .length = sizeof(struct ib_send_wr),
114         .qpt_support = BIT(IB_QPT_UD) | BIT(IB_QPT_SMI) | BIT(IB_QPT_GSI) |
115                        BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
116 },
117
118 [IB_WR_REG_MR] = {
119         .length = sizeof(struct ib_reg_wr),
120         .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
121         .flags = RVT_OPERATION_LOCAL,
122 },
123
124 [IB_WR_LOCAL_INV] = {
125         .length = sizeof(struct ib_send_wr),
126         .qpt_support = BIT(IB_QPT_UC) | BIT(IB_QPT_RC),
127         .flags = RVT_OPERATION_LOCAL,
128 },
129
130 [IB_WR_SEND_WITH_INV] = {
131         .length = sizeof(struct ib_send_wr),
132         .qpt_support = BIT(IB_QPT_RC),
133 },
134
135 [IB_WR_OPFN] = {
136         .length = sizeof(struct ib_atomic_wr),
137         .qpt_support = BIT(IB_QPT_RC),
138         .flags = RVT_OPERATION_USE_RESERVE,
139 },
140
141 [IB_WR_TID_RDMA_WRITE] = {
142         .length = sizeof(struct ib_rdma_wr),
143         .qpt_support = BIT(IB_QPT_RC),
144         .flags = RVT_OPERATION_IGN_RNR_CNT,
145 },
146
147 };
148
149 static void flush_list_head(struct list_head *l)
150 {
151         while (!list_empty(l)) {
152                 struct sdma_txreq *tx;
153
154                 tx = list_first_entry(
155                         l,
156                         struct sdma_txreq,
157                         list);
158                 list_del_init(&tx->list);
159                 hfi1_put_txreq(
160                         container_of(tx, struct verbs_txreq, txreq));
161         }
162 }
163
164 static void flush_tx_list(struct rvt_qp *qp)
165 {
166         struct hfi1_qp_priv *priv = qp->priv;
167
168         flush_list_head(&iowait_get_ib_work(&priv->s_iowait)->tx_head);
169         flush_list_head(&iowait_get_tid_work(&priv->s_iowait)->tx_head);
170 }
171
172 static void flush_iowait(struct rvt_qp *qp)
173 {
174         struct hfi1_qp_priv *priv = qp->priv;
175         unsigned long flags;
176         seqlock_t *lock = priv->s_iowait.lock;
177
178         if (!lock)
179                 return;
180         write_seqlock_irqsave(lock, flags);
181         if (!list_empty(&priv->s_iowait.list)) {
182                 list_del_init(&priv->s_iowait.list);
183                 priv->s_iowait.lock = NULL;
184                 rvt_put_qp(qp);
185         }
186         write_sequnlock_irqrestore(lock, flags);
187 }
188
189 static inline int opa_mtu_enum_to_int(int mtu)
190 {
191         switch (mtu) {
192         case OPA_MTU_8192:  return 8192;
193         case OPA_MTU_10240: return 10240;
194         default:            return -1;
195         }
196 }
197
198 /**
199  * This function is what we would push to the core layer if we wanted to be a
200  * "first class citizen".  Instead we hide this here and rely on Verbs ULPs
201  * to blindly pass the MTU enum value from the PathRecord to us.
