Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #include <drm/ttm/ttm_set_memory.h>
54
55 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION                4
57 #define FREE_ALL_PAGES                  (~0U)
58 #define VADDR_FLAG_HUGE_POOL            1UL
59 #define VADDR_FLAG_UPDATED_COUNT        2UL
60
61 enum pool_type {
62         IS_UNDEFINED    = 0,
63         IS_WC           = 1 << 1,
64         IS_UC           = 1 << 2,
65         IS_CACHED       = 1 << 3,
66         IS_DMA32        = 1 << 4,
67         IS_HUGE         = 1 << 5
68 };
69
70 /*
71  * The pool structure. There are up to nine pools:
72  *  - generic (not restricted to DMA32):
73  *      - write combined, uncached, cached.
74  *  - dma32 (up to 2^32 - so up 4GB):
75  *      - write combined, uncached, cached.
76  *  - huge (not restricted to DMA32):
77  *      - write combined, uncached, cached.
78  * for each 'struct device'. The 'cached' is for pages that are actively used.
79  * The other ones can be shrunk by the shrinker API if neccessary.
80  * @pools: The 'struct device->dma_pools' link.
81  * @type: Type of the pool
82  * @lock: Protects the free_list from concurrnet access. Must be
83  * used with irqsave/irqrestore variants because pool allocator maybe called
84  * from delayed work.
85  * @free_list: Pool of pages that are free to be used. No order requirements.
86  * @dev: The device that is associated with these pools.
87  * @size: Size used during DMA allocation.
88  * @npages_free: Count of available pages for re-use.
89  * @npages_in_use: Count of pages that are in use.
90  * @nfrees: Stats when pool is shrinking.
91  * @nrefills: Stats when the pool is grown.
92  * @gfp_flags: Flags to pass for alloc_page.
93  * @name: Name of the pool.
94  * @dev_name: Name derieved from dev - similar to how dev_info works.
95  *   Used during shutdown as the dev_info during release is unavailable.
96  */
97 struct dma_pool {
98         struct list_head pools; /* The 'struct device->dma_pools link */
99         enum pool_type type;
100         spinlock_t lock;
101         struct list_head free_list;
102         struct device *dev;
103         unsigned size;
104         unsigned npages_free;
105         unsigned npages_in_use;
106         unsigned long nfrees; /* Stats when shrunk. */
107         unsigned long nrefills; /* Stats when grown. */
108         gfp_t gfp_flags;
109         char name[13]; /* "cached dma32" */
110         char dev_name[64]; /* Constructed from dev */
111 };
112
113 /*
114  * The accounting page keeping track of the allocated page along with
115  * the DMA address.
116  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
117  * @vaddr: The virtual address of the page and a flag if the page belongs to a
118  * huge pool
119  * @dma: The bus address of the page. If the page is not allocated
120  *   via the DMA API, it will be -1.
121  */
122 struct dma_page {
123         struct list_head page_list;
124         unsigned long vaddr;
125         struct page *p;
126         dma_addr_t dma;
127 };
128
129 /*
130  * Limits for the pool. They are handled without locks because only place where
131  * they may change is in sysfs store. They won't have immediate effect anyway
132  * so forcing serialization to access them is pointless.
133  */
134
135 struct ttm_pool_opts {
136         unsigned        alloc_size;
137         unsigned        max_size;
138         unsigned        small;
139 };
140
141 /*
142  * Contains the list of all of the 'struct device' and their corresponding
143  * DMA pools. Guarded by _mutex->lock.
144  * @pools: The link to 'struct ttm_pool_manager->pools'
145  * @dev: The 'struct device' associated with the 'pool'
146  * @pool: The 'struct dma_pool' associated with the 'dev'
147  */
148 struct device_pools {
149         struct list_head pools;
150         struct device *dev;
151         struct dma_pool *pool;
152 };
153
154 /*
155  * struct ttm_pool_manager - Holds memory pools for fast allocation
156  *
157  * @lock: Lock used when adding/removing from pools
158  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
159  * @options: Limits for the pool.
160  * @npools: Total amount of pools in existence.
