Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / gpu / ipu-v3 / ipu-image-convert.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Copyright (C) 2012-2016 Mentor Graphics Inc.
4  *
5  * Queued image conversion support, with tiling and rotation.
6  */
7
8 #include <linux/interrupt.h>
9 #include <linux/dma-mapping.h>
10 #include <video/imx-ipu-image-convert.h>
11 #include "ipu-prv.h"
12
13 /*
14  * The IC Resizer has a restriction that the output frame from the
15  * resizer must be 1024 or less in both width (pixels) and height
16  * (lines).
17  *
18  * The image converter attempts to split up a conversion when
19  * the desired output (converted) frame resolution exceeds the
20  * IC resizer limit of 1024 in either dimension.
21  *
22  * If either dimension of the output frame exceeds the limit, the
23  * dimension is split into 1, 2, or 4 equal stripes, for a maximum
24  * of 4*4 or 16 tiles. A conversion is then carried out for each
25  * tile (but taking care to pass the full frame stride length to
26  * the DMA channel's parameter memory!). IDMA double-buffering is used
27  * to convert each tile back-to-back when possible (see note below
28  * when double_buffering boolean is set).
29  *
30  * Note that the input frame must be split up into the same number
31  * of tiles as the output frame:
32  *
33  *                       +---------+-----+
34  *   +-----+---+         |  A      | B   |
35  *   | A   | B |         |         |     |
36  *   +-----+---+   -->   +---------+-----+
37  *   | C   | D |         |  C      | D   |
38  *   +-----+---+         |         |     |
39  *                       +---------+-----+
40  *
41  * Clockwise 90° rotations are handled by first rescaling into a
42  * reusable temporary tile buffer and then rotating with the 8x8
43  * block rotator, writing to the correct destination:
44  *
45  *                                         +-----+-----+
46  *                                         |     |     |
47  *   +-----+---+         +---------+       | C   | A   |
48  *   | A   | B |         | A,B, |  |       |     |     |
49  *   +-----+---+   -->   | C,D  |  |  -->  |     |     |
50  *   | C   | D |         +---------+       +-----+-----+
51  *   +-----+---+                           | D   | B   |
52  *                                         |     |     |
53  *                                         +-----+-----+
54  *
55  * If the 8x8 block rotator is used, horizontal or vertical flipping
56  * is done during the rotation step, otherwise flipping is done
57  * during the scaling step.
58  * With rotation or flipping, tile order changes between input and
59  * output image. Tiles are numbered row major from top left to bottom
60  * right for both input and output image.
61  */
62
63 #define MAX_STRIPES_W    4
64 #define MAX_STRIPES_H    4
65 #define MAX_TILES (MAX_STRIPES_W * MAX_STRIPES_H)
66
67 #define MIN_W     16
68 #define MIN_H     8
69 #define MAX_W     4096
70 #define MAX_H     4096
71
72 enum ipu_image_convert_type {
73         IMAGE_CONVERT_IN = 0,
74         IMAGE_CONVERT_OUT,
75 };
76
77 struct ipu_image_convert_dma_buf {
78         void          *virt;
79         dma_addr_t    phys;
80         unsigned long len;
81 };
82
83 struct ipu_image_convert_dma_chan {
84         int in;
85         int out;
86         int rot_in;
87         int rot_out;
88         int vdi_in_p;
89         int vdi_in;
90         int vdi_in_n;
91 };
92
93 /* dimensions of one tile */
94 struct ipu_image_tile {
95         u32 width;
96         u32 height;
97         u32 left;
98         u32 top;
99         /* size and strides are in bytes */
100         u32 size;
101         u32 stride;
102         u32 rot_stride;
103         /* start Y or packed offset of this tile */
104         u32 offset;
105         /* offset from start to tile in U plane, for planar formats */
106         u32 u_off;
107         /* offset from start to tile in V plane, for planar formats */
108         u32 v_off;
109 };
110
111 struct ipu_image_convert_image {
112         struct ipu_image base;
113         enum ipu_image_convert_type type;
114
115         const struct ipu_image_pixfmt *fmt;
116         unsigned int stride;
117
118         /* # of rows (horizontal stripes) if dest height is > 1024 */
119         unsigned int num_rows;
120         /* # of columns (vertical stripes) if dest width is > 1024 */
121         unsigned int num_cols;
122
123         struct ipu_image_tile tile[MAX_TILES];
124 };
125
126 struct ipu_image_pixfmt {
127         u32     fourcc;        /* V4L2 fourcc */
128         int     bpp;           /* total bpp */
129         int     uv_width_dec;  /* decimation in width for U/V planes */
130         int     uv_height_dec; /* decimation in height for U/V planes */
131         bool    planar;        /* planar format */
132         bool    uv_swapped;    /* U and V planes are swapped */
133         bool    uv_packed;     /* partial planar (U and V in same plane) */
134 };
135
136 struct ipu_image_convert_ctx;
137 struct ipu_image_convert_chan;
138 struct ipu_image_convert_priv;
139
140 struct ipu_image_convert_ctx {
141         struct ipu_image_convert_chan *chan;
142
143         ipu_image_convert_cb_t complete;
144         void *complete_context;
145
146         /* Source/destination image data and rotation mode */
147         struct ipu_image_convert_image in;
148         struct ipu_image_convert_image out;
149         struct ipu_ic_csc csc;
150         enum ipu_rotate_mode rot_mode;
151         u32 downsize_coeff_h;
152         u32 downsize_coeff_v;
153         u32 image_resize_coeff_h;
154         u32 image_resize_coeff_v;
155         u32 resize_coeffs_h[MAX_STRIPES_W];
156         u32 resize_coeffs_v[MAX_STRIPES_H];
157
158         /* intermediate buffer for rotation */
159         struct ipu_image_convert_dma_buf rot_intermediate[2];
160
161         /* current buffer number for double buffering */
162         int cur_buf_num;
163
164         bool aborting;
165         struct completion aborted;
166
167         /* can we use double-buffering for this conversion operation? */
168         bool double_buffering;
169         /* num_rows * num_cols */
170         unsigned int num_tiles;
171         /* next tile to process */
172         unsigned int next_tile;
173         /* where to place converted tile in dest image */
174         unsigned int out_tile_map[MAX_TILES];
175
176         struct list_head list;
177 };
178
179 struct ipu_image_convert_chan {
180         struct ipu_image_convert_priv *priv;
181
182         enum ipu_ic_task ic_task;
183         const struct ipu_image_convert_dma_chan *dma_ch;
184
185         struct ipu_ic *ic;
186         struct ipuv3_channel *in_chan;
187         struct ipuv3_channel *out_chan;
188         struct ipuv3_channel *rotation_in_chan;
189         struct ipuv3_channel *rotation_out_chan;
190
191         /* the IPU end-of-frame irqs */
192         int out_eof_irq;
193         int rot_out_eof_irq;
194
195         spinlock_t irqlock;
196
197         /* list of convert contexts */
198         struct list_head ctx_list;
199         /* queue of conversion runs */
200         struct list_head pending_q;
201         /* queue of completed runs */
202         struct list_head done_q;
203
204         /* the current conversion run */
205         struct ipu_image_convert_run *current_run;
206 };
207
208 struct ipu_image_convert_priv {
209         struct ipu_image_convert_chan chan[IC_NUM_TASKS];
210         struct ipu_soc *ipu;
211 };
212
213 static const struct ipu_image_convert_dma_chan
214 image_convert_dma_chan[IC_NUM_TASKS] = {
215         [IC_TASK_VIEWFINDER] = {
216                 .in = IPUV3_CHANNEL_MEM_IC_PRP_VF,
217                 .out = IPUV3_CHANNEL_IC_PRP_VF_MEM,
218                 .rot_in = IPUV3_CHANNEL_MEM_ROT_VF,
219                 .rot_out = IPUV3_CHANNEL_ROT_VF_MEM,
220                 .vdi_in_p = IPUV3_CHANNEL_MEM_VDI_PREV,
221                 .vdi_in = IPUV3_CHANNEL_MEM_VDI_CUR,
222                 .vdi_in_n = IPUV3_CHANNEL_MEM_VDI_NEXT,
223         },
224         [IC_TASK_POST_PROCESSOR] = {
225                 .in = IPUV3_CHANNEL_MEM_IC_PP,
226                 .out = IPUV3_CHANNEL_IC_PP_MEM,
227                 .rot_in = IPUV3_CHANNEL_MEM_ROT_PP,
228                 .rot_out = IPUV3_CHANNEL_ROT_PP_MEM,
229         },
230 };
231
232 static const struct ipu_image_pixfmt image_convert_formats[] = {
233         {
234                 .fourcc = V4L2_PIX_FMT_RGB565,
235                 .bpp    = 16,
236         }, {
237                 .fourcc = V4L2_PIX_FMT_RGB24,
238                 .bpp    = 24,
239         }, {
240                 .fourcc = V4L2_PIX_FMT_BGR24,
241                 .bpp    = 24,
242         }, {
243                 .fourcc = V4L2_PIX_FMT_RGB32,
244                 .bpp    = 32,
245         }, {
246                 .fourcc = V4L2_PIX_FMT_BGR32,
247                 .bpp    = 32,
248         }, {
249                 .fourcc = V4L2_PIX_FMT_XRGB32,
250                 .bpp    = 32,
251         }, {
252                 .fourcc = V4L2_PIX_FMT_XBGR32,
253                 .bpp    = 32,
254         }, {
255                 .fourcc = V4L2_PIX_FMT_BGRX32,
256                 .bpp    = 32,
257         }, {
258                 .fourcc = V4L2_PIX_FMT_RGBX32,
259                 .bpp    = 32,
260         }, {
261                 .fourcc = V4L2_PIX_FMT_YUYV,
262                 .bpp    = 16,
263                 .uv_width_dec = 2,
264                 .uv_height_dec = 1,
265         }, {
266                 .fourcc = V4L2_PIX_FMT_UYVY,
267                 .bpp    = 16,
268                 .uv_width_dec = 2,
269                 .uv_height_dec = 1,
270         }, {
271                 .fourcc = V4L2_PIX_FMT_YUV420,
272                 .bpp    = 12,
273                 .planar = true,
274                 .uv_width_dec = 2,
275                 .uv_height_dec = 2,
276         }, {
277                 .fourcc = V4L2_PIX_FMT_YVU420,
278                 .bpp    = 12,
279                 .planar = true,
280                 .uv_width_dec = 2,
281                 .uv_height_dec = 2,
282                 .uv_swapped = true,
283         }, {
284                 .fourcc = V4L2_PIX_FMT_NV12,
285                 .bpp    = 12,
286                 .planar = true,
287                 .uv_width_dec = 2,
288                 .uv_height_dec = 2,
289                 .uv_packed = true,
290         }, {
291                 .fourcc = V4L2_PIX_FMT_YUV422P,
292                 .bpp    = 16,
293                 .planar = true,
294                 .uv_width_dec = 2,
295                 .uv_height_dec = 1,
296         }, {
297                 .fourcc = V4L2_PIX_FMT_NV16,
298                 .bpp    = 16,
299                 .planar = true,
300                 .uv_width_dec = 2,
301                 .uv_height_dec = 1,
302                 .uv_packed = true,
303         },
304 };
305
306 static const struct ipu_image_pixfmt *get_format(u32 fourcc)
307 {
308         const struct ipu_image_pixfmt *ret = NULL;
309         unsigned int i;
310
311         for (i = 0; i < ARRAY_SIZE(image_convert_formats); i++) {
312                 if (image_convert_formats[i].fourcc == fourcc) {
313                         ret = &image_convert_formats[i];
314                         break;
315                 }
316         }
317
318         return ret;
319 }
320
321 static void dump_format(struct ipu_image_convert_ctx *ctx,
322                         struct ipu_image_convert_image *ic_image)
323 {
324         struct ipu_image_convert_chan *chan = ctx->chan;
325         struct ipu_image_convert_priv *priv = chan->priv;
326
327         dev_dbg(priv->ipu->dev,
328                 "task %u: ctx %p: %s format: %dx%d (%dx%d tiles), %c%c%c%c\n",
329                 chan->ic_task, ctx,
330                 ic_image->type == IMAGE_CONVERT_OUT ? "Output" : "Input",
331                 ic_image->base.pix.width, ic_image->base.pix.height,
332                 ic_image->num_cols, ic_image->num_rows,
333                 ic_image->fmt->fourcc & 0xff,
334                 (ic_image->fmt->fourcc >> 8) & 0xff,
335                 (ic_image->fmt->fourcc >> 16) & 0xff,
336                 (ic_image->fmt->fourcc >> 24) & 0xff);
337 }
338
339 int ipu_image_convert_enum_format(int index, u32 *fourcc)
340 {
341         const struct ipu_image_pixfmt *fmt;
342
343         if (index >= (int)ARRAY_SIZE(image_convert_formats))
344                 return -EINVAL;
345
346         /* Format found */
347         fmt = &image_convert_formats[index];
348         *fourcc = fmt->fourcc;
349         return 0;
350 }
351 EXPORT_SYMBOL_GPL(ipu_image_convert_enum_format);
352
353 static void free_dma_buf(struct ipu_image_convert_priv *priv,
354                          struct ipu_image_convert_dma_buf *buf)
355 {
356         if (buf->virt)
357                 dma_free_coherent(priv->ipu->dev,
358                                   buf->len, buf->virt, buf->phys);
359         buf->virt = NULL;
360         buf->phys = 0;
361 }
362
363 static int alloc_dma_buf(struct ipu_image_convert_priv *priv,
364                          struct ipu_image_convert_dma_buf *buf,
365                          int size)
366 {
367         buf->len = PAGE_ALIGN(size);
368         buf->virt = dma_alloc_coherent(priv->ipu->dev, buf->len, &buf->phys,
369                                        GFP_DMA | GFP_KERNEL);
370         if (!buf->virt) {
371                 dev_err(priv->ipu->dev, "failed to alloc dma buffer\n");
372                 return -ENOMEM;
373         }
374
375         return 0;
376 }
377
378 static inline int num_stripes(int dim)
379 {
380         return (dim - 1) / 1024 + 1;
381 }
382
383 /*
384  * Calculate downsizing coefficients, which are the same for all tiles,
385  * and initial bilinear resizing coefficients, which are used to find the
386  * best seam positions.
