Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / gpu / host1x / syncpt.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Tegra host1x Syncpoints
4  *
5  * Copyright (c) 2010-2015, NVIDIA Corporation.
6  */
7
8 #include <linux/module.h>
9 #include <linux/device.h>
10 #include <linux/slab.h>
11
12 #include <trace/events/host1x.h>
13
14 #include "syncpt.h"
15 #include "dev.h"
16 #include "intr.h"
17 #include "debug.h"
18
19 #define SYNCPT_CHECK_PERIOD (2 * HZ)
20 #define MAX_STUCK_CHECK_COUNT 15
21
22 static struct host1x_syncpt_base *
23 host1x_syncpt_base_request(struct host1x *host)
24 {
25         struct host1x_syncpt_base *bases = host->bases;
26         unsigned int i;
27
28         for (i = 0; i < host->info->nb_bases; i++)
29                 if (!bases[i].requested)
30                         break;
31
32         if (i >= host->info->nb_bases)
33                 return NULL;
34
35         bases[i].requested = true;
36         return &bases[i];
37 }
38
39 static void host1x_syncpt_base_free(struct host1x_syncpt_base *base)
40 {
41         if (base)
42                 base->requested = false;
43 }
44
45 static struct host1x_syncpt *host1x_syncpt_alloc(struct host1x *host,
46                                                  struct host1x_client *client,
47                                                  unsigned long flags)
48 {
49         struct host1x_syncpt *sp = host->syncpt;
50         unsigned int i;
51         char *name;
52
53         mutex_lock(&host->syncpt_mutex);
54
55         for (i = 0; i < host->info->nb_pts && sp->name; i++, sp++)
56                 ;
57
58         if (i >= host->info->nb_pts)
59                 goto unlock;
60
61         if (flags & HOST1X_SYNCPT_HAS_BASE) {
62                 sp->base = host1x_syncpt_base_request(host);
63                 if (!sp->base)
64                         goto unlock;
65         }
66
67         name = kasprintf(GFP_KERNEL, "%02u-%s", sp->id,
68                          client ? dev_name(client->dev) : NULL);
69         if (!name)
70                 goto free_base;
71
72         sp->client = client;
73         sp->name = name;
74
75         if (flags & HOST1X_SYNCPT_CLIENT_MANAGED)
76                 sp->client_managed = true;
77         else
78                 sp->client_managed = false;
79
80         mutex_unlock(&host->syncpt_mutex);
81         return sp;
82
83 free_base:
84         host1x_syncpt_base_free(sp->base);
85         sp->base = NULL;
86 unlock:
87         mutex_unlock(&host->syncpt_mutex);
88         return NULL;
89 }
90
91 /**
92  * host1x_syncpt_id() - retrieve syncpoint ID
93  * @sp: host1x syncpoint
94  *
95  * Given a pointer to a struct host1x_syncpt, retrieves its ID. This ID is
96  * often used as a value to program into registers that control how hardware
97  * blocks interact with syncpoints.
98  */
99 u32 host1x_syncpt_id(struct host1x_syncpt *sp)
100 {
101         return sp->id;
102 }
103 EXPORT_SYMBOL(host1x_syncpt_id);
104
105 /**
106  * host1x_syncpt_incr_max() - update the value sent to hardware
107  * @sp: host1x syncpoint
108  * @incrs: number of increments
109  */
110 u32 host1x_syncpt_incr_max(struct host1x_syncpt *sp, u32 incrs)
111 {
112         return (u32)atomic_add_return(incrs, &sp->max_val);
113 }
114 EXPORT_SYMBOL(host1x_syncpt_incr_max);
115
116  /*
117  * Write cached syncpoint and waitbase values to hardware.
118  */
119 void host1x_syncpt_restore(struct host1x *host)
120 {
121         struct host1x_syncpt *sp_base = host->syncpt;
122         unsigned int i;
123
124         for (i = 0; i < host1x_syncpt_nb_pts(host); i++)
125                 host1x_hw_syncpt_restore(host, sp_base + i);
126
127         for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
128                 host1x_hw_syncpt_restore_wait_base(host, sp_base + i);
129
130         wmb();
131 }
132
133 /*
134  * Update the cached syncpoint and waitbase values by reading them
135  * from the registers.
