Linux-libre 4.9.88-gnu
[librecmc/linux-libre.git] / drivers / iio / magnetometer / bmc150_magn.c
1 /*
2  * Bosch BMC150 three-axis magnetic field sensor driver
3  *
4  * Copyright (c) 2015, Intel Corporation.
5  *
6  * This code is based on bmm050_api.c authored by contact@bosch.sensortec.com:
7  *
8  * (C) Copyright 2011~2014 Bosch Sensortec GmbH All Rights Reserved
9  *
10  * This program is free software; you can redistribute it and/or modify it
11  * under the terms and conditions of the GNU General Public License,
12  * version 2, as published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope it will be useful, but WITHOUT
15  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
16  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
17  * more details.
18  */
19
20 #include <linux/module.h>
21 #include <linux/i2c.h>
22 #include <linux/interrupt.h>
23 #include <linux/delay.h>
24 #include <linux/slab.h>
25 #include <linux/acpi.h>
26 #include <linux/pm.h>
27 #include <linux/pm_runtime.h>
28 #include <linux/iio/iio.h>
29 #include <linux/iio/sysfs.h>
30 #include <linux/iio/buffer.h>
31 #include <linux/iio/events.h>
32 #include <linux/iio/trigger.h>
33 #include <linux/iio/trigger_consumer.h>
34 #include <linux/iio/triggered_buffer.h>
35 #include <linux/regmap.h>
36
37 #include "bmc150_magn.h"
38
39 #define BMC150_MAGN_DRV_NAME                    "bmc150_magn"
40 #define BMC150_MAGN_IRQ_NAME                    "bmc150_magn_event"
41
42 #define BMC150_MAGN_REG_CHIP_ID                 0x40
43 #define BMC150_MAGN_CHIP_ID_VAL                 0x32
44
45 #define BMC150_MAGN_REG_X_L                     0x42
46 #define BMC150_MAGN_REG_X_M                     0x43
47 #define BMC150_MAGN_REG_Y_L                     0x44
48 #define BMC150_MAGN_REG_Y_M                     0x45
49 #define BMC150_MAGN_SHIFT_XY_L                  3
50 #define BMC150_MAGN_REG_Z_L                     0x46
51 #define BMC150_MAGN_REG_Z_M                     0x47
52 #define BMC150_MAGN_SHIFT_Z_L                   1
53 #define BMC150_MAGN_REG_RHALL_L                 0x48
54 #define BMC150_MAGN_REG_RHALL_M                 0x49
55 #define BMC150_MAGN_SHIFT_RHALL_L               2
56
57 #define BMC150_MAGN_REG_INT_STATUS              0x4A
58
59 #define BMC150_MAGN_REG_POWER                   0x4B
60 #define BMC150_MAGN_MASK_POWER_CTL              BIT(0)
61
62 #define BMC150_MAGN_REG_OPMODE_ODR              0x4C
63 #define BMC150_MAGN_MASK_OPMODE                 GENMASK(2, 1)
64 #define BMC150_MAGN_SHIFT_OPMODE                1
65 #define BMC150_MAGN_MODE_NORMAL                 0x00
66 #define BMC150_MAGN_MODE_FORCED                 0x01
67 #define BMC150_MAGN_MODE_SLEEP                  0x03
68 #define BMC150_MAGN_MASK_ODR                    GENMASK(5, 3)
69 #define BMC150_MAGN_SHIFT_ODR                   3
70
71 #define BMC150_MAGN_REG_INT                     0x4D
72
73 #define BMC150_MAGN_REG_INT_DRDY                0x4E
74 #define BMC150_MAGN_MASK_DRDY_EN                BIT(7)
75 #define BMC150_MAGN_SHIFT_DRDY_EN               7
76 #define BMC150_MAGN_MASK_DRDY_INT3              BIT(6)
77 #define BMC150_MAGN_MASK_DRDY_Z_EN              BIT(5)
78 #define BMC150_MAGN_MASK_DRDY_Y_EN              BIT(4)
79 #define BMC150_MAGN_MASK_DRDY_X_EN              BIT(3)
80 #define BMC150_MAGN_MASK_DRDY_DR_POLARITY       BIT(2)
81 #define BMC150_MAGN_MASK_DRDY_LATCHING          BIT(1)
82 #define BMC150_MAGN_MASK_DRDY_INT3_POLARITY     BIT(0)
83
84 #define BMC150_MAGN_REG_LOW_THRESH              0x4F
85 #define BMC150_MAGN_REG_HIGH_THRESH             0x50
86 #define BMC150_MAGN_REG_REP_XY                  0x51
87 #define BMC150_MAGN_REG_REP_Z                   0x52
88 #define BMC150_MAGN_REG_REP_DATAMASK            GENMASK(7, 0)
89
90 #define BMC150_MAGN_REG_TRIM_START              0x5D
91 #define BMC150_MAGN_REG_TRIM_END                0x71
92
93 #define BMC150_MAGN_XY_OVERFLOW_VAL             -4096
94 #define BMC150_MAGN_Z_OVERFLOW_VAL              -16384
95
96 /* Time from SUSPEND to SLEEP */
97 #define BMC150_MAGN_START_UP_TIME_MS            3
98
99 #define BMC150_MAGN_AUTO_SUSPEND_DELAY_MS       2000
100
101 #define BMC150_MAGN_REGVAL_TO_REPXY(regval) (((regval) * 2) + 1)
102 #define BMC150_MAGN_REGVAL_TO_REPZ(regval) ((regval) + 1)
103 #define BMC150_MAGN_REPXY_TO_REGVAL(rep) (((rep) - 1) / 2)
104 #define BMC150_MAGN_REPZ_TO_REGVAL(rep) ((rep) - 1)
105
106 enum bmc150_magn_axis {
107         AXIS_X,
108         AXIS_Y,
109         AXIS_Z,
110         RHALL,
111         AXIS_XYZ_MAX = RHALL,
112         AXIS_XYZR_MAX,
113 };
114
115 enum bmc150_magn_power_modes {
116         BMC150_MAGN_POWER_MODE_SUSPEND,
117         BMC150_MAGN_POWER_MODE_SLEEP,