202  */
203 static inline int verbs_mtu_enum_to_int(struct ib_device *dev, enum ib_mtu mtu)
204 {
205         int val;
206
207         /* Constraining 10KB packets to 8KB packets */
208         if (mtu == (enum ib_mtu)OPA_MTU_10240)
209                 mtu = OPA_MTU_8192;
210         val = opa_mtu_enum_to_int((int)mtu);
211         if (val > 0)
212                 return val;
213         return ib_mtu_enum_to_int(mtu);
214 }
215
216 int hfi1_check_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
217                          int attr_mask, struct ib_udata *udata)
218 {
219         struct ib_qp *ibqp = &qp->ibqp;
220         struct hfi1_ibdev *dev = to_idev(ibqp->device);
221         struct hfi1_devdata *dd = dd_from_dev(dev);
222         u8 sc;
223
224         if (attr_mask & IB_QP_AV) {
225                 sc = ah_to_sc(ibqp->device, &attr->ah_attr);
226                 if (sc == 0xf)
227                         return -EINVAL;
228
229                 if (!qp_to_sdma_engine(qp, sc) &&
230                     dd->flags & HFI1_HAS_SEND_DMA)
231                         return -EINVAL;
232
233                 if (!qp_to_send_context(qp, sc))
234                         return -EINVAL;
235         }
236
237         if (attr_mask & IB_QP_ALT_PATH) {
238                 sc = ah_to_sc(ibqp->device, &attr->alt_ah_attr);
239                 if (sc == 0xf)
240                         return -EINVAL;
241
242                 if (!qp_to_sdma_engine(qp, sc) &&
243                     dd->flags & HFI1_HAS_SEND_DMA)
244                         return -EINVAL;
245
246                 if (!qp_to_send_context(qp, sc))
247                         return -EINVAL;
248         }
249
250         return 0;
251 }
252
253 /*
254  * qp_set_16b - Set the hdr_type based on whether the slid or the
255  * dlid in the connection is extended. Only applicable for RC and UC
256  * QPs. UD QPs determine this on the fly from the ah in the wqe
257  */
258 static inline void qp_set_16b(struct rvt_qp *qp)
259 {
260         struct hfi1_pportdata *ppd;
261         struct hfi1_ibport *ibp;
262         struct hfi1_qp_priv *priv = qp->priv;
263
264         /* Update ah_attr to account for extended LIDs */
265         hfi1_update_ah_attr(qp->ibqp.device, &qp->remote_ah_attr);
266
267         /* Create 32 bit LIDs */
268         hfi1_make_opa_lid(&qp->remote_ah_attr);
269
270         if (!(rdma_ah_get_ah_flags(&qp->remote_ah_attr) & IB_AH_GRH))
271                 return;
272
273         ibp = to_iport(qp->ibqp.device, qp->port_num);
274         ppd = ppd_from_ibp(ibp);
275         priv->hdr_type = hfi1_get_hdr_type(ppd->lid, &qp->remote_ah_attr);
276 }
277
278 void hfi1_modify_qp(struct rvt_qp *qp, struct ib_qp_attr *attr,
279                     int attr_mask, struct ib_udata *udata)
280 {
281         struct ib_qp *ibqp = &qp->ibqp;
282         struct hfi1_qp_priv *priv = qp->priv;
283
284         if (attr_mask & IB_QP_AV) {
285                 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
286                 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
287                 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
288                 qp_set_16b(qp);
289         }
290
291         if (attr_mask & IB_QP_PATH_MIG_STATE &&
292             attr->path_mig_state == IB_MIG_MIGRATED &&
293             qp->s_mig_state == IB_MIG_ARMED) {
294                 qp->s_flags |= HFI1_S_AHG_CLEAR;
295                 priv->s_sc = ah_to_sc(ibqp->device, &qp->remote_ah_attr);
296                 priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
297                 priv->s_sendcontext = qp_to_send_context(qp, priv->s_sc);
298                 qp_set_16b(qp);
299         }
300
301         opfn_qp_init(qp, attr, attr_mask);
302 }
303
304 /**
305  * hfi1_setup_wqe - set up the wqe
306  * @qp - The qp
307  * @wqe - The built wqe
308  * @call_send - Determine if the send should be posted or scheduled.
309  *
310  * Perform setup of the wqe.  This is called
311  * prior to inserting the wqe into the ring but after
312  * the wqe has been setup by RDMAVT. This function
313  * allows the driver the opportunity to perform
314  * validation and additional setup of the wqe.
315  *
316  * Returns 0 on success, -EINVAL on failure
317  *
318  */
319 int hfi1_setup_wqe(struct rvt_qp *qp, struct rvt_swqe *wqe, bool *call_send)
320 {
321         struct hfi1_ibport *ibp = to_iport(qp->ibqp.device, qp->port_num);
322         struct rvt_ah *ah;
323         struct hfi1_pportdata *ppd;
324         struct hfi1_devdata *dd;
325
326         switch (qp->ibqp.qp_type) {
327         case IB_QPT_RC:
328                 hfi1_setup_tid_rdma_wqe(qp, wqe);
329                 /* fall through */
330         case IB_QPT_UC:
331                 if (wqe->length > 0x80000000U)
332                         return -EINVAL;
333                 if (wqe->length > qp->pmtu)
334                         *call_send = false;
335                 break;
336         case IB_QPT_SMI:
337                 /*
338                  * SM packets should exclusively use VL15 and their SL is
339                  * ignored (IBTA v1.3, Section 3.5.8.2). Therefore, when ah
340                  * is created, SL is 0 in most cases and as a result some
341                  * fields (vl and pmtu) in ah may not be set correctly,
342                  * depending on the SL2SC and SC2VL tables at the time.
