Linux-libre 4.19.20-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #if defined(CONFIG_SWIOTLB) || defined(CONFIG_INTEL_IOMMU)
37 #define pr_fmt(fmt) "[TTM] " fmt
38
39 #include <linux/dma-mapping.h>
40 #include <linux/list.h>
41 #include <linux/seq_file.h> /* for seq_printf */
42 #include <linux/slab.h>
43 #include <linux/spinlock.h>
44 #include <linux/highmem.h>
45 #include <linux/mm_types.h>
46 #include <linux/module.h>
47 #include <linux/mm.h>
48 #include <linux/atomic.h>
49 #include <linux/device.h>
50 #include <linux/kthread.h>
51 #include <drm/ttm/ttm_bo_driver.h>
52 #include <drm/ttm/ttm_page_alloc.h>
53 #include <drm/ttm/ttm_set_memory.h>
54
55 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
56 #define SMALL_ALLOCATION                4
57 #define FREE_ALL_PAGES                  (~0U)
58 #define VADDR_FLAG_HUGE_POOL            1UL
59 #define VADDR_FLAG_UPDATED_COUNT        2UL
60
61 enum pool_type {
62         IS_UNDEFINED    = 0,
63         IS_WC           = 1 << 1,
64         IS_UC           = 1 << 2,
65         IS_CACHED       = 1 << 3,
66         IS_DMA32        = 1 << 4,
67         IS_HUGE         = 1 << 5
68 };
69
70 /*
71  * The pool structure. There are up to nine pools:
72  *  - generic (not restricted to DMA32):
73  *      - write combined, uncached, cached.
74  *  - dma32 (up to 2^32 - so up 4GB):
75  *      - write combined, uncached, cached.
76  *  - huge (not restricted to DMA32):
77  *      - write combined, uncached, cached.
78  * for each 'struct device'. The 'cached' is for pages that are actively used.
79  * The other ones can be shrunk by the shrinker API if neccessary.
80  * @pools: The 'struct device->dma_pools' link.
81  * @type: Type of the pool
82  * @lock: Protects the free_list from concurrnet access. Must be
83  * used with irqsave/irqrestore variants because pool allocator maybe called
84  * from delayed work.
85  * @free_list: Pool of pages that are free to be used. No order requirements.
86  * @dev: The device that is associated with these pools.
87  * @size: Size used during DMA allocation.
88  * @npages_free: Count of available pages for re-use.
89  * @npages_in_use: Count of pages that are in use.
90  * @nfrees: Stats when pool is shrinking.
91  * @nrefills: Stats when the pool is grown.
92  * @gfp_flags: Flags to pass for alloc_page.
93  * @name: Name of the pool.
94  * @dev_name: Name derieved from dev - similar to how dev_info works.
95  *   Used during shutdown as the dev_info during release is unavailable.
96  */
97 struct dma_pool {
98         struct list_head pools; /* The 'struct device->dma_pools link */
99         enum pool_type type;
100         spinlock_t lock;
101         struct list_head free_list;
102         struct device *dev;
103         unsigned size;
104         unsigned npages_free;
105         unsigned npages_in_use;
106         unsigned long nfrees; /* Stats when shrunk. */
107         unsigned long nrefills; /* Stats when grown. */
108         gfp_t gfp_flags;
109         char name[13]; /* "cached dma32" */
110         char dev_name[64]; /* Constructed from dev */
111 };
112
113 /*
114  * The accounting page keeping track of the allocated page along with
115  * the DMA address.
116  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
117  * @vaddr: The virtual address of the page and a flag if the page belongs to a
118  * huge pool
119  * @dma: The bus address of the page. If the page is not allocated
120  *   via the DMA API, it will be -1.
121  */
122 struct dma_page {
123         struct list_head page_list;
124         unsigned long vaddr;
125         struct page *p;
126         dma_addr_t dma;
127 };
128
129 /*
130  * Limits for the pool. They are handled without locks because only place where
131  * they may change is in sysfs store. They won't have immediate effect anyway
132  * so forcing serialization to access them is pointless.
133  */
134
135 struct ttm_pool_opts {
136         unsigned        alloc_size;
137         unsigned        max_size;
138         unsigned        small;
139 };
140
141 /*
142  * Contains the list of all of the 'struct device' and their corresponding
143  * DMA pools. Guarded by _mutex->lock.
144  * @pools: The link to 'struct ttm_pool_manager->pools'
145  * @dev: The 'struct device' associated with the 'pool'
146  * @pool: The 'struct dma_pool' associated with the 'dev'
147  */
148 struct device_pools {
149         struct list_head pools;
150         struct device *dev;
151         struct dma_pool *pool;
152 };
153
154 /*
155  * struct ttm_pool_manager - Holds memory pools for fast allocation
156  *
157  * @lock: Lock used when adding/removing from pools
158  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
159  * @options: Limits for the pool.