387  * Also determine the number of tiles necessary to guarantee that no tile
388  * is larger than 1024 pixels in either dimension at the output and between
389  * IC downsizing and main processing sections.
390  */
391 static int calc_image_resize_coefficients(struct ipu_image_convert_ctx *ctx,
392                                           struct ipu_image *in,
393                                           struct ipu_image *out)
394 {
395         u32 downsized_width = in->rect.width;
396         u32 downsized_height = in->rect.height;
397         u32 downsize_coeff_v = 0;
398         u32 downsize_coeff_h = 0;
399         u32 resized_width = out->rect.width;
400         u32 resized_height = out->rect.height;
401         u32 resize_coeff_h;
402         u32 resize_coeff_v;
403         u32 cols;
404         u32 rows;
405
406         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
407                 resized_width = out->rect.height;
408                 resized_height = out->rect.width;
409         }
410
411         /* Do not let invalid input lead to an endless loop below */
412         if (WARN_ON(resized_width == 0 || resized_height == 0))
413                 return -EINVAL;
414
415         while (downsized_width >= resized_width * 2) {
416                 downsized_width >>= 1;
417                 downsize_coeff_h++;
418         }
419
420         while (downsized_height >= resized_height * 2) {
421                 downsized_height >>= 1;
422                 downsize_coeff_v++;
423         }
424
425         /*
426          * Calculate the bilinear resizing coefficients that could be used if
427          * we were converting with a single tile. The bottom right output pixel
428          * should sample as close as possible to the bottom right input pixel
429          * out of the decimator, but not overshoot it:
430          */
431         resize_coeff_h = 8192 * (downsized_width - 1) / (resized_width - 1);
432         resize_coeff_v = 8192 * (downsized_height - 1) / (resized_height - 1);
433
434         /*
435          * Both the output of the IC downsizing section before being passed to
436          * the IC main processing section and the final output of the IC main
437          * processing section must be <= 1024 pixels in both dimensions.
438          */
439         cols = num_stripes(max_t(u32, downsized_width, resized_width));
440         rows = num_stripes(max_t(u32, downsized_height, resized_height));
441
442         dev_dbg(ctx->chan->priv->ipu->dev,
443                 "%s: hscale: >>%u, *8192/%u vscale: >>%u, *8192/%u, %ux%u tiles\n",
444                 __func__, downsize_coeff_h, resize_coeff_h, downsize_coeff_v,
445                 resize_coeff_v, cols, rows);
446
447         if (downsize_coeff_h > 2 || downsize_coeff_v  > 2 ||
448             resize_coeff_h > 0x3fff || resize_coeff_v > 0x3fff)
449                 return -EINVAL;
450
451         ctx->downsize_coeff_h = downsize_coeff_h;
452         ctx->downsize_coeff_v = downsize_coeff_v;
453         ctx->image_resize_coeff_h = resize_coeff_h;
454         ctx->image_resize_coeff_v = resize_coeff_v;
455         ctx->in.num_cols = cols;
456         ctx->in.num_rows = rows;
457
458         return 0;
459 }
460
461 #define round_closest(x, y) round_down((x) + (y)/2, (y))
462
463 /*
464  * Find the best aligned seam position for the given column / row index.
465  * Rotation and image offsets are out of scope.
466  *
467  * @index: column / row index, used to calculate valid interval
468  * @in_edge: input right / bottom edge
469  * @out_edge: output right / bottom edge
470  * @in_align: input alignment, either horizontal 8-byte line start address
471  *            alignment, or pixel alignment due to image format
472  * @out_align: output alignment, either horizontal 8-byte line start address
473  *             alignment, or pixel alignment due to image format or rotator
474  *             block size
475  * @in_burst: horizontal input burst size in case of horizontal flip
476  * @out_burst: horizontal output burst size or rotator block size
477  * @downsize_coeff: downsizing section coefficient
478  * @resize_coeff: main processing section resizing coefficient
479  * @_in_seam: aligned input seam position return value
480  * @_out_seam: aligned output seam position return value
481  */
482 static void find_best_seam(struct ipu_image_convert_ctx *ctx,
483                            unsigned int index,
484                            unsigned int in_edge,
485                            unsigned int out_edge,
486                            unsigned int in_align,
487                            unsigned int out_align,
488                            unsigned int in_burst,
489                            unsigned int out_burst,
490                            unsigned int downsize_coeff,
491                            unsigned int resize_coeff,
492                            u32 *_in_seam,
493                            u32 *_out_seam)
494 {
495         struct device *dev = ctx->chan->priv->ipu->dev;
496         unsigned int out_pos;
497         /* Input / output seam position candidates */
498         unsigned int out_seam = 0;
499         unsigned int in_seam = 0;
500         unsigned int min_diff = UINT_MAX;
501         unsigned int out_start;
502         unsigned int out_end;
503         unsigned int in_start;
504         unsigned int in_end;
505
506         /* Start within 1024 pixels of the right / bottom edge */
507         out_start = max_t(int, index * out_align, out_edge - 1024);
508         /* End before having to add more columns to the left / rows above */
509         out_end = min_t(unsigned int, out_edge, index * 1024 + 1);
510
511         /*
512          * Limit input seam position to make sure that the downsized input tile
513          * to the right or bottom does not exceed 1024 pixels.
514          */
515         in_start = max_t(int, index * in_align,
516                          in_edge - (1024 << downsize_coeff));
517         in_end = min_t(unsigned int, in_edge,
518                        index * (1024 << downsize_coeff) + 1);
519
520         /*
521          * Output tiles must start at a multiple of 8 bytes horizontally and
522          * possibly at an even line horizontally depending on the pixel format.
523          * Only consider output aligned positions for the seam.
524          */
525         out_start = round_up(out_start, out_align);
526         for (out_pos = out_start; out_pos < out_end; out_pos += out_align) {
527                 unsigned int in_pos;
528                 unsigned int in_pos_aligned;
529                 unsigned int in_pos_rounded;
530                 unsigned int abs_diff;
531
532                 /*
533                  * Tiles in the right row / bottom column may not be allowed to
534                  * overshoot horizontally / vertically. out_burst may be the
535                  * actual DMA burst size, or the rotator block size.
536                  */
537                 if ((out_burst > 1) && (out_edge - out_pos) % out_burst)
538                         continue;
539
540                 /*
541                  * Input sample position, corresponding to out_pos, 19.13 fixed
542                  * point.
543                  */
544                 in_pos = (out_pos * resize_coeff) << downsize_coeff;
545                 /*
546                  * The closest input sample position that we could actually
547                  * start the input tile at, 19.13 fixed point.
548                  */
549                 in_pos_aligned = round_closest(in_pos, 8192U * in_align);
550                 /* Convert 19.13 fixed point to integer */
551                 in_pos_rounded = in_pos_aligned / 8192U;
552
553                 if (in_pos_rounded < in_start)
554                         continue;
555                 if (in_pos_rounded >= in_end)
556                         break;
557
558                 if ((in_burst > 1) &&
559                     (in_edge - in_pos_rounded) % in_burst)
560                         continue;
561
562                 if (in_pos < in_pos_aligned)
563                         abs_diff = in_pos_aligned - in_pos;
564                 else
565                         abs_diff = in_pos - in_pos_aligned;
566
567                 if (abs_diff < min_diff) {
568                         in_seam = in_pos_rounded;
569                         out_seam = out_pos;
570                         min_diff = abs_diff;
571                 }
572         }
573
574         *_out_seam = out_seam;
575         *_in_seam = in_seam;
576
577         dev_dbg(dev, "%s: out_seam %u(%u) in [%u, %u], in_seam %u(%u) in [%u, %u] diff %u.%03u\n",
578                 __func__, out_seam, out_align, out_start, out_end,
579                 in_seam, in_align, in_start, in_end, min_diff / 8192,
580                 DIV_ROUND_CLOSEST(min_diff % 8192 * 1000, 8192));
581 }
582
583 /*
584  * Tile left edges are required to be aligned to multiples of 8 bytes
585  * by the IDMAC.
586  */
587 static inline u32 tile_left_align(const struct ipu_image_pixfmt *fmt)
588 {
589         if (fmt->planar)
590                 return fmt->uv_packed ? 8 : 8 * fmt->uv_width_dec;
591         else
592                 return fmt->bpp == 32 ? 2 : fmt->bpp == 16 ? 4 : 8;
593 }
594
595 /*
596  * Tile top edge alignment is only limited by chroma subsampling.
597  */
598 static inline u32 tile_top_align(const struct ipu_image_pixfmt *fmt)
599 {
600         return fmt->uv_height_dec > 1 ? 2 : 1;
601 }
602
603 static inline u32 tile_width_align(enum ipu_image_convert_type type,
604                                    const struct ipu_image_pixfmt *fmt,
605                                    enum ipu_rotate_mode rot_mode)
606 {
607         if (type == IMAGE_CONVERT_IN) {
608                 /*
609                  * The IC burst reads 8 pixels at a time. Reading beyond the
610                  * end of the line is usually acceptable. Those pixels are
611                  * ignored, unless the IC has to write the scaled line in
612                  * reverse.
613                  */
614                 return (!ipu_rot_mode_is_irt(rot_mode) &&
615                         (rot_mode & IPU_ROT_BIT_HFLIP)) ? 8 : 2;
616         }
617
618         /*
619          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
620          * formats to guarantee 8-byte aligned line start addresses in the
621          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
622          * for all other formats.
623          */
624         return (ipu_rot_mode_is_irt(rot_mode) &&
625                 fmt->planar && !fmt->uv_packed) ?
626                 8 * fmt->uv_width_dec : 8;
627 }
628
629 static inline u32 tile_height_align(enum ipu_image_convert_type type,
630                                     const struct ipu_image_pixfmt *fmt,
631                                     enum ipu_rotate_mode rot_mode)
632 {
633         if (type == IMAGE_CONVERT_IN || !ipu_rot_mode_is_irt(rot_mode))
634                 return 2;
635
636         /*
637          * Align to 16x16 pixel blocks for planar 4:2:0 chroma subsampled
638          * formats to guarantee 8-byte aligned line start addresses in the
639          * chroma planes when IRT is used. Align to 8x8 pixel IRT block size
640          * for all other formats.
