Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / hv / hv_balloon.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (c) 2012, Microsoft Corporation.
4  *
5  * Author:
6  *   K. Y. Srinivasan <kys@microsoft.com>
7  */
8
9 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
10
11 #include <linux/kernel.h>
12 #include <linux/jiffies.h>
13 #include <linux/mman.h>
14 #include <linux/delay.h>
15 #include <linux/init.h>
16 #include <linux/module.h>
17 #include <linux/slab.h>
18 #include <linux/kthread.h>
19 #include <linux/completion.h>
20 #include <linux/memory_hotplug.h>
21 #include <linux/memory.h>
22 #include <linux/notifier.h>
23 #include <linux/percpu_counter.h>
24
25 #include <linux/hyperv.h>
26
27 #define CREATE_TRACE_POINTS
28 #include "hv_trace_balloon.h"
29
30 /*
31  * We begin with definitions supporting the Dynamic Memory protocol
32  * with the host.
33  *
34  * Begin protocol definitions.
35  */
36
37
38
39 /*
40  * Protocol versions. The low word is the minor version, the high word the major
41  * version.
42  *
43  * History:
44  * Initial version 1.0
45  * Changed to 0.1 on 2009/03/25
46  * Changes to 0.2 on 2009/05/14
47  * Changes to 0.3 on 2009/12/03
48  * Changed to 1.0 on 2011/04/05
49  */
50
51 #define DYNMEM_MAKE_VERSION(Major, Minor) ((__u32)(((Major) << 16) | (Minor)))
52 #define DYNMEM_MAJOR_VERSION(Version) ((__u32)(Version) >> 16)
53 #define DYNMEM_MINOR_VERSION(Version) ((__u32)(Version) & 0xff)
54
55 enum {
56         DYNMEM_PROTOCOL_VERSION_1 = DYNMEM_MAKE_VERSION(0, 3),
57         DYNMEM_PROTOCOL_VERSION_2 = DYNMEM_MAKE_VERSION(1, 0),
58         DYNMEM_PROTOCOL_VERSION_3 = DYNMEM_MAKE_VERSION(2, 0),
59
60         DYNMEM_PROTOCOL_VERSION_WIN7 = DYNMEM_PROTOCOL_VERSION_1,
61         DYNMEM_PROTOCOL_VERSION_WIN8 = DYNMEM_PROTOCOL_VERSION_2,
62         DYNMEM_PROTOCOL_VERSION_WIN10 = DYNMEM_PROTOCOL_VERSION_3,
63
64         DYNMEM_PROTOCOL_VERSION_CURRENT = DYNMEM_PROTOCOL_VERSION_WIN10
65 };
66
67
68
69 /*
70  * Message Types
71  */
72
73 enum dm_message_type {
74         /*
75          * Version 0.3
76          */
77         DM_ERROR                        = 0,
78         DM_VERSION_REQUEST              = 1,
79         DM_VERSION_RESPONSE             = 2,
80         DM_CAPABILITIES_REPORT          = 3,
81         DM_CAPABILITIES_RESPONSE        = 4,
82         DM_STATUS_REPORT                = 5,
83         DM_BALLOON_REQUEST              = 6,
84         DM_BALLOON_RESPONSE             = 7,
85         DM_UNBALLOON_REQUEST            = 8,
86         DM_UNBALLOON_RESPONSE           = 9,
87         DM_MEM_HOT_ADD_REQUEST          = 10,
88         DM_MEM_HOT_ADD_RESPONSE         = 11,
89         DM_VERSION_03_MAX               = 11,
90         /*
91          * Version 1.0.
92          */
93         DM_INFO_MESSAGE                 = 12,
94         DM_VERSION_1_MAX                = 12
95 };
96
97
98 /*
99  * Structures defining the dynamic memory management
100  * protocol.
101  */
102
103 union dm_version {
104         struct {
105                 __u16 minor_version;
106                 __u16 major_version;
107         };
108         __u32 version;
109 } __packed;
110
111
112 union dm_caps {
113         struct {
114                 __u64 balloon:1;
115                 __u64 hot_add:1;
116                 /*
117                  * To support guests that may have alignment
118                  * limitations on hot-add, the guest can specify
119                  * its alignment requirements; a value of n
120                  * represents an alignment of 2^n in mega bytes.
121                  */
122                 __u64 hot_add_alignment:4;
123                 __u64 reservedz:58;
124         } cap_bits;
125         __u64 caps;
126 } __packed;
127
128 union dm_mem_page_range {
129         struct  {
130                 /*
131                  * The PFN number of the first page in the range.
132                  * 40 bits is the architectural limit of a PFN
133                  * number for AMD64.
134                  */
135                 __u64 start_page:40;
136                 /*
137                  * The number of pages in the range.
138                  */
139                 __u64 page_cnt:24;
140         } finfo;
141         __u64  page_range;
142 } __packed;
143
144
145
146 /*
147  * The header for all dynamic memory messages:
148  *
149  * type: Type of the message.
150  * size: Size of the message in bytes; including the header.
151  * trans_id: The guest is responsible for manufacturing this ID.
152  */
153
154 struct dm_header {
155         __u16 type;
156         __u16 size;
157         __u32 trans_id;
158 } __packed;
159
160 /*
161  * A generic message format for dynamic memory.
162  * Specific message formats are defined later in the file.
163  */
164
165 struct dm_message {
166         struct dm_header hdr;
167         __u8 data[]; /* enclosed message */
168 } __packed;
169
170
171 /*
172  * Specific message types supporting the dynamic memory protocol.
173  */
174
175 /*
176  * Version negotiation message. Sent from the guest to the host.
177  * The guest is free to try different versions until the host
178  * accepts the version.
179  *
180  * dm_version: The protocol version requested.
181  * is_last_attempt: If TRUE, this is the last version guest will request.
182  * reservedz: Reserved field, set to zero.
183  */
184
185 struct dm_version_request {
186         struct dm_header hdr;
187         union dm_version version;
188         __u32 is_last_attempt:1;
189         __u32 reservedz:31;
190 } __packed;
191
192 /*
193  * Version response message; Host to Guest and indicates
194  * if the host has accepted the version sent by the guest.
195  *
196  * is_accepted: If TRUE, host has accepted the version and the guest
197  * should proceed to the next stage of the protocol. FALSE indicates that
198  * guest should re-try with a different version.
199  *
200  * reservedz: Reserved field, set to zero.
201  */
202
203 struct dm_version_response {
204         struct dm_header hdr;
205         __u64 is_accepted:1;
206         __u64 reservedz:63;
207 } __packed;
208
209 /*
210  * Message reporting capabilities. This is sent from the guest to the
211  * host.
212  */
213
214 struct dm_capabilities {
215         struct dm_header hdr;
216         union dm_caps caps;
217         __u64 min_page_cnt;
218         __u64 max_page_number;
219 } __packed;
220
221 /*
222  * Response to the capabilities message. This is sent from the host to the
223  * guest. This message notifies if the host has accepted the guest's
224  * capabilities. If the host has not accepted, the guest must shutdown
225  * the service.
226  *
227  * is_accepted: Indicates if the host has accepted guest's capabilities.
228  * reservedz: Must be 0.
229  */
230
231 struct dm_capabilities_resp_msg {
232         struct dm_header hdr;
233         __u64 is_accepted:1;
234         __u64 reservedz:63;
235 } __packed;
236
237 /*
238  * This message is used to report memory pressure from the guest.
239  * This message is not part of any transaction and there is no
240  * response to this message.
241  *
242  * num_avail: Available memory in pages.
243  * num_committed: Committed memory in pages.
244  * page_file_size: The accumulated size of all page files
245  *                 in the system in pages.