136   */
137 void host1x_syncpt_save(struct host1x *host)
138 {
139         struct host1x_syncpt *sp_base = host->syncpt;
140         unsigned int i;
141
142         for (i = 0; i < host1x_syncpt_nb_pts(host); i++) {
143                 if (host1x_syncpt_client_managed(sp_base + i))
144                         host1x_hw_syncpt_load(host, sp_base + i);
145                 else
146                         WARN_ON(!host1x_syncpt_idle(sp_base + i));
147         }
148
149         for (i = 0; i < host1x_syncpt_nb_bases(host); i++)
150                 host1x_hw_syncpt_load_wait_base(host, sp_base + i);
151 }
152
153 /*
154  * Updates the cached syncpoint value by reading a new value from the hardware
155  * register
156  */
157 u32 host1x_syncpt_load(struct host1x_syncpt *sp)
158 {
159         u32 val;
160
161         val = host1x_hw_syncpt_load(sp->host, sp);
162         trace_host1x_syncpt_load_min(sp->id, val);
163
164         return val;
165 }
166
167 /*
168  * Get the current syncpoint base
169  */
170 u32 host1x_syncpt_load_wait_base(struct host1x_syncpt *sp)
171 {
172         host1x_hw_syncpt_load_wait_base(sp->host, sp);
173
174         return sp->base_val;
175 }
176
177 /**
178  * host1x_syncpt_incr() - increment syncpoint value from CPU, updating cache
179  * @sp: host1x syncpoint
180  */
181 int host1x_syncpt_incr(struct host1x_syncpt *sp)
182 {
183         return host1x_hw_syncpt_cpu_incr(sp->host, sp);
184 }
185 EXPORT_SYMBOL(host1x_syncpt_incr);
186
187 /*
188  * Updated sync point form hardware, and returns true if syncpoint is expired,
189  * false if we may need to wait
190  */
191 static bool syncpt_load_min_is_expired(struct host1x_syncpt *sp, u32 thresh)
192 {
193         host1x_hw_syncpt_load(sp->host, sp);
194
195         return host1x_syncpt_is_expired(sp, thresh);
196 }
197
198 /**
199  * host1x_syncpt_wait() - wait for a syncpoint to reach a given value
200  * @sp: host1x syncpoint
201  * @thresh: threshold
202  * @timeout: maximum time to wait for the syncpoint to reach the given value
203  * @value: return location for the syncpoint value
204  */
205 int host1x_syncpt_wait(struct host1x_syncpt *sp, u32 thresh, long timeout,
206                        u32 *value)
207 {
208         DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
209         void *ref;
210         struct host1x_waitlist *waiter;
211         int err = 0, check_count = 0;
212         u32 val;
213
214         if (value)
215                 *value = 0;
216
217         /* first check cache */
218         if (host1x_syncpt_is_expired(sp, thresh)) {
219                 if (value)
220                         *value = host1x_syncpt_load(sp);
221
222                 return 0;
223         }
224
225         /* try to read from register */
226         val = host1x_hw_syncpt_load(sp->host, sp);
227         if (host1x_syncpt_is_expired(sp, thresh)) {
228                 if (value)
229                         *value = val;
230
231                 goto done;
232         }
233
234         if (!timeout) {
235                 err = -EAGAIN;
236                 goto done;
237         }
238
239         /* allocate a waiter */
240         waiter = kzalloc(sizeof(*waiter), GFP_KERNEL);
241         if (!waiter) {
242                 err = -ENOMEM;
243                 goto done;
244         }
245
246         /* schedule a wakeup when the syncpoint value is reached */
247         err = host1x_intr_add_action(sp->host, sp, thresh,
248                                      HOST1X_INTR_ACTION_WAKEUP_INTERRUPTIBLE,
249                                      &wq, waiter, &ref);
250         if (err)
251                 goto done;
252
253         err = -EAGAIN;
254         /* Caller-specified timeout may be impractically low */
255         if (timeout < 0)
256                 timeout = LONG_MAX;
257
258         /* wait for the syncpoint, or timeout, or signal */
259         while (timeout) {
260                 long check = min_t(long, SYNCPT_CHECK_PERIOD, timeout);
261                 int remain;
262
263                 remain = wait_event_interruptible_timeout(wq,
264                                 syncpt_load_min_is_expired(sp, thresh),
265                                 check);
266                 if (remain > 0 || host1x_syncpt_is_expired(sp, thresh)) {
267                         if (value)
268                                 *value = host1x_syncpt_load(sp);
269
270                         err = 0;
271
272                         break;
273                 }
274
275                 if (remain < 0) {
276                         err = remain;
277                         break;
278                 }
279
280                 timeout -= check;
281
282                 if (timeout && check_count <= MAX_STUCK_CHECK_COUNT) {
283                         dev_warn(sp->host->dev,
284                                 "%s: syncpoint id %u (%s) stuck waiting %d, timeout=%ld\n",
285                                  current->comm, sp->id, sp->name,
286                                  thresh, timeout);
287
288                         host1x_debug_dump_syncpts(sp->host);
289
290                         if (check_count == MAX_STUCK_CHECK_COUNT)
291                                 host1x_debug_dump(sp->host);
292
293                         check_count++;
294                 }
295         }
296
297         host1x_intr_put_ref(sp->host, sp->id, ref);
298
299 done:
300         return err;
301 }
302 EXPORT_SYMBOL(host1x_syncpt_wait);
303
304 /*
305  * Returns true if syncpoint is expired, false if we may need to wait
306  */
307 bool host1x_syncpt_is_expired(struct host1x_syncpt *sp, u32 thresh)
308 {
309         u32 current_val;
310         u32 future_val;
311
312         smp_rmb();
313
314         current_val = (u32)atomic_read(&sp->min_val);
315         future_val = (u32)atomic_read(&sp->max_val);
316
317         /* Note the use of unsigned arithmetic here (mod 1<<32).