160  * @npools: Total amount of pools in existence.
161  * @shrinker: The structure used by [un|]register_shrinker
162  */
163 struct ttm_pool_manager {
164         struct mutex            lock;
165         struct list_head        pools;
166         struct ttm_pool_opts    options;
167         unsigned                npools;
168         struct shrinker         mm_shrink;
169         struct kobject          kobj;
170 };
171
172 static struct ttm_pool_manager *_manager;
173
174 static struct attribute ttm_page_pool_max = {
175         .name = "pool_max_size",
176         .mode = S_IRUGO | S_IWUSR
177 };
178 static struct attribute ttm_page_pool_small = {
179         .name = "pool_small_allocation",
180         .mode = S_IRUGO | S_IWUSR
181 };
182 static struct attribute ttm_page_pool_alloc_size = {
183         .name = "pool_allocation_size",
184         .mode = S_IRUGO | S_IWUSR
185 };
186
187 static struct attribute *ttm_pool_attrs[] = {
188         &ttm_page_pool_max,
189         &ttm_page_pool_small,
190         &ttm_page_pool_alloc_size,
191         NULL
192 };
193
194 static void ttm_pool_kobj_release(struct kobject *kobj)
195 {
196         struct ttm_pool_manager *m =
197                 container_of(kobj, struct ttm_pool_manager, kobj);
198         kfree(m);
199 }
200
201 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
202                               const char *buffer, size_t size)
203 {
204         struct ttm_pool_manager *m =
205                 container_of(kobj, struct ttm_pool_manager, kobj);
206         int chars;
207         unsigned val;
208
209         chars = sscanf(buffer, "%u", &val);
210         if (chars == 0)
211                 return size;
212
213         /* Convert kb to number of pages */
214         val = val / (PAGE_SIZE >> 10);
215
216         if (attr == &ttm_page_pool_max) {
217                 m->options.max_size = val;
218         } else if (attr == &ttm_page_pool_small) {
219                 m->options.small = val;
220         } else if (attr == &ttm_page_pool_alloc_size) {
221                 if (val > NUM_PAGES_TO_ALLOC*8) {
222                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
223                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
224                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
225                         return size;
226                 } else if (val > NUM_PAGES_TO_ALLOC) {
227                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
228                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229                 }
230                 m->options.alloc_size = val;
231         }
232
233         return size;
234 }
235
236 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
237                              char *buffer)
238 {
239         struct ttm_pool_manager *m =
240                 container_of(kobj, struct ttm_pool_manager, kobj);
241         unsigned val = 0;
242
243         if (attr == &ttm_page_pool_max)
244                 val = m->options.max_size;
245         else if (attr == &ttm_page_pool_small)
246                 val = m->options.small;
247         else if (attr == &ttm_page_pool_alloc_size)
248                 val = m->options.alloc_size;
249
250         val = val * (PAGE_SIZE >> 10);
251
252         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
253 }
254
255 static const struct sysfs_ops ttm_pool_sysfs_ops = {
256         .show = &ttm_pool_show,
257         .store = &ttm_pool_store,
258 };
259
260 static struct kobj_type ttm_pool_kobj_type = {
261         .release = &ttm_pool_kobj_release,
262         .sysfs_ops = &ttm_pool_sysfs_ops,
263         .default_attrs = ttm_pool_attrs,
264 };
265
266 static int ttm_set_pages_caching(struct dma_pool *pool,
267                                  struct page **pages, unsigned cpages)
268 {
269         int r = 0;
270         /* Set page caching */
271         if (pool->type & IS_UC) {
272                 r = ttm_set_pages_array_uc(pages, cpages);
273                 if (r)
274                         pr_err("%s: Failed to set %d pages to uc!\n",
275                                pool->dev_name, cpages);
276         }
277         if (pool->type & IS_WC) {
278                 r = ttm_set_pages_array_wc(pages, cpages);
279                 if (r)
280                         pr_err("%s: Failed to set %d pages to wc!\n",
281                                pool->dev_name, cpages);
282         }
283         return r;
284 }
285
286 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
287 {
288         dma_addr_t dma = d_page->dma;
289         d_page->vaddr &= ~VADDR_FLAG_HUGE_POOL;
290         dma_free_coherent(pool->dev, pool->size, (void *)d_page->vaddr, dma);
291
292         kfree(d_page);
293         d_page = NULL;
294 }
295 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
296 {
297         struct dma_page *d_page;
298         unsigned long attrs = 0;
299         void *vaddr;
300
301         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
302         if (!d_page)
303                 return NULL;
304
305         if (pool->type & IS_HUGE)
306                 attrs = DMA_ATTR_NO_WARN;
307
308         vaddr = dma_alloc_attrs(pool->dev, pool->size, &d_page->dma,
309                                 pool->gfp_flags, attrs);
310         if (vaddr) {