246  * zero_free: The nunber of zero and free pages.
247  * page_file_writes: The writes to the page file in pages.
248  * io_diff: An indicator of file cache efficiency or page file activity,
249  *          calculated as File Cache Page Fault Count - Page Read Count.
250  *          This value is in pages.
251  *
252  * Some of these metrics are Windows specific and fortunately
253  * the algorithm on the host side that computes the guest memory
254  * pressure only uses num_committed value.
255  */
256
257 struct dm_status {
258         struct dm_header hdr;
259         __u64 num_avail;
260         __u64 num_committed;
261         __u64 page_file_size;
262         __u64 zero_free;
263         __u32 page_file_writes;
264         __u32 io_diff;
265 } __packed;
266
267
268 /*
269  * Message to ask the guest to allocate memory - balloon up message.
270  * This message is sent from the host to the guest. The guest may not be
271  * able to allocate as much memory as requested.
272  *
273  * num_pages: number of pages to allocate.
274  */
275
276 struct dm_balloon {
277         struct dm_header hdr;
278         __u32 num_pages;
279         __u32 reservedz;
280 } __packed;
281
282
283 /*
284  * Balloon response message; this message is sent from the guest
285  * to the host in response to the balloon message.
286  *
287  * reservedz: Reserved; must be set to zero.
288  * more_pages: If FALSE, this is the last message of the transaction.
289  * if TRUE there will atleast one more message from the guest.
290  *
291  * range_count: The number of ranges in the range array.
292  *
293  * range_array: An array of page ranges returned to the host.
294  *
295  */
296
297 struct dm_balloon_response {
298         struct dm_header hdr;
299         __u32 reservedz;
300         __u32 more_pages:1;
301         __u32 range_count:31;
302         union dm_mem_page_range range_array[];
303 } __packed;
304
305 /*
306  * Un-balloon message; this message is sent from the host
307  * to the guest to give guest more memory.
308  *
309  * more_pages: If FALSE, this is the last message of the transaction.
310  * if TRUE there will atleast one more message from the guest.
311  *
312  * reservedz: Reserved; must be set to zero.
313  *
314  * range_count: The number of ranges in the range array.
315  *
316  * range_array: An array of page ranges returned to the host.
317  *
318  */
319
320 struct dm_unballoon_request {
321         struct dm_header hdr;
322         __u32 more_pages:1;
323         __u32 reservedz:31;
324         __u32 range_count;
325         union dm_mem_page_range range_array[];
326 } __packed;
327
328 /*
329  * Un-balloon response message; this message is sent from the guest
330  * to the host in response to an unballoon request.
331  *
332  */
333
334 struct dm_unballoon_response {
335         struct dm_header hdr;
336 } __packed;
337
338
339 /*
340  * Hot add request message. Message sent from the host to the guest.
341  *
342  * mem_range: Memory range to hot add.
343  *
344  * On Linux we currently don't support this since we cannot hot add
345  * arbitrary granularity of memory.
346  */
347
348 struct dm_hot_add {
349         struct dm_header hdr;
350         union dm_mem_page_range range;
351 } __packed;
352
353 /*
354  * Hot add response message.
355  * This message is sent by the guest to report the status of a hot add request.
356  * If page_count is less than the requested page count, then the host should
357  * assume all further hot add requests will fail, since this indicates that
358  * the guest has hit an upper physical memory barrier.
359  *
360  * Hot adds may also fail due to low resources; in this case, the guest must
361  * not complete this message until the hot add can succeed, and the host must
362  * not send a new hot add request until the response is sent.
363  * If VSC fails to hot add memory DYNMEM_NUMBER_OF_UNSUCCESSFUL_HOTADD_ATTEMPTS
364  * times it fails the request.
365  *
366  *
367  * page_count: number of pages that were successfully hot added.
368  *
369  * result: result of the operation 1: success, 0: failure.
370  *
371  */
372
373 struct dm_hot_add_response {
374         struct dm_header hdr;
375         __u32 page_count;
376         __u32 result;
377 } __packed;
378
379 /*
380  * Types of information sent from host to the guest.
381  */
382
383 enum dm_info_type {
384         INFO_TYPE_MAX_PAGE_CNT = 0,
385         MAX_INFO_TYPE
386 };
387
388
389 /*
390  * Header for the information message.
391  */
392
393 struct dm_info_header {
394         enum dm_info_type type;
395         __u32 data_size;
396 } __packed;
397
398 /*
399  * This message is sent from the host to the guest to pass
400  * some relevant information (win8 addition).
401  *
402  * reserved: no used.
403  * info_size: size of the information blob.
404  * info: information blob.
405  */
406
407 struct dm_info_msg {
408         struct dm_header hdr;
409         __u32 reserved;
410         __u32 info_size;
411         __u8  info[];
412 };
413
414 /*
415  * End protocol definitions.
416  */
417
418 /*
419  * State to manage hot adding memory into the guest.
420  * The range start_pfn : end_pfn specifies the range
421  * that the host has asked us to hot add. The range
422  * start_pfn : ha_end_pfn specifies the range that we have
423  * currently hot added. We hot add in multiples of 128M
424  * chunks; it is possible that we may not be able to bring
425  * online all the pages in the region. The range
426  * covered_start_pfn:covered_end_pfn defines the pages that can
427  * be brough online.
428  */
429
430 struct hv_hotadd_state {
431         struct list_head list;
432         unsigned long start_pfn;
433         unsigned long covered_start_pfn;
434         unsigned long covered_end_pfn;
435         unsigned long ha_end_pfn;
436         unsigned long end_pfn;
437         /*
438          * A list of gaps.
439          */
440         struct list_head gap_list;
441 };
442
443 struct hv_hotadd_gap {
444         struct list_head list;
445         unsigned long start_pfn;
446         unsigned long end_pfn;
447 };
448
449 struct balloon_state {
450         __u32 num_pages;
451         struct work_struct wrk;
452 };
453
454 struct hot_add_wrk {
455         union dm_mem_page_range ha_page_range;
456         union dm_mem_page_range ha_region_range;
457         struct work_struct wrk;
458 };
459
460 static bool hot_add = true;
461 static bool do_hot_add;
462 /*
463  * Delay reporting memory pressure by
464  * the specified number of seconds.
465  */
466 static uint pressure_report_delay = 45;
467
468 /*
469  * The last time we posted a pressure report to host.
470  */
471 static unsigned long last_post_time;
472
473 module_param(hot_add, bool, (S_IRUGO | S_IWUSR));
474 MODULE_PARM_DESC(hot_add, "If set attempt memory hot_add");
475
476 module_param(pressure_report_delay, uint, (S_IRUGO | S_IWUSR));
477 MODULE_PARM_DESC(pressure_report_delay, "Delay in secs in reporting pressure");
478 static atomic_t trans_id = ATOMIC_INIT(0);
479
480 static int dm_ring_size = (5 * PAGE_SIZE);
481
482 /*
483  * Driver specific state.
484  */
485
486 enum hv_dm_state {
487         DM_INITIALIZING = 0,
488         DM_INITIALIZED,
489         DM_BALLOON_UP,
490         DM_BALLOON_DOWN,
491         DM_HOT_ADD,
492         DM_INIT_ERROR
493 };
494
495
496 static __u8 recv_buffer[PAGE_SIZE];
497 static __u8 balloon_up_send_buffer[PAGE_SIZE];
498 #define PAGES_IN_2M     512
499 #define HA_CHUNK (32 * 1024)
500
501 struct hv_dynmem_device {
502         struct hv_device *dev;
503         enum hv_dm_state state;
504         struct completion host_event;
505         struct completion config_event;
506
507         /*
508          * Number of pages we have currently ballooned out.