641          */
642         return (fmt->planar && !fmt->uv_packed) ? 8 * fmt->uv_width_dec : 8;
643 }
644
645 /*
646  * Fill in left position and width and for all tiles in an input column, and
647  * for all corresponding output tiles. If the 90° rotator is used, the output
648  * tiles are in a row, and output tile top position and height are set.
649  */
650 static void fill_tile_column(struct ipu_image_convert_ctx *ctx,
651                              unsigned int col,
652                              struct ipu_image_convert_image *in,
653                              unsigned int in_left, unsigned int in_width,
654                              struct ipu_image_convert_image *out,
655                              unsigned int out_left, unsigned int out_width)
656 {
657         unsigned int row, tile_idx;
658         struct ipu_image_tile *in_tile, *out_tile;
659
660         for (row = 0; row < in->num_rows; row++) {
661                 tile_idx = in->num_cols * row + col;
662                 in_tile = &in->tile[tile_idx];
663                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
664
665                 in_tile->left = in_left;
666                 in_tile->width = in_width;
667
668                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
669                         out_tile->top = out_left;
670                         out_tile->height = out_width;
671                 } else {
672                         out_tile->left = out_left;
673                         out_tile->width = out_width;
674                 }
675         }
676 }
677
678 /*
679  * Fill in top position and height and for all tiles in an input row, and
680  * for all corresponding output tiles. If the 90° rotator is used, the output
681  * tiles are in a column, and output tile left position and width are set.
682  */
683 static void fill_tile_row(struct ipu_image_convert_ctx *ctx, unsigned int row,
684                           struct ipu_image_convert_image *in,
685                           unsigned int in_top, unsigned int in_height,
686                           struct ipu_image_convert_image *out,
687                           unsigned int out_top, unsigned int out_height)
688 {
689         unsigned int col, tile_idx;
690         struct ipu_image_tile *in_tile, *out_tile;
691
692         for (col = 0; col < in->num_cols; col++) {
693                 tile_idx = in->num_cols * row + col;
694                 in_tile = &in->tile[tile_idx];
695                 out_tile = &out->tile[ctx->out_tile_map[tile_idx]];
696
697                 in_tile->top = in_top;
698                 in_tile->height = in_height;
699
700                 if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
701                         out_tile->left = out_top;
702                         out_tile->width = out_height;
703                 } else {
704                         out_tile->top = out_top;
705                         out_tile->height = out_height;
706                 }
707         }
708 }
709
710 /*
711  * Find the best horizontal and vertical seam positions to split into tiles.
712  * Minimize the fractional part of the input sampling position for the
713  * top / left pixels of each tile.
714  */
715 static void find_seams(struct ipu_image_convert_ctx *ctx,
716                        struct ipu_image_convert_image *in,
717                        struct ipu_image_convert_image *out)
718 {
719         struct device *dev = ctx->chan->priv->ipu->dev;
720         unsigned int resized_width = out->base.rect.width;
721         unsigned int resized_height = out->base.rect.height;
722         unsigned int col;
723         unsigned int row;
724         unsigned int in_left_align = tile_left_align(in->fmt);
725         unsigned int in_top_align = tile_top_align(in->fmt);
726         unsigned int out_left_align = tile_left_align(out->fmt);
727         unsigned int out_top_align = tile_top_align(out->fmt);
728         unsigned int out_width_align = tile_width_align(out->type, out->fmt,
729                                                         ctx->rot_mode);
730         unsigned int out_height_align = tile_height_align(out->type, out->fmt,
731                                                           ctx->rot_mode);
732         unsigned int in_right = in->base.rect.width;
733         unsigned int in_bottom = in->base.rect.height;
734         unsigned int out_right = out->base.rect.width;
735         unsigned int out_bottom = out->base.rect.height;
736         unsigned int flipped_out_left;
737         unsigned int flipped_out_top;
738
739         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
740                 /* Switch width/height and align top left to IRT block size */
741                 resized_width = out->base.rect.height;
742                 resized_height = out->base.rect.width;
743                 out_left_align = out_height_align;
744                 out_top_align = out_width_align;
745                 out_width_align = out_left_align;
746                 out_height_align = out_top_align;
747                 out_right = out->base.rect.height;
748                 out_bottom = out->base.rect.width;
749         }
750
751         for (col = in->num_cols - 1; col > 0; col--) {
752                 bool allow_in_overshoot = ipu_rot_mode_is_irt(ctx->rot_mode) ||
753                                           !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
754                 bool allow_out_overshoot = (col < in->num_cols - 1) &&
755                                            !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
756                 unsigned int in_left;
757                 unsigned int out_left;
758
759                 /*
760                  * Align input width to burst length if the scaling step flips
761                  * horizontally.
762                  */
763
764                 find_best_seam(ctx, col,
765                                in_right, out_right,
766                                in_left_align, out_left_align,
767                                allow_in_overshoot ? 1 : 8 /* burst length */,
768                                allow_out_overshoot ? 1 : out_width_align,
769                                ctx->downsize_coeff_h, ctx->image_resize_coeff_h,
770                                &in_left, &out_left);
771
772                 if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
773                         flipped_out_left = resized_width - out_right;
774                 else
775                         flipped_out_left = out_left;
776
777                 fill_tile_column(ctx, col, in, in_left, in_right - in_left,
778                                  out, flipped_out_left, out_right - out_left);
779
780                 dev_dbg(dev, "%s: col %u: %u, %u -> %u, %u\n", __func__, col,
781                         in_left, in_right - in_left,
782                         flipped_out_left, out_right - out_left);
783
784                 in_right = in_left;
785                 out_right = out_left;
786         }
787
788         flipped_out_left = (ctx->rot_mode & IPU_ROT_BIT_HFLIP) ?
789                            resized_width - out_right : 0;
790
791         fill_tile_column(ctx, 0, in, 0, in_right,
792                          out, flipped_out_left, out_right);
793
794         dev_dbg(dev, "%s: col 0: 0, %u -> %u, %u\n", __func__,
795                 in_right, flipped_out_left, out_right);
796
797         for (row = in->num_rows - 1; row > 0; row--) {
798                 bool allow_overshoot = row < in->num_rows - 1;
799                 unsigned int in_top;
800                 unsigned int out_top;
801
802                 find_best_seam(ctx, row,
803                                in_bottom, out_bottom,
804                                in_top_align, out_top_align,
805                                1, allow_overshoot ? 1 : out_height_align,
806                                ctx->downsize_coeff_v, ctx->image_resize_coeff_v,
807                                &in_top, &out_top);
808
809                 if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
810                     ipu_rot_mode_is_irt(ctx->rot_mode))
811                         flipped_out_top = resized_height - out_bottom;
812                 else
813                         flipped_out_top = out_top;
814
815                 fill_tile_row(ctx, row, in, in_top, in_bottom - in_top,
816                               out, flipped_out_top, out_bottom - out_top);
817
818                 dev_dbg(dev, "%s: row %u: %u, %u -> %u, %u\n", __func__, row,
819                         in_top, in_bottom - in_top,
820                         flipped_out_top, out_bottom - out_top);
821
822                 in_bottom = in_top;
823                 out_bottom = out_top;
824         }
825
826         if ((ctx->rot_mode & IPU_ROT_BIT_VFLIP) ^
827             ipu_rot_mode_is_irt(ctx->rot_mode))
828                 flipped_out_top = resized_height - out_bottom;
829         else
830                 flipped_out_top = 0;
831
832         fill_tile_row(ctx, 0, in, 0, in_bottom,
833                       out, flipped_out_top, out_bottom);
834
835         dev_dbg(dev, "%s: row 0: 0, %u -> %u, %u\n", __func__,
836                 in_bottom, flipped_out_top, out_bottom);
837 }
838
839 static int calc_tile_dimensions(struct ipu_image_convert_ctx *ctx,
840                                 struct ipu_image_convert_image *image)
841 {
842         struct ipu_image_convert_chan *chan = ctx->chan;
843         struct ipu_image_convert_priv *priv = chan->priv;
844         unsigned int max_width = 1024;
845         unsigned int max_height = 1024;
846         unsigned int i;
847
848         if (image->type == IMAGE_CONVERT_IN) {
849                 /* Up to 4096x4096 input tile size */
850                 max_width <<= ctx->downsize_coeff_h;
851                 max_height <<= ctx->downsize_coeff_v;
852         }
853
854         for (i = 0; i < ctx->num_tiles; i++) {
855                 struct ipu_image_tile *tile;
856                 const unsigned int row = i / image->num_cols;
857                 const unsigned int col = i % image->num_cols;
858
859                 if (image->type == IMAGE_CONVERT_OUT)
860                         tile = &image->tile[ctx->out_tile_map[i]];
861                 else
862                         tile = &image->tile[i];
863
864                 tile->size = ((tile->height * image->fmt->bpp) >> 3) *
865                         tile->width;
866
867                 if (image->fmt->planar) {
868                         tile->stride = tile->width;
869                         tile->rot_stride = tile->height;
870                 } else {
871                         tile->stride =
872                                 (image->fmt->bpp * tile->width) >> 3;
873                         tile->rot_stride =
874                                 (image->fmt->bpp * tile->height) >> 3;
875                 }
876
877                 dev_dbg(priv->ipu->dev,
878                         "task %u: ctx %p: %s@[%u,%u]: %ux%u@%u,%u\n",
879                         chan->ic_task, ctx,
880                         image->type == IMAGE_CONVERT_IN ? "Input" : "Output",
881                         row, col,
882                         tile->width, tile->height, tile->left, tile->top);
883
884                 if (!tile->width || tile->width > max_width ||
885                     !tile->height || tile->height > max_height) {
886                         dev_err(priv->ipu->dev, "invalid %s tile size: %ux%u\n",
887                                 image->type == IMAGE_CONVERT_IN ? "input" :
888                                 "output", tile->width, tile->height);
889                         return -EINVAL;
890                 }
891         }
892
893         return 0;
894 }
895
896 /*
897  * Use the rotation transformation to find the tile coordinates
898  * (row, col) of a tile in the destination frame that corresponds
899  * to the given tile coordinates of a source frame. The destination
900  * coordinate is then converted to a tile index.
901  */
902 static int transform_tile_index(struct ipu_image_convert_ctx *ctx,
903                                 int src_row, int src_col)
904 {
905         struct ipu_image_convert_chan *chan = ctx->chan;
906         struct ipu_image_convert_priv *priv = chan->priv;
907         struct ipu_image_convert_image *s_image = &ctx->in;
908         struct ipu_image_convert_image *d_image = &ctx->out;
909         int dst_row, dst_col;
910
911         /* with no rotation it's a 1:1 mapping */
912         if (ctx->rot_mode == IPU_ROTATE_NONE)
913                 return src_row * s_image->num_cols + src_col;
914
915         /*
916          * before doing the transform, first we have to translate
917          * source row,col for an origin in the center of s_image
918          */
919         src_row = src_row * 2 - (s_image->num_rows - 1);
920         src_col = src_col * 2 - (s_image->num_cols - 1);
921
922         /* do the rotation transform */
923         if (ctx->rot_mode & IPU_ROT_BIT_90) {
924                 dst_col = -src_row;
925                 dst_row = src_col;
926         } else {
927                 dst_col = src_col;
928                 dst_row = src_row;
929         }
930
931         /* apply flip */
932         if (ctx->rot_mode & IPU_ROT_BIT_HFLIP)
933                 dst_col = -dst_col;
934         if (ctx->rot_mode & IPU_ROT_BIT_VFLIP)
935                 dst_row = -dst_row;
936
937         dev_dbg(priv->ipu->dev, "task %u: ctx %p: [%d,%d] --> [%d,%d]\n",
938                 chan->ic_task, ctx, src_col, src_row, dst_col, dst_row);
939
940         /*
941          * finally translate dest row,col using an origin in upper
942          * left of d_image
943          */
944         dst_row += d_image->num_rows - 1;
945         dst_col += d_image->num_cols - 1;
946         dst_row /= 2;
947         dst_col /= 2;
948
949         return dst_row * d_image->num_cols + dst_col;
950 }
951
952 /*
953  * Fill the out_tile_map[] with transformed destination tile indeces.