318          *
319          * c = current_val = min_val    = the current value of the syncpoint.
320          * t = thresh                   = the value we are checking
321          * f = future_val  = max_val    = the value c will reach when all
322          *                                outstanding increments have completed.
323          *
324          * Note that c always chases f until it reaches f.
325          *
326          * Dtf = (f - t)
327          * Dtc = (c - t)
328          *
329          *  Consider all cases:
330          *
331          *      A) .....c..t..f.....    Dtf < Dtc       need to wait
332          *      B) .....c.....f..t..    Dtf > Dtc       expired
333          *      C) ..t..c.....f.....    Dtf > Dtc       expired    (Dct very large)
334          *
335          *  Any case where f==c: always expired (for any t).    Dtf == Dcf
336          *  Any case where t==c: always expired (for any f).    Dtf >= Dtc (because Dtc==0)
337          *  Any case where t==f!=c: always wait.                Dtf <  Dtc (because Dtf==0,
338          *                                                      Dtc!=0)
339          *
340          *  Other cases:
341          *
342          *      A) .....t..f..c.....    Dtf < Dtc       need to wait
343          *      A) .....f..c..t.....    Dtf < Dtc       need to wait
344          *      A) .....f..t..c.....    Dtf > Dtc       expired
345          *
346          *   So:
347          *         Dtf >= Dtc implies EXPIRED   (return true)
348          *         Dtf <  Dtc implies WAIT      (return false)
349          *
350          * Note: If t is expired then we *cannot* wait on it. We would wait
351          * forever (hang the system).
352          *
353          * Note: do NOT get clever and remove the -thresh from both sides. It
354          * is NOT the same.
355          *
356          * If future valueis zero, we have a client managed sync point. In that
357          * case we do a direct comparison.
358          */
359         if (!host1x_syncpt_client_managed(sp))
360                 return future_val - thresh >= current_val - thresh;
361         else
362                 return (s32)(current_val - thresh) >= 0;
363 }
364
365 int host1x_syncpt_init(struct host1x *host)
366 {
367         struct host1x_syncpt_base *bases;
368         struct host1x_syncpt *syncpt;
369         unsigned int i;
370
371         syncpt = devm_kcalloc(host->dev, host->info->nb_pts, sizeof(*syncpt),
372                               GFP_KERNEL);
373         if (!syncpt)
374                 return -ENOMEM;
375
376         bases = devm_kcalloc(host->dev, host->info->nb_bases, sizeof(*bases),
377                              GFP_KERNEL);
378         if (!bases)
379                 return -ENOMEM;
380
381         for (i = 0; i < host->info->nb_pts; i++) {
382                 syncpt[i].id = i;
383                 syncpt[i].host = host;
384
385                 /*
386                  * Unassign syncpt from channels for purposes of Tegra186
387                  * syncpoint protection. This prevents any channel from
388                  * accessing it until it is reassigned.
389                  */
390                 host1x_hw_syncpt_assign_to_channel(host, &syncpt[i], NULL);
391         }
392
393         for (i = 0; i < host->info->nb_bases; i++)
394                 bases[i].id = i;
395
396         mutex_init(&host->syncpt_mutex);
397         host->syncpt = syncpt;
398         host->bases = bases;
399
400         host1x_syncpt_restore(host);
401         host1x_hw_syncpt_enable_protection(host);
402
403         /* Allocate sync point to use for clearing waits for expired fences */
404         host->nop_sp = host1x_syncpt_alloc(host, NULL, 0);
405         if (!host->nop_sp)
406                 return -ENOMEM;
407
408         return 0;
409 }
410
411 /**
412  * host1x_syncpt_request() - request a syncpoint
413  * @client: client requesting the syncpoint
414  * @flags: flags
415  *
416  * host1x client drivers can use this function to allocate a syncpoint for
417  * subsequent use. A syncpoint returned by this function will be reserved for
418  * use by the client exclusively. When no longer using a syncpoint, a host1x
419  * client driver needs to release it using host1x_syncpt_free().