118         BMC150_MAGN_POWER_MODE_NORMAL,
119 };
120
121 struct bmc150_magn_trim_regs {
122         s8 x1;
123         s8 y1;
124         __le16 reserved1;
125         u8 reserved2;
126         __le16 z4;
127         s8 x2;
128         s8 y2;
129         __le16 reserved3;
130         __le16 z2;
131         __le16 z1;
132         __le16 xyz1;
133         __le16 z3;
134         s8 xy2;
135         u8 xy1;
136 } __packed;
137
138 struct bmc150_magn_data {
139         struct device *dev;
140         /*
141          * 1. Protect this structure.
142          * 2. Serialize sequences that power on/off the device and access HW.
143          */
144         struct mutex mutex;
145         struct regmap *regmap;
146         /* 4 x 32 bits for x, y z, 4 bytes align, 64 bits timestamp */
147         s32 buffer[6];
148         struct iio_trigger *dready_trig;
149         bool dready_trigger_on;
150         int max_odr;
151         int irq;
152 };
153
154 static const struct {
155         int freq;
156         u8 reg_val;
157 } bmc150_magn_samp_freq_table[] = { {2, 0x01},
158                                     {6, 0x02},
159                                     {8, 0x03},
160                                     {10, 0x00},
161                                     {15, 0x04},
162                                     {20, 0x05},
163                                     {25, 0x06},
164                                     {30, 0x07} };
165
166 enum bmc150_magn_presets {
167         LOW_POWER_PRESET,
168         REGULAR_PRESET,
169         ENHANCED_REGULAR_PRESET,
170         HIGH_ACCURACY_PRESET
171 };
172
173 static const struct bmc150_magn_preset {
174         u8 rep_xy;
175         u8 rep_z;
176         u8 odr;
177 } bmc150_magn_presets_table[] = {
178         [LOW_POWER_PRESET] = {3, 3, 10},
179         [REGULAR_PRESET] =  {9, 15, 10},
180         [ENHANCED_REGULAR_PRESET] =  {15, 27, 10},
181         [HIGH_ACCURACY_PRESET] =  {47, 83, 20},
182 };
183
184 #define BMC150_MAGN_DEFAULT_PRESET REGULAR_PRESET
185
186 static bool bmc150_magn_is_writeable_reg(struct device *dev, unsigned int reg)
187 {
188         switch (reg) {
189         case BMC150_MAGN_REG_POWER:
190         case BMC150_MAGN_REG_OPMODE_ODR:
191         case BMC150_MAGN_REG_INT:
192         case BMC150_MAGN_REG_INT_DRDY:
193         case BMC150_MAGN_REG_LOW_THRESH:
194         case BMC150_MAGN_REG_HIGH_THRESH:
195         case BMC150_MAGN_REG_REP_XY:
196         case BMC150_MAGN_REG_REP_Z:
197                 return true;
198         default:
199                 return false;
200         };
201 }
202
203 static bool bmc150_magn_is_volatile_reg(struct device *dev, unsigned int reg)
204 {
205         switch (reg) {
206         case BMC150_MAGN_REG_X_L:
207         case BMC150_MAGN_REG_X_M:
208         case BMC150_MAGN_REG_Y_L:
209         case BMC150_MAGN_REG_Y_M:
210         case BMC150_MAGN_REG_Z_L:
211         case BMC150_MAGN_REG_Z_M:
212         case BMC150_MAGN_REG_RHALL_L:
213         case BMC150_MAGN_REG_RHALL_M:
214         case BMC150_MAGN_REG_INT_STATUS:
215                 return true;
216         default:
217                 return false;
218         }
219 }
220
221 const struct regmap_config bmc150_magn_regmap_config = {
222         .reg_bits = 8,
223         .val_bits = 8,
224
225         .max_register = BMC150_MAGN_REG_TRIM_END,
226         .cache_type = REGCACHE_RBTREE,
227
228         .writeable_reg = bmc150_magn_is_writeable_reg,
229         .volatile_reg = bmc150_magn_is_volatile_reg,
230 };
231 EXPORT_SYMBOL(bmc150_magn_regmap_config);
232
233 static int bmc150_magn_set_power_mode(struct bmc150_magn_data *data,
234                                       enum bmc150_magn_power_modes mode,
235                                       bool state)
236 {
237         int ret;
238
239         switch (mode) {
240         case BMC150_MAGN_POWER_MODE_SUSPEND:
241                 ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_POWER,
242                                          BMC150_MAGN_MASK_POWER_CTL, !state);
243                 if (ret < 0)
244                         return ret;
245                 usleep_range(BMC150_MAGN_START_UP_TIME_MS * 1000, 20000);
246                 return 0;
247         case BMC150_MAGN_POWER_MODE_SLEEP:
248                 return regmap_update_bits(data->regmap,
249                                           BMC150_MAGN_REG_OPMODE_ODR,
250                                           BMC150_MAGN_MASK_OPMODE,
251                                           BMC150_MAGN_MODE_SLEEP <<
252                                           BMC150_MAGN_SHIFT_OPMODE);
253         case BMC150_MAGN_POWER_MODE_NORMAL:
254                 return regmap_update_bits(data->regmap,