311                 if (is_vmalloc_addr(vaddr))
312                         d_page->p = vmalloc_to_page(vaddr);
313                 else
314                         d_page->p = virt_to_page(vaddr);
315                 d_page->vaddr = (unsigned long)vaddr;
316                 if (pool->type & IS_HUGE)
317                         d_page->vaddr |= VADDR_FLAG_HUGE_POOL;
318         } else {
319                 kfree(d_page);
320                 d_page = NULL;
321         }
322         return d_page;
323 }
324 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
325 {
326         enum pool_type type = IS_UNDEFINED;
327
328         if (flags & TTM_PAGE_FLAG_DMA32)
329                 type |= IS_DMA32;
330         if (cstate == tt_cached)
331                 type |= IS_CACHED;
332         else if (cstate == tt_uncached)
333                 type |= IS_UC;
334         else
335                 type |= IS_WC;
336
337         return type;
338 }
339
340 static void ttm_pool_update_free_locked(struct dma_pool *pool,
341                                         unsigned freed_pages)
342 {
343         pool->npages_free -= freed_pages;
344         pool->nfrees += freed_pages;
345
346 }
347
348 /* set memory back to wb and free the pages. */
349 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
350 {
351         struct page *page = d_page->p;
352         unsigned num_pages;
353
354         /* Don't set WB on WB page pool. */
355         if (!(pool->type & IS_CACHED)) {
356                 num_pages = pool->size / PAGE_SIZE;
357                 if (ttm_set_pages_wb(page, num_pages))
358                         pr_err("%s: Failed to set %d pages to wb!\n",
359                                pool->dev_name, num_pages);
360         }
361
362         list_del(&d_page->page_list);
363         __ttm_dma_free_page(pool, d_page);
364 }
365
366 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
367                               struct page *pages[], unsigned npages)
368 {
369         struct dma_page *d_page, *tmp;
370
371         if (pool->type & IS_HUGE) {
372                 list_for_each_entry_safe(d_page, tmp, d_pages, page_list)
373                         ttm_dma_page_put(pool, d_page);
374
375                 return;
376         }
377
378         /* Don't set WB on WB page pool. */
379         if (npages && !(pool->type & IS_CACHED) &&
380             ttm_set_pages_array_wb(pages, npages))
381                 pr_err("%s: Failed to set %d pages to wb!\n",
382                        pool->dev_name, npages);
383
384         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
385                 list_del(&d_page->page_list);
386                 __ttm_dma_free_page(pool, d_page);
387         }
388 }
389
390 /*
391  * Free pages from pool.
392  *
393  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
394  * number of pages in one go.
395  *
396  * @pool: to free the pages from
397  * @nr_free: If set to true will free all pages in pool
398  * @use_static: Safe to use static buffer
399  **/
400 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free,
401                                        bool use_static)
402 {
403         static struct page *static_buf[NUM_PAGES_TO_ALLOC];
404         unsigned long irq_flags;
405         struct dma_page *dma_p, *tmp;
406         struct page **pages_to_free;
407         struct list_head d_pages;
408         unsigned freed_pages = 0,
409                  npages_to_free = nr_free;
410
411         if (NUM_PAGES_TO_ALLOC < nr_free)
412                 npages_to_free = NUM_PAGES_TO_ALLOC;
413 #if 0
414         if (nr_free > 1) {
415                 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
416                          pool->dev_name, pool->name, current->pid,
417                          npages_to_free, nr_free);
418         }
419 #endif
420         if (use_static)
421                 pages_to_free = static_buf;
422         else
423                 pages_to_free = kmalloc_array(npages_to_free,
424                                               sizeof(struct page *),
425                                               GFP_KERNEL);
426
427         if (!pages_to_free) {
428                 pr_debug("%s: Failed to allocate memory for pool free operation\n",
429                        pool->dev_name);
430                 return 0;
431         }
432         INIT_LIST_HEAD(&d_pages);
433 restart:
434         spin_lock_irqsave(&pool->lock, irq_flags);
435
436         /* We picking the oldest ones off the list */
437         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
438                                          page_list) {
439                 if (freed_pages >= npages_to_free)
440                         break;
441
442                 /* Move the dma_page from one list to another. */
443                 list_move(&dma_p->page_list, &d_pages);
444
445                 pages_to_free[freed_pages++] = dma_p->p;
446                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
447                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
448
449                         ttm_pool_update_free_locked(pool, freed_pages);
450                         /**
451                          * Because changing page caching is costly
452                          * we unlock the pool to prevent stalling.