954  */
955 static void calc_out_tile_map(struct ipu_image_convert_ctx *ctx)
956 {
957         struct ipu_image_convert_image *s_image = &ctx->in;
958         unsigned int row, col, tile = 0;
959
960         for (row = 0; row < s_image->num_rows; row++) {
961                 for (col = 0; col < s_image->num_cols; col++) {
962                         ctx->out_tile_map[tile] =
963                                 transform_tile_index(ctx, row, col);
964                         tile++;
965                 }
966         }
967 }
968
969 static int calc_tile_offsets_planar(struct ipu_image_convert_ctx *ctx,
970                                     struct ipu_image_convert_image *image)
971 {
972         struct ipu_image_convert_chan *chan = ctx->chan;
973         struct ipu_image_convert_priv *priv = chan->priv;
974         const struct ipu_image_pixfmt *fmt = image->fmt;
975         unsigned int row, col, tile = 0;
976         u32 H, top, y_stride, uv_stride;
977         u32 uv_row_off, uv_col_off, uv_off, u_off, v_off, tmp;
978         u32 y_row_off, y_col_off, y_off;
979         u32 y_size, uv_size;
980
981         /* setup some convenience vars */
982         H = image->base.pix.height;
983
984         y_stride = image->stride;
985         uv_stride = y_stride / fmt->uv_width_dec;
986         if (fmt->uv_packed)
987                 uv_stride *= 2;
988
989         y_size = H * y_stride;
990         uv_size = y_size / (fmt->uv_width_dec * fmt->uv_height_dec);
991
992         for (row = 0; row < image->num_rows; row++) {
993                 top = image->tile[tile].top;
994                 y_row_off = top * y_stride;
995                 uv_row_off = (top * uv_stride) / fmt->uv_height_dec;
996
997                 for (col = 0; col < image->num_cols; col++) {
998                         y_col_off = image->tile[tile].left;
999                         uv_col_off = y_col_off / fmt->uv_width_dec;
1000                         if (fmt->uv_packed)
1001                                 uv_col_off *= 2;
1002
1003                         y_off = y_row_off + y_col_off;
1004                         uv_off = uv_row_off + uv_col_off;
1005
1006                         u_off = y_size - y_off + uv_off;
1007                         v_off = (fmt->uv_packed) ? 0 : u_off + uv_size;
1008                         if (fmt->uv_swapped) {
1009                                 tmp = u_off;
1010                                 u_off = v_off;
1011                                 v_off = tmp;
1012                         }
1013
1014                         image->tile[tile].offset = y_off;
1015                         image->tile[tile].u_off = u_off;
1016                         image->tile[tile++].v_off = v_off;
1017
1018                         if ((y_off & 0x7) || (u_off & 0x7) || (v_off & 0x7)) {
1019                                 dev_err(priv->ipu->dev,
1020                                         "task %u: ctx %p: %s@[%d,%d]: "
1021                                         "y_off %08x, u_off %08x, v_off %08x\n",
1022                                         chan->ic_task, ctx,
1023                                         image->type == IMAGE_CONVERT_IN ?
1024                                         "Input" : "Output", row, col,
1025                                         y_off, u_off, v_off);
1026                                 return -EINVAL;
1027                         }
1028                 }
1029         }
1030
1031         return 0;
1032 }
1033
1034 static int calc_tile_offsets_packed(struct ipu_image_convert_ctx *ctx,
1035                                     struct ipu_image_convert_image *image)
1036 {
1037         struct ipu_image_convert_chan *chan = ctx->chan;
1038         struct ipu_image_convert_priv *priv = chan->priv;
1039         const struct ipu_image_pixfmt *fmt = image->fmt;
1040         unsigned int row, col, tile = 0;
1041         u32 bpp, stride, offset;
1042         u32 row_off, col_off;
1043
1044         /* setup some convenience vars */
1045         stride = image->stride;
1046         bpp = fmt->bpp;
1047
1048         for (row = 0; row < image->num_rows; row++) {
1049                 row_off = image->tile[tile].top * stride;
1050
1051                 for (col = 0; col < image->num_cols; col++) {
1052                         col_off = (image->tile[tile].left * bpp) >> 3;
1053
1054                         offset = row_off + col_off;
1055
1056                         image->tile[tile].offset = offset;
1057                         image->tile[tile].u_off = 0;
1058                         image->tile[tile++].v_off = 0;
1059
1060                         if (offset & 0x7) {
1061                                 dev_err(priv->ipu->dev,
1062                                         "task %u: ctx %p: %s@[%d,%d]: "
1063                                         "phys %08x\n",
1064                                         chan->ic_task, ctx,
1065                                         image->type == IMAGE_CONVERT_IN ?
1066                                         "Input" : "Output", row, col,
1067                                         row_off + col_off);
1068                                 return -EINVAL;
1069                         }
1070                 }
1071         }
1072
1073         return 0;
1074 }
1075
1076 static int calc_tile_offsets(struct ipu_image_convert_ctx *ctx,
1077                               struct ipu_image_convert_image *image)
1078 {
1079         if (image->fmt->planar)
1080                 return calc_tile_offsets_planar(ctx, image);
1081
1082         return calc_tile_offsets_packed(ctx, image);
1083 }
1084
1085 /*
1086  * Calculate the resizing ratio for the IC main processing section given input
1087  * size, fixed downsizing coefficient, and output size.
1088  * Either round to closest for the next tile's first pixel to minimize seams
1089  * and distortion (for all but right column / bottom row), or round down to
1090  * avoid sampling beyond the edges of the input image for this tile's last
1091  * pixel.
1092  * Returns the resizing coefficient, resizing ratio is 8192.0 / resize_coeff.
1093  */
1094 static u32 calc_resize_coeff(u32 input_size, u32 downsize_coeff,
1095                              u32 output_size, bool allow_overshoot)
1096 {
1097         u32 downsized = input_size >> downsize_coeff;
1098
1099         if (allow_overshoot)
1100                 return DIV_ROUND_CLOSEST(8192 * downsized, output_size);
1101         else
1102                 return 8192 * (downsized - 1) / (output_size - 1);
1103 }
1104
1105 /*
1106  * Slightly modify resize coefficients per tile to hide the bilinear
1107  * interpolator reset at tile borders, shifting the right / bottom edge
1108  * by up to a half input pixel. This removes noticeable seams between
1109  * tiles at higher upscaling factors.
1110  */
1111 static void calc_tile_resize_coefficients(struct ipu_image_convert_ctx *ctx)
1112 {
1113         struct ipu_image_convert_chan *chan = ctx->chan;
1114         struct ipu_image_convert_priv *priv = chan->priv;
1115         struct ipu_image_tile *in_tile, *out_tile;
1116         unsigned int col, row, tile_idx;
1117         unsigned int last_output;
1118
1119         for (col = 0; col < ctx->in.num_cols; col++) {
1120                 bool closest = (col < ctx->in.num_cols - 1) &&
1121                                !(ctx->rot_mode & IPU_ROT_BIT_HFLIP);
1122                 u32 resized_width;
1123                 u32 resize_coeff_h;
1124                 u32 in_width;
1125
1126                 tile_idx = col;
1127                 in_tile = &ctx->in.tile[tile_idx];
1128                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1129
1130                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1131                         resized_width = out_tile->height;
1132                 else
1133                         resized_width = out_tile->width;
1134
1135                 resize_coeff_h = calc_resize_coeff(in_tile->width,
1136                                                    ctx->downsize_coeff_h,
1137                                                    resized_width, closest);
1138
1139                 dev_dbg(priv->ipu->dev, "%s: column %u hscale: *8192/%u\n",
1140                         __func__, col, resize_coeff_h);
1141
1142                 /*
1143                  * With the horizontal scaling factor known, round up resized
1144                  * width (output width or height) to burst size.
1145                  */
1146                 resized_width = round_up(resized_width, 8);
1147
1148                 /*
1149                  * Calculate input width from the last accessed input pixel
1150                  * given resized width and scaling coefficients. Round up to
1151                  * burst size.
1152                  */
1153                 last_output = resized_width - 1;
1154                 if (closest && ((last_output * resize_coeff_h) % 8192))
1155                         last_output++;
1156                 in_width = round_up(
1157                         (DIV_ROUND_UP(last_output * resize_coeff_h, 8192) + 1)
1158                         << ctx->downsize_coeff_h, 8);
1159
1160                 for (row = 0; row < ctx->in.num_rows; row++) {
1161                         tile_idx = row * ctx->in.num_cols + col;
1162                         in_tile = &ctx->in.tile[tile_idx];
1163                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1164
1165                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1166                                 out_tile->height = resized_width;
1167                         else
1168                                 out_tile->width = resized_width;
1169
1170                         in_tile->width = in_width;
1171                 }
1172
1173                 ctx->resize_coeffs_h[col] = resize_coeff_h;
1174         }
1175
1176         for (row = 0; row < ctx->in.num_rows; row++) {
1177                 bool closest = (row < ctx->in.num_rows - 1) &&
1178                                !(ctx->rot_mode & IPU_ROT_BIT_VFLIP);
1179                 u32 resized_height;
1180                 u32 resize_coeff_v;
1181                 u32 in_height;
1182
1183                 tile_idx = row * ctx->in.num_cols;
1184                 in_tile = &ctx->in.tile[tile_idx];
1185                 out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1186
1187                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1188                         resized_height = out_tile->width;
1189                 else
1190                         resized_height = out_tile->height;
1191
1192                 resize_coeff_v = calc_resize_coeff(in_tile->height,
1193                                                    ctx->downsize_coeff_v,
1194                                                    resized_height, closest);
1195
1196                 dev_dbg(priv->ipu->dev, "%s: row %u vscale: *8192/%u\n",
1197                         __func__, row, resize_coeff_v);
1198
1199                 /*
1200                  * With the vertical scaling factor known, round up resized
1201                  * height (output width or height) to IDMAC limitations.
1202                  */
1203                 resized_height = round_up(resized_height, 2);
1204
1205                 /*
1206                  * Calculate input width from the last accessed input pixel
1207                  * given resized height and scaling coefficients. Align to
1208                  * IDMAC restrictions.
1209                  */
1210                 last_output = resized_height - 1;
1211                 if (closest && ((last_output * resize_coeff_v) % 8192))
1212                         last_output++;
1213                 in_height = round_up(
1214                         (DIV_ROUND_UP(last_output * resize_coeff_v, 8192) + 1)
1215                         << ctx->downsize_coeff_v, 2);
1216
1217                 for (col = 0; col < ctx->in.num_cols; col++) {
1218                         tile_idx = row * ctx->in.num_cols + col;
1219                         in_tile = &ctx->in.tile[tile_idx];
1220                         out_tile = &ctx->out.tile[ctx->out_tile_map[tile_idx]];
1221
1222                         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1223                                 out_tile->width = resized_height;
1224                         else
1225                                 out_tile->height = resized_height;
1226
1227                         in_tile->height = in_height;
1228                 }
1229
1230                 ctx->resize_coeffs_v[row] = resize_coeff_v;
1231         }
1232 }
1233
1234 /*
1235  * return the number of runs in given queue (pending_q or done_q)
1236  * for this context. hold irqlock when calling.