161  * @shrinker: The structure used by [un|]register_shrinker
162  */
163 struct ttm_pool_manager {
164         struct mutex            lock;
165         struct list_head        pools;
166         struct ttm_pool_opts    options;
167         unsigned                npools;
168         struct shrinker         mm_shrink;
169         struct kobject          kobj;
170 };
171
172 static struct ttm_pool_manager *_manager;
173
174 static struct attribute ttm_page_pool_max = {
175         .name = "pool_max_size",
176         .mode = S_IRUGO | S_IWUSR
177 };
178 static struct attribute ttm_page_pool_small = {
179         .name = "pool_small_allocation",
180         .mode = S_IRUGO | S_IWUSR
181 };
182 static struct attribute ttm_page_pool_alloc_size = {
183         .name = "pool_allocation_size",
184         .mode = S_IRUGO | S_IWUSR
185 };
186
187 static struct attribute *ttm_pool_attrs[] = {
188         &ttm_page_pool_max,
189         &ttm_page_pool_small,
190         &ttm_page_pool_alloc_size,
191         NULL
192 };
193
194 static void ttm_pool_kobj_release(struct kobject *kobj)
195 {
196         struct ttm_pool_manager *m =
197                 container_of(kobj, struct ttm_pool_manager, kobj);
198         kfree(m);
199 }
200
201 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
202                               const char *buffer, size_t size)
203 {
204         struct ttm_pool_manager *m =
205                 container_of(kobj, struct ttm_pool_manager, kobj);
206         int chars;
207         unsigned val;
208
209         chars = sscanf(buffer, "%u", &val);
210         if (chars == 0)
211                 return size;
212
213         /* Convert kb to number of pages */
214         val = val / (PAGE_SIZE >> 10);
215
216         if (attr == &ttm_page_pool_max) {
217                 m->options.max_size = val;
218         } else if (attr == &ttm_page_pool_small) {
219                 m->options.small = val;
220         } else if (attr == &ttm_page_pool_alloc_size) {
221                 if (val > NUM_PAGES_TO_ALLOC*8) {
222                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
223                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
224                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
225                         return size;
226                 } else if (val > NUM_PAGES_TO_ALLOC) {
227                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
228                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229                 }
230                 m->options.alloc_size = val;
231         }
232
233         return size;
234 }
235
236 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
237                              char *buffer)
238 {
239         struct ttm_pool_manager *m =
240                 container_of(kobj, struct ttm_pool_manager, kobj);
241         unsigned val = 0;
242
243         if (attr == &ttm_page_pool_max)
244                 val = m->options.max_size;
245         else if (attr == &ttm_page_pool_small)
246                 val = m->options.small;
247         else if (attr == &ttm_page_pool_alloc_size)
248                 val = m->options.alloc_size;
249
250         val = val * (PAGE_SIZE >> 10);
251
252         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
253 }
254
255 static const struct sysfs_ops ttm_pool_sysfs_ops = {
256         .show = &ttm_pool_show,
257         .store = &ttm_pool_store,
258 };
259
260 static struct kobj_type ttm_pool_kobj_type = {
261         .release = &ttm_pool_kobj_release,
262         .sysfs_ops = &ttm_pool_sysfs_ops,
263         .default_attrs = ttm_pool_attrs,
264 };
265
266 static int ttm_set_pages_caching(struct dma_pool *pool,
267                                  struct page **pages, unsigned cpages)
268 {
269         int r = 0;
270         /* Set page caching */
271         if (pool->type & IS_UC) {
272                 r = ttm_set_pages_array_uc(pages, cpages);
273                 if (r)
274                         pr_err("%s: Failed to set %d pages to uc!\n",
275                                pool->dev_name, cpages);
276         }
277         if (pool->type & IS_WC) {
278                 r = ttm_set_pages_array_wc(pages, cpages);
279                 if (r)
280                         pr_err("%s: Failed to set %d pages to wc!\n",
281                                pool->dev_name, cpages);
282         }
283         return r;
284 }
285
286 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
287 {
288         unsigned long attrs = 0;
289         dma_addr_t dma = d_page->dma;
290         d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
291         if (pool->type & IS_HUGE)
292                 attrs = DMA_ATTR_NO_WARN;
293
294         dma_free_attrs(pool->dev, pool->size, (void *)d_page->vaddr, dma, attrs);
295
296         kfree(d_page);
297         d_page = NULL;
298 }
299 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
300 {
301         struct dma_page *d_page;
302         unsigned long attrs = 0;
303         void *vaddr;
304
305         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
306         if (!d_page)
307                 return NULL;
308
309         if (pool->type & IS_HUGE)
310                 attrs = DMA_ATTR_NO_WARN;