453                          */
454                         spin_unlock_irqrestore(&pool->lock, irq_flags);
455
456                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
457                                           freed_pages);
458
459                         INIT_LIST_HEAD(&d_pages);
460
461                         if (likely(nr_free != FREE_ALL_PAGES))
462                                 nr_free -= freed_pages;
463
464                         if (NUM_PAGES_TO_ALLOC >= nr_free)
465                                 npages_to_free = nr_free;
466                         else
467                                 npages_to_free = NUM_PAGES_TO_ALLOC;
468
469                         freed_pages = 0;
470
471                         /* free all so restart the processing */
472                         if (nr_free)
473                                 goto restart;
474
475                         /* Not allowed to fall through or break because
476                          * following context is inside spinlock while we are
477                          * outside here.
478                          */
479                         goto out;
480
481                 }
482         }
483
484         /* remove range of pages from the pool */
485         if (freed_pages) {
486                 ttm_pool_update_free_locked(pool, freed_pages);
487                 nr_free -= freed_pages;
488         }
489
490         spin_unlock_irqrestore(&pool->lock, irq_flags);
491
492         if (freed_pages)
493                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
494 out:
495         if (pages_to_free != static_buf)
496                 kfree(pages_to_free);
497         return nr_free;
498 }
499
500 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
501 {
502         struct device_pools *p;
503         struct dma_pool *pool;
504
505         if (!dev)
506                 return;
507
508         mutex_lock(&_manager->lock);
509         list_for_each_entry_reverse(p, &_manager->pools, pools) {
510                 if (p->dev != dev)
511                         continue;
512                 pool = p->pool;
513                 if (pool->type != type)
514                         continue;
515
516                 list_del(&p->pools);
517                 kfree(p);
518                 _manager->npools--;
519                 break;
520         }
521         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
522                 if (pool->type != type)
523                         continue;
524                 /* Takes a spinlock.. */
525                 /* OK to use static buffer since global mutex is held. */
526                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES, true);
527                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
528                 /* This code path is called after _all_ references to the
529                  * struct device has been dropped - so nobody should be
530                  * touching it. In case somebody is trying to _add_ we are
531                  * guarded by the mutex. */
532                 list_del(&pool->pools);
533                 kfree(pool);
534                 break;
535         }
536         mutex_unlock(&_manager->lock);
537 }
538
539 /*
540  * On free-ing of the 'struct device' this deconstructor is run.
541  * Albeit the pool might have already been freed earlier.
542  */
543 static void ttm_dma_pool_release(struct device *dev, void *res)
544 {
545         struct dma_pool *pool = *(struct dma_pool **)res;
546
547         if (pool)
548                 ttm_dma_free_pool(dev, pool->type);
549 }
550
551 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
552 {
553         return *(struct dma_pool **)res == match_data;
554 }
555
556 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
557                                           enum pool_type type)
558 {
559         const char *n[] = {"wc", "uc", "cached", " dma32", "huge"};
560         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_HUGE};
561         struct device_pools *sec_pool = NULL;
562         struct dma_pool *pool = NULL, **ptr;
563         unsigned i;
564         int ret = -ENODEV;
565         char *p;
566
567         if (!dev)
568                 return NULL;
569
570         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
571         if (!ptr)
572                 return NULL;
573
574         ret = -ENOMEM;
575
576         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
577                             dev_to_node(dev));
578         if (!pool)
579                 goto err_mem;
580
581         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
582                                 dev_to_node(dev));
583         if (!sec_pool)
584                 goto err_mem;
585
586         INIT_LIST_HEAD(&sec_pool->pools);
587         sec_pool->dev = dev;
588         sec_pool->pool =  pool;
589
590         INIT_LIST_HEAD(&pool->free_list);
591         INIT_LIST_HEAD(&pool->pools);
592         spin_lock_init(&pool->lock);
593         pool->dev = dev;
594         pool->npages_free = pool->npages_in_use = 0;
595         pool->nfrees = 0;
596         pool->gfp_flags = flags;
597         if (type & IS_HUGE)
598 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
599                 pool->size = HPAGE_PMD_SIZE;
600 #else
601                 BUG();
602 #endif
603         else
604                 pool->size = PAGE_SIZE;
605         pool->type = type;
606         pool->nrefills = 0;
607         p = pool->name;
608         for (i = 0; i < ARRAY_SIZE(t); i++) {
609                 if (type & t[i]) {
610                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
611                                       "%s", n[i]);
612                 }
613         }
614         *p = 0;
615         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
616          * - the kobj->name has already been deallocated.*/
617         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
618                  dev_driver_string(dev), dev_name(dev));
619         mutex_lock(&_manager->lock);
620         /* You can get the dma_pool from either the global: */
621         list_add(&sec_pool->pools, &_manager->pools);
622         _manager->npools++;
623         /* or from 'struct device': */
624         list_add(&pool->pools, &dev->dma_pools);
625         mutex_unlock(&_manager->lock);
626
627         *ptr = pool;
628         devres_add(dev, ptr);
629
630         return pool;
631 err_mem:
632         devres_free(ptr);
633         kfree(sec_pool);
634         kfree(pool);
635         return ERR_PTR(ret);
636 }
637
638 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
639                                           enum pool_type type)
640 {
641         struct dma_pool *pool, *tmp;
642
643         if (type == IS_UNDEFINED)
644                 return NULL;
645
646         /* NB: We iterate on the 'struct dev' which has no spinlock, but
647          * it does have a kref which we have taken. The kref is taken during
648          * graphic driver loading - in the drm_pci_init it calls either
649          * pci_dev_get or pci_register_driver which both end up taking a kref
650          * on 'struct device'.
651          *
652          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
653          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
654          * thing is at that point of time there are no pages associated with the
655          * driver so this function will not be called.
656          */
657         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools)
658                 if (pool->type == type)
659                         return pool;
660         return NULL;
661 }
662
663 /*
664  * Free pages the pages that failed to change the caching state. If there
665  * are pages that have changed their caching state already put them to the
666  * pool.
667  */
668 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
669                                                  struct list_head *d_pages,
670                                                  struct page **failed_pages,
671                                                  unsigned cpages)
672 {
673         struct dma_page *d_page, *tmp;
674         struct page *p;
675         unsigned i = 0;
676
677         p = failed_pages[0];
678         if (!p)
679                 return;
680         /* Find the failed page. */
681         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
682                 if (d_page->p != p)
683                         continue;
684                 /* .. and then progress over the full list. */
685                 list_del(&d_page->page_list);
686                 __ttm_dma_free_page(pool, d_page);
687                 if (++i < cpages)
688                         p = failed_pages[i];
689                 else
690                         break;
691         }
692
693 }
694
695 /*
696  * Allocate 'count' pages, and put 'need' number of them on the
697  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
698  * The full list of pages should also be on 'd_pages'.
699  * We return zero for success, and negative numbers as errors.
700  */
701 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
702                                         struct list_head *d_pages,
703                                         unsigned count)
704 {
705         struct page **caching_array;
706         struct dma_page *dma_p;
707         struct page *p;
708         int r = 0;
709         unsigned i, j, npages, cpages;
710         unsigned max_cpages = min(count,
711                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
712
713         /* allocate array for page caching change */
714         caching_array = kmalloc_array(max_cpages, sizeof(struct page *),
715                                       GFP_KERNEL);
716
717         if (!caching_array) {
718                 pr_debug("%s: Unable to allocate table for new pages\n",
719                        pool->dev_name);
720                 return -ENOMEM;
721         }
722
723         if (count > 1)
724                 pr_debug("%s: (%s:%d) Getting %d pages\n",
725                          pool->dev_name, pool->name, current->pid, count);
726
727         for (i = 0, cpages = 0; i < count; ++i) {
728                 dma_p = __ttm_dma_alloc_page(pool);
729                 if (!dma_p) {
730                         pr_debug("%s: Unable to get page %u\n",
731                                  pool->dev_name, i);
732
733                         /* store already allocated pages in the pool after
734                          * setting the caching state */
735                         if (cpages) {
736                                 r = ttm_set_pages_caching(pool, caching_array,
737                                                           cpages);
738                                 if (r)
739                                         ttm_dma_handle_caching_state_failure(
740                                                 pool, d_pages, caching_array,
741                                                 cpages);
742                         }
743                         r = -ENOMEM;
744                         goto out;
745                 }
746                 p = dma_p->p;
747                 list_add(&dma_p->page_list, d_pages);
748
749 #ifdef CONFIG_HIGHMEM
750                 /* gfp flags of highmem page should never be dma32 so we
751                  * we should be fine in such case
752                  */
753                 if (PageHighMem(p))
754                         continue;
755 #endif
756
757                 npages = pool->size / PAGE_SIZE;
758                 for (j = 0; j < npages; ++j) {
759                         caching_array[cpages++] = p + j;
760                         if (cpages == max_cpages) {
761                                 /* Note: Cannot hold the spinlock */
762                                 r = ttm_set_pages_caching(pool, caching_array,
763                                                           cpages);
764                                 if (r) {
765                                         ttm_dma_handle_caching_state_failure(
766                                              pool, d_pages, caching_array,
767                                              cpages);
768                                         goto out;
769                                 }
770                                 cpages = 0;
771                         }
772                 }
773         }
774
775         if (cpages) {
776                 r = ttm_set_pages_caching(pool, caching_array, cpages);
777                 if (r)
778                         ttm_dma_handle_caching_state_failure(pool, d_pages,
779                                         caching_array, cpages);
780         }
781 out:
782         kfree(caching_array);
783         return r;
784 }
785
786 /*
787  * @return count of pages still required to fulfill the request.