255                                           BMC150_MAGN_REG_OPMODE_ODR,
256                                           BMC150_MAGN_MASK_OPMODE,
257                                           BMC150_MAGN_MODE_NORMAL <<
258                                           BMC150_MAGN_SHIFT_OPMODE);
259         }
260
261         return -EINVAL;
262 }
263
264 static int bmc150_magn_set_power_state(struct bmc150_magn_data *data, bool on)
265 {
266 #ifdef CONFIG_PM
267         int ret;
268
269         if (on) {
270                 ret = pm_runtime_get_sync(data->dev);
271         } else {
272                 pm_runtime_mark_last_busy(data->dev);
273                 ret = pm_runtime_put_autosuspend(data->dev);
274         }
275
276         if (ret < 0) {
277                 dev_err(data->dev,
278                         "failed to change power state to %d\n", on);
279                 if (on)
280                         pm_runtime_put_noidle(data->dev);
281
282                 return ret;
283         }
284 #endif
285
286         return 0;
287 }
288
289 static int bmc150_magn_get_odr(struct bmc150_magn_data *data, int *val)
290 {
291         int ret, reg_val;
292         u8 i, odr_val;
293
294         ret = regmap_read(data->regmap, BMC150_MAGN_REG_OPMODE_ODR, &reg_val);
295         if (ret < 0)
296                 return ret;
297         odr_val = (reg_val & BMC150_MAGN_MASK_ODR) >> BMC150_MAGN_SHIFT_ODR;
298
299         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++)
300                 if (bmc150_magn_samp_freq_table[i].reg_val == odr_val) {
301                         *val = bmc150_magn_samp_freq_table[i].freq;
302                         return 0;
303                 }
304
305         return -EINVAL;
306 }
307
308 static int bmc150_magn_set_odr(struct bmc150_magn_data *data, int val)
309 {
310         int ret;
311         u8 i;
312
313         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
314                 if (bmc150_magn_samp_freq_table[i].freq == val) {
315                         ret = regmap_update_bits(data->regmap,
316                                                  BMC150_MAGN_REG_OPMODE_ODR,
317                                                  BMC150_MAGN_MASK_ODR,
318                                                  bmc150_magn_samp_freq_table[i].
319                                                  reg_val <<
320                                                  BMC150_MAGN_SHIFT_ODR);
321                         if (ret < 0)
322                                 return ret;
323                         return 0;
324                 }
325         }
326
327         return -EINVAL;
328 }
329
330 static int bmc150_magn_set_max_odr(struct bmc150_magn_data *data, int rep_xy,
331                                    int rep_z, int odr)
332 {
333         int ret, reg_val, max_odr;
334
335         if (rep_xy <= 0) {
336                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
337                                   &reg_val);
338                 if (ret < 0)
339                         return ret;
340                 rep_xy = BMC150_MAGN_REGVAL_TO_REPXY(reg_val);
341         }
342         if (rep_z <= 0) {
343                 ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
344                                   &reg_val);
345                 if (ret < 0)
346                         return ret;
347                 rep_z = BMC150_MAGN_REGVAL_TO_REPZ(reg_val);
348         }
349         if (odr <= 0) {
350                 ret = bmc150_magn_get_odr(data, &odr);
351                 if (ret < 0)
352                         return ret;
353         }
354         /* the maximum selectable read-out frequency from datasheet */
355         max_odr = 1000000 / (145 * rep_xy + 500 * rep_z + 980);
356         if (odr > max_odr) {
357                 dev_err(data->dev,
358                         "Can't set oversampling with sampling freq %d\n",
359                         odr);
360                 return -EINVAL;
361         }
362         data->max_odr = max_odr;
363
364         return 0;
365 }
366
367 static s32 bmc150_magn_compensate_x(struct bmc150_magn_trim_regs *tregs, s16 x,
368                                     u16 rhall)
369 {
370         s16 val;
371         u16 xyz1 = le16_to_cpu(tregs->xyz1);
372
373         if (x == BMC150_MAGN_XY_OVERFLOW_VAL)
374                 return S32_MIN;
375
376         if (!rhall)
377                 rhall = xyz1;
378
379         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
380         val = ((s16)((((s32)x) * ((((((((s32)tregs->xy2) * ((((s32)val) *
381               ((s32)val)) >> 7)) + (((s32)val) *