311
312         vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
313                                 pool->gfp_flags, attrs);
314         if (vaddr) {
315                 if (is_vmalloc_addr(vaddr))
316                         d_page->p = vmalloc_to_page(vaddr);
317                 else
318                         d_page->p = virt_to_page(vaddr);
319                 d_page->vaddr = (unsigned long)vaddr;
320                 if (pool->type & IS_HUGE)
321                         d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
322         } else {
323                 kfree(d_page);
324                 d_page = NULL;
325         }
326         return d_page;
327 }
328 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
329 {
330         enum pool_type type = IS_UNDEFINED;
331
332         if (flags & TTM_PAGE_FLAG_DMA32)
333                 type |= IS_DMA32;
334         if (cstate == tt_cached)
335                 type |= IS_CACHED;
336         else if (cstate == tt_uncached)
337                 type |= IS_UC;
338         else
339                 type |= IS_WC;
340
341         return type;
342 }
343
344 static void ttm_pool_update_free_locked(struct dma_pool *pool,
345                                         unsigned freed_pages)
346 {
347         pool->npages_free -= freed_pages;
348         pool->nfrees += freed_pages;
349
350 }
351
352 /* set memory back to wb and free the pages. */
353 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
354 {
355         struct page *page = d_page->p;
356         unsigned num_pages;
357
358         /* Don't set WB on WB page pool. */
359         if (!(pool->type & IS_CACHED)) {
360                 num_pages = pool->size / PAGE_SIZE;
361                 if (ttm_set_pages_wb(page, num_pages))
362                         pr_err("%s: Failed to set %d pages to wb!\n",
363                                pool->dev_name, num_pages);
364         }
365
366         list_del(&d_page->page_list);
367         __ttm_dma_free_page(pool, d_page);
368 }
369
370 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
371                               struct page *pages[], unsigned npages)
372 {
373         struct dma_page *d_page, *tmp;
374
375         if (pool->type & IS_HUGE) {
376                 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
377                         ttm_dma_page_put(pool, d_page);
378
379                 return;
380         }
381
382         /* Don't set WB on WB page pool. */
383         if (npages && !(pool->type & IS_CACHED) &&
384             ttm_set_pages_array_wb(pages, npages))
385                 pr_err("%s: Failed to set %d pages to wb!\n",
386                        pool->dev_name, npages);
387
388         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
389                 list_del(&d_page->page_list);
390                 __ttm_dma_free_page(pool, d_page);
391         }
392 }
393
394 /*
395  * Free pages from pool.
396  *
397  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
398  * number of pages in one go.
399  *
400  * @pool: to free the pages from
401  * @nr_free: If set to true will free all pages in pool
402  * @use_static: Safe to use static buffer
403  **/
404 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
405                                        bool use_static)
406 {
407         static struct page *static_buf[NUM_PAGES_TO_ALLOC];
408         unsigned long irq_flags;
409         struct dma_page *dma_p, *tmp;
410         struct page **pages_to_free;
411         struct list_head d_pages;
412         unsigned freed_pages = 0,
413                  npages_to_free = nr_free;
414
415         if (NUM_PAGES_TO_ALLOC < nr_free)
416                 npages_to_free = NUM_PAGES_TO_ALLOC;
417
418         if (use_static)
419                 pages_to_free = static_buf;
420         else
421                 pages_to_free = kmalloc_array(npages_to_free,
422                                               sizeof(struct page *),
423                                               GFP_KERNEL);
424
425         if (!pages_to_free) {
426                 pr_debug("%s: Failed to allocate memory for pool free operation\n",
427                        pool->dev_name);
428                 return 0;
429         }
430         INIT_LIST_HEAD(&d_pages);
431 restart:
432         spin_lock_irqsave(&pool->lock, irq_flags);
433
434         /* We picking the oldest ones off the list */
435         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
436                                          page_list) {
437                 if (freed_pages >= npages_to_free)
438                         break;
439
440                 /* Move the dma_page from one list to another. */
441                 list_move(&dma_p->page_list, &d_pages);
442
443                 pages_to_free[freed_pages++] = dma_p->p;
444                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
445                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
446
447                         ttm_pool_update_free_locked(pool, freed_pages);
448                         /**
449                          * Because changing page caching is costly
450                          * we unlock the pool to prevent stalling.