788  */
789 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
790                                          unsigned long *irq_flags)
791 {
792         unsigned count = _manager->options.small;
793         int r = pool->npages_free;
794
795         if (count > pool->npages_free) {
796                 struct list_head d_pages;
797
798                 INIT_LIST_HEAD(&d_pages);
799
800                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
801
802                 /* Returns how many more are neccessary to fulfill the
803                  * request. */
804                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
805
806                 spin_lock_irqsave(&pool->lock, *irq_flags);
807                 if (!r) {
808                         /* Add the fresh to the end.. */
809                         list_splice(&d_pages, &pool->free_list);
810                         ++pool->nrefills;
811                         pool->npages_free += count;
812                         r = count;
813                 } else {
814                         struct dma_page *d_page;
815                         unsigned cpages = 0;
816
817                         pr_debug("%s: Failed to fill %s pool (r:%d)!\n",
818                                  pool->dev_name, pool->name, r);
819
820                         list_for_each_entry(d_page, &d_pages, page_list) {
821                                 cpages++;
822                         }
823                         list_splice_tail(&d_pages, &pool->free_list);
824                         pool->npages_free += cpages;
825                         r = cpages;
826                 }
827         }
828         return r;
829 }
830
831 /*
832  * The populate list is actually a stack (not that is matters as TTM
833  * allocates one page at a time.
834  * return dma_page pointer if success, otherwise NULL.
835  */
836 static struct dma_page *ttm_dma_pool_get_pages(struct dma_pool *pool,
837                                   struct ttm_dma_tt *ttm_dma,
838                                   unsigned index)
839 {
840         struct dma_page *d_page = NULL;
841         struct ttm_tt *ttm = &ttm_dma->ttm;
842         unsigned long irq_flags;
843         int count;
844
845         spin_lock_irqsave(&pool->lock, irq_flags);
846         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
847         if (count) {
848                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
849                 ttm->pages[index] = d_page->p;
850                 ttm_dma->dma_address[index] = d_page->dma;
851                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
852                 pool->npages_in_use += 1;
853                 pool->npages_free -= 1;
854         }
855         spin_unlock_irqrestore(&pool->lock, irq_flags);
856         return d_page;
857 }
858
859 static gfp_t ttm_dma_pool_gfp_flags(struct ttm_dma_tt *ttm_dma, bool huge)
860 {
861         struct ttm_tt *ttm = &ttm_dma->ttm;
862         gfp_t gfp_flags;
863
864         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
865                 gfp_flags = GFP_USER | GFP_DMA32;
866         else
867                 gfp_flags = GFP_HIGHUSER;
868         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
869                 gfp_flags |= __GFP_ZERO;
870
871         if (huge) {
872                 gfp_flags |= GFP_TRANSHUGE_LIGHT | __GFP_NORETRY |
873                         __GFP_KSWAPD_RECLAIM;
874                 gfp_flags &= ~__GFP_MOVABLE;
875                 gfp_flags &= ~__GFP_COMP;
876         }
877
878         if (ttm->page_flags & TTM_PAGE_FLAG_NO_RETRY)
879                 gfp_flags |= __GFP_RETRY_MAYFAIL;
880
881         return gfp_flags;
882 }
883
884 /*
885  * On success pages list will hold count number of correctly
886  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
887  */
888 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev,
889                         struct ttm_operation_ctx *ctx)
890 {
891         struct ttm_tt *ttm = &ttm_dma->ttm;
892         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
893         unsigned long num_pages = ttm->num_pages;
894         struct dma_pool *pool;
895         struct dma_page *d_page;
896         enum pool_type type;
897         unsigned i;
898         int ret;
899
900         if (ttm->state != tt_unpopulated)
901                 return 0;
902
903         if (ttm_check_under_lowerlimit(mem_glob, num_pages, ctx))
904                 return -ENOMEM;
905
906         INIT_LIST_HEAD(&ttm_dma->pages_list);
907         i = 0;
908
909         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
910
911 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
912         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
913                 goto skip_huge;
914
915         pool = ttm_dma_find_pool(dev, type | IS_HUGE);
916         if (!pool) {
917                 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, true);
918
919                 pool = ttm_dma_pool_init(dev, gfp_flags, type | IS_HUGE);
920                 if (IS_ERR_OR_NULL(pool))
921                         goto skip_huge;
922         }
923
924         while (num_pages >= HPAGE_PMD_NR) {
925                 unsigned j;
926
927                 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
928                 if (!d_page)
929                         break;
930
931                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