1237  */
1238 static int get_run_count(struct ipu_image_convert_ctx *ctx,
1239                          struct list_head *q)
1240 {
1241         struct ipu_image_convert_run *run;
1242         int count = 0;
1243
1244         lockdep_assert_held(&ctx->chan->irqlock);
1245
1246         list_for_each_entry(run, q, list) {
1247                 if (run->ctx == ctx)
1248                         count++;
1249         }
1250
1251         return count;
1252 }
1253
1254 static void convert_stop(struct ipu_image_convert_run *run)
1255 {
1256         struct ipu_image_convert_ctx *ctx = run->ctx;
1257         struct ipu_image_convert_chan *chan = ctx->chan;
1258         struct ipu_image_convert_priv *priv = chan->priv;
1259
1260         dev_dbg(priv->ipu->dev, "%s: task %u: stopping ctx %p run %p\n",
1261                 __func__, chan->ic_task, ctx, run);
1262
1263         /* disable IC tasks and the channels */
1264         ipu_ic_task_disable(chan->ic);
1265         ipu_idmac_disable_channel(chan->in_chan);
1266         ipu_idmac_disable_channel(chan->out_chan);
1267
1268         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1269                 ipu_idmac_disable_channel(chan->rotation_in_chan);
1270                 ipu_idmac_disable_channel(chan->rotation_out_chan);
1271                 ipu_idmac_unlink(chan->out_chan, chan->rotation_in_chan);
1272         }
1273
1274         ipu_ic_disable(chan->ic);
1275 }
1276
1277 static void init_idmac_channel(struct ipu_image_convert_ctx *ctx,
1278                                struct ipuv3_channel *channel,
1279                                struct ipu_image_convert_image *image,
1280                                enum ipu_rotate_mode rot_mode,
1281                                bool rot_swap_width_height,
1282                                unsigned int tile)
1283 {
1284         struct ipu_image_convert_chan *chan = ctx->chan;
1285         unsigned int burst_size;
1286         u32 width, height, stride;
1287         dma_addr_t addr0, addr1 = 0;
1288         struct ipu_image tile_image;
1289         unsigned int tile_idx[2];
1290
1291         if (image->type == IMAGE_CONVERT_OUT) {
1292                 tile_idx[0] = ctx->out_tile_map[tile];
1293                 tile_idx[1] = ctx->out_tile_map[1];
1294         } else {
1295                 tile_idx[0] = tile;
1296                 tile_idx[1] = 1;
1297         }
1298
1299         if (rot_swap_width_height) {
1300                 width = image->tile[tile_idx[0]].height;
1301                 height = image->tile[tile_idx[0]].width;
1302                 stride = image->tile[tile_idx[0]].rot_stride;
1303                 addr0 = ctx->rot_intermediate[0].phys;
1304                 if (ctx->double_buffering)
1305                         addr1 = ctx->rot_intermediate[1].phys;
1306         } else {
1307                 width = image->tile[tile_idx[0]].width;
1308                 height = image->tile[tile_idx[0]].height;
1309                 stride = image->stride;
1310                 addr0 = image->base.phys0 +
1311                         image->tile[tile_idx[0]].offset;
1312                 if (ctx->double_buffering)
1313                         addr1 = image->base.phys0 +
1314                                 image->tile[tile_idx[1]].offset;
1315         }
1316
1317         ipu_cpmem_zero(channel);
1318
1319         memset(&tile_image, 0, sizeof(tile_image));
1320         tile_image.pix.width = tile_image.rect.width = width;
1321         tile_image.pix.height = tile_image.rect.height = height;
1322         tile_image.pix.bytesperline = stride;
1323         tile_image.pix.pixelformat =  image->fmt->fourcc;
1324         tile_image.phys0 = addr0;
1325         tile_image.phys1 = addr1;
1326         if (image->fmt->planar && !rot_swap_width_height) {
1327                 tile_image.u_offset = image->tile[tile_idx[0]].u_off;
1328                 tile_image.v_offset = image->tile[tile_idx[0]].v_off;
1329         }
1330
1331         ipu_cpmem_set_image(channel, &tile_image);
1332
1333         if (rot_mode)
1334                 ipu_cpmem_set_rotation(channel, rot_mode);
1335
1336         /*
1337          * Skip writing U and V components to odd rows in the output
1338          * channels for planar 4:2:0.
1339          */
1340         if ((channel == chan->out_chan ||
1341              channel == chan->rotation_out_chan) &&
1342             image->fmt->planar && image->fmt->uv_height_dec == 2)
1343                 ipu_cpmem_skip_odd_chroma_rows(channel);
1344
1345         if (channel == chan->rotation_in_chan ||
1346             channel == chan->rotation_out_chan) {
1347                 burst_size = 8;
1348                 ipu_cpmem_set_block_mode(channel);
1349         } else
1350                 burst_size = (width % 16) ? 8 : 16;
1351
1352         ipu_cpmem_set_burstsize(channel, burst_size);
1353
1354         ipu_ic_task_idma_init(chan->ic, channel, width, height,
1355                               burst_size, rot_mode);
1356
1357         /*
1358          * Setting a non-zero AXI ID collides with the PRG AXI snooping, so
1359          * only do this when there is no PRG present.
1360          */
1361         if (!channel->ipu->prg_priv)
1362                 ipu_cpmem_set_axi_id(channel, 1);
1363
1364         ipu_idmac_set_double_buffer(channel, ctx->double_buffering);
1365 }
1366
1367 static int convert_start(struct ipu_image_convert_run *run, unsigned int tile)
1368 {
1369         struct ipu_image_convert_ctx *ctx = run->ctx;
1370         struct ipu_image_convert_chan *chan = ctx->chan;
1371         struct ipu_image_convert_priv *priv = chan->priv;
1372         struct ipu_image_convert_image *s_image = &ctx->in;
1373         struct ipu_image_convert_image *d_image = &ctx->out;
1374         unsigned int dst_tile = ctx->out_tile_map[tile];
1375         unsigned int dest_width, dest_height;
1376         unsigned int col, row;
1377         u32 rsc;
1378         int ret;
1379
1380         dev_dbg(priv->ipu->dev, "%s: task %u: starting ctx %p run %p tile %u -> %u\n",
1381                 __func__, chan->ic_task, ctx, run, tile, dst_tile);
1382
1383         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1384                 /* swap width/height for resizer */
1385                 dest_width = d_image->tile[dst_tile].height;
1386                 dest_height = d_image->tile[dst_tile].width;
1387         } else {
1388                 dest_width = d_image->tile[dst_tile].width;
1389                 dest_height = d_image->tile[dst_tile].height;
1390         }
1391
1392         row = tile / s_image->num_cols;
1393         col = tile % s_image->num_cols;
1394
1395         rsc =  (ctx->downsize_coeff_v << 30) |
1396                (ctx->resize_coeffs_v[row] << 16) |
1397                (ctx->downsize_coeff_h << 14) |
1398                (ctx->resize_coeffs_h[col]);
1399
1400         dev_dbg(priv->ipu->dev, "%s: %ux%u -> %ux%u (rsc = 0x%x)\n",
1401                 __func__, s_image->tile[tile].width,
1402                 s_image->tile[tile].height, dest_width, dest_height, rsc);
1403
1404         /* setup the IC resizer and CSC */
1405         ret = ipu_ic_task_init_rsc(chan->ic, &ctx->csc,
1406                                    s_image->tile[tile].width,
1407                                    s_image->tile[tile].height,
1408                                    dest_width,
1409                                    dest_height,
1410                                    rsc);
1411         if (ret) {
1412                 dev_err(priv->ipu->dev, "ipu_ic_task_init failed, %d\n", ret);
1413                 return ret;
1414         }
1415
1416         /* init the source MEM-->IC PP IDMAC channel */
1417         init_idmac_channel(ctx, chan->in_chan, s_image,
1418                            IPU_ROTATE_NONE, false, tile);
1419
1420         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1421                 /* init the IC PP-->MEM IDMAC channel */
1422                 init_idmac_channel(ctx, chan->out_chan, d_image,
1423                                    IPU_ROTATE_NONE, true, tile);
1424
1425                 /* init the MEM-->IC PP ROT IDMAC channel */
1426                 init_idmac_channel(ctx, chan->rotation_in_chan, d_image,
1427                                    ctx->rot_mode, true, tile);
1428
1429                 /* init the destination IC PP ROT-->MEM IDMAC channel */
1430                 init_idmac_channel(ctx, chan->rotation_out_chan, d_image,
1431                                    IPU_ROTATE_NONE, false, tile);
1432
1433                 /* now link IC PP-->MEM to MEM-->IC PP ROT */
1434                 ipu_idmac_link(chan->out_chan, chan->rotation_in_chan);
1435         } else {
1436                 /* init the destination IC PP-->MEM IDMAC channel */
1437                 init_idmac_channel(ctx, chan->out_chan, d_image,
1438                                    ctx->rot_mode, false, tile);
1439         }
1440
1441         /* enable the IC */
1442         ipu_ic_enable(chan->ic);
1443
1444         /* set buffers ready */
1445         ipu_idmac_select_buffer(chan->in_chan, 0);
1446         ipu_idmac_select_buffer(chan->out_chan, 0);
1447         if (ipu_rot_mode_is_irt(ctx->rot_mode))
1448                 ipu_idmac_select_buffer(chan->rotation_out_chan, 0);
1449         if (ctx->double_buffering) {
1450                 ipu_idmac_select_buffer(chan->in_chan, 1);
1451                 ipu_idmac_select_buffer(chan->out_chan, 1);
1452                 if (ipu_rot_mode_is_irt(ctx->rot_mode))
1453                         ipu_idmac_select_buffer(chan->rotation_out_chan, 1);
1454         }
1455
1456         /* enable the channels! */
1457         ipu_idmac_enable_channel(chan->in_chan);
1458         ipu_idmac_enable_channel(chan->out_chan);
1459         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1460                 ipu_idmac_enable_channel(chan->rotation_in_chan);
1461                 ipu_idmac_enable_channel(chan->rotation_out_chan);
1462         }
1463
1464         ipu_ic_task_enable(chan->ic);
1465
1466         ipu_cpmem_dump(chan->in_chan);
1467         ipu_cpmem_dump(chan->out_chan);
1468         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1469                 ipu_cpmem_dump(chan->rotation_in_chan);
1470                 ipu_cpmem_dump(chan->rotation_out_chan);
1471         }
1472
1473         ipu_dump(priv->ipu);
1474
1475         return 0;
1476 }
1477
1478 /* hold irqlock when calling */
1479 static int do_run(struct ipu_image_convert_run *run)
1480 {
1481         struct ipu_image_convert_ctx *ctx = run->ctx;
1482         struct ipu_image_convert_chan *chan = ctx->chan;
1483
1484         lockdep_assert_held(&chan->irqlock);
1485
1486         ctx->in.base.phys0 = run->in_phys;
1487         ctx->out.base.phys0 = run->out_phys;
1488
1489         ctx->cur_buf_num = 0;
1490         ctx->next_tile = 1;
1491
1492         /* remove run from pending_q and set as current */
1493         list_del(&run->list);
1494         chan->current_run = run;
1495
1496         return convert_start(run, 0);
1497 }
1498
1499 /* hold irqlock when calling */
1500 static void run_next(struct ipu_image_convert_chan *chan)
1501 {
1502         struct ipu_image_convert_priv *priv = chan->priv;
1503         struct ipu_image_convert_run *run, *tmp;
1504         int ret;
1505
1506         lockdep_assert_held(&chan->irqlock);
1507
1508         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
1509                 /* skip contexts that are aborting */
1510                 if (run->ctx->aborting) {
1511                         dev_dbg(priv->ipu->dev,
1512                                 "%s: task %u: skipping aborting ctx %p run %p\n",
1513                                 __func__, chan->ic_task, run->ctx, run);
1514                         continue;
1515                 }
1516
1517                 ret = do_run(run);
1518                 if (!ret)
1519                         break;
1520
1521                 /*
1522                  * something went wrong with start, add the run
1523                  * to done q and continue to the next run in the
1524                  * pending q.
1525                  */
1526                 run->status = ret;
1527                 list_add_tail(&run->list, &chan->done_q);
1528                 chan->current_run = NULL;
1529         }
1530 }
1531
1532 static void empty_done_q(struct ipu_image_convert_chan *chan)
1533 {
1534         struct ipu_image_convert_priv *priv = chan->priv;
1535         struct ipu_image_convert_run *run;
1536         unsigned long flags;
1537
1538         spin_lock_irqsave(&chan->irqlock, flags);
1539
1540         while (!list_empty(&chan->done_q)) {
1541                 run = list_entry(chan->done_q.next,
1542                                  struct ipu_image_convert_run,
1543                                  list);
1544
1545                 list_del(&run->list);
1546
1547                 dev_dbg(priv->ipu->dev,
1548                         "%s: task %u: completing ctx %p run %p with %d\n",
1549                         __func__, chan->ic_task, run->ctx, run, run->status);
1550
1551                 /* call the completion callback and free the run */
1552                 spin_unlock_irqrestore(&chan->irqlock, flags);
1553                 run->ctx->complete(run, run->ctx->complete_context);
1554                 spin_lock_irqsave(&chan->irqlock, flags);
1555         }
1556
1557         spin_unlock_irqrestore(&chan->irqlock, flags);
1558 }
1559
1560 /*
1561  * the bottom half thread clears out the done_q, calling the
1562  * completion handler for each.