382               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
383               ((s32)(((s16)tregs->x2) + ((s16)0xA0)))) >> 12)) >> 13)) +
384               (((s16)tregs->x1) << 3);
385
386         return (s32)val;
387 }
388
389 static s32 bmc150_magn_compensate_y(struct bmc150_magn_trim_regs *tregs, s16 y,
390                                     u16 rhall)
391 {
392         s16 val;
393         u16 xyz1 = le16_to_cpu(tregs->xyz1);
394
395         if (y == BMC150_MAGN_XY_OVERFLOW_VAL)
396                 return S32_MIN;
397
398         if (!rhall)
399                 rhall = xyz1;
400
401         val = ((s16)(((u16)((((s32)xyz1) << 14) / rhall)) - ((u16)0x4000)));
402         val = ((s16)((((s32)y) * ((((((((s32)tregs->xy2) * ((((s32)val) *
403               ((s32)val)) >> 7)) + (((s32)val) *
404               ((s32)(((s16)tregs->xy1) << 7)))) >> 9) + ((s32)0x100000)) *
405               ((s32)(((s16)tregs->y2) + ((s16)0xA0)))) >> 12)) >> 13)) +
406               (((s16)tregs->y1) << 3);
407
408         return (s32)val;
409 }
410
411 static s32 bmc150_magn_compensate_z(struct bmc150_magn_trim_regs *tregs, s16 z,
412                                     u16 rhall)
413 {
414         s32 val;
415         u16 xyz1 = le16_to_cpu(tregs->xyz1);
416         u16 z1 = le16_to_cpu(tregs->z1);
417         s16 z2 = le16_to_cpu(tregs->z2);
418         s16 z3 = le16_to_cpu(tregs->z3);
419         s16 z4 = le16_to_cpu(tregs->z4);
420
421         if (z == BMC150_MAGN_Z_OVERFLOW_VAL)
422                 return S32_MIN;
423
424         val = (((((s32)(z - z4)) << 15) - ((((s32)z3) * ((s32)(((s16)rhall) -
425               ((s16)xyz1)))) >> 2)) / (z2 + ((s16)(((((s32)z1) *
426               ((((s16)rhall) << 1))) + (1 << 15)) >> 16))));
427
428         return val;
429 }
430
431 static int bmc150_magn_read_xyz(struct bmc150_magn_data *data, s32 *buffer)
432 {
433         int ret;
434         __le16 values[AXIS_XYZR_MAX];
435         s16 raw_x, raw_y, raw_z;
436         u16 rhall;
437         struct bmc150_magn_trim_regs tregs;
438
439         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_X_L,
440                                values, sizeof(values));
441         if (ret < 0)
442                 return ret;
443
444         raw_x = (s16)le16_to_cpu(values[AXIS_X]) >> BMC150_MAGN_SHIFT_XY_L;
445         raw_y = (s16)le16_to_cpu(values[AXIS_Y]) >> BMC150_MAGN_SHIFT_XY_L;
446         raw_z = (s16)le16_to_cpu(values[AXIS_Z]) >> BMC150_MAGN_SHIFT_Z_L;
447         rhall = le16_to_cpu(values[RHALL]) >> BMC150_MAGN_SHIFT_RHALL_L;
448
449         ret = regmap_bulk_read(data->regmap, BMC150_MAGN_REG_TRIM_START,
450                                &tregs, sizeof(tregs));
451         if (ret < 0)
452                 return ret;
453
454         buffer[AXIS_X] = bmc150_magn_compensate_x(&tregs, raw_x, rhall);
455         buffer[AXIS_Y] = bmc150_magn_compensate_y(&tregs, raw_y, rhall);
456         buffer[AXIS_Z] = bmc150_magn_compensate_z(&tregs, raw_z, rhall);
457
458         return 0;
459 }
460
461 static int bmc150_magn_read_raw(struct iio_dev *indio_dev,
462                                 struct iio_chan_spec const *chan,
463                                 int *val, int *val2, long mask)
464 {
465         struct bmc150_magn_data *data = iio_priv(indio_dev);
466         int ret, tmp;
467         s32 values[AXIS_XYZ_MAX];
468
469         switch (mask) {
470         case IIO_CHAN_INFO_RAW:
471                 if (iio_buffer_enabled(indio_dev))
472                         return -EBUSY;
473                 mutex_lock(&data->mutex);
474
475                 ret = bmc150_magn_set_power_state(data, true);
476                 if (ret < 0) {
477                         mutex_unlock(&data->mutex);
478                         return ret;
479                 }
480
481                 ret = bmc150_magn_read_xyz(data, values);
482                 if (ret < 0) {
483                         bmc150_magn_set_power_state(data, false);
484                         mutex_unlock(&data->mutex);
485                         return ret;
486                 }
487                 *val = values[chan->scan_index];
488
489                 ret = bmc150_magn_set_power_state(data, false);
490                 if (ret < 0) {
491                         mutex_unlock(&data->mutex);
492                         return ret;
493                 }
494
495                 mutex_unlock(&data->mutex);
496                 return IIO_VAL_INT;
497         case IIO_CHAN_INFO_SCALE:
498                 /*
499                  * The API/driver performs an off-chip temperature
500                  * compensation and outputs x/y/z magnetic field data in
501                  * 16 LSB/uT to the upper application layer.