509          */
510         unsigned int num_pages_ballooned;
511         unsigned int num_pages_onlined;
512         unsigned int num_pages_added;
513
514         /*
515          * State to manage the ballooning (up) operation.
516          */
517         struct balloon_state balloon_wrk;
518
519         /*
520          * State to execute the "hot-add" operation.
521          */
522         struct hot_add_wrk ha_wrk;
523
524         /*
525          * This state tracks if the host has specified a hot-add
526          * region.
527          */
528         bool host_specified_ha_region;
529
530         /*
531          * State to synchronize hot-add.
532          */
533         struct completion  ol_waitevent;
534         bool ha_waiting;
535         /*
536          * This thread handles hot-add
537          * requests from the host as well as notifying
538          * the host with regards to memory pressure in
539          * the guest.
540          */
541         struct task_struct *thread;
542
543         /*
544          * Protects ha_region_list, num_pages_onlined counter and individual
545          * regions from ha_region_list.
546          */
547         spinlock_t ha_lock;
548
549         /*
550          * A list of hot-add regions.
551          */
552         struct list_head ha_region_list;
553
554         /*
555          * We start with the highest version we can support
556          * and downgrade based on the host; we save here the
557          * next version to try.
558          */
559         __u32 next_version;
560
561         /*
562          * The negotiated version agreed by host.
563          */
564         __u32 version;
565 };
566
567 static struct hv_dynmem_device dm_device;
568
569 static void post_status(struct hv_dynmem_device *dm);
570
571 #ifdef CONFIG_MEMORY_HOTPLUG
572 static inline bool has_pfn_is_backed(struct hv_hotadd_state *has,
573                                      unsigned long pfn)
574 {
575         struct hv_hotadd_gap *gap;
576
577         /* The page is not backed. */
578         if ((pfn < has->covered_start_pfn) || (pfn >= has->covered_end_pfn))
579                 return false;
580
581         /* Check for gaps. */
582         list_for_each_entry(gap, &has->gap_list, list) {
583                 if ((pfn >= gap->start_pfn) && (pfn < gap->end_pfn))
584                         return false;
585         }
586
587         return true;
588 }
589
590 static unsigned long hv_page_offline_check(unsigned long start_pfn,
591                                            unsigned long nr_pages)
592 {
593         unsigned long pfn = start_pfn, count = 0;
594         struct hv_hotadd_state *has;
595         bool found;
596
597         while (pfn < start_pfn + nr_pages) {
598                 /*
599                  * Search for HAS which covers the pfn and when we find one
600                  * count how many consequitive PFNs are covered.
601                  */
602                 found = false;
603                 list_for_each_entry(has, &dm_device.ha_region_list, list) {
604                         while ((pfn >= has->start_pfn) &&
605                                (pfn < has->end_pfn) &&
606                                (pfn < start_pfn + nr_pages)) {
607                                 found = true;
608                                 if (has_pfn_is_backed(has, pfn))
609                                         count++;
610                                 pfn++;
611                         }
612                 }
613
614                 /*
615                  * This PFN is not in any HAS (e.g. we're offlining a region
616                  * which was present at boot), no need to account for it. Go
617                  * to the next one.
618                  */
619                 if (!found)
620                         pfn++;
621         }
622
623         return count;
624 }
625
626 static int hv_memory_notifier(struct notifier_block *nb, unsigned long val,
627                               void *v)
628 {
629         struct memory_notify *mem = (struct memory_notify *)v;
630         unsigned long flags, pfn_count;
631
632         switch (val) {
633         case MEM_ONLINE:
634         case MEM_CANCEL_ONLINE:
635                 if (dm_device.ha_waiting) {
636                         dm_device.ha_waiting = false;
637                         complete(&dm_device.ol_waitevent);
638                 }
639                 break;
640
641         case MEM_OFFLINE:
642                 spin_lock_irqsave(&dm_device.ha_lock, flags);
643                 pfn_count = hv_page_offline_check(mem->start_pfn,
644                                                   mem->nr_pages);
645                 if (pfn_count <= dm_device.num_pages_onlined) {
646                         dm_device.num_pages_onlined -= pfn_count;
647                 } else {
648                         /*
649                          * We're offlining more pages than we managed to online.
650                          * This is unexpected. In any case don't let
651                          * num_pages_onlined wrap around zero.
652                          */
653                         WARN_ON_ONCE(1);
654                         dm_device.num_pages_onlined = 0;
655                 }
656                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
657                 break;
658         case MEM_GOING_ONLINE:
659         case MEM_GOING_OFFLINE:
660         case MEM_CANCEL_OFFLINE:
661                 break;
662         }
663         return NOTIFY_OK;
664 }
665
666 static struct notifier_block hv_memory_nb = {
667         .notifier_call = hv_memory_notifier,
668         .priority = 0
669 };
670
671 /* Check if the particular page is backed and can be onlined and online it. */
672 static void hv_page_online_one(struct hv_hotadd_state *has, struct page *pg)
673 {
674         if (!has_pfn_is_backed(has, page_to_pfn(pg))) {
675                 if (!PageOffline(pg))
676                         __SetPageOffline(pg);
677                 return;
678         }
679         if (PageOffline(pg))
680                 __ClearPageOffline(pg);
681
682         /* This frame is currently backed; online the page. */
683         __online_page_set_limits(pg);
684         __online_page_increment_counters(pg);
685         __online_page_free(pg);
686
687         lockdep_assert_held(&dm_device.ha_lock);
688         dm_device.num_pages_onlined++;
689 }
690
691 static void hv_bring_pgs_online(struct hv_hotadd_state *has,
692                                 unsigned long start_pfn, unsigned long size)
693 {
694         int i;
695
696         pr_debug("Online %lu pages starting at pfn 0x%lx\n", size, start_pfn);
697         for (i = 0; i < size; i++)
698                 hv_page_online_one(has, pfn_to_page(start_pfn + i));
699 }
700
701 static void hv_mem_hot_add(unsigned long start, unsigned long size,
702                                 unsigned long pfn_count,
703                                 struct hv_hotadd_state *has)
704 {
705         int ret = 0;
706         int i, nid;
707         unsigned long start_pfn;
708         unsigned long processed_pfn;
709         unsigned long total_pfn = pfn_count;
710         unsigned long flags;
711
712         for (i = 0; i < (size/HA_CHUNK); i++) {
713                 start_pfn = start + (i * HA_CHUNK);
714
715                 spin_lock_irqsave(&dm_device.ha_lock, flags);
716                 has->ha_end_pfn +=  HA_CHUNK;
717
718                 if (total_pfn > HA_CHUNK) {
719                         processed_pfn = HA_CHUNK;
720                         total_pfn -= HA_CHUNK;
721                 } else {
722                         processed_pfn = total_pfn;
723                         total_pfn = 0;
724                 }
725
726                 has->covered_end_pfn +=  processed_pfn;
727                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
728
729                 init_completion(&dm_device.ol_waitevent);
730                 dm_device.ha_waiting = !memhp_auto_online;
731
732                 nid = memory_add_physaddr_to_nid(PFN_PHYS(start_pfn));
733                 ret = add_memory(nid, PFN_PHYS((start_pfn)),
734                                 (HA_CHUNK << PAGE_SHIFT));
735
736                 if (ret) {
737                         pr_err("hot_add memory failed error is %d\n", ret);
738                         if (ret == -EEXIST) {
739                                 /*
740                                  * This error indicates that the error
741                                  * is not a transient failure. This is the
742                                  * case where the guest's physical address map
743                                  * precludes hot adding memory. Stop all further
744                                  * memory hot-add.