343                  */
344                 ppd = ppd_from_ibp(ibp);
345                 dd = dd_from_ppd(ppd);
346                 if (wqe->length > dd->vld[15].mtu)
347                         return -EINVAL;
348                 break;
349         case IB_QPT_GSI:
350         case IB_QPT_UD:
351                 ah = rvt_get_swqe_ah(wqe);
352                 if (wqe->length > (1 << ah->log_pmtu))
353                         return -EINVAL;
354                 if (ibp->sl_to_sc[rdma_ah_get_sl(&ah->attr)] == 0xf)
355                         return -EINVAL;
356         default:
357                 break;
358         }
359
360         /*
361          * System latency between send and schedule is large enough that
362          * forcing call_send to true for piothreshold packets is necessary.
363          */
364         if (wqe->length <= piothreshold)
365                 *call_send = true;
366         return 0;
367 }
368
369 /**
370  * _hfi1_schedule_send - schedule progress
371  * @qp: the QP
372  *
373  * This schedules qp progress w/o regard to the s_flags.
374  *
375  * It is only used in the post send, which doesn't hold
376  * the s_lock.
377  */
378 bool _hfi1_schedule_send(struct rvt_qp *qp)
379 {
380         struct hfi1_qp_priv *priv = qp->priv;
381         struct hfi1_ibport *ibp =
382                 to_iport(qp->ibqp.device, qp->port_num);
383         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
384         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
385
386         return iowait_schedule(&priv->s_iowait, ppd->hfi1_wq,
387                                priv->s_sde ?
388                                priv->s_sde->cpu :
389                                cpumask_first(cpumask_of_node(dd->node)));
390 }
391
392 static void qp_pio_drain(struct rvt_qp *qp)
393 {
394         struct hfi1_qp_priv *priv = qp->priv;
395
396         if (!priv->s_sendcontext)
397                 return;
398         while (iowait_pio_pending(&priv->s_iowait)) {
399                 write_seqlock_irq(&priv->s_sendcontext->waitlock);
400                 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 1);
401                 write_sequnlock_irq(&priv->s_sendcontext->waitlock);
402                 iowait_pio_drain(&priv->s_iowait);
403                 write_seqlock_irq(&priv->s_sendcontext->waitlock);
404                 hfi1_sc_wantpiobuf_intr(priv->s_sendcontext, 0);
405                 write_sequnlock_irq(&priv->s_sendcontext->waitlock);
406         }
407 }
408
409 /**
410  * hfi1_schedule_send - schedule progress
411  * @qp: the QP
412  *
413  * This schedules qp progress and caller should hold
414  * the s_lock.
415  * @return true if the first leg is scheduled;
416  * false if the first leg is not scheduled.
417  */
418 bool hfi1_schedule_send(struct rvt_qp *qp)
419 {
420         lockdep_assert_held(&qp->s_lock);
421         if (hfi1_send_ok(qp)) {
422                 _hfi1_schedule_send(qp);
423                 return true;
424         }
425         if (qp->s_flags & HFI1_S_ANY_WAIT_IO)
426                 iowait_set_flag(&((struct hfi1_qp_priv *)qp->priv)->s_iowait,
427                                 IOWAIT_PENDING_IB);
428         return false;
429 }
430
431 static void hfi1_qp_schedule(struct rvt_qp *qp)
432 {
433         struct hfi1_qp_priv *priv = qp->priv;
434         bool ret;
435
436         if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_IB)) {
437                 ret = hfi1_schedule_send(qp);
438                 if (ret)
439                         iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
440         }
441         if (iowait_flag_set(&priv->s_iowait, IOWAIT_PENDING_TID)) {
442                 ret = hfi1_schedule_tid_send(qp);
443                 if (ret)
444                         iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
445         }
446 }
447
448 void hfi1_qp_wakeup(struct rvt_qp *qp, u32 flag)
449 {
450         unsigned long flags;
451
452         spin_lock_irqsave(&qp->s_lock, flags);
453         if (qp->s_flags & flag) {
454                 qp->s_flags &= ~flag;
455                 trace_hfi1_qpwakeup(qp, flag);
456                 hfi1_qp_schedule(qp);
457         }
458         spin_unlock_irqrestore(&qp->s_lock, flags);
459         /* Notify hfi1_destroy_qp() if it is waiting. */
460         rvt_put_qp(qp);
461 }
462
463 void hfi1_qp_unbusy(struct rvt_qp *qp, struct iowait_work *wait)
464 {
465         struct hfi1_qp_priv *priv = qp->priv;
466
467         if (iowait_set_work_flag(wait) == IOWAIT_IB_SE) {
468                 qp->s_flags &= ~RVT_S_BUSY;
469                 /*
470                  * If we are sending a first-leg packet from the second leg,
471                  * we need to clear the busy flag from priv->s_flags to
472                  * avoid a race condition when the qp wakes up before
473                  * the call to hfi1_verbs_send() returns to the second
474                  * leg. In that case, the second leg will terminate without
475                  * being re-scheduled, resulting in failure to send TID RDMA
476                  * WRITE DATA and TID RDMA ACK packets.