502                  */
503                 *val = 0;
504                 *val2 = 625;
505                 return IIO_VAL_INT_PLUS_MICRO;
506         case IIO_CHAN_INFO_SAMP_FREQ:
507                 ret = bmc150_magn_get_odr(data, val);
508                 if (ret < 0)
509                         return ret;
510                 return IIO_VAL_INT;
511         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
512                 switch (chan->channel2) {
513                 case IIO_MOD_X:
514                 case IIO_MOD_Y:
515                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_XY,
516                                           &tmp);
517                         if (ret < 0)
518                                 return ret;
519                         *val = BMC150_MAGN_REGVAL_TO_REPXY(tmp);
520                         return IIO_VAL_INT;
521                 case IIO_MOD_Z:
522                         ret = regmap_read(data->regmap, BMC150_MAGN_REG_REP_Z,
523                                           &tmp);
524                         if (ret < 0)
525                                 return ret;
526                         *val = BMC150_MAGN_REGVAL_TO_REPZ(tmp);
527                         return IIO_VAL_INT;
528                 default:
529                         return -EINVAL;
530                 }
531         default:
532                 return -EINVAL;
533         }
534 }
535
536 static int bmc150_magn_write_raw(struct iio_dev *indio_dev,
537                                  struct iio_chan_spec const *chan,
538                                  int val, int val2, long mask)
539 {
540         struct bmc150_magn_data *data = iio_priv(indio_dev);
541         int ret;
542
543         switch (mask) {
544         case IIO_CHAN_INFO_SAMP_FREQ:
545                 if (val > data->max_odr)
546                         return -EINVAL;
547                 mutex_lock(&data->mutex);
548                 ret = bmc150_magn_set_odr(data, val);
549                 mutex_unlock(&data->mutex);
550                 return ret;
551         case IIO_CHAN_INFO_OVERSAMPLING_RATIO:
552                 switch (chan->channel2) {
553                 case IIO_MOD_X:
554                 case IIO_MOD_Y:
555                         if (val < 1 || val > 511)
556                                 return -EINVAL;
557                         mutex_lock(&data->mutex);
558                         ret = bmc150_magn_set_max_odr(data, val, 0, 0);
559                         if (ret < 0) {
560                                 mutex_unlock(&data->mutex);
561                                 return ret;
562                         }
563                         ret = regmap_update_bits(data->regmap,
564                                                  BMC150_MAGN_REG_REP_XY,
565                                                  BMC150_MAGN_REG_REP_DATAMASK,
566                                                  BMC150_MAGN_REPXY_TO_REGVAL
567                                                  (val));
568                         mutex_unlock(&data->mutex);
569                         return ret;
570                 case IIO_MOD_Z:
571                         if (val < 1 || val > 256)
572                                 return -EINVAL;
573                         mutex_lock(&data->mutex);
574                         ret = bmc150_magn_set_max_odr(data, 0, val, 0);
575                         if (ret < 0) {
576                                 mutex_unlock(&data->mutex);
577                                 return ret;
578                         }
579                         ret = regmap_update_bits(data->regmap,
580                                                  BMC150_MAGN_REG_REP_Z,
581                                                  BMC150_MAGN_REG_REP_DATAMASK,
582                                                  BMC150_MAGN_REPZ_TO_REGVAL
583                                                  (val));
584                         mutex_unlock(&data->mutex);
585                         return ret;
586                 default:
587                         return -EINVAL;
588                 }
589         default:
590                 return -EINVAL;
591         }
592 }
593
594 static ssize_t bmc150_magn_show_samp_freq_avail(struct device *dev,
595                                                 struct device_attribute *attr,
596                                                 char *buf)
597 {
598         struct iio_dev *indio_dev = dev_to_iio_dev(dev);
599         struct bmc150_magn_data *data = iio_priv(indio_dev);
600         size_t len = 0;
601         u8 i;
602
603         for (i = 0; i < ARRAY_SIZE(bmc150_magn_samp_freq_table); i++) {
604                 if (bmc150_magn_samp_freq_table[i].freq > data->max_odr)
605                         break;
606                 len += scnprintf(buf + len, PAGE_SIZE - len, "%d ",
607                                  bmc150_magn_samp_freq_table[i].freq);
608         }
609         /* replace last space with a newline */
610         buf[len - 1] = '\n';
611
612         return len;
613 }
614
615 static IIO_DEV_ATTR_SAMP_FREQ_AVAIL(bmc150_magn_show_samp_freq_avail);
616
617 static struct attribute *bmc150_magn_attributes[] = {
618         &iio_dev_attr_sampling_frequency_available.dev_attr.attr,
619         NULL,
620 };
621
622 static const struct attribute_group bmc150_magn_attrs_group = {