932                                                 pool->size, ctx);
933                 if (unlikely(ret != 0)) {
934                         ttm_dma_unpopulate(ttm_dma, dev);
935                         return -ENOMEM;
936                 }
937
938                 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
939                 for (j = i + 1; j < (i + HPAGE_PMD_NR); ++j) {
940                         ttm->pages[j] = ttm->pages[j - 1] + 1;
941                         ttm_dma->dma_address[j] = ttm_dma->dma_address[j - 1] +
942                                 PAGE_SIZE;
943                 }
944
945                 i += HPAGE_PMD_NR;
946                 num_pages -= HPAGE_PMD_NR;
947         }
948
949 skip_huge:
950 #endif
951
952         pool = ttm_dma_find_pool(dev, type);
953         if (!pool) {
954                 gfp_t gfp_flags = ttm_dma_pool_gfp_flags(ttm_dma, false);
955
956                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
957                 if (IS_ERR_OR_NULL(pool))
958                         return -ENOMEM;
959         }
960
961         while (num_pages) {
962                 d_page = ttm_dma_pool_get_pages(pool, ttm_dma, i);
963                 if (!d_page) {
964                         ttm_dma_unpopulate(ttm_dma, dev);
965                         return -ENOMEM;
966                 }
967
968                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
969                                                 pool->size, ctx);
970                 if (unlikely(ret != 0)) {
971                         ttm_dma_unpopulate(ttm_dma, dev);
972                         return -ENOMEM;
973                 }
974
975                 d_page->vaddr |= VADDR_FLAG_UPDATED_COUNT;
976                 ++i;
977                 --num_pages;
978         }
979
980         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
981                 ret = ttm_tt_swapin(ttm);
982                 if (unlikely(ret != 0)) {
983                         ttm_dma_unpopulate(ttm_dma, dev);
984                         return ret;
985                 }
986         }
987
988         ttm->state = tt_unbound;
989         return 0;
990 }
991 EXPORT_SYMBOL_GPL(ttm_dma_populate);
992
993 /* Put all pages in pages list to correct pool to wait for reuse */
994 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
995 {
996         struct ttm_tt *ttm = &ttm_dma->ttm;
997         struct ttm_mem_global *mem_glob = ttm->bdev->glob->mem_glob;
998         struct dma_pool *pool;
999         struct dma_page *d_page, *next;
1000         enum pool_type type;
1001         bool is_cached = false;
1002         unsigned count, i, npages = 0;
1003         unsigned long irq_flags;
1004
1005         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
1006
1007 #ifdef CONFIG_TRANSPARENT_HUGEPAGE
1008         pool = ttm_dma_find_pool(dev, type | IS_HUGE);
1009         if (pool) {
1010                 count = 0;
1011                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1012                                          page_list) {
1013                         if (!(d_page->vaddr & VADDR_FLAG_HUGE_POOL))
1014                                 continue;
1015
1016                         count++;
1017                         if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1018                                 ttm_mem_global_free_page(mem_glob, d_page->p,
1019                                                          pool->size);
1020                                 d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1021                         }
1022                         ttm_dma_page_put(pool, d_page);
1023                 }
1024
1025                 spin_lock_irqsave(&pool->lock, irq_flags);
1026                 pool->npages_in_use -= count;
1027                 pool->nfrees += count;
1028                 spin_unlock_irqrestore(&pool->lock, irq_flags);
1029         }
1030 #endif
1031
1032         pool = ttm_dma_find_pool(dev, type);
1033         if (!pool)
1034                 return;
1035
1036         is_cached = (ttm_dma_find_pool(pool->dev,
1037                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
1038
1039         /* make sure pages array match list and count number of pages */
1040         count = 0;
1041         list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list,
1042                                  page_list) {
1043                 ttm->pages[count] = d_page->p;
1044                 count++;
1045
1046                 if (d_page->vaddr & VADDR_FLAG_UPDATED_COUNT) {
1047                         ttm_mem_global_free_page(mem_glob, d_page->p,
1048                                                  pool->size);
1049                         d_page->vaddr &= ~VADDR_FLAG_UPDATED_COUNT;
1050                 }
1051
1052                 if (is_cached)
1053                         ttm_dma_page_put(pool, d_page);
1054         }
1055
1056         spin_lock_irqsave(&pool->lock, irq_flags);
1057         pool->npages_in_use -= count;
1058         if (is_cached) {
1059                 pool->nfrees += count;
1060         } else {
1061                 pool->npages_free += count;
1062                 list_splice(&ttm_dma->pages_list, &pool->free_list);
1063                 /*
1064                  * Wait to have at at least NUM_PAGES_TO_ALLOC number of pages
1065                  * to free in order to minimize calls to set_memory_wb().