745                                  */
746                                 do_hot_add = false;
747                         }
748                         spin_lock_irqsave(&dm_device.ha_lock, flags);
749                         has->ha_end_pfn -= HA_CHUNK;
750                         has->covered_end_pfn -=  processed_pfn;
751                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
752                         break;
753                 }
754
755                 /*
756                  * Wait for the memory block to be onlined when memory onlining
757                  * is done outside of kernel (memhp_auto_online). Since the hot
758                  * add has succeeded, it is ok to proceed even if the pages in
759                  * the hot added region have not been "onlined" within the
760                  * allowed time.
761                  */
762                 if (dm_device.ha_waiting)
763                         wait_for_completion_timeout(&dm_device.ol_waitevent,
764                                                     5*HZ);
765                 post_status(&dm_device);
766         }
767 }
768
769 static void hv_online_page(struct page *pg, unsigned int order)
770 {
771         struct hv_hotadd_state *has;
772         unsigned long flags;
773         unsigned long pfn = page_to_pfn(pg);
774
775         spin_lock_irqsave(&dm_device.ha_lock, flags);
776         list_for_each_entry(has, &dm_device.ha_region_list, list) {
777                 /* The page belongs to a different HAS. */
778                 if ((pfn < has->start_pfn) ||
779                                 (pfn + (1UL << order) > has->end_pfn))
780                         continue;
781
782                 hv_bring_pgs_online(has, pfn, 1UL << order);
783                 break;
784         }
785         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
786 }
787
788 static int pfn_covered(unsigned long start_pfn, unsigned long pfn_cnt)
789 {
790         struct hv_hotadd_state *has;
791         struct hv_hotadd_gap *gap;
792         unsigned long residual, new_inc;
793         int ret = 0;
794         unsigned long flags;
795
796         spin_lock_irqsave(&dm_device.ha_lock, flags);
797         list_for_each_entry(has, &dm_device.ha_region_list, list) {
798                 /*
799                  * If the pfn range we are dealing with is not in the current
800                  * "hot add block", move on.
801                  */
802                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
803                         continue;
804
805                 /*
806                  * If the current start pfn is not where the covered_end
807                  * is, create a gap and update covered_end_pfn.
808                  */
809                 if (has->covered_end_pfn != start_pfn) {
810                         gap = kzalloc(sizeof(struct hv_hotadd_gap), GFP_ATOMIC);
811                         if (!gap) {
812                                 ret = -ENOMEM;
813                                 break;
814                         }
815
816                         INIT_LIST_HEAD(&gap->list);
817                         gap->start_pfn = has->covered_end_pfn;
818                         gap->end_pfn = start_pfn;
819                         list_add_tail(&gap->list, &has->gap_list);
820
821                         has->covered_end_pfn = start_pfn;
822                 }
823
824                 /*
825                  * If the current hot add-request extends beyond
826                  * our current limit; extend it.
827                  */
828                 if ((start_pfn + pfn_cnt) > has->end_pfn) {
829                         residual = (start_pfn + pfn_cnt - has->end_pfn);
830                         /*
831                          * Extend the region by multiples of HA_CHUNK.
832                          */
833                         new_inc = (residual / HA_CHUNK) * HA_CHUNK;
834                         if (residual % HA_CHUNK)
835                                 new_inc += HA_CHUNK;
836
837                         has->end_pfn += new_inc;
838                 }
839
840                 ret = 1;
841                 break;
842         }
843         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
844
845         return ret;
846 }
847
848 static unsigned long handle_pg_range(unsigned long pg_start,
849                                         unsigned long pg_count)
850 {
851         unsigned long start_pfn = pg_start;
852         unsigned long pfn_cnt = pg_count;
853         unsigned long size;
854         struct hv_hotadd_state *has;
855         unsigned long pgs_ol = 0;
856         unsigned long old_covered_state;
857         unsigned long res = 0, flags;
858
859         pr_debug("Hot adding %lu pages starting at pfn 0x%lx.\n", pg_count,
860                 pg_start);
861
862         spin_lock_irqsave(&dm_device.ha_lock, flags);
863         list_for_each_entry(has, &dm_device.ha_region_list, list) {
864                 /*
865                  * If the pfn range we are dealing with is not in the current
866                  * "hot add block", move on.
867                  */
868                 if (start_pfn < has->start_pfn || start_pfn >= has->end_pfn)
869                         continue;
870
871                 old_covered_state = has->covered_end_pfn;
872
873                 if (start_pfn < has->ha_end_pfn) {
874                         /*
875                          * This is the case where we are backing pages
876                          * in an already hot added region. Bring
877                          * these pages online first.
878                          */
879                         pgs_ol = has->ha_end_pfn - start_pfn;
880                         if (pgs_ol > pfn_cnt)
881                                 pgs_ol = pfn_cnt;
882
883                         has->covered_end_pfn +=  pgs_ol;
884                         pfn_cnt -= pgs_ol;
885                         /*
886                          * Check if the corresponding memory block is already
887                          * online. It is possible to observe struct pages still
888                          * being uninitialized here so check section instead.
889                          * In case the section is online we need to bring the
890                          * rest of pfns (which were not backed previously)
891                          * online too.
892                          */
893                         if (start_pfn > has->start_pfn &&
894                             online_section_nr(pfn_to_section_nr(start_pfn)))
895                                 hv_bring_pgs_online(has, start_pfn, pgs_ol);
896
897                 }
898
899                 if ((has->ha_end_pfn < has->end_pfn) && (pfn_cnt > 0)) {
900                         /*
901                          * We have some residual hot add range
902                          * that needs to be hot added; hot add
903                          * it now. Hot add a multiple of
904                          * of HA_CHUNK that fully covers the pages
905                          * we have.
906                          */
907                         size = (has->end_pfn - has->ha_end_pfn);
908                         if (pfn_cnt <= size) {
909                                 size = ((pfn_cnt / HA_CHUNK) * HA_CHUNK);
910                                 if (pfn_cnt % HA_CHUNK)
911                                         size += HA_CHUNK;
912                         } else {
913                                 pfn_cnt = size;
914                         }
915                         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
916                         hv_mem_hot_add(has->ha_end_pfn, size, pfn_cnt, has);
917                         spin_lock_irqsave(&dm_device.ha_lock, flags);
918                 }
919                 /*
920                  * If we managed to online any pages that were given to us,
921                  * we declare success.
922                  */
923                 res = has->covered_end_pfn - old_covered_state;
924                 break;
925         }
926         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
927
928         return res;
929 }
930
931 static unsigned long process_hot_add(unsigned long pg_start,
932                                         unsigned long pfn_cnt,
933                                         unsigned long rg_start,
934                                         unsigned long rg_size)
935 {
936         struct hv_hotadd_state *ha_region = NULL;
937         int covered;
938         unsigned long flags;
939
940         if (pfn_cnt == 0)
941                 return 0;
942
943         if (!dm_device.host_specified_ha_region) {
944                 covered = pfn_covered(pg_start, pfn_cnt);
945                 if (covered < 0)
946                         return 0;
947
948                 if (covered)
949                         goto do_pg_range;
950         }
951
952         /*
953          * If the host has specified a hot-add range; deal with it first.
954          */
955
956         if (rg_size != 0) {
957                 ha_region = kzalloc(sizeof(struct hv_hotadd_state), GFP_KERNEL);
958                 if (!ha_region)
959                         return 0;
960
961                 INIT_LIST_HEAD(&ha_region->list);
962                 INIT_LIST_HEAD(&ha_region->gap_list);
963
964                 ha_region->start_pfn = rg_start;
965                 ha_region->ha_end_pfn = rg_start;
966                 ha_region->covered_start_pfn = pg_start;
967                 ha_region->covered_end_pfn = pg_start;
968                 ha_region->end_pfn = rg_start + rg_size;
969
970                 spin_lock_irqsave(&dm_device.ha_lock, flags);
971                 list_add_tail(&ha_region->list, &dm_device.ha_region_list);
972                 spin_unlock_irqrestore(&dm_device.ha_lock, flags);
973         }
974
975 do_pg_range:
976         /*
977          * Process the page range specified; bringing them
978          * online if possible.