623         .attrs = bmc150_magn_attributes,
624 };
625
626 #define BMC150_MAGN_CHANNEL(_axis) {                                    \
627         .type = IIO_MAGN,                                               \
628         .modified = 1,                                                  \
629         .channel2 = IIO_MOD_##_axis,                                    \
630         .info_mask_separate = BIT(IIO_CHAN_INFO_RAW) |                  \
631                               BIT(IIO_CHAN_INFO_OVERSAMPLING_RATIO),    \
632         .info_mask_shared_by_type = BIT(IIO_CHAN_INFO_SAMP_FREQ) |      \
633                                     BIT(IIO_CHAN_INFO_SCALE),           \
634         .scan_index = AXIS_##_axis,                                     \
635         .scan_type = {                                                  \
636                 .sign = 's',                                            \
637                 .realbits = 32,                                         \
638                 .storagebits = 32,                                      \
639                 .endianness = IIO_LE                                    \
640         },                                                              \
641 }
642
643 static const struct iio_chan_spec bmc150_magn_channels[] = {
644         BMC150_MAGN_CHANNEL(X),
645         BMC150_MAGN_CHANNEL(Y),
646         BMC150_MAGN_CHANNEL(Z),
647         IIO_CHAN_SOFT_TIMESTAMP(3),
648 };
649
650 static const struct iio_info bmc150_magn_info = {
651         .attrs = &bmc150_magn_attrs_group,
652         .read_raw = bmc150_magn_read_raw,
653         .write_raw = bmc150_magn_write_raw,
654         .driver_module = THIS_MODULE,
655 };
656
657 static const unsigned long bmc150_magn_scan_masks[] = {
658                                         BIT(AXIS_X) | BIT(AXIS_Y) | BIT(AXIS_Z),
659                                         0};
660
661 static irqreturn_t bmc150_magn_trigger_handler(int irq, void *p)
662 {
663         struct iio_poll_func *pf = p;
664         struct iio_dev *indio_dev = pf->indio_dev;
665         struct bmc150_magn_data *data = iio_priv(indio_dev);
666         int ret;
667
668         mutex_lock(&data->mutex);
669         ret = bmc150_magn_read_xyz(data, data->buffer);
670         if (ret < 0)
671                 goto err;
672
673         iio_push_to_buffers_with_timestamp(indio_dev, data->buffer,
674                                            pf->timestamp);
675
676 err:
677         mutex_unlock(&data->mutex);
678         iio_trigger_notify_done(indio_dev->trig);
679
680         return IRQ_HANDLED;
681 }
682
683 static int bmc150_magn_init(struct bmc150_magn_data *data)
684 {
685         int ret, chip_id;
686         struct bmc150_magn_preset preset;
687
688         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND,
689                                          false);
690         if (ret < 0) {
691                 dev_err(data->dev,
692                         "Failed to bring up device from suspend mode\n");
693                 return ret;
694         }
695
696         ret = regmap_read(data->regmap, BMC150_MAGN_REG_CHIP_ID, &chip_id);
697         if (ret < 0) {
698                 dev_err(data->dev, "Failed reading chip id\n");
699                 goto err_poweroff;
700         }
701         if (chip_id != BMC150_MAGN_CHIP_ID_VAL) {
702                 dev_err(data->dev, "Invalid chip id 0x%x\n", chip_id);
703                 ret = -ENODEV;
704                 goto err_poweroff;
705         }
706         dev_dbg(data->dev, "Chip id %x\n", chip_id);
707
708         preset = bmc150_magn_presets_table[BMC150_MAGN_DEFAULT_PRESET];
709         ret = bmc150_magn_set_odr(data, preset.odr);
710         if (ret < 0) {
711                 dev_err(data->dev, "Failed to set ODR to %d\n",
712                         preset.odr);
713                 goto err_poweroff;
714         }
715
716         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_XY,
717                            BMC150_MAGN_REPXY_TO_REGVAL(preset.rep_xy));
718         if (ret < 0) {
719                 dev_err(data->dev, "Failed to set REP XY to %d\n",
720                         preset.rep_xy);
721                 goto err_poweroff;
722         }
723
724         ret = regmap_write(data->regmap, BMC150_MAGN_REG_REP_Z,
725                            BMC150_MAGN_REPZ_TO_REGVAL(preset.rep_z));
726         if (ret < 0) {
727                 dev_err(data->dev, "Failed to set REP Z to %d\n",
728                         preset.rep_z);
729                 goto err_poweroff;
730         }
731
732         ret = bmc150_magn_set_max_odr(data, preset.rep_xy, preset.rep_z,
733                                       preset.odr);
734         if (ret < 0)
735                 goto err_poweroff;
736
737         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
738                                          true);
739         if (ret < 0) {
740                 dev_err(data->dev, "Failed to power on device\n");
741                 goto err_poweroff;
742         }
743
744         return 0;
745
746 err_poweroff:
747         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
748         return ret;
749 }
750
751 static int bmc150_magn_reset_intr(struct bmc150_magn_data *data)
752 {
753         int tmp;
754
755         /*
756          * Data Ready (DRDY) is always cleared after
757          * readout of data registers ends.