451                          */
452                         spin_unlock_irqrestore(&pool->lock, irq_flags);
453
454                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
455                                           freed_pages);
456
457                         INIT_LIST_HEAD(&d_pages);
458
459                         if (likely(nr_free != FREE_ALL_PAGES))
460                                 nr_free -= freed_pages;
461
462                         if (NUM_PAGES_TO_ALLOC >= nr_free)
463                                 npages_to_free = nr_free;
464                         else
465                                 npages_to_free = NUM_PAGES_TO_ALLOC;
466
467                         freed_pages = 0;
468
469                         /* free all so restart the processing */
470                         if (nr_free)
471                                 goto restart;
472
473                         /* Not allowed to fall through or break because
474                          * following context is inside spinlock while we are
475                          * outside here.
476                          */
477                         goto out;
478
479                 }
480         }
481
482         /* remove range of pages from the pool */
483         if (freed_pages) {
484                 ttm_pool_update_free_locked(pool, freed_pages);
485                 nr_free -= freed_pages;
486         }
487
488         spin_unlock_irqrestore(&pool->lock, irq_flags);
489
490         if (freed_pages)
491                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
492 out:
493         if (pages_to_free != static_buf)
494                 kfree(pages_to_free);
495         return nr_free;
496 }
497
498 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
499 {
500         struct device_pools *p;
501         struct dma_pool *pool;
502
503         if (!dev)
504                 return;
505
506         mutex_lock(&_manager->lock);
507         list_for_each_entry_reverse(p, &_manager->pools, pools) {
508                 if (p->dev != dev)
509                         continue;
510                 pool = p->pool;
511                 if (pool->type != type)
512                         continue;
513
514                 list_del(&p->pools);
515                 kfree(p);
516                 _manager->npools--;
517                 break;
518         }
519         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
520                 if (pool->type != type)
521                         continue;
522                 /* Takes a spinlock.. */
523                 /* OK to use static buffer since global mutex is held. */
524                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
525                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
526                 /* This code path is called after _all_ references to the
527                  * struct device has been dropped - so nobody should be
528                  * touching it. In case somebody is trying to _add_ we are
529                  * guarded by the mutex. */
530                 list_del(&pool->pools);
531                 kfree(pool);
532                 break;
533         }
534         mutex_unlock(&_manager->lock);
535 }
536
537 /*
538  * On free-ing of the 'struct device' this deconstructor is run.
539  * Albeit the pool might have already been freed earlier.
540  */
541 static void ttm_dma_pool_release(struct device *dev, void *res)
542 {
543         struct dma_pool *pool = *(struct dma_pool **)res;
544
545         if (pool)
546                 ttm_dma_free_pool(dev, pool->type);
547 }
548
549 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
550 {
551         return *(struct dma_pool **)res == match_data;
552 }
553
554 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
555                                           enum pool_type type)
556 {
557         const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
558         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
559         struct device_pools *sec_pool = NULL;
560         struct dma_pool *pool = NULL, **ptr;
561         unsigned i;
562         int ret = -ENODEV;
563         char *p;
564
565         if (!dev)
566                 return NULL;
567
568         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
569         if (!ptr)
570                 return NULL;
571
572         ret = -ENOMEM;
573
574         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
575                             dev_to_node(dev));
576         if (!pool)
577                 goto err_mem;
578
579         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
580                                 dev_to_node(dev));
581         if (!sec_pool)
582                 goto err_mem;
583
584         INIT_LIST_HEAD(&sec_pool->pools);
585         sec_pool->dev = dev;
586         sec_pool->pool =  pool;
587
588         INIT_LIST_HEAD(&pool->free_list);
589         INIT_LIST_HEAD(&pool->pools);
590         spin_lock_init(&pool->lock);
591         pool->dev = dev;
592         pool->npages_free = pool->npages_in_use = 0;
593         pool->nfrees = 0;
594         pool->gfp_flags = flags;
595         if (type & IS_HUGE)
596 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
597                 pool->size = HPAGE_PMD_SIZE;
598 #else
599                 BUG();
600 #endif
601         else
602                 pool->size = PAGE_SIZE;
603         pool->type = type;
604         pool->nrefills = 0;
605         p = pool->name;
606         for (i = 0; i < ARRAY_SIZE(t); i++) {
607                 if (type & t[i]) {
608                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
609                                       "%s", n[i]);
610                 }
611         }
612         *p = 0;
613         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
614          * - the kobj->name has already been deallocated.*/
615         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
616                  dev_driver_string(dev), dev_name(dev));
617         mutex_lock(&_manager->lock);
618         /* You can get the dma_pool from either the global: */
619         list_add(&sec_pool->pools, &_manager->pools);
620         _manager->npools++;
621         /* or from 'struct device': */
622         list_add(&pool->pools, &dev->dma_pools);
623         mutex_unlock(&_manager->lock);
624
625         *ptr = pool;
626         devres_add(dev, ptr);
627
628         return pool;
629 err_mem:
630         devres_free(ptr);
631         kfree(sec_pool);
632         kfree(pool);
633         return ERR_PTR(ret);
634 }
635
636 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
637                                           enum pool_type type)
638 {
639         struct dma_pool *pool, *tmp;
640
641         if (type == IS_UNDEFINED)
642                 return NULL;
643
644         /* NB: We iterate on the 'struct dev' which has no spinlock, but
645          * it does have a kref which we have taken. The kref is taken during
646          * graphic driver loading - in the drm_pci_init it calls either
647          * pci_dev_get or pci_register_driver which both end up taking a kref
648          * on 'struct device'.