979          */
980         return handle_pg_range(pg_start, pfn_cnt);
981 }
982
983 #endif
984
985 static void hot_add_req(struct work_struct *dummy)
986 {
987         struct dm_hot_add_response resp;
988 #ifdef CONFIG_MEMORY_HOTPLUG
989         unsigned long pg_start, pfn_cnt;
990         unsigned long rg_start, rg_sz;
991 #endif
992         struct hv_dynmem_device *dm = &dm_device;
993
994         memset(&resp, 0, sizeof(struct dm_hot_add_response));
995         resp.hdr.type = DM_MEM_HOT_ADD_RESPONSE;
996         resp.hdr.size = sizeof(struct dm_hot_add_response);
997
998 #ifdef CONFIG_MEMORY_HOTPLUG
999         pg_start = dm->ha_wrk.ha_page_range.finfo.start_page;
1000         pfn_cnt = dm->ha_wrk.ha_page_range.finfo.page_cnt;
1001
1002         rg_start = dm->ha_wrk.ha_region_range.finfo.start_page;
1003         rg_sz = dm->ha_wrk.ha_region_range.finfo.page_cnt;
1004
1005         if ((rg_start == 0) && (!dm->host_specified_ha_region)) {
1006                 unsigned long region_size;
1007                 unsigned long region_start;
1008
1009                 /*
1010                  * The host has not specified the hot-add region.
1011                  * Based on the hot-add page range being specified,
1012                  * compute a hot-add region that can cover the pages
1013                  * that need to be hot-added while ensuring the alignment
1014                  * and size requirements of Linux as it relates to hot-add.
1015                  */
1016                 region_start = pg_start;
1017                 region_size = (pfn_cnt / HA_CHUNK) * HA_CHUNK;
1018                 if (pfn_cnt % HA_CHUNK)
1019                         region_size += HA_CHUNK;
1020
1021                 region_start = (pg_start / HA_CHUNK) * HA_CHUNK;
1022
1023                 rg_start = region_start;
1024                 rg_sz = region_size;
1025         }
1026
1027         if (do_hot_add)
1028                 resp.page_count = process_hot_add(pg_start, pfn_cnt,
1029                                                 rg_start, rg_sz);
1030
1031         dm->num_pages_added += resp.page_count;
1032 #endif
1033         /*
1034          * The result field of the response structure has the
1035          * following semantics:
1036          *
1037          * 1. If all or some pages hot-added: Guest should return success.
1038          *
1039          * 2. If no pages could be hot-added:
1040          *
1041          * If the guest returns success, then the host
1042          * will not attempt any further hot-add operations. This
1043          * signifies a permanent failure.
1044          *
1045          * If the guest returns failure, then this failure will be
1046          * treated as a transient failure and the host may retry the
1047          * hot-add operation after some delay.
1048          */
1049         if (resp.page_count > 0)
1050                 resp.result = 1;
1051         else if (!do_hot_add)
1052                 resp.result = 1;
1053         else
1054                 resp.result = 0;
1055
1056         if (!do_hot_add || (resp.page_count == 0))
1057                 pr_err("Memory hot add failed\n");
1058
1059         dm->state = DM_INITIALIZED;
1060         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1061         vmbus_sendpacket(dm->dev->channel, &resp,
1062                         sizeof(struct dm_hot_add_response),
1063                         (unsigned long)NULL,
1064                         VM_PKT_DATA_INBAND, 0);
1065 }
1066
1067 static void process_info(struct hv_dynmem_device *dm, struct dm_info_msg *msg)
1068 {
1069         struct dm_info_header *info_hdr;
1070
1071         info_hdr = (struct dm_info_header *)msg->info;
1072
1073         switch (info_hdr->type) {
1074         case INFO_TYPE_MAX_PAGE_CNT:
1075                 if (info_hdr->data_size == sizeof(__u64)) {
1076                         __u64 *max_page_count = (__u64 *)&info_hdr[1];
1077
1078                         pr_info("Max. dynamic memory size: %llu MB\n",
1079                                 (*max_page_count) >> (20 - PAGE_SHIFT));
1080                 }
1081
1082                 break;
1083         default:
1084                 pr_warn("Received Unknown type: %d\n", info_hdr->type);
1085         }
1086 }
1087
1088 static unsigned long compute_balloon_floor(void)
1089 {
1090         unsigned long min_pages;
1091         unsigned long nr_pages = totalram_pages();
1092 #define MB2PAGES(mb) ((mb) << (20 - PAGE_SHIFT))
1093         /* Simple continuous piecewiese linear function:
1094          *  max MiB -> min MiB  gradient
1095          *       0         0
1096          *      16        16
1097          *      32        24
1098          *     128        72    (1/2)
1099          *     512       168    (1/4)
1100          *    2048       360    (1/8)
1101          *    8192       744    (1/16)
1102          *   32768      1512    (1/32)
1103          */
1104         if (nr_pages < MB2PAGES(128))
1105                 min_pages = MB2PAGES(8) + (nr_pages >> 1);
1106         else if (nr_pages < MB2PAGES(512))
1107                 min_pages = MB2PAGES(40) + (nr_pages >> 2);
1108         else if (nr_pages < MB2PAGES(2048))
1109                 min_pages = MB2PAGES(104) + (nr_pages >> 3);
1110         else if (nr_pages < MB2PAGES(8192))
1111                 min_pages = MB2PAGES(232) + (nr_pages >> 4);
1112         else
1113                 min_pages = MB2PAGES(488) + (nr_pages >> 5);
1114 #undef MB2PAGES
1115         return min_pages;
1116 }
1117
1118 /*
1119  * Post our status as it relates memory pressure to the
1120  * host. Host expects the guests to post this status
1121  * periodically at 1 second intervals.
1122  *
1123  * The metrics specified in this protocol are very Windows
1124  * specific and so we cook up numbers here to convey our memory
1125  * pressure.
1126  */
1127
1128 static void post_status(struct hv_dynmem_device *dm)
1129 {
1130         struct dm_status status;
1131         unsigned long now = jiffies;
1132         unsigned long last_post = last_post_time;
1133
1134         if (pressure_report_delay > 0) {
1135                 --pressure_report_delay;
1136                 return;
1137         }
1138
1139         if (!time_after(now, (last_post_time + HZ)))
1140                 return;
1141
1142         memset(&status, 0, sizeof(struct dm_status));
1143         status.hdr.type = DM_STATUS_REPORT;
1144         status.hdr.size = sizeof(struct dm_status);
1145         status.hdr.trans_id = atomic_inc_return(&trans_id);
1146
1147         /*
1148          * The host expects the guest to report free and committed memory.
1149          * Furthermore, the host expects the pressure information to include
1150          * the ballooned out pages. For a given amount of memory that we are
1151          * managing we need to compute a floor below which we should not
1152          * balloon. Compute this and add it to the pressure report.
1153          * We also need to report all offline pages (num_pages_added -
1154          * num_pages_onlined) as committed to the host, otherwise it can try
1155          * asking us to balloon them out.
1156          */
1157         status.num_avail = si_mem_available();
1158         status.num_committed = vm_memory_committed() +
1159                 dm->num_pages_ballooned +
1160                 (dm->num_pages_added > dm->num_pages_onlined ?