758          */
759         return regmap_read(data->regmap, BMC150_MAGN_REG_X_L, &tmp);
760 }
761
762 static int bmc150_magn_trig_try_reen(struct iio_trigger *trig)
763 {
764         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
765         struct bmc150_magn_data *data = iio_priv(indio_dev);
766         int ret;
767
768         if (!data->dready_trigger_on)
769                 return 0;
770
771         mutex_lock(&data->mutex);
772         ret = bmc150_magn_reset_intr(data);
773         mutex_unlock(&data->mutex);
774
775         return ret;
776 }
777
778 static int bmc150_magn_data_rdy_trigger_set_state(struct iio_trigger *trig,
779                                                   bool state)
780 {
781         struct iio_dev *indio_dev = iio_trigger_get_drvdata(trig);
782         struct bmc150_magn_data *data = iio_priv(indio_dev);
783         int ret = 0;
784
785         mutex_lock(&data->mutex);
786         if (state == data->dready_trigger_on)
787                 goto err_unlock;
788
789         ret = regmap_update_bits(data->regmap, BMC150_MAGN_REG_INT_DRDY,
790                                  BMC150_MAGN_MASK_DRDY_EN,
791                                  state << BMC150_MAGN_SHIFT_DRDY_EN);
792         if (ret < 0)
793                 goto err_unlock;
794
795         data->dready_trigger_on = state;
796
797         if (state) {
798                 ret = bmc150_magn_reset_intr(data);
799                 if (ret < 0)
800                         goto err_unlock;
801         }
802         mutex_unlock(&data->mutex);
803
804         return 0;
805
806 err_unlock:
807         mutex_unlock(&data->mutex);
808         return ret;
809 }
810
811 static const struct iio_trigger_ops bmc150_magn_trigger_ops = {
812         .set_trigger_state = bmc150_magn_data_rdy_trigger_set_state,
813         .try_reenable = bmc150_magn_trig_try_reen,
814         .owner = THIS_MODULE,
815 };
816
817 static int bmc150_magn_buffer_preenable(struct iio_dev *indio_dev)
818 {
819         struct bmc150_magn_data *data = iio_priv(indio_dev);
820
821         return bmc150_magn_set_power_state(data, true);
822 }
823
824 static int bmc150_magn_buffer_postdisable(struct iio_dev *indio_dev)
825 {
826         struct bmc150_magn_data *data = iio_priv(indio_dev);
827
828         return bmc150_magn_set_power_state(data, false);
829 }
830
831 static const struct iio_buffer_setup_ops bmc150_magn_buffer_setup_ops = {
832         .preenable = bmc150_magn_buffer_preenable,
833         .postenable = iio_triggered_buffer_postenable,
834         .predisable = iio_triggered_buffer_predisable,
835         .postdisable = bmc150_magn_buffer_postdisable,
836 };
837
838 static const char *bmc150_magn_match_acpi_device(struct device *dev)
839 {
840         const struct acpi_device_id *id;
841
842         id = acpi_match_device(dev->driver->acpi_match_table, dev);
843         if (!id)
844                 return NULL;
845
846         return dev_name(dev);
847 }
848
849 int bmc150_magn_probe(struct device *dev, struct regmap *regmap,
850                       int irq, const char *name)
851 {
852         struct bmc150_magn_data *data;
853         struct iio_dev *indio_dev;
854         int ret;
855
856         indio_dev = devm_iio_device_alloc(dev, sizeof(*data));
857         if (!indio_dev)
858                 return -ENOMEM;
859
860         data = iio_priv(indio_dev);
861         dev_set_drvdata(dev, indio_dev);
862         data->regmap = regmap;
863         data->irq = irq;
864         data->dev = dev;
865
866         if (!name && ACPI_HANDLE(dev))
867                 name = bmc150_magn_match_acpi_device(dev);
868
869         mutex_init(&data->mutex);
870
871         ret = bmc150_magn_init(data);
872         if (ret < 0)
873                 return ret;
874
875         indio_dev->dev.parent = dev;
876         indio_dev->channels = bmc150_magn_channels;
877         indio_dev->num_channels = ARRAY_SIZE(bmc150_magn_channels);
878         indio_dev->available_scan_masks = bmc150_magn_scan_masks;
879         indio_dev->name = name;
880         indio_dev->modes = INDIO_DIRECT_MODE;
881         indio_dev->info = &bmc150_magn_info;
882
883         if (irq > 0) {
884                 data->dready_trig = devm_iio_trigger_alloc(dev,
885                                                            "%s-dev%d",
886                                                            indio_dev->name,
887                                                            indio_dev->id);
888                 if (!data->dready_trig) {
889                         ret = -ENOMEM;
890                         dev_err(dev, "iio trigger alloc failed\n");
891                         goto err_poweroff;
892                 }
893
894                 data->dready_trig->dev.parent = dev;
895                 data->dready_trig->ops = &bmc150_magn_trigger_ops;
896                 iio_trigger_set_drvdata(data->dready_trig, indio_dev);
897                 ret = iio_trigger_register(data->dready_trig);
898                 if (ret) {
899                         dev_err(dev, "iio trigger register failed\n");
900                         goto err_poweroff;
901                 }
902
903                 ret = request_threaded_irq(irq,
904                                            iio_trigger_generic_data_rdy_poll,