649          *
650          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
651          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
652          * thing is at that point of time there are no pages associated with the
653          * driver so this function will not be called.
654          */
655         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
656                 if (pool->type == type)
657                         return pool;
658         return NULL;
659 }
660
661 /*
662  * Free pages the pages that failed to change the caching state. If there
663  * are pages that have changed their caching state already put them to the
664  * pool.
665  */
666 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
667                                                  struct list_head *d_pages,
668                                                  struct page **failed_pages,
669                                                  unsigned cpages)
670 {
671         struct dma_page *d_page, *tmp;
672         struct page *p;
673         unsigned i = 0;
674
675         p = failed_pages[0];
676         if (!p)
677                 return;
678         /* Find the failed page. */
679         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
680                 if (d_page->p != p)
681                         continue;
682                 /* .. and then progress over the full list. */
683                 list_del(&d_page->page_list);
684                 __ttm_dma_free_page(pool, d_page);
685                 if (++i < cpages)
686                         p = failed_pages[i];
687                 else
688                         break;
689         }
690
691 }
692
693 /*
694  * Allocate 'count' pages, and put 'need' number of them on the
695  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
696  * The full list of pages should also be on 'd_pages'.
697  * We return zero for success, and negative numbers as errors.
698  */
699 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
700                                         struct list_head *d_pages,
701                                         unsigned count)
702 {
703         struct page **caching_array;
704         struct dma_page *dma_p;
705         struct page *p;
706         int r = 0;
707         unsigned i, j, npages, cpages;
708         unsigned max_cpages = min(count,
709                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
710
711         /* allocate array for page caching change */
712         caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
713                                       GFP_KERNEL);
714
715         if (!caching_array) {
716                 pr_debug("%s: Unable to allocate table for new pages\n",
717                        pool->dev_name);
718                 return -ENOMEM;
719         }
720
721         if (count > 1)
722                 pr_debug("%s: (%s:%d) Getting %d pages\n",
723                          pool->dev_name, pool->name, current->pid, count);
724
725         for (i = 0, cpages = 0; i < count; ++i) {
726                 dma_p = __ttm_dma_alloc_page(pool);
727                 if (!dma_p) {
728                         pr_debug("%s: Unable to get page %u\n",
729                                  pool->dev_name, i);
730
731                         /* store already allocated pages in the pool after
732                          * setting the caching state */
733                         if (cpages) {
734                                 r = ttm_set_pages_caching(pool, caching_array,
735                                                           cpages);
736                                 if (r)
737                                         ttm_dma_handle_caching_state_failure(
738                                                 pool, d_pages, caching_array,
739                                                 cpages);
740                         }
741                         r = -ENOMEM;
742                         goto out;
743                 }
744                 p = dma_p->p;
745                 list_add(&dma_p->page_list, d_pages);
746
747 #ifdef CONFIG_HIGHMEM
748                 /* gfp flags of highmem page should never be dma32 so we
749                  * we should be fine in such case
750                  */
751                 if (PageHighMem(p))
752                         continue;
753 #endif
754
755                 npages = pool->size / PAGE_SIZE;
756                 for (j = 0; j < npages; ++j) {
757                         caching_array[cpages++] = p + j;
758                         if (cpages == max_cpages) {
759                                 /* Note: Cannot hold the spinlock */
760                                 r = ttm_set_pages_caching(pool, caching_array,
761                                                           cpages);
762                                 if (r) {
763                                         ttm_dma_handle_caching_state_failure(
764                                              pool, d_pages, caching_array,
765                                              cpages);
766                                         goto out;
767                                 }
768                                 cpages = 0;
769                         }
770                 }
771         }
772
773         if (cpages) {
774                 r = ttm_set_pages_caching(pool, caching_array, cpages);
775                 if (r)
776                         ttm_dma_handle_caching_state_failure(pool, d_pages,
777                                         caching_array, cpages);
778         }
779 out:
780         kfree(caching_array);
781         return r;
782 }
783
784 /*
785  * @return count of pages still required to fulfill the request.