1161                  dm->num_pages_added - dm->num_pages_onlined : 0) +
1162                 compute_balloon_floor();
1163
1164         trace_balloon_status(status.num_avail, status.num_committed,
1165                              vm_memory_committed(), dm->num_pages_ballooned,
1166                              dm->num_pages_added, dm->num_pages_onlined);
1167         /*
1168          * If our transaction ID is no longer current, just don't
1169          * send the status. This can happen if we were interrupted
1170          * after we picked our transaction ID.
1171          */
1172         if (status.hdr.trans_id != atomic_read(&trans_id))
1173                 return;
1174
1175         /*
1176          * If the last post time that we sampled has changed,
1177          * we have raced, don't post the status.
1178          */
1179         if (last_post != last_post_time)
1180                 return;
1181
1182         last_post_time = jiffies;
1183         vmbus_sendpacket(dm->dev->channel, &status,
1184                                 sizeof(struct dm_status),
1185                                 (unsigned long)NULL,
1186                                 VM_PKT_DATA_INBAND, 0);
1187
1188 }
1189
1190 static void free_balloon_pages(struct hv_dynmem_device *dm,
1191                          union dm_mem_page_range *range_array)
1192 {
1193         int num_pages = range_array->finfo.page_cnt;
1194         __u64 start_frame = range_array->finfo.start_page;
1195         struct page *pg;
1196         int i;
1197
1198         for (i = 0; i < num_pages; i++) {
1199                 pg = pfn_to_page(i + start_frame);
1200                 __ClearPageOffline(pg);
1201                 __free_page(pg);
1202                 dm->num_pages_ballooned--;
1203         }
1204 }
1205
1206
1207
1208 static unsigned int alloc_balloon_pages(struct hv_dynmem_device *dm,
1209                                         unsigned int num_pages,
1210                                         struct dm_balloon_response *bl_resp,
1211                                         int alloc_unit)
1212 {
1213         unsigned int i, j;
1214         struct page *pg;
1215
1216         for (i = 0; i < num_pages / alloc_unit; i++) {
1217                 if (bl_resp->hdr.size + sizeof(union dm_mem_page_range) >
1218                         PAGE_SIZE)
1219                         return i * alloc_unit;
1220
1221                 /*
1222                  * We execute this code in a thread context. Furthermore,
1223                  * we don't want the kernel to try too hard.
1224                  */
1225                 pg = alloc_pages(GFP_HIGHUSER | __GFP_NORETRY |
1226                                 __GFP_NOMEMALLOC | __GFP_NOWARN,
1227                                 get_order(alloc_unit << PAGE_SHIFT));
1228
1229                 if (!pg)
1230                         return i * alloc_unit;
1231
1232                 dm->num_pages_ballooned += alloc_unit;
1233
1234                 /*
1235                  * If we allocatted 2M pages; split them so we
1236                  * can free them in any order we get.
1237                  */
1238
1239                 if (alloc_unit != 1)
1240                         split_page(pg, get_order(alloc_unit << PAGE_SHIFT));
1241
1242                 /* mark all pages offline */
1243                 for (j = 0; j < (1 << get_order(alloc_unit << PAGE_SHIFT)); j++)
1244                         __SetPageOffline(pg + j);
1245
1246                 bl_resp->range_count++;
1247                 bl_resp->range_array[i].finfo.start_page =
1248                         page_to_pfn(pg);
1249                 bl_resp->range_array[i].finfo.page_cnt = alloc_unit;
1250                 bl_resp->hdr.size += sizeof(union dm_mem_page_range);
1251
1252         }
1253
1254         return i * alloc_unit;
1255 }
1256
1257 static void balloon_up(struct work_struct *dummy)
1258 {
1259         unsigned int num_pages = dm_device.balloon_wrk.num_pages;
1260         unsigned int num_ballooned = 0;
1261         struct dm_balloon_response *bl_resp;
1262         int alloc_unit;
1263         int ret;
1264         bool done = false;
1265         int i;
1266         long avail_pages;
1267         unsigned long floor;
1268
1269         /*
1270          * We will attempt 2M allocations. However, if we fail to
1271          * allocate 2M chunks, we will go back to 4k allocations.
1272          */
1273         alloc_unit = 512;
1274
1275         avail_pages = si_mem_available();
1276         floor = compute_balloon_floor();
1277
1278         /* Refuse to balloon below the floor. */
1279         if (avail_pages < num_pages || avail_pages - num_pages < floor) {
1280                 pr_warn("Balloon request will be partially fulfilled. %s\n",
1281                         avail_pages < num_pages ? "Not enough memory." :
1282                         "Balloon floor reached.");
1283
1284                 num_pages = avail_pages > floor ? (avail_pages - floor) : 0;
1285         }
1286
1287         while (!done) {
1288                 memset(balloon_up_send_buffer, 0, PAGE_SIZE);
1289                 bl_resp = (struct dm_balloon_response *)balloon_up_send_buffer;
1290                 bl_resp->hdr.type = DM_BALLOON_RESPONSE;
1291                 bl_resp->hdr.size = sizeof(struct dm_balloon_response);
1292                 bl_resp->more_pages = 1;
1293
1294                 num_pages -= num_ballooned;
1295                 num_ballooned = alloc_balloon_pages(&dm_device, num_pages,
1296                                                     bl_resp, alloc_unit);
1297
1298                 if (alloc_unit != 1 && num_ballooned == 0) {
1299                         alloc_unit = 1;
1300                         continue;
1301                 }
1302
1303                 if (num_ballooned == 0 || num_ballooned == num_pages) {
1304                         pr_debug("Ballooned %u out of %u requested pages.\n",
1305                                 num_pages, dm_device.balloon_wrk.num_pages);
1306
1307                         bl_resp->more_pages = 0;
1308                         done = true;
1309                         dm_device.state = DM_INITIALIZED;
1310                 }
1311
1312                 /*
1313                  * We are pushing a lot of data through the channel;
1314                  * deal with transient failures caused because of the
1315                  * lack of space in the ring buffer.
1316                  */
1317
1318                 do {
1319                         bl_resp->hdr.trans_id = atomic_inc_return(&trans_id);
1320                         ret = vmbus_sendpacket(dm_device.dev->channel,
1321                                                 bl_resp,
1322                                                 bl_resp->hdr.size,
1323                                                 (unsigned long)NULL,
1324                                                 VM_PKT_DATA_INBAND, 0);
1325
1326                         if (ret == -EAGAIN)
1327                                 msleep(20);
1328                         post_status(&dm_device);
1329                 } while (ret == -EAGAIN);
1330
1331                 if (ret) {
1332                         /*
1333                          * Free up the memory we allocatted.
1334                          */
1335                         pr_err("Balloon response failed\n");
1336
1337                         for (i = 0; i < bl_resp->range_count; i++)
1338                                 free_balloon_pages(&dm_device,
1339                                                  &bl_resp->range_array[i]);
1340
1341                         done = true;
1342                 }
1343         }
1344
1345 }
1346
1347 static void balloon_down(struct hv_dynmem_device *dm,
1348                         struct dm_unballoon_request *req)
1349 {
1350         union dm_mem_page_range *range_array = req->range_array;
1351         int range_count = req->range_count;
1352         struct dm_unballoon_response resp;
1353         int i;
1354         unsigned int prev_pages_ballooned = dm->num_pages_ballooned;
1355
1356         for (i = 0; i < range_count; i++) {
1357                 free_balloon_pages(dm, &range_array[i]);
1358                 complete(&dm_device.config_event);
1359         }
1360
1361         pr_debug("Freed %u ballooned pages.\n",
1362                 prev_pages_ballooned - dm->num_pages_ballooned);
1363
1364         if (req->more_pages == 1)
1365                 return;
1366
1367         memset(&resp, 0, sizeof(struct dm_unballoon_response));
1368         resp.hdr.type = DM_UNBALLOON_RESPONSE;
1369         resp.hdr.trans_id = atomic_inc_return(&trans_id);
1370         resp.hdr.size = sizeof(struct dm_unballoon_response);
1371
1372         vmbus_sendpacket(dm_device.dev->channel, &resp,
1373                                 sizeof(struct dm_unballoon_response),
1374                                 (unsigned long)NULL,
1375                                 VM_PKT_DATA_INBAND, 0);
1376
1377         dm->state = DM_INITIALIZED;
1378 }
1379
1380 static void balloon_onchannelcallback(void *context);
1381
1382 static int dm_thread_func(void *dm_dev)
1383 {
1384         struct hv_dynmem_device *dm = dm_dev;
1385
1386         while (!kthread_should_stop()) {
1387                 wait_for_completion_interruptible_timeout(
1388                                                 &dm_device.config_event, 1*HZ);
1389                 /*
1390                  * The host expects us to post information on the memory
1391                  * pressure every second.