905                                            NULL,
906                                            IRQF_TRIGGER_RISING | IRQF_ONESHOT,
907                                            BMC150_MAGN_IRQ_NAME,
908                                            data->dready_trig);
909                 if (ret < 0) {
910                         dev_err(dev, "request irq %d failed\n", irq);
911                         goto err_trigger_unregister;
912                 }
913         }
914
915         ret = iio_triggered_buffer_setup(indio_dev,
916                                          iio_pollfunc_store_time,
917                                          bmc150_magn_trigger_handler,
918                                          &bmc150_magn_buffer_setup_ops);
919         if (ret < 0) {
920                 dev_err(dev, "iio triggered buffer setup failed\n");
921                 goto err_free_irq;
922         }
923
924         ret = pm_runtime_set_active(dev);
925         if (ret)
926                 goto err_buffer_cleanup;
927
928         pm_runtime_enable(dev);
929         pm_runtime_set_autosuspend_delay(dev,
930                                          BMC150_MAGN_AUTO_SUSPEND_DELAY_MS);
931         pm_runtime_use_autosuspend(dev);
932
933         ret = iio_device_register(indio_dev);
934         if (ret < 0) {
935                 dev_err(dev, "unable to register iio device\n");
936                 goto err_buffer_cleanup;
937         }
938
939         dev_dbg(dev, "Registered device %s\n", name);
940         return 0;
941
942 err_buffer_cleanup:
943         iio_triggered_buffer_cleanup(indio_dev);
944 err_free_irq:
945         if (irq > 0)
946                 free_irq(irq, data->dready_trig);
947 err_trigger_unregister:
948         if (data->dready_trig)
949                 iio_trigger_unregister(data->dready_trig);
950 err_poweroff:
951         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
952         return ret;
953 }
954 EXPORT_SYMBOL(bmc150_magn_probe);
955
956 int bmc150_magn_remove(struct device *dev)
957 {
958         struct iio_dev *indio_dev = dev_get_drvdata(dev);
959         struct bmc150_magn_data *data = iio_priv(indio_dev);
960
961         iio_device_unregister(indio_dev);
962
963         pm_runtime_disable(dev);
964         pm_runtime_set_suspended(dev);
965         pm_runtime_put_noidle(dev);
966
967         iio_triggered_buffer_cleanup(indio_dev);
968
969         if (data->irq > 0)
970                 free_irq(data->irq, data->dready_trig);
971
972         if (data->dready_trig)
973                 iio_trigger_unregister(data->dready_trig);
974
975         mutex_lock(&data->mutex);
976         bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SUSPEND, true);
977         mutex_unlock(&data->mutex);
978
979         return 0;
980 }
981 EXPORT_SYMBOL(bmc150_magn_remove);
982
983 #ifdef CONFIG_PM
984 static int bmc150_magn_runtime_suspend(struct device *dev)
985 {
986         struct iio_dev *indio_dev = dev_get_drvdata(dev);
987         struct bmc150_magn_data *data = iio_priv(indio_dev);
988         int ret;
989
990         mutex_lock(&data->mutex);
991         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
992                                          true);
993         mutex_unlock(&data->mutex);
994         if (ret < 0) {
995                 dev_err(dev, "powering off device failed\n");
996                 return ret;
997         }
998         return 0;
999 }
1000
1001 /*
1002  * Should be called with data->mutex held.
1003  */
1004 static int bmc150_magn_runtime_resume(struct device *dev)
1005 {
1006         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1007         struct bmc150_magn_data *data = iio_priv(indio_dev);
1008
1009         return bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1010                                           true);
1011 }
1012 #endif
1013
1014 #ifdef CONFIG_PM_SLEEP
1015 static int bmc150_magn_suspend(struct device *dev)
1016 {
1017         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1018         struct bmc150_magn_data *data = iio_priv(indio_dev);
1019         int ret;
1020
1021         mutex_lock(&data->mutex);
1022         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_SLEEP,
1023                                          true);
1024         mutex_unlock(&data->mutex);
1025
1026         return ret;
1027 }
1028
1029 static int bmc150_magn_resume(struct device *dev)
1030 {
1031         struct iio_dev *indio_dev = dev_get_drvdata(dev);
1032         struct bmc150_magn_data *data = iio_priv(indio_dev);
1033         int ret;
1034
1035         mutex_lock(&data->mutex);
1036         ret = bmc150_magn_set_power_mode(data, BMC150_MAGN_POWER_MODE_NORMAL,
1037                                          true);
1038         mutex_unlock(&data->mutex);
1039
1040         return ret;
1041 }
1042 #endif
1043
1044 const struct dev_pm_ops bmc150_magn_pm_ops = {
1045         SET_SYSTEM_SLEEP_PM_OPS(bmc150_magn_suspend, bmc150_magn_resume)
1046         SET_RUNTIME_PM_OPS(bmc150_magn_runtime_suspend,
1047                            bmc150_magn_runtime_resume, NULL)
1048 };
1049 EXPORT_SYMBOL(bmc150_magn_pm_ops);
1050
1051 MODULE_AUTHOR("Irina Tirdea <irina.tirdea@intel.com>");
1052 MODULE_LICENSE("GPL v2");
1053 MODULE_DESCRIPTION("BMC150 magnetometer core driver");