786  */
787 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
788                                          unsigned long *irq_flags)
789 {
790         unsigned count = _manager->options.small;
791         int r = pool->npages_free;
792
793         if (count > pool->npages_free) {
794                 struct list_head d_pages;
795
796                 INIT_LIST_HEAD(&d_pages);
797
798                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
799
800                 /* Returns how many more are neccessary to fulfill the
801                  * request. */
802                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
803
804                 spin_lock_irqsave(&pool->lock, *irq_flags);
805                 if (!r) {
806                         /* Add the fresh to the end.. */
807                         list_splice(&d_pages, &pool->free_list);
808                         ++pool->nrefills;
809                         pool->npages_free += count;
810                         r = count;
811                 } else {
812                         struct dma_page *d_page;
813                         unsigned cpages = 0;
814
815                         pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
816                                  pool->dev_name, pool->name, r);
817
818                         list_for_each_entry(d_page, &d_pages, page_list) {
819                                 cpages++;
820                         }
821                         list_splice_tail(&d_pages, &pool->free_list);
822                         pool->npages_free += cpages;
823                         r = cpages;
824                 }
825         }
826         return r;
827 }
828
829 /*
830  * The populate list is actually a stack (not that is matters as TTM
831  * allocates one page at a time.
832  * return dma_page pointer if success, otherwise NULL.
833  */
834 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
835                                   struct ttm_dma_tt *ttm_dma,
836                                   unsigned index)
837 {
838         struct dma_page *d_page = NULL;
839         struct ttm_tt *ttm = &ttm_dma->ttm;
840         unsigned long irq_flags;
841         int count;
842
843         spin_lock_irqsave(&pool->lock, irq_flags);
844         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
845         if (count) {
846                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
847                 ttm->pages[index] = d_page->p;
848                 ttm_dma->dma_address[index] = d_page->dma;
849                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
850                 pool->npages_in_use += 1;
851                 pool->npages_free -= 1;
852         }
853         spin_unlock_irqrestore(&pool->lock, irq_flags);
854         return d_page;
855 }
856
857 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
858 {
859         struct ttm_tt *ttm = &ttm_dma->ttm;
860         gfp_t gfp_flags;
861
862         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
863                 gfp_flags = GFP_USER | GFP_DMA32;
864         else
865                 gfp_flags = GFP_HIGHUSER;
866         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
867                 gfp_flags |= __GFP_ZERO;
868
869         if (huge) {
870                 gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
871                         __GFP_KSWAPD_RECLAIM;
872                 gfp_flags &= ~__GFP_MOVABLE;
873                 gfp_flags &= ~__GFP_COMP;
874         }
875
876         if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
877                 gfp_flags |= __GFP_RETRY_MAYFAIL;
878
879         return gfp_flags;
880 }
881
882 /*
883  * On success pages list will hold count number of correctly
884  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
885  */
886 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
887                         struct ttm_operation_ctx *ctx)
888 {
889         struct ttm_tt *ttm = &ttm_dma->ttm;
890         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
891         unsigned long num_pages = ttm->num_pages;
892         struct dma_pool *pool;
893         struct dma_page *d_page;
894         enum pool_type type;
895         unsigned i;
896         int ret;
897
898         if (ttm->state != tt_unpopulated)
899                 return 0;
900
901         if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
902                 return -ENOMEM;
903
904         INIT_LIST_HEAD(&ttm_dma->pages_list);
905         i = 0;
906
907         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
908
909 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
910         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
911                 goto skip_huge;
912
913         pool = ttm_dma_find_pool(dev, type | IS_HUGE);
914         if (!pool) {
915                 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
916
917                 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
918                 if (IS_ERR_OR_NULL(pool))
919                         goto skip_huge;
920         }
921
922         while (num_pages >= HPAGE_PMD_NR) {
923                 unsigned j;
924
925                 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
926                 if (!d_page)
927                         break;
928
929                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
930                                                 pool->size, ctx);
931                 if (unlikely(ret != 0)) {
932                         ttm_dma_unpopulate(ttm_dma, dev);
933                         return -ENOMEM;
934                 }
935
936                 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
937                 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
938                         ttm->pages[j] = ttm->pages[j - 1] + 1;
939                         ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