1392                  */
1393                 reinit_completion(&dm_device.config_event);
1394                 post_status(dm);
1395         }
1396
1397         return 0;
1398 }
1399
1400
1401 static void version_resp(struct hv_dynmem_device *dm,
1402                         struct dm_version_response *vresp)
1403 {
1404         struct dm_version_request version_req;
1405         int ret;
1406
1407         if (vresp->is_accepted) {
1408                 /*
1409                  * We are done; wakeup the
1410                  * context waiting for version
1411                  * negotiation.
1412                  */
1413                 complete(&dm->host_event);
1414                 return;
1415         }
1416         /*
1417          * If there are more versions to try, continue
1418          * with negotiations; if not
1419          * shutdown the service since we are not able
1420          * to negotiate a suitable version number
1421          * with the host.
1422          */
1423         if (dm->next_version == 0)
1424                 goto version_error;
1425
1426         memset(&version_req, 0, sizeof(struct dm_version_request));
1427         version_req.hdr.type = DM_VERSION_REQUEST;
1428         version_req.hdr.size = sizeof(struct dm_version_request);
1429         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1430         version_req.version.version = dm->next_version;
1431         dm->version = version_req.version.version;
1432
1433         /*
1434          * Set the next version to try in case current version fails.
1435          * Win7 protocol ought to be the last one to try.
1436          */
1437         switch (version_req.version.version) {
1438         case DYNMEM_PROTOCOL_VERSION_WIN8:
1439                 dm->next_version = DYNMEM_PROTOCOL_VERSION_WIN7;
1440                 version_req.is_last_attempt = 0;
1441                 break;
1442         default:
1443                 dm->next_version = 0;
1444                 version_req.is_last_attempt = 1;
1445         }
1446
1447         ret = vmbus_sendpacket(dm->dev->channel, &version_req,
1448                                 sizeof(struct dm_version_request),
1449                                 (unsigned long)NULL,
1450                                 VM_PKT_DATA_INBAND, 0);
1451
1452         if (ret)
1453                 goto version_error;
1454
1455         return;
1456
1457 version_error:
1458         dm->state = DM_INIT_ERROR;
1459         complete(&dm->host_event);
1460 }
1461
1462 static void cap_resp(struct hv_dynmem_device *dm,
1463                         struct dm_capabilities_resp_msg *cap_resp)
1464 {
1465         if (!cap_resp->is_accepted) {
1466                 pr_err("Capabilities not accepted by host\n");
1467                 dm->state = DM_INIT_ERROR;
1468         }
1469         complete(&dm->host_event);
1470 }
1471
1472 static void balloon_onchannelcallback(void *context)
1473 {
1474         struct hv_device *dev = context;
1475         u32 recvlen;
1476         u64 requestid;
1477         struct dm_message *dm_msg;
1478         struct dm_header *dm_hdr;
1479         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1480         struct dm_balloon *bal_msg;
1481         struct dm_hot_add *ha_msg;
1482         union dm_mem_page_range *ha_pg_range;
1483         union dm_mem_page_range *ha_region;
1484
1485         memset(recv_buffer, 0, sizeof(recv_buffer));
1486         vmbus_recvpacket(dev->channel, recv_buffer,
1487                          PAGE_SIZE, &recvlen, &requestid);
1488
1489         if (recvlen > 0) {
1490                 dm_msg = (struct dm_message *)recv_buffer;
1491                 dm_hdr = &dm_msg->hdr;
1492
1493                 switch (dm_hdr->type) {
1494                 case DM_VERSION_RESPONSE:
1495                         version_resp(dm,
1496                                  (struct dm_version_response *)dm_msg);
1497                         break;
1498
1499                 case DM_CAPABILITIES_RESPONSE:
1500                         cap_resp(dm,
1501                                  (struct dm_capabilities_resp_msg *)dm_msg);
1502                         break;
1503
1504                 case DM_BALLOON_REQUEST:
1505                         if (dm->state == DM_BALLOON_UP)
1506                                 pr_warn("Currently ballooning\n");
1507                         bal_msg = (struct dm_balloon *)recv_buffer;
1508                         dm->state = DM_BALLOON_UP;
1509                         dm_device.balloon_wrk.num_pages = bal_msg->num_pages;
1510                         schedule_work(&dm_device.balloon_wrk.wrk);
1511                         break;
1512
1513                 case DM_UNBALLOON_REQUEST:
1514                         dm->state = DM_BALLOON_DOWN;
1515                         balloon_down(dm,
1516                                  (struct dm_unballoon_request *)recv_buffer);
1517                         break;
1518
1519                 case DM_MEM_HOT_ADD_REQUEST:
1520                         if (dm->state == DM_HOT_ADD)
1521                                 pr_warn("Currently hot-adding\n");
1522                         dm->state = DM_HOT_ADD;
1523                         ha_msg = (struct dm_hot_add *)recv_buffer;
1524                         if (ha_msg->hdr.size == sizeof(struct dm_hot_add)) {
1525                                 /*
1526                                  * This is a normal hot-add request specifying
1527                                  * hot-add memory.
1528                                  */
1529                                 dm->host_specified_ha_region = false;
1530                                 ha_pg_range = &ha_msg->range;
1531                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1532                                 dm->ha_wrk.ha_region_range.page_range = 0;
1533                         } else {
1534                                 /*
1535                                  * Host is specifying that we first hot-add
1536                                  * a region and then partially populate this
1537                                  * region.
1538                                  */
1539                                 dm->host_specified_ha_region = true;
1540                                 ha_pg_range = &ha_msg->range;
1541                                 ha_region = &ha_pg_range[1];
1542                                 dm->ha_wrk.ha_page_range = *ha_pg_range;
1543                                 dm->ha_wrk.ha_region_range = *ha_region;
1544                         }
1545                         schedule_work(&dm_device.ha_wrk.wrk);
1546                         break;
1547
1548                 case DM_INFO_MESSAGE:
1549                         process_info(dm, (struct dm_info_msg *)dm_msg);
1550                         break;
1551
1552                 default:
1553                         pr_warn("Unhandled message: type: %d\n", dm_hdr->type);
1554
1555                 }
1556         }
1557
1558 }
1559
1560 static int balloon_connect_vsp(struct hv_device *dev)
1561 {
1562         struct dm_version_request version_req;
1563         struct dm_capabilities cap_msg;
1564         unsigned long t;
1565         int ret;
1566
1567         ret = vmbus_open(dev->channel, dm_ring_size, dm_ring_size, NULL, 0,
1568                          balloon_onchannelcallback, dev);
1569         if (ret)
1570                 return ret;
1571
1572         /*
1573          * Initiate the hand shake with the host and negotiate
1574          * a version that the host can support. We start with the
1575          * highest version number and go down if the host cannot
1576          * support it.