477                  */
478                 if (priv->s_flags & HFI1_S_TID_BUSY_SET) {
479                         priv->s_flags &= ~(HFI1_S_TID_BUSY_SET |
480                                            RVT_S_BUSY);
481                         iowait_set_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
482                 }
483         } else {
484                 priv->s_flags &= ~RVT_S_BUSY;
485         }
486 }
487
488 static int iowait_sleep(
489         struct sdma_engine *sde,
490         struct iowait_work *wait,
491         struct sdma_txreq *stx,
492         uint seq,
493         bool pkts_sent)
494 {
495         struct verbs_txreq *tx = container_of(stx, struct verbs_txreq, txreq);
496         struct rvt_qp *qp;
497         struct hfi1_qp_priv *priv;
498         unsigned long flags;
499         int ret = 0;
500
501         qp = tx->qp;
502         priv = qp->priv;
503
504         spin_lock_irqsave(&qp->s_lock, flags);
505         if (ib_rvt_state_ops[qp->state] & RVT_PROCESS_RECV_OK) {
506                 /*
507                  * If we couldn't queue the DMA request, save the info
508                  * and try again later rather than destroying the
509                  * buffer and undoing the side effects of the copy.
510                  */
511                 /* Make a common routine? */
512                 list_add_tail(&stx->list, &wait->tx_head);
513                 write_seqlock(&sde->waitlock);
514                 if (sdma_progress(sde, seq, stx))
515                         goto eagain;
516                 if (list_empty(&priv->s_iowait.list)) {
517                         struct hfi1_ibport *ibp =
518                                 to_iport(qp->ibqp.device, qp->port_num);
519
520                         ibp->rvp.n_dmawait++;
521                         qp->s_flags |= RVT_S_WAIT_DMA_DESC;
522                         iowait_get_priority(&priv->s_iowait);
523                         iowait_queue(pkts_sent, &priv->s_iowait,
524                                      &sde->dmawait);
525                         priv->s_iowait.lock = &sde->waitlock;
526                         trace_hfi1_qpsleep(qp, RVT_S_WAIT_DMA_DESC);
527                         rvt_get_qp(qp);
528                 }
529                 write_sequnlock(&sde->waitlock);
530                 hfi1_qp_unbusy(qp, wait);
531                 spin_unlock_irqrestore(&qp->s_lock, flags);
532                 ret = -EBUSY;
533         } else {
534                 spin_unlock_irqrestore(&qp->s_lock, flags);
535                 hfi1_put_txreq(tx);
536         }
537         return ret;
538 eagain:
539         write_sequnlock(&sde->waitlock);
540         spin_unlock_irqrestore(&qp->s_lock, flags);
541         list_del_init(&stx->list);
542         return -EAGAIN;
543 }
544
545 static void iowait_wakeup(struct iowait *wait, int reason)
546 {
547         struct rvt_qp *qp = iowait_to_qp(wait);
548
549         WARN_ON(reason != SDMA_AVAIL_REASON);
550         hfi1_qp_wakeup(qp, RVT_S_WAIT_DMA_DESC);
551 }
552
553 static void iowait_sdma_drained(struct iowait *wait)
554 {
555         struct rvt_qp *qp = iowait_to_qp(wait);
556         unsigned long flags;
557
558         /*
559          * This happens when the send engine notes
560          * a QP in the error state and cannot
561          * do the flush work until that QP's
562          * sdma work has finished.