420  */
421 struct host1x_syncpt *host1x_syncpt_request(struct host1x_client *client,
422                                             unsigned long flags)
423 {
424         struct host1x *host = dev_get_drvdata(client->parent->parent);
425
426         return host1x_syncpt_alloc(host, client, flags);
427 }
428 EXPORT_SYMBOL(host1x_syncpt_request);
429
430 /**
431  * host1x_syncpt_free() - free a requested syncpoint
432  * @sp: host1x syncpoint
433  *
434  * Release a syncpoint previously allocated using host1x_syncpt_request(). A
435  * host1x client driver should call this when the syncpoint is no longer in
436  * use. Note that client drivers must ensure that the syncpoint doesn't remain
437  * under the control of hardware after calling this function, otherwise two
438  * clients may end up trying to access the same syncpoint concurrently.
439  */
440 void host1x_syncpt_free(struct host1x_syncpt *sp)
441 {
442         if (!sp)
443                 return;
444
445         mutex_lock(&sp->host->syncpt_mutex);
446
447         host1x_syncpt_base_free(sp->base);
448         kfree(sp->name);
449         sp->base = NULL;
450         sp->client = NULL;
451         sp->name = NULL;
452         sp->client_managed = false;
453
454         mutex_unlock(&sp->host->syncpt_mutex);
455 }
456 EXPORT_SYMBOL(host1x_syncpt_free);
457
458 void host1x_syncpt_deinit(struct host1x *host)
459 {
460         struct host1x_syncpt *sp = host->syncpt;
461         unsigned int i;
462
463         for (i = 0; i < host->info->nb_pts; i++, sp++)
464                 kfree(sp->name);
465 }
466
467 /**
468  * host1x_syncpt_read_max() - read maximum syncpoint value
469  * @sp: host1x syncpoint
470  *
471  * The maximum syncpoint value indicates how many operations there are in
472  * queue, either in channel or in a software thread.
473  */
474 u32 host1x_syncpt_read_max(struct host1x_syncpt *sp)
475 {
476         smp_rmb();
477
478         return (u32)atomic_read(&sp->max_val);
479 }
480 EXPORT_SYMBOL(host1x_syncpt_read_max);
481
482 /**
483  * host1x_syncpt_read_min() - read minimum syncpoint value
484  * @sp: host1x syncpoint
485  *
486  * The minimum syncpoint value is a shadow of the current sync point value in
487  * hardware.
488  */
489 u32 host1x_syncpt_read_min(struct host1x_syncpt *sp)
490 {
491         smp_rmb();
492
493         return (u32)atomic_read(&sp->min_val);
494 }
495 EXPORT_SYMBOL(host1x_syncpt_read_min);
496
497 /**
498  * host1x_syncpt_read() - read the current syncpoint value
499  * @sp: host1x syncpoint
500  */
501 u32 host1x_syncpt_read(struct host1x_syncpt *sp)
502 {
503         return host1x_syncpt_load(sp);
504 }
505 EXPORT_SYMBOL(host1x_syncpt_read);
506
507 unsigned int host1x_syncpt_nb_pts(struct host1x *host)
508 {
509         return host->info->nb_pts;
510 }
511
512 unsigned int host1x_syncpt_nb_bases(struct host1x *host)
513 {
514         return host->info->nb_bases;
515 }
516
517 unsigned int host1x_syncpt_nb_mlocks(struct host1x *host)
518 {
519         return host->info->nb_mlocks;
520 }
521
522 /**
523  * host1x_syncpt_get() - obtain a syncpoint by ID
524  * @host: host1x controller
525  * @id: syncpoint ID
526  */
527 struct host1x_syncpt *host1x_syncpt_get(struct host1x *host, unsigned int id)
528 {
529         if (id >= host->info->nb_pts)
530                 return NULL;
531
532         return host->syncpt + id;
533 }
534 EXPORT_SYMBOL(host1x_syncpt_get);
535
536 /**
537  * host1x_syncpt_get_base() - obtain the wait base associated with a syncpoint
538  * @sp: host1x syncpoint
539  */
540 struct host1x_syncpt_base *host1x_syncpt_get_base(struct host1x_syncpt *sp)
541 {
542         return sp ? sp->base : NULL;
543 }
544 EXPORT_SYMBOL(host1x_syncpt_get_base);
545
546 /**
547  * host1x_syncpt_base_id() - retrieve the ID of a syncpoint wait base
548  * @base: host1x syncpoint wait base
549  */
550 u32 host1x_syncpt_base_id(struct host1x_syncpt_base *base)
551 {
552         return base->id;
553 }
554 EXPORT_SYMBOL(host1x_syncpt_base_id);