1563  */
1564 static irqreturn_t do_bh(int irq, void *dev_id)
1565 {
1566         struct ipu_image_convert_chan *chan = dev_id;
1567         struct ipu_image_convert_priv *priv = chan->priv;
1568         struct ipu_image_convert_ctx *ctx;
1569         unsigned long flags;
1570
1571         dev_dbg(priv->ipu->dev, "%s: task %u: enter\n", __func__,
1572                 chan->ic_task);
1573
1574         empty_done_q(chan);
1575
1576         spin_lock_irqsave(&chan->irqlock, flags);
1577
1578         /*
1579          * the done_q is cleared out, signal any contexts
1580          * that are aborting that abort can complete.
1581          */
1582         list_for_each_entry(ctx, &chan->ctx_list, list) {
1583                 if (ctx->aborting) {
1584                         dev_dbg(priv->ipu->dev,
1585                                 "%s: task %u: signaling abort for ctx %p\n",
1586                                 __func__, chan->ic_task, ctx);
1587                         complete_all(&ctx->aborted);
1588                 }
1589         }
1590
1591         spin_unlock_irqrestore(&chan->irqlock, flags);
1592
1593         dev_dbg(priv->ipu->dev, "%s: task %u: exit\n", __func__,
1594                 chan->ic_task);
1595
1596         return IRQ_HANDLED;
1597 }
1598
1599 static bool ic_settings_changed(struct ipu_image_convert_ctx *ctx)
1600 {
1601         unsigned int cur_tile = ctx->next_tile - 1;
1602         unsigned int next_tile = ctx->next_tile;
1603
1604         if (ctx->resize_coeffs_h[cur_tile % ctx->in.num_cols] !=
1605             ctx->resize_coeffs_h[next_tile % ctx->in.num_cols] ||
1606             ctx->resize_coeffs_v[cur_tile / ctx->in.num_cols] !=
1607             ctx->resize_coeffs_v[next_tile / ctx->in.num_cols] ||
1608             ctx->in.tile[cur_tile].width != ctx->in.tile[next_tile].width ||
1609             ctx->in.tile[cur_tile].height != ctx->in.tile[next_tile].height ||
1610             ctx->out.tile[cur_tile].width != ctx->out.tile[next_tile].width ||
1611             ctx->out.tile[cur_tile].height != ctx->out.tile[next_tile].height)
1612                 return true;
1613
1614         return false;
1615 }
1616
1617 /* hold irqlock when calling */
1618 static irqreturn_t do_irq(struct ipu_image_convert_run *run)
1619 {
1620         struct ipu_image_convert_ctx *ctx = run->ctx;
1621         struct ipu_image_convert_chan *chan = ctx->chan;
1622         struct ipu_image_tile *src_tile, *dst_tile;
1623         struct ipu_image_convert_image *s_image = &ctx->in;
1624         struct ipu_image_convert_image *d_image = &ctx->out;
1625         struct ipuv3_channel *outch;
1626         unsigned int dst_idx;
1627
1628         lockdep_assert_held(&chan->irqlock);
1629
1630         outch = ipu_rot_mode_is_irt(ctx->rot_mode) ?
1631                 chan->rotation_out_chan : chan->out_chan;
1632
1633         /*
1634          * It is difficult to stop the channel DMA before the channels
1635          * enter the paused state. Without double-buffering the channels
1636          * are always in a paused state when the EOF irq occurs, so it
1637          * is safe to stop the channels now. For double-buffering we
1638          * just ignore the abort until the operation completes, when it
1639          * is safe to shut down.
1640          */
1641         if (ctx->aborting && !ctx->double_buffering) {
1642                 convert_stop(run);
1643                 run->status = -EIO;
1644                 goto done;
1645         }
1646
1647         if (ctx->next_tile == ctx->num_tiles) {
1648                 /*
1649                  * the conversion is complete
1650                  */
1651                 convert_stop(run);
1652                 run->status = 0;
1653                 goto done;
1654         }
1655
1656         /*
1657          * not done, place the next tile buffers.
1658          */
1659         if (!ctx->double_buffering) {
1660                 if (ic_settings_changed(ctx)) {
1661                         convert_stop(run);
1662                         convert_start(run, ctx->next_tile);
1663                 } else {
1664                         src_tile = &s_image->tile[ctx->next_tile];
1665                         dst_idx = ctx->out_tile_map[ctx->next_tile];
1666                         dst_tile = &d_image->tile[dst_idx];
1667
1668                         ipu_cpmem_set_buffer(chan->in_chan, 0,
1669                                              s_image->base.phys0 +
1670                                              src_tile->offset);
1671                         ipu_cpmem_set_buffer(outch, 0,
1672                                              d_image->base.phys0 +
1673                                              dst_tile->offset);
1674                         if (s_image->fmt->planar)
1675                                 ipu_cpmem_set_uv_offset(chan->in_chan,
1676                                                         src_tile->u_off,
1677                                                         src_tile->v_off);
1678                         if (d_image->fmt->planar)
1679                                 ipu_cpmem_set_uv_offset(outch,
1680                                                         dst_tile->u_off,
1681                                                         dst_tile->v_off);
1682
1683                         ipu_idmac_select_buffer(chan->in_chan, 0);
1684                         ipu_idmac_select_buffer(outch, 0);
1685                 }
1686         } else if (ctx->next_tile < ctx->num_tiles - 1) {
1687
1688                 src_tile = &s_image->tile[ctx->next_tile + 1];
1689                 dst_idx = ctx->out_tile_map[ctx->next_tile + 1];
1690                 dst_tile = &d_image->tile[dst_idx];
1691
1692                 ipu_cpmem_set_buffer(chan->in_chan, ctx->cur_buf_num,
1693                                      s_image->base.phys0 + src_tile->offset);
1694                 ipu_cpmem_set_buffer(outch, ctx->cur_buf_num,
1695                                      d_image->base.phys0 + dst_tile->offset);
1696
1697                 ipu_idmac_select_buffer(chan->in_chan, ctx->cur_buf_num);
1698                 ipu_idmac_select_buffer(outch, ctx->cur_buf_num);
1699
1700                 ctx->cur_buf_num ^= 1;
1701         }
1702
1703         ctx->next_tile++;
1704         return IRQ_HANDLED;
1705 done:
1706         list_add_tail(&run->list, &chan->done_q);
1707         chan->current_run = NULL;
1708         run_next(chan);
1709         return IRQ_WAKE_THREAD;
1710 }
1711
1712 static irqreturn_t norotate_irq(int irq, void *data)
1713 {
1714         struct ipu_image_convert_chan *chan = data;
1715         struct ipu_image_convert_ctx *ctx;
1716         struct ipu_image_convert_run *run;
1717         unsigned long flags;
1718         irqreturn_t ret;
1719
1720         spin_lock_irqsave(&chan->irqlock, flags);
1721
1722         /* get current run and its context */
1723         run = chan->current_run;
1724         if (!run) {
1725                 ret = IRQ_NONE;
1726                 goto out;
1727         }
1728
1729         ctx = run->ctx;
1730
1731         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
1732                 /* this is a rotation operation, just ignore */
1733                 spin_unlock_irqrestore(&chan->irqlock, flags);
1734                 return IRQ_HANDLED;
1735         }
1736
1737         ret = do_irq(run);
1738 out:
1739         spin_unlock_irqrestore(&chan->irqlock, flags);
1740         return ret;
1741 }
1742
1743 static irqreturn_t rotate_irq(int irq, void *data)
1744 {
1745         struct ipu_image_convert_chan *chan = data;
1746         struct ipu_image_convert_priv *priv = chan->priv;
1747         struct ipu_image_convert_ctx *ctx;
1748         struct ipu_image_convert_run *run;
1749         unsigned long flags;
1750         irqreturn_t ret;
1751
1752         spin_lock_irqsave(&chan->irqlock, flags);
1753
1754         /* get current run and its context */
1755         run = chan->current_run;
1756         if (!run) {
1757                 ret = IRQ_NONE;
1758                 goto out;
1759         }
1760
1761         ctx = run->ctx;
1762
1763         if (!ipu_rot_mode_is_irt(ctx->rot_mode)) {
1764                 /* this was NOT a rotation operation, shouldn't happen */
1765                 dev_err(priv->ipu->dev, "Unexpected rotation interrupt\n");
1766                 spin_unlock_irqrestore(&chan->irqlock, flags);
1767                 return IRQ_HANDLED;
1768         }
1769
1770         ret = do_irq(run);
1771 out:
1772         spin_unlock_irqrestore(&chan->irqlock, flags);
1773         return ret;
1774 }
1775
1776 /*
1777  * try to force the completion of runs for this ctx. Called when
1778  * abort wait times out in ipu_image_convert_abort().