563          */
564         spin_lock_irqsave(&qp->s_lock, flags);
565         if (qp->s_flags & RVT_S_WAIT_DMA) {
566                 qp->s_flags &= ~RVT_S_WAIT_DMA;
567                 hfi1_schedule_send(qp);
568         }
569         spin_unlock_irqrestore(&qp->s_lock, flags);
570 }
571
572 static void hfi1_init_priority(struct iowait *w)
573 {
574         struct rvt_qp *qp = iowait_to_qp(w);
575         struct hfi1_qp_priv *priv = qp->priv;
576
577         if (qp->s_flags & RVT_S_ACK_PENDING)
578                 w->priority++;
579         if (priv->s_flags & RVT_S_ACK_PENDING)
580                 w->priority++;
581 }
582
583 /**
584  * qp_to_sdma_engine - map a qp to a send engine
585  * @qp: the QP
586  * @sc5: the 5 bit sc
587  *
588  * Return:
589  * A send engine for the qp or NULL for SMI type qp.
590  */
591 struct sdma_engine *qp_to_sdma_engine(struct rvt_qp *qp, u8 sc5)
592 {
593         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
594         struct sdma_engine *sde;
595
596         if (!(dd->flags & HFI1_HAS_SEND_DMA))
597                 return NULL;
598         switch (qp->ibqp.qp_type) {
599         case IB_QPT_SMI:
600                 return NULL;
601         default:
602                 break;
603         }
604         sde = sdma_select_engine_sc(dd, qp->ibqp.qp_num >> dd->qos_shift, sc5);
605         return sde;
606 }
607
608 /*
609  * qp_to_send_context - map a qp to a send context
610  * @qp: the QP
611  * @sc5: the 5 bit sc
612  *
613  * Return:
614  * A send context for the qp
615  */
616 struct send_context *qp_to_send_context(struct rvt_qp *qp, u8 sc5)
617 {
618         struct hfi1_devdata *dd = dd_from_ibdev(qp->ibqp.device);
619
620         switch (qp->ibqp.qp_type) {
621         case IB_QPT_SMI:
622                 /* SMA packets to VL15 */
623                 return dd->vld[15].sc;
624         default:
625                 break;
626         }
627
628         return pio_select_send_context_sc(dd, qp->ibqp.qp_num >> dd->qos_shift,
629                                           sc5);
630 }
631
632 static const char * const qp_type_str[] = {
633         "SMI", "GSI", "RC", "UC", "UD",
634 };
635
636 static int qp_idle(struct rvt_qp *qp)
637 {
638         return
639                 qp->s_last == qp->s_acked &&
640                 qp->s_acked == qp->s_cur &&
641                 qp->s_cur == qp->s_tail &&
642                 qp->s_tail == qp->s_head;
643 }
644
645 /**
646  * qp_iter_print - print the qp information to seq_file
647  * @s: the seq_file to emit the qp information on
648  * @iter: the iterator for the qp hash list
649  */
650 void qp_iter_print(struct seq_file *s, struct rvt_qp_iter *iter)
651 {
652         struct rvt_swqe *wqe;
653         struct rvt_qp *qp = iter->qp;
654         struct hfi1_qp_priv *priv = qp->priv;
655         struct sdma_engine *sde;
656         struct send_context *send_context;
657         struct rvt_ack_entry *e = NULL;
658         struct rvt_srq *srq = qp->ibqp.srq ?