940                                 PAGE_SIZE;
941                 }
942
943                 i += HPAGE_PMD_NR;
944                 num_pages -= HPAGE_PMD_NR;
945         }
946
947 skip_huge:
948 #endif
949
950         pool = ttm_dma_find_pool(dev, type);
951         if (!pool) {
952                 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
953
954                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
955                 if (IS_ERR_OR_NULL(pool))
956                         return -ENOMEM;
957         }
958
959         while (num_pages) {
960                 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
961                 if (!d_page) {
962                         ttm_dma_unpopulate(ttm_dma, dev);
963                         return -ENOMEM;
964                 }
965
966                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
967                                                 pool->size, ctx);
968                 if (unlikely(ret != 0)) {
969                         ttm_dma_unpopulate(ttm_dma, dev);
970                         return -ENOMEM;
971                 }
972
973                 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
974                 ++i;
975                 --num_pages;
976         }
977
978         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
979                 ret = ttm_tt_swapin(ttm);
980                 if (unlikely(ret != 0)) {
981                         ttm_dma_unpopulate(ttm_dma, dev);
982                         return ret;
983                 }
984         }
985
986         ttm->state = tt_unbound;
987         return 0;
988 }
989 EXPORT_SYMBOL_GPL(ttm_dma_populate);
990
991 /* Put all pages in pages list to correct pool to wait for reuse */
992 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
993 {
994         struct ttm_tt *ttm = &ttm_dma->ttm;
995         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
996         struct dma_pool *pool;
997         struct dma_page *d_page, *next;
998         enum pool_type type;
999         bool is_cached = false;
1000         unsigned count, i, npages = 0;
1001         unsigned long irq_flags;
1002
1003         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1004
1005 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1006         pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1007         if (pool) {
1008                 count = 0;
1009                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1010                                          page_list) {
1011                         if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1012                                 continue;
1013
1014                         count++;
1015                         if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1016                                 ttm_mem_global_free_page(mem_glob, d_page->p,
1017                                                          pool->size);
1018                                 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1019                         }
1020                         ttm_dma_page_put(pool, d_page);
1021                 }
1022
1023                 spin_lock_irqsave(&pool->lock, irq_flags);
1024                 pool->npages_in_use -= count;
1025                 pool->nfrees += count;
1026                 spin_unlock_irqrestore(&pool->lock, irq_flags);
1027         }
1028 #endif
1029
1030         pool = ttm_dma_find_pool(dev, type);
1031         if (!pool)
1032                 return;
1033
1034         is_cached = (ttm_dma_find_pool(pool->dev,
1035                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1036
1037         /* make sure pages array match list and count number of pages */
1038         count = 0;
1039         list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1040                                  page_list) {
1041                 ttm->pages[count] = d_page->p;
1042                 count++;
1043
1044                 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1045                         ttm_mem_global_free_page(mem_glob, d_page->p,
1046                                                  pool->size);
1047                         d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1048                 }
1049
1050                 if (is_cached)
1051                         ttm_dma_page_put(pool, d_page);
1052         }
1053
1054         spin_lock_irqsave(&pool->lock, irq_flags);
1055         pool->npages_in_use -= count;
1056         if (is_cached) {
1057                 pool->nfrees += count;
1058         } else {
1059                 pool->npages_free += count;
1060                 list_splice(&ttm_dma->pages_list, &pool->free_list);
1061                 /*
1062                  * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1063                  * to free in order to minimize calls to set_memory_wb().
1064                  */
1065                 if (pool->npages_free >= (_manager->options.max_size +
1066                                           NUM_PAGES_TO_ALLOC))
1067                         npages = pool->npages_free - _manager->options.max_size;
1068         }
1069         spin_unlock_irqrestore(&pool->lock, irq_flags);
1070
1071         INIT_LIST_HEAD(&ttm_dma->pages_list);
1072         for (i = 0; i < ttm->num_pages; i++) {
1073                 ttm->pages[i] = NULL;
1074                 ttm_dma->dma_address[i] = 0;
1075         }
1076
1077         /* shrink pool if necessary (only on !is_cached pools)*/
1078         if (npages)
1079                 ttm_dma_page_pool_free(pool, npages, false);
1080         ttm->state = tt_unpopulated;
1081 }
1082 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1083
1084 /**
1085  * Callback for mm to request pool to reduce number of page held.
1086  *
1087  * XXX: (dchinner) Deadlock warning!