1779  */
1780 static void force_abort(struct ipu_image_convert_ctx *ctx)
1781 {
1782         struct ipu_image_convert_chan *chan = ctx->chan;
1783         struct ipu_image_convert_run *run;
1784         unsigned long flags;
1785
1786         spin_lock_irqsave(&chan->irqlock, flags);
1787
1788         run = chan->current_run;
1789         if (run && run->ctx == ctx) {
1790                 convert_stop(run);
1791                 run->status = -EIO;
1792                 list_add_tail(&run->list, &chan->done_q);
1793                 chan->current_run = NULL;
1794                 run_next(chan);
1795         }
1796
1797         spin_unlock_irqrestore(&chan->irqlock, flags);
1798
1799         empty_done_q(chan);
1800 }
1801
1802 static void release_ipu_resources(struct ipu_image_convert_chan *chan)
1803 {
1804         if (chan->out_eof_irq >= 0)
1805                 free_irq(chan->out_eof_irq, chan);
1806         if (chan->rot_out_eof_irq >= 0)
1807                 free_irq(chan->rot_out_eof_irq, chan);
1808
1809         if (!IS_ERR_OR_NULL(chan->in_chan))
1810                 ipu_idmac_put(chan->in_chan);
1811         if (!IS_ERR_OR_NULL(chan->out_chan))
1812                 ipu_idmac_put(chan->out_chan);
1813         if (!IS_ERR_OR_NULL(chan->rotation_in_chan))
1814                 ipu_idmac_put(chan->rotation_in_chan);
1815         if (!IS_ERR_OR_NULL(chan->rotation_out_chan))
1816                 ipu_idmac_put(chan->rotation_out_chan);
1817         if (!IS_ERR_OR_NULL(chan->ic))
1818                 ipu_ic_put(chan->ic);
1819
1820         chan->in_chan = chan->out_chan = chan->rotation_in_chan =
1821                 chan->rotation_out_chan = NULL;
1822         chan->out_eof_irq = chan->rot_out_eof_irq = -1;
1823 }
1824
1825 static int get_ipu_resources(struct ipu_image_convert_chan *chan)
1826 {
1827         const struct ipu_image_convert_dma_chan *dma = chan->dma_ch;
1828         struct ipu_image_convert_priv *priv = chan->priv;
1829         int ret;
1830
1831         /* get IC */
1832         chan->ic = ipu_ic_get(priv->ipu, chan->ic_task);
1833         if (IS_ERR(chan->ic)) {
1834                 dev_err(priv->ipu->dev, "could not acquire IC\n");
1835                 ret = PTR_ERR(chan->ic);
1836                 goto err;
1837         }
1838
1839         /* get IDMAC channels */
1840         chan->in_chan = ipu_idmac_get(priv->ipu, dma->in);
1841         chan->out_chan = ipu_idmac_get(priv->ipu, dma->out);
1842         if (IS_ERR(chan->in_chan) || IS_ERR(chan->out_chan)) {
1843                 dev_err(priv->ipu->dev, "could not acquire idmac channels\n");
1844                 ret = -EBUSY;
1845                 goto err;
1846         }
1847
1848         chan->rotation_in_chan = ipu_idmac_get(priv->ipu, dma->rot_in);
1849         chan->rotation_out_chan = ipu_idmac_get(priv->ipu, dma->rot_out);
1850         if (IS_ERR(chan->rotation_in_chan) || IS_ERR(chan->rotation_out_chan)) {
1851                 dev_err(priv->ipu->dev,
1852                         "could not acquire idmac rotation channels\n");
1853                 ret = -EBUSY;
1854                 goto err;
1855         }
1856
1857         /* acquire the EOF interrupts */
1858         chan->out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1859                                                   chan->out_chan,
1860                                                   IPU_IRQ_EOF);
1861
1862         ret = request_threaded_irq(chan->out_eof_irq, norotate_irq, do_bh,
1863                                    0, "ipu-ic", chan);
1864         if (ret < 0) {
1865                 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1866                          chan->out_eof_irq);
1867                 chan->out_eof_irq = -1;
1868                 goto err;
1869         }
1870
1871         chan->rot_out_eof_irq = ipu_idmac_channel_irq(priv->ipu,
1872                                                      chan->rotation_out_chan,
1873                                                      IPU_IRQ_EOF);
1874
1875         ret = request_threaded_irq(chan->rot_out_eof_irq, rotate_irq, do_bh,
1876                                    0, "ipu-ic", chan);
1877         if (ret < 0) {
1878                 dev_err(priv->ipu->dev, "could not acquire irq %d\n",
1879                         chan->rot_out_eof_irq);
1880                 chan->rot_out_eof_irq = -1;
1881                 goto err;
1882         }
1883
1884         return 0;
1885 err:
1886         release_ipu_resources(chan);
1887         return ret;
1888 }
1889
1890 static int fill_image(struct ipu_image_convert_ctx *ctx,
1891                       struct ipu_image_convert_image *ic_image,
1892                       struct ipu_image *image,
1893                       enum ipu_image_convert_type type)
1894 {
1895         struct ipu_image_convert_priv *priv = ctx->chan->priv;
1896
1897         ic_image->base = *image;
1898         ic_image->type = type;
1899
1900         ic_image->fmt = get_format(image->pix.pixelformat);
1901         if (!ic_image->fmt) {
1902                 dev_err(priv->ipu->dev, "pixelformat not supported for %s\n",
1903                         type == IMAGE_CONVERT_OUT ? "Output" : "Input");
1904                 return -EINVAL;
1905         }
1906
1907         if (ic_image->fmt->planar)
1908                 ic_image->stride = ic_image->base.pix.width;
1909         else
1910                 ic_image->stride  = ic_image->base.pix.bytesperline;
1911
1912         return 0;
1913 }
1914
1915 /* borrowed from drivers/media/v4l2-core/v4l2-common.c */
1916 static unsigned int clamp_align(unsigned int x, unsigned int min,
1917                                 unsigned int max, unsigned int align)
1918 {
1919         /* Bits that must be zero to be aligned */
1920         unsigned int mask = ~((1 << align) - 1);
1921
1922         /* Clamp to aligned min and max */
1923         x = clamp(x, (min + ~mask) & mask, max & mask);
1924
1925         /* Round to nearest aligned value */
1926         if (align)
1927                 x = (x + (1 << (align - 1))) & mask;
1928
1929         return x;
1930 }
1931
1932 /* Adjusts input/output images to IPU restrictions */
1933 void ipu_image_convert_adjust(struct ipu_image *in, struct ipu_image *out,
1934                               enum ipu_rotate_mode rot_mode)
1935 {
1936         const struct ipu_image_pixfmt *infmt, *outfmt;
1937         u32 w_align_out, h_align_out;
1938         u32 w_align_in, h_align_in;
1939
1940         infmt = get_format(in->pix.pixelformat);
1941         outfmt = get_format(out->pix.pixelformat);
1942
1943         /* set some default pixel formats if needed */
1944         if (!infmt) {
1945                 in->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1946                 infmt = get_format(V4L2_PIX_FMT_RGB24);
1947         }
1948         if (!outfmt) {
1949                 out->pix.pixelformat = V4L2_PIX_FMT_RGB24;
1950                 outfmt = get_format(V4L2_PIX_FMT_RGB24);
1951         }
1952
1953         /* image converter does not handle fields */
1954         in->pix.field = out->pix.field = V4L2_FIELD_NONE;
1955
1956         /* resizer cannot downsize more than 4:1 */
1957         if (ipu_rot_mode_is_irt(rot_mode)) {
1958                 out->pix.height = max_t(__u32, out->pix.height,
1959                                         in->pix.width / 4);
1960                 out->pix.width = max_t(__u32, out->pix.width,
1961                                        in->pix.height / 4);
1962         } else {
1963                 out->pix.width = max_t(__u32, out->pix.width,
1964                                        in->pix.width / 4);
1965                 out->pix.height = max_t(__u32, out->pix.height,
1966                                         in->pix.height / 4);
1967         }
1968
1969         /* align input width/height */
1970         w_align_in = ilog2(tile_width_align(IMAGE_CONVERT_IN, infmt,
1971                                             rot_mode));
1972         h_align_in = ilog2(tile_height_align(IMAGE_CONVERT_IN, infmt,
1973                                              rot_mode));
1974         in->pix.width = clamp_align(in->pix.width, MIN_W, MAX_W,
1975                                     w_align_in);
1976         in->pix.height = clamp_align(in->pix.height, MIN_H, MAX_H,
1977                                      h_align_in);
1978
1979         /* align output width/height */
1980         w_align_out = ilog2(tile_width_align(IMAGE_CONVERT_OUT, outfmt,
1981                                              rot_mode));
1982         h_align_out = ilog2(tile_height_align(IMAGE_CONVERT_OUT, outfmt,
1983                                               rot_mode));
1984         out->pix.width = clamp_align(out->pix.width, MIN_W, MAX_W,
1985                                      w_align_out);
1986         out->pix.height = clamp_align(out->pix.height, MIN_H, MAX_H,
1987                                       h_align_out);
1988
1989         /* set input/output strides and image sizes */
1990         in->pix.bytesperline = infmt->planar ?
1991                 clamp_align(in->pix.width, 2 << w_align_in, MAX_W,
1992                             w_align_in) :
1993                 clamp_align((in->pix.width * infmt->bpp) >> 3,
1994                             ((2 << w_align_in) * infmt->bpp) >> 3,
1995                             (MAX_W * infmt->bpp) >> 3,
1996                             w_align_in);
1997         in->pix.sizeimage = infmt->planar ?
1998                 (in->pix.height * in->pix.bytesperline * infmt->bpp) >> 3 :
1999                 in->pix.height * in->pix.bytesperline;
2000         out->pix.bytesperline = outfmt->planar ? out->pix.width :
2001                 (out->pix.width * outfmt->bpp) >> 3;
2002         out->pix.sizeimage = outfmt->planar ?
2003                 (out->pix.height * out->pix.bytesperline * outfmt->bpp) >> 3 :
2004                 out->pix.height * out->pix.bytesperline;
2005 }
2006 EXPORT_SYMBOL_GPL(ipu_image_convert_adjust);
2007
2008 /*
2009  * this is used by ipu_image_convert_prepare() to verify set input and
2010  * output images are valid before starting the conversion. Clients can
2011  * also call it before calling ipu_image_convert_prepare().
2012  */
2013 int ipu_image_convert_verify(struct ipu_image *in, struct ipu_image *out,
2014                              enum ipu_rotate_mode rot_mode)
2015 {
2016         struct ipu_image testin, testout;
2017
2018         testin = *in;
2019         testout = *out;
2020
2021         ipu_image_convert_adjust(&testin, &testout, rot_mode);
2022
2023         if (testin.pix.width != in->pix.width ||
2024             testin.pix.height != in->pix.height ||
2025             testout.pix.width != out->pix.width ||
2026             testout.pix.height != out->pix.height)
2027                 return -EINVAL;
2028
2029         return 0;
2030 }
2031 EXPORT_SYMBOL_GPL(ipu_image_convert_verify);
2032
2033 /*
2034  * Call ipu_image_convert_prepare() to prepare for the conversion of
2035  * given images and rotation mode. Returns a new conversion context.
2036  */
2037 struct ipu_image_convert_ctx *
2038 ipu_image_convert_prepare(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2039                           struct ipu_image *in, struct ipu_image *out,
2040                           enum ipu_rotate_mode rot_mode,
2041                           ipu_image_convert_cb_t complete,
2042                           void *complete_context)
2043 {
2044         struct ipu_image_convert_priv *priv = ipu->image_convert_priv;
2045         struct ipu_image_convert_image *s_image, *d_image;
2046         struct ipu_image_convert_chan *chan;
2047         struct ipu_image_convert_ctx *ctx;
2048         unsigned long flags;
2049         unsigned int i;
2050         bool get_res;
2051         int ret;
2052
2053         if (!in || !out || !complete ||
2054             (ic_task != IC_TASK_VIEWFINDER &&
2055              ic_task != IC_TASK_POST_PROCESSOR))
2056                 return ERR_PTR(-EINVAL);
2057
2058         /* verify the in/out images before continuing */
2059         ret = ipu_image_convert_verify(in, out, rot_mode);
2060         if (ret) {
2061                 dev_err(priv->ipu->dev, "%s: in/out formats invalid\n",
2062                         __func__);
2063                 return ERR_PTR(ret);
2064         }
2065
2066         chan = &priv->chan[ic_task];
2067
2068         ctx = kzalloc(sizeof(*ctx), GFP_KERNEL);
2069         if (!ctx)
2070                 return ERR_PTR(-ENOMEM);
2071
2072         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p\n", __func__,
2073                 chan->ic_task, ctx);
2074
2075         ctx->chan = chan;
2076         init_completion(&ctx->aborted);
2077
2078         ctx->rot_mode = rot_mode;
2079
2080         /* Sets ctx->in.num_rows/cols as well */
2081         ret = calc_image_resize_coefficients(ctx, in, out);
2082         if (ret)
2083                 goto out_free;
2084
2085         s_image = &ctx->in;
2086         d_image = &ctx->out;
2087
2088         /* set tiling and rotation */
2089         if (ipu_rot_mode_is_irt(rot_mode)) {
2090                 d_image->num_rows = s_image->num_cols;
2091                 d_image->num_cols = s_image->num_rows;
2092         } else {
2093                 d_image->num_rows = s_image->num_rows;
2094                 d_image->num_cols = s_image->num_cols;
2095         }
2096
2097         ctx->num_tiles = d_image->num_cols * d_image->num_rows;
2098
2099         ret = fill_image(ctx, s_image, in, IMAGE_CONVERT_IN);
2100         if (ret)
2101                 goto out_free;
2102         ret = fill_image(ctx, d_image, out, IMAGE_CONVERT_OUT);
2103         if (ret)
2104                 goto out_free;
2105
2106         calc_out_tile_map(ctx);
2107
2108         find_seams(ctx, s_image, d_image);
2109
2110         ret = calc_tile_dimensions(ctx, s_image);
2111         if (ret)
2112                 goto out_free;
2113
2114         ret = calc_tile_offsets(ctx, s_image);
2115         if (ret)
2116                 goto out_free;
2117
2118         calc_tile_dimensions(ctx, d_image);
2119         ret = calc_tile_offsets(ctx, d_image);
2120         if (ret)
2121                 goto out_free;
2122
2123         calc_tile_resize_coefficients(ctx);
2124
2125         ret = ipu_ic_calc_csc(&ctx->csc,
2126                         s_image->base.pix.ycbcr_enc,
2127                         s_image->base.pix.quantization,
2128                         ipu_pixelformat_to_colorspace(s_image->fmt->fourcc),
2129                         d_image->base.pix.ycbcr_enc,
2130                         d_image->base.pix.quantization,
2131                         ipu_pixelformat_to_colorspace(d_image->fmt->fourcc));
2132         if (ret)
2133                 goto out_free;
2134
2135         dump_format(ctx, s_image);
2136         dump_format(ctx, d_image);
2137
2138         ctx->complete = complete;
2139         ctx->complete_context = complete_context;
2140
2141         /*
2142          * Can we use double-buffering for this operation? If there is
2143          * only one tile (the whole image can be converted in a single
2144          * operation) there's no point in using double-buffering. Also,
2145          * the IPU's IDMAC channels allow only a single U and V plane
2146          * offset shared between both buffers, but these offsets change
2147          * for every tile, and therefore would have to be updated for
2148          * each buffer which is not possible. So double-buffering is
2149          * impossible when either the source or destination images are
2150          * a planar format (YUV420, YUV422P, etc.). Further, differently
2151          * sized tiles or different resizing coefficients per tile
2152          * prevent double-buffering as well.