659                 ibsrq_to_rvtsrq(qp->ibqp.srq) : NULL;
660
661         sde = qp_to_sdma_engine(qp, priv->s_sc);
662         wqe = rvt_get_swqe_ptr(qp, qp->s_last);
663         send_context = qp_to_send_context(qp, priv->s_sc);
664         if (qp->s_ack_queue)
665                 e = &qp->s_ack_queue[qp->s_tail_ack_queue];
666         seq_printf(s,
667                    "N %d %s QP %x R %u %s %u %u f=%x %u %u %u %u %u %u SPSN %x %x %x %x %x RPSN %x S(%u %u %u %u %u %u %u) R(%u %u %u) RQP %x LID %x SL %u MTU %u %u %u %u %u SDE %p,%u SC %p,%u SCQ %u %u PID %d OS %x %x E %x %x %x RNR %d %s %d\n",
668                    iter->n,
669                    qp_idle(qp) ? "I" : "B",
670                    qp->ibqp.qp_num,
671                    atomic_read(&qp->refcount),
672                    qp_type_str[qp->ibqp.qp_type],
673                    qp->state,
674                    wqe ? wqe->wr.opcode : 0,
675                    qp->s_flags,
676                    iowait_sdma_pending(&priv->s_iowait),
677                    iowait_pio_pending(&priv->s_iowait),
678                    !list_empty(&priv->s_iowait.list),
679                    qp->timeout,
680                    wqe ? wqe->ssn : 0,
681                    qp->s_lsn,
682                    qp->s_last_psn,
683                    qp->s_psn, qp->s_next_psn,
684                    qp->s_sending_psn, qp->s_sending_hpsn,
685                    qp->r_psn,
686                    qp->s_last, qp->s_acked, qp->s_cur,
687                    qp->s_tail, qp->s_head, qp->s_size,
688                    qp->s_avail,
689                    /* ack_queue ring pointers, size */
690                    qp->s_tail_ack_queue, qp->r_head_ack_queue,
691                    rvt_max_atomic(&to_idev(qp->ibqp.device)->rdi),
692                    /* remote QP info  */
693                    qp->remote_qpn,
694                    rdma_ah_get_dlid(&qp->remote_ah_attr),
695                    rdma_ah_get_sl(&qp->remote_ah_attr),
696                    qp->pmtu,
697                    qp->s_retry,
698                    qp->s_retry_cnt,
699                    qp->s_rnr_retry_cnt,
700                    qp->s_rnr_retry,
701                    sde,
702                    sde ? sde->this_idx : 0,
703                    send_context,
704                    send_context ? send_context->sw_index : 0,
705                    ib_cq_head(qp->ibqp.send_cq),
706                    ib_cq_tail(qp->ibqp.send_cq),
707                    qp->pid,
708                    qp->s_state,
709                    qp->s_ack_state,
710                    /* ack queue information */
711                    e ? e->opcode : 0,
712                    e ? e->psn : 0,
713                    e ? e->lpsn : 0,
714                    qp->r_min_rnr_timer,
715                    srq ? "SRQ" : "RQ",
716                    srq ? srq->rq.size : qp->r_rq.size
717                 );
718 }
719
720 void *qp_priv_alloc(struct rvt_dev_info *rdi, struct rvt_qp *qp)
721 {
722         struct hfi1_qp_priv *priv;
723
724         priv = kzalloc_node(sizeof(*priv), GFP_KERNEL, rdi->dparms.node);
725         if (!priv)
726                 return ERR_PTR(-ENOMEM);
727
728         priv->owner = qp;
729
730         priv->s_ahg = kzalloc_node(sizeof(*priv->s_ahg), GFP_KERNEL,
731                                    rdi->dparms.node);
732         if (!priv->s_ahg) {
733                 kfree(priv);
734                 return ERR_PTR(-ENOMEM);
735         }
736         iowait_init(
737                 &priv->s_iowait,
738                 1,
739                 _hfi1_do_send,
740                 _hfi1_do_tid_send,
741                 iowait_sleep,
742                 iowait_wakeup,
743                 iowait_sdma_drained,
744                 hfi1_init_priority);
745         /* Init to a value to start the running average correctly */
746         priv->s_running_pkt_size = piothreshold / 2;
747         return priv;
748 }
749
750 void qp_priv_free(struct rvt_dev_info *rdi, struct rvt_qp *qp)
751 {
752         struct hfi1_qp_priv *priv = qp->priv;
753