1088  *
1089  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1090  * shrinkers
1091  */
1092 static unsigned long
1093 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1094 {
1095         static unsigned start_pool;
1096         unsigned idx = 0;
1097         unsigned pool_offset;
1098         unsigned shrink_pages = sc->nr_to_scan;
1099         struct device_pools *p;
1100         unsigned long freed = 0;
1101
1102         if (list_empty(&_manager->pools))
1103                 return SHRINK_STOP;
1104
1105         if (!mutex_trylock(&_manager->lock))
1106                 return SHRINK_STOP;
1107         if (!_manager->npools)
1108                 goto out;
1109         pool_offset = ++start_pool % _manager->npools;
1110         list_for_each_entry(p, &_manager->pools, pools) {
1111                 unsigned nr_free;
1112
1113                 if (!p->dev)
1114                         continue;
1115                 if (shrink_pages == 0)
1116                         break;
1117                 /* Do it in round-robin fashion. */
1118                 if (++idx < pool_offset)
1119                         continue;
1120                 nr_free = shrink_pages;
1121                 /* OK to use static buffer since global mutex is held. */
1122                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1123                 freed += nr_free - shrink_pages;
1124
1125                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1126                          p->pool->dev_name, p->pool->name, current->pid,
1127                          nr_free, shrink_pages);
1128         }
1129 out:
1130         mutex_unlock(&_manager->lock);
1131         return freed;
1132 }
1133
1134 static unsigned long
1135 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1136 {
1137         struct device_pools *p;
1138         unsigned long count = 0;
1139
1140         if (!mutex_trylock(&_manager->lock))
1141                 return 0;
1142         list_for_each_entry(p, &_manager->pools, pools)
1143                 count += p->pool->npages_free;
1144         mutex_unlock(&_manager->lock);
1145         return count;
1146 }
1147
1148 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1149 {
1150         manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1151         manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1152         manager->mm_shrink.seeks = 1;
1153         return register_shrinker(&manager->mm_shrink);
1154 }
1155
1156 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1157 {
1158         unregister_shrinker(&manager->mm_shrink);
1159 }
1160
1161 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1162 {
1163         int ret;
1164
1165         WARN_ON(_manager);
1166
1167         pr_info("Initializing DMA pool allocator\n");
1168
1169         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1170         if (!_manager)
1171                 return -ENOMEM;
1172
1173         mutex_init(&_manager->lock);
1174         INIT_LIST_HEAD(&_manager->pools);
1175
1176         _manager->options.max_size = max_pages;
1177         _manager->options.small = SMALL_ALLOCATION;
1178         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1179
1180         /* This takes care of auto-freeing the _manager */
1181         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1182                                    &glob->kobj, "dma_pool");
1183         if (unlikely(ret != 0))
1184                 goto error;
1185
1186         ret = ttm_dma_pool_mm_shrink_init(_manager);
1187         if (unlikely(ret != 0))
1188                 goto error;
1189         return 0;
1190
1191 error:
1192         kobject_put(&_manager->kobj);
1193         _manager = NULL;
1194         return ret;
1195 }
1196
1197 void ttm_dma_page_alloc_fini(void)
1198 {
1199         struct device_pools *p, *t;
1200
1201         pr_info("Finalizing DMA pool allocator\n");
1202         ttm_dma_pool_mm_shrink_fini(_manager);
1203
1204         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1205                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1206                         current->pid);
1207                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1208                         ttm_dma_pool_match, p->pool));
1209                 ttm_dma_free_pool(p->dev, p->pool->type);
1210         }
1211         kobject_put(&_manager->kobj);
1212         _manager = NULL;
1213 }
1214
1215 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1216 {
1217         struct device_pools *p;
1218         struct dma_pool *pool = NULL;
1219
1220         if (!_manager) {
1221                 seq_printf(m, "No pool allocator running.\n");
1222                 return 0;
1223         }
1224         seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
1225         mutex_lock(&_manager->lock);
1226         list_for_each_entry(p, &_manager->pools, pools) {
1227                 struct device *dev = p->dev;
1228                 if (!dev)
1229                         continue;
1230                 pool = p->pool;
1231                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1232                                 pool->name, pool->nrefills,
1233                                 pool->nfrees, pool->npages_in_use,
1234                                 pool->npages_free,
1235                                 pool->dev_name);
1236         }
1237         mutex_unlock(&_manager->lock);
1238         return 0;
1239 }
1240 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1241
1242 #endif