2153          */
2154         ctx->double_buffering = (ctx->num_tiles > 1 &&
2155                                  !s_image->fmt->planar &&
2156                                  !d_image->fmt->planar);
2157         for (i = 1; i < ctx->num_tiles; i++) {
2158                 if (ctx->in.tile[i].width != ctx->in.tile[0].width ||
2159                     ctx->in.tile[i].height != ctx->in.tile[0].height ||
2160                     ctx->out.tile[i].width != ctx->out.tile[0].width ||
2161                     ctx->out.tile[i].height != ctx->out.tile[0].height) {
2162                         ctx->double_buffering = false;
2163                         break;
2164                 }
2165         }
2166         for (i = 1; i < ctx->in.num_cols; i++) {
2167                 if (ctx->resize_coeffs_h[i] != ctx->resize_coeffs_h[0]) {
2168                         ctx->double_buffering = false;
2169                         break;
2170                 }
2171         }
2172         for (i = 1; i < ctx->in.num_rows; i++) {
2173                 if (ctx->resize_coeffs_v[i] != ctx->resize_coeffs_v[0]) {
2174                         ctx->double_buffering = false;
2175                         break;
2176                 }
2177         }
2178
2179         if (ipu_rot_mode_is_irt(ctx->rot_mode)) {
2180                 unsigned long intermediate_size = d_image->tile[0].size;
2181
2182                 for (i = 1; i < ctx->num_tiles; i++) {
2183                         if (d_image->tile[i].size > intermediate_size)
2184                                 intermediate_size = d_image->tile[i].size;
2185                 }
2186
2187                 ret = alloc_dma_buf(priv, &ctx->rot_intermediate[0],
2188                                     intermediate_size);
2189                 if (ret)
2190                         goto out_free;
2191                 if (ctx->double_buffering) {
2192                         ret = alloc_dma_buf(priv,
2193                                             &ctx->rot_intermediate[1],
2194                                             intermediate_size);
2195                         if (ret)
2196                                 goto out_free_dmabuf0;
2197                 }
2198         }
2199
2200         spin_lock_irqsave(&chan->irqlock, flags);
2201
2202         get_res = list_empty(&chan->ctx_list);
2203
2204         list_add_tail(&ctx->list, &chan->ctx_list);
2205
2206         spin_unlock_irqrestore(&chan->irqlock, flags);
2207
2208         if (get_res) {
2209                 ret = get_ipu_resources(chan);
2210                 if (ret)
2211                         goto out_free_dmabuf1;
2212         }
2213
2214         return ctx;
2215
2216 out_free_dmabuf1:
2217         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2218         spin_lock_irqsave(&chan->irqlock, flags);
2219         list_del(&ctx->list);
2220         spin_unlock_irqrestore(&chan->irqlock, flags);
2221 out_free_dmabuf0:
2222         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2223 out_free:
2224         kfree(ctx);
2225         return ERR_PTR(ret);
2226 }
2227 EXPORT_SYMBOL_GPL(ipu_image_convert_prepare);
2228
2229 /*
2230  * Carry out a single image conversion run. Only the physaddr's of the input
2231  * and output image buffers are needed. The conversion context must have
2232  * been created previously with ipu_image_convert_prepare().
2233  */
2234 int ipu_image_convert_queue(struct ipu_image_convert_run *run)
2235 {
2236         struct ipu_image_convert_chan *chan;
2237         struct ipu_image_convert_priv *priv;
2238         struct ipu_image_convert_ctx *ctx;
2239         unsigned long flags;
2240         int ret = 0;
2241
2242         if (!run || !run->ctx || !run->in_phys || !run->out_phys)
2243                 return -EINVAL;
2244
2245         ctx = run->ctx;
2246         chan = ctx->chan;
2247         priv = chan->priv;
2248
2249         dev_dbg(priv->ipu->dev, "%s: task %u: ctx %p run %p\n", __func__,
2250                 chan->ic_task, ctx, run);
2251
2252         INIT_LIST_HEAD(&run->list);
2253
2254         spin_lock_irqsave(&chan->irqlock, flags);
2255
2256         if (ctx->aborting) {
2257                 ret = -EIO;
2258                 goto unlock;
2259         }
2260
2261         list_add_tail(&run->list, &chan->pending_q);
2262
2263         if (!chan->current_run) {
2264                 ret = do_run(run);
2265                 if (ret)
2266                         chan->current_run = NULL;
2267         }
2268 unlock:
2269         spin_unlock_irqrestore(&chan->irqlock, flags);
2270         return ret;
2271 }
2272 EXPORT_SYMBOL_GPL(ipu_image_convert_queue);
2273
2274 /* Abort any active or pending conversions for this context */
2275 static void __ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2276 {
2277         struct ipu_image_convert_chan *chan = ctx->chan;
2278         struct ipu_image_convert_priv *priv = chan->priv;
2279         struct ipu_image_convert_run *run, *active_run, *tmp;
2280         unsigned long flags;
2281         int run_count, ret;
2282
2283         spin_lock_irqsave(&chan->irqlock, flags);
2284
2285         /* move all remaining pending runs in this context to done_q */
2286         list_for_each_entry_safe(run, tmp, &chan->pending_q, list) {
2287                 if (run->ctx != ctx)
2288                         continue;
2289                 run->status = -EIO;
2290                 list_move_tail(&run->list, &chan->done_q);
2291         }
2292
2293         run_count = get_run_count(ctx, &chan->done_q);
2294         active_run = (chan->current_run && chan->current_run->ctx == ctx) ?
2295                 chan->current_run : NULL;
2296
2297         if (active_run)
2298                 reinit_completion(&ctx->aborted);
2299
2300         ctx->aborting = true;
2301
2302         spin_unlock_irqrestore(&chan->irqlock, flags);
2303
2304         if (!run_count && !active_run) {
2305                 dev_dbg(priv->ipu->dev,
2306                         "%s: task %u: no abort needed for ctx %p\n",
2307                         __func__, chan->ic_task, ctx);
2308                 return;
2309         }
2310
2311         if (!active_run) {
2312                 empty_done_q(chan);
2313                 return;
2314         }
2315
2316         dev_dbg(priv->ipu->dev,
2317                 "%s: task %u: wait for completion: %d runs\n",
2318                 __func__, chan->ic_task, run_count);
2319
2320         ret = wait_for_completion_timeout(&ctx->aborted,
2321                                           msecs_to_jiffies(10000));
2322         if (ret == 0) {
2323                 dev_warn(priv->ipu->dev, "%s: timeout\n", __func__);
2324                 force_abort(ctx);
2325         }
2326 }
2327
2328 void ipu_image_convert_abort(struct ipu_image_convert_ctx *ctx)
2329 {
2330         __ipu_image_convert_abort(ctx);
2331         ctx->aborting = false;
2332 }
2333 EXPORT_SYMBOL_GPL(ipu_image_convert_abort);
2334
2335 /* Unprepare image conversion context */
2336 void ipu_image_convert_unprepare(struct ipu_image_convert_ctx *ctx)
2337 {
2338         struct ipu_image_convert_chan *chan = ctx->chan;
2339         struct ipu_image_convert_priv *priv = chan->priv;
2340         unsigned long flags;
2341         bool put_res;
2342
2343         /* make sure no runs are hanging around */
2344         __ipu_image_convert_abort(ctx);
2345
2346         dev_dbg(priv->ipu->dev, "%s: task %u: removing ctx %p\n", __func__,
2347                 chan->ic_task, ctx);
2348
2349         spin_lock_irqsave(&chan->irqlock, flags);
2350
2351         list_del(&ctx->list);
2352
2353         put_res = list_empty(&chan->ctx_list);
2354
2355         spin_unlock_irqrestore(&chan->irqlock, flags);
2356
2357         if (put_res)
2358                 release_ipu_resources(chan);
2359
2360         free_dma_buf(priv, &ctx->rot_intermediate[1]);
2361         free_dma_buf(priv, &ctx->rot_intermediate[0]);
2362
2363         kfree(ctx);
2364 }
2365 EXPORT_SYMBOL_GPL(ipu_image_convert_unprepare);
2366
2367 /*
2368  * "Canned" asynchronous single image conversion. Allocates and returns
2369  * a new conversion run.  On successful return the caller must free the
2370  * run and call ipu_image_convert_unprepare() after conversion completes.
2371  */
2372 struct ipu_image_convert_run *
2373 ipu_image_convert(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2374                   struct ipu_image *in, struct ipu_image *out,
2375                   enum ipu_rotate_mode rot_mode,
2376                   ipu_image_convert_cb_t complete,
2377                   void *complete_context)
2378 {
2379         struct ipu_image_convert_ctx *ctx;
2380         struct ipu_image_convert_run *run;
2381         int ret;
2382
2383         ctx = ipu_image_convert_prepare(ipu, ic_task, in, out, rot_mode,
2384                                         complete, complete_context);
2385         if (IS_ERR(ctx))
2386                 return ERR_CAST(ctx);
2387
2388         run = kzalloc(sizeof(*run), GFP_KERNEL);
2389         if (!run) {
2390                 ipu_image_convert_unprepare(ctx);
2391                 return ERR_PTR(-ENOMEM);
2392         }
2393
2394         run->ctx = ctx;
2395         run->in_phys = in->phys0;
2396         run->out_phys = out->phys0;
2397
2398         ret = ipu_image_convert_queue(run);
2399         if (ret) {
2400                 ipu_image_convert_unprepare(ctx);
2401                 kfree(run);
2402                 return ERR_PTR(ret);
2403         }
2404
2405         return run;
2406 }
2407 EXPORT_SYMBOL_GPL(ipu_image_convert);
2408
2409 /* "Canned" synchronous single image conversion */
2410 static void image_convert_sync_complete(struct ipu_image_convert_run *run,
2411                                         void *data)
2412 {
2413         struct completion *comp = data;
2414
2415         complete(comp);
2416 }
2417
2418 int ipu_image_convert_sync(struct ipu_soc *ipu, enum ipu_ic_task ic_task,
2419                            struct ipu_image *in, struct ipu_image *out,
2420                            enum ipu_rotate_mode rot_mode)
2421 {
2422         struct ipu_image_convert_run *run;
2423         struct completion comp;
2424         int ret;
2425
2426         init_completion(&comp);
2427
2428         run = ipu_image_convert(ipu, ic_task, in, out, rot_mode,
2429                                 image_convert_sync_complete, &comp);
2430         if (IS_ERR(run))
2431                 return PTR_ERR(run);
2432
2433         ret = wait_for_completion_timeout(&comp, msecs_to_jiffies(10000));
2434         ret = (ret == 0) ? -ETIMEDOUT : 0;
2435
2436         ipu_image_convert_unprepare(run->ctx);
2437         kfree(run);
2438
2439         return ret;
2440 }
2441 EXPORT_SYMBOL_GPL(ipu_image_convert_sync);
2442
2443 int ipu_image_convert_init(struct ipu_soc *ipu, struct device *dev)
2444 {
2445         struct ipu_image_convert_priv *priv;
2446         int i;
2447
2448         priv = devm_kzalloc(dev, sizeof(*priv), GFP_KERNEL);
2449         if (!priv)
2450                 return -ENOMEM;
2451
2452         ipu->image_convert_priv = priv;
2453         priv->ipu = ipu;
2454
2455         for (i = 0; i < IC_NUM_TASKS; i++) {
2456                 struct ipu_image_convert_chan *chan = &priv->chan[i];
2457
2458                 chan->ic_task = i;
2459                 chan->priv = priv;
2460                 chan->dma_ch = &image_convert_dma_chan[i];
2461                 chan->out_eof_irq = -1;
2462                 chan->rot_out_eof_irq = -1;
2463
2464                 spin_lock_init(&chan->irqlock);
2465                 INIT_LIST_HEAD(&chan->ctx_list);
2466                 INIT_LIST_HEAD(&chan->pending_q);
2467                 INIT_LIST_HEAD(&chan->done_q);
2468         }
2469
2470         return 0;
2471 }
2472
2473 void ipu_image_convert_exit(struct ipu_soc *ipu)
2474 {
2475 }