754         hfi1_qp_priv_tid_free(rdi, qp);
755         kfree(priv->s_ahg);
756         kfree(priv);
757 }
758
759 unsigned free_all_qps(struct rvt_dev_info *rdi)
760 {
761         struct hfi1_ibdev *verbs_dev = container_of(rdi,
762                                                     struct hfi1_ibdev,
763                                                     rdi);
764         struct hfi1_devdata *dd = container_of(verbs_dev,
765                                                struct hfi1_devdata,
766                                                verbs_dev);
767         int n;
768         unsigned qp_inuse = 0;
769
770         for (n = 0; n < dd->num_pports; n++) {
771                 struct hfi1_ibport *ibp = &dd->pport[n].ibport_data;
772
773                 rcu_read_lock();
774                 if (rcu_dereference(ibp->rvp.qp[0]))
775                         qp_inuse++;
776                 if (rcu_dereference(ibp->rvp.qp[1]))
777                         qp_inuse++;
778                 rcu_read_unlock();
779         }
780
781         return qp_inuse;
782 }
783
784 void flush_qp_waiters(struct rvt_qp *qp)
785 {
786         lockdep_assert_held(&qp->s_lock);
787         flush_iowait(qp);
788         hfi1_tid_rdma_flush_wait(qp);
789 }
790
791 void stop_send_queue(struct rvt_qp *qp)
792 {
793         struct hfi1_qp_priv *priv = qp->priv;
794
795         iowait_cancel_work(&priv->s_iowait);
796         if (cancel_work_sync(&priv->tid_rdma.trigger_work))
797                 rvt_put_qp(qp);
798 }
799
800 void quiesce_qp(struct rvt_qp *qp)
801 {
802         struct hfi1_qp_priv *priv = qp->priv;
803
804         hfi1_del_tid_reap_timer(qp);
805         hfi1_del_tid_retry_timer(qp);
806         iowait_sdma_drain(&priv->s_iowait);
807         qp_pio_drain(qp);
808         flush_tx_list(qp);
809 }
810
811 void notify_qp_reset(struct rvt_qp *qp)
812 {
813         hfi1_qp_kern_exp_rcv_clear_all(qp);
814         qp->r_adefered = 0;
815         clear_ahg(qp);
816
817         /* Clear any OPFN state */
818         if (qp->ibqp.qp_type == IB_QPT_RC)
819                 opfn_conn_error(qp);
820 }
821
822 /*
823  * Switch to alternate path.
824  * The QP s_lock should be held and interrupts disabled.
825  */
826 void hfi1_migrate_qp(struct rvt_qp *qp)
827 {
828         struct hfi1_qp_priv *priv = qp->priv;
829         struct ib_event ev;
830
831         qp->s_mig_state = IB_MIG_MIGRATED;
832         qp->remote_ah_attr = qp->alt_ah_attr;
833         qp->port_num = rdma_ah_get_port_num(&qp->alt_ah_attr);
834         qp->s_pkey_index = qp->s_alt_pkey_index;
835         qp->s_flags |= HFI1_S_AHG_CLEAR;
836         priv->s_sc = ah_to_sc(qp->ibqp.device, &qp->remote_ah_attr);
837         priv->s_sde = qp_to_sdma_engine(qp, priv->s_sc);
838         qp_set_16b(qp);
839
840         ev.device = qp->ibqp.device;
841         ev.element.qp = &qp->ibqp;
842         ev.event = IB_EVENT_PATH_MIG;
843         qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
844 }
845
846 int mtu_to_path_mtu(u32 mtu)
847 {
848         return mtu_to_enum(mtu, OPA_MTU_8192);
849 }
850
851 u32 mtu_from_qp(struct rvt_dev_info *rdi, struct rvt_qp *qp, u32 pmtu)
852 {
853         u32 mtu;
854         struct hfi1_ibdev *verbs_dev = container_of(rdi,
855                                                     struct hfi1_ibdev,
856                                                     rdi);
857         struct hfi1_devdata *dd = container_of(verbs_dev,
858                                                struct hfi1_devdata,
859                                                verbs_dev);
860         struct hfi1_ibport *ibp;
861         u8 sc, vl;
862
863         ibp = &dd->pport[qp->port_num - 1].ibport_data;
864         sc = ibp->sl_to_sc[rdma_ah_get_sl(&qp->remote_ah_attr)];
865         vl = sc_to_vlt(dd, sc);
866
867         mtu = verbs_mtu_enum_to_int(qp->ibqp.device, pmtu);
868         if (vl < PER_VL_SEND_CONTEXTS)
869                 mtu = min_t(u32, mtu, dd->vld[vl].mtu);
870         return mtu;
871 }
872
873 int get_pmtu_from_attr(struct rvt_dev_info *rdi, struct rvt_qp *qp,