1577          */
1578         memset(&version_req, 0, sizeof(struct dm_version_request));
1579         version_req.hdr.type = DM_VERSION_REQUEST;
1580         version_req.hdr.size = sizeof(struct dm_version_request);
1581         version_req.hdr.trans_id = atomic_inc_return(&trans_id);
1582         version_req.version.version = DYNMEM_PROTOCOL_VERSION_WIN10;
1583         version_req.is_last_attempt = 0;
1584         dm_device.version = version_req.version.version;
1585
1586         ret = vmbus_sendpacket(dev->channel, &version_req,
1587                                sizeof(struct dm_version_request),
1588                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1589         if (ret)
1590                 goto out;
1591
1592         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1593         if (t == 0) {
1594                 ret = -ETIMEDOUT;
1595                 goto out;
1596         }
1597
1598         /*
1599          * If we could not negotiate a compatible version with the host
1600          * fail the probe function.
1601          */
1602         if (dm_device.state == DM_INIT_ERROR) {
1603                 ret = -EPROTO;
1604                 goto out;
1605         }
1606
1607         pr_info("Using Dynamic Memory protocol version %u.%u\n",
1608                 DYNMEM_MAJOR_VERSION(dm_device.version),
1609                 DYNMEM_MINOR_VERSION(dm_device.version));
1610
1611         /*
1612          * Now submit our capabilities to the host.
1613          */
1614         memset(&cap_msg, 0, sizeof(struct dm_capabilities));
1615         cap_msg.hdr.type = DM_CAPABILITIES_REPORT;
1616         cap_msg.hdr.size = sizeof(struct dm_capabilities);
1617         cap_msg.hdr.trans_id = atomic_inc_return(&trans_id);
1618
1619         cap_msg.caps.cap_bits.balloon = 1;
1620         cap_msg.caps.cap_bits.hot_add = 1;
1621
1622         /*
1623          * Specify our alignment requirements as it relates
1624          * memory hot-add. Specify 128MB alignment.
1625          */
1626         cap_msg.caps.cap_bits.hot_add_alignment = 7;
1627
1628         /*
1629          * Currently the host does not use these
1630          * values and we set them to what is done in the
1631          * Windows driver.
1632          */
1633         cap_msg.min_page_cnt = 0;
1634         cap_msg.max_page_number = -1;
1635
1636         ret = vmbus_sendpacket(dev->channel, &cap_msg,
1637                                sizeof(struct dm_capabilities),
1638                                (unsigned long)NULL, VM_PKT_DATA_INBAND, 0);
1639         if (ret)
1640                 goto out;
1641
1642         t = wait_for_completion_timeout(&dm_device.host_event, 5*HZ);
1643         if (t == 0) {
1644                 ret = -ETIMEDOUT;
1645                 goto out;
1646         }
1647
1648         /*
1649          * If the host does not like our capabilities,
1650          * fail the probe function.
1651          */
1652         if (dm_device.state == DM_INIT_ERROR) {
1653                 ret = -EPROTO;
1654                 goto out;
1655         }
1656
1657         return 0;
1658 out:
1659         vmbus_close(dev->channel);
1660         return ret;
1661 }
1662
1663 static int balloon_probe(struct hv_device *dev,
1664                          const struct hv_vmbus_device_id *dev_id)
1665 {
1666         int ret;
1667
1668 #ifdef CONFIG_MEMORY_HOTPLUG
1669         do_hot_add = hot_add;
1670 #else
1671         do_hot_add = false;
1672 #endif
1673         dm_device.dev = dev;
1674         dm_device.state = DM_INITIALIZING;
1675         dm_device.next_version = DYNMEM_PROTOCOL_VERSION_WIN8;
1676         init_completion(&dm_device.host_event);
1677         init_completion(&dm_device.config_event);
1678         INIT_LIST_HEAD(&dm_device.ha_region_list);
1679         spin_lock_init(&dm_device.ha_lock);
1680         INIT_WORK(&dm_device.balloon_wrk.wrk, balloon_up);
1681         INIT_WORK(&dm_device.ha_wrk.wrk, hot_add_req);
1682         dm_device.host_specified_ha_region = false;
1683
1684 #ifdef CONFIG_MEMORY_HOTPLUG
1685         set_online_page_callback(&hv_online_page);
1686         register_memory_notifier(&hv_memory_nb);
1687 #endif
1688
1689         hv_set_drvdata(dev, &dm_device);
1690
1691         ret = balloon_connect_vsp(dev);
1692         if (ret != 0)
1693                 return ret;
1694
1695         dm_device.state = DM_INITIALIZED;
1696
1697         dm_device.thread =
1698                  kthread_run(dm_thread_func, &dm_device, "hv_balloon");
1699         if (IS_ERR(dm_device.thread)) {
1700                 ret = PTR_ERR(dm_device.thread);
1701                 goto probe_error;
1702         }
1703
1704         return 0;
1705
1706 probe_error:
1707         vmbus_close(dev->channel);
1708 #ifdef CONFIG_MEMORY_HOTPLUG
1709         unregister_memory_notifier(&hv_memory_nb);
1710         restore_online_page_callback(&hv_online_page);
1711 #endif
1712         return ret;
1713 }
1714
1715 static int balloon_remove(struct hv_device *dev)
1716 {
1717         struct hv_dynmem_device *dm = hv_get_drvdata(dev);
1718         struct hv_hotadd_state *has, *tmp;
1719         struct hv_hotadd_gap *gap, *tmp_gap;
1720         unsigned long flags;
1721
1722         if (dm->num_pages_ballooned != 0)
1723                 pr_warn("Ballooned pages: %d\n", dm->num_pages_ballooned);
1724
1725         cancel_work_sync(&dm->balloon_wrk.wrk);
1726         cancel_work_sync(&dm->ha_wrk.wrk);
1727
1728         kthread_stop(dm->thread);
1729         vmbus_close(dev->channel);
1730 #ifdef CONFIG_MEMORY_HOTPLUG
1731         unregister_memory_notifier(&hv_memory_nb);
1732         restore_online_page_callback(&hv_online_page);
1733 #endif
1734         spin_lock_irqsave(&dm_device.ha_lock, flags);
1735         list_for_each_entry_safe(has, tmp, &dm->ha_region_list, list) {
1736                 list_for_each_entry_safe(gap, tmp_gap, &has->gap_list, list) {
1737                         list_del(&gap->list);
1738                         kfree(gap);
1739                 }
1740                 list_del(&has->list);
1741                 kfree(has);
1742         }
1743         spin_unlock_irqrestore(&dm_device.ha_lock, flags);
1744
1745         return 0;
1746 }
1747
1748 static const struct hv_vmbus_device_id id_table[] = {
1749         /* Dynamic Memory Class ID */
1750         /* 525074DC-8985-46e2-8057-A307DC18A502 */
1751         { HV_DM_GUID, },
1752         { },
1753 };
1754
1755 MODULE_DEVICE_TABLE(vmbus, id_table);
1756
1757 static  struct hv_driver balloon_drv = {
1758         .name = "hv_balloon",
1759         .id_table = id_table,
1760         .probe =  balloon_probe,
1761         .remove =  balloon_remove,
1762         .driver = {
1763                 .probe_type = PROBE_PREFER_ASYNCHRONOUS,
1764         },
1765 };
1766
1767 static int __init init_balloon_drv(void)
1768 {
1769
1770         return vmbus_driver_register(&balloon_drv);
1771 }
1772
1773 module_init(init_balloon_drv);
1774
1775 MODULE_DESCRIPTION("Hyper-V Balloon");
1776 MODULE_LICENSE("GPL");