874                        struct ib_qp_attr *attr)
875 {
876         int mtu, pidx = qp->port_num - 1;
877         struct hfi1_ibdev *verbs_dev = container_of(rdi,
878                                                     struct hfi1_ibdev,
879                                                     rdi);
880         struct hfi1_devdata *dd = container_of(verbs_dev,
881                                                struct hfi1_devdata,
882                                                verbs_dev);
883         mtu = verbs_mtu_enum_to_int(qp->ibqp.device, attr->path_mtu);
884         if (mtu == -1)
885                 return -1; /* values less than 0 are error */
886
887         if (mtu > dd->pport[pidx].ibmtu)
888                 return mtu_to_enum(dd->pport[pidx].ibmtu, IB_MTU_2048);
889         else
890                 return attr->path_mtu;
891 }
892
893 void notify_error_qp(struct rvt_qp *qp)
894 {
895         struct hfi1_qp_priv *priv = qp->priv;
896         seqlock_t *lock = priv->s_iowait.lock;
897
898         if (lock) {
899                 write_seqlock(lock);
900                 if (!list_empty(&priv->s_iowait.list) &&
901                     !(qp->s_flags & RVT_S_BUSY) &&
902                     !(priv->s_flags & RVT_S_BUSY)) {
903                         qp->s_flags &= ~HFI1_S_ANY_WAIT_IO;
904                         iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_IB);
905                         iowait_clear_flag(&priv->s_iowait, IOWAIT_PENDING_TID);
906                         list_del_init(&priv->s_iowait.list);
907                         priv->s_iowait.lock = NULL;
908                         rvt_put_qp(qp);
909                 }
910                 write_sequnlock(lock);
911         }
912
913         if (!(qp->s_flags & RVT_S_BUSY) && !(priv->s_flags & RVT_S_BUSY)) {
914                 qp->s_hdrwords = 0;
915                 if (qp->s_rdma_mr) {
916                         rvt_put_mr(qp->s_rdma_mr);
917                         qp->s_rdma_mr = NULL;
918                 }
919                 flush_tx_list(qp);
920         }
921 }
922
923 /**
924  * hfi1_qp_iter_cb - callback for iterator
925  * @qp - the qp
926  * @v - the sl in low bits of v
927  *
928  * This is called from the iterator callback to work
929  * on an individual qp.
930  */
931 static void hfi1_qp_iter_cb(struct rvt_qp *qp, u64 v)
932 {
933         int lastwqe;
934         struct ib_event ev;
935         struct hfi1_ibport *ibp =
936                 to_iport(qp->ibqp.device, qp->port_num);
937         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
938         u8 sl = (u8)v;
939
940         if (qp->port_num != ppd->port ||
941             (qp->ibqp.qp_type != IB_QPT_UC &&
942              qp->ibqp.qp_type != IB_QPT_RC) ||
943             rdma_ah_get_sl(&qp->remote_ah_attr) != sl ||
944             !(ib_rvt_state_ops[qp->state] & RVT_POST_SEND_OK))
945                 return;
946
947         spin_lock_irq(&qp->r_lock);
948         spin_lock(&qp->s_hlock);
949         spin_lock(&qp->s_lock);
950         lastwqe = rvt_error_qp(qp, IB_WC_WR_FLUSH_ERR);
951         spin_unlock(&qp->s_lock);
952         spin_unlock(&qp->s_hlock);
953         spin_unlock_irq(&qp->r_lock);
954         if (lastwqe) {
955                 ev.device = qp->ibqp.device;
956                 ev.element.qp = &qp->ibqp;
957                 ev.event = IB_EVENT_QP_LAST_WQE_REACHED;
958                 qp->ibqp.event_handler(&ev, qp->ibqp.qp_context);
959         }
960 }
961
962 /**
963  * hfi1_error_port_qps - put a port's RC/UC qps into error state
964  * @ibp: the ibport.
965  * @sl: the service level.
966  *
967  * This function places all RC/UC qps with a given service level into error
968  * state. It is generally called to force upper lay apps to abandon stale qps
969  * after an sl->sc mapping change.
970  */
971 void hfi1_error_port_qps(struct hfi1_ibport *ibp, u8 sl)
972 {
973         struct hfi1_pportdata *ppd = ppd_from_ibp(ibp);
974         struct hfi1_ibdev *dev = &ppd->dd->verbs_dev;
975
976         rvt_qp_iter(&dev->rdi, sl, hfi1_qp_iter_cb);
977 }