1066                  */
1067                 if (pool->npages_free >= (_manager->options.max_size +
1068                                           NUM_PAGES_TO_ALLOC))
1069                         npages = pool->npages_free - _manager->options.max_size;
1070         }
1071         spin_unlock_irqrestore(&pool->lock, irq_flags);
1072
1073         INIT_LIST_HEAD(&ttm_dma->pages_list);
1074         for (i = 0; i < ttm->num_pages; i++) {
1075                 ttm->pages[i] = NULL;
1076                 ttm_dma->dma_address[i] = 0;
1077         }
1078
1079         /* shrink pool if necessary (only on !is_cached pools)*/
1080         if (npages)
1081                 ttm_dma_page_pool_free(pool, npages, false);
1082         ttm->state = tt_unpopulated;
1083 }
1084 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1085
1086 /**
1087  * Callback for mm to request pool to reduce number of page held.
1088  *
1089  * XXX: (dchinner) Deadlock warning!
1090  *
1091  * I'm getting sadder as I hear more pathetical whimpers about needing per-pool
1092  * shrinkers
1093  */
1094 static unsigned long
1095 ttm_dma_pool_shrink_scan(struct shrinker *shrink, struct shrink_control *sc)
1096 {
1097         static unsigned start_pool;
1098         unsigned idx = 0;
1099         unsigned pool_offset;
1100         unsigned shrink_pages = sc->nr_to_scan;
1101         struct device_pools *p;
1102         unsigned long freed = 0;
1103
1104         if (list_empty(&_manager->pools))
1105                 return SHRINK_STOP;
1106
1107         if (!mutex_trylock(&_manager->lock))
1108                 return SHRINK_STOP;
1109         if (!_manager->npools)
1110                 goto out;
1111         pool_offset = ++start_pool % _manager->npools;
1112         list_for_each_entry(p, &_manager->pools, pools) {
1113                 unsigned nr_free;
1114
1115                 if (!p->dev)
1116                         continue;
1117                 if (shrink_pages == 0)
1118                         break;
1119                 /* Do it in round-robin fashion. */
1120                 if (++idx < pool_offset)
1121                         continue;
1122                 nr_free = shrink_pages;
1123                 /* OK to use static buffer since global mutex is held. */
1124                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free, true);
1125                 freed += nr_free - shrink_pages;
1126
1127                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1128                          p->pool->dev_name, p->pool->name, current->pid,
1129                          nr_free, shrink_pages);
1130         }
1131 out:
1132         mutex_unlock(&_manager->lock);
1133         return freed;
1134 }
1135
1136 static unsigned long
1137 ttm_dma_pool_shrink_count(struct shrinker *shrink, struct shrink_control *sc)
1138 {
1139         struct device_pools *p;
1140         unsigned long count = 0;
1141
1142         if (!mutex_trylock(&_manager->lock))
1143                 return 0;
1144         list_for_each_entry(p, &_manager->pools, pools)
1145                 count += p->pool->npages_free;
1146         mutex_unlock(&_manager->lock);
1147         return count;
1148 }
1149
1150 static int ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1151 {
1152         manager->mm_shrink.count_objects = ttm_dma_pool_shrink_count;
1153         manager->mm_shrink.scan_objects = &ttm_dma_pool_shrink_scan;
1154         manager->mm_shrink.seeks = 1;
1155         return register_shrinker(&manager->mm_shrink);
1156 }
1157
1158 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1159 {
1160         unregister_shrinker(&manager->mm_shrink);
1161 }
1162
1163 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1164 {
1165         int ret;
1166
1167         WARN_ON(_manager);
1168
1169         pr_info("Initializing DMA pool allocator\n");
1170
1171         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1172         if (!_manager)
1173                 return -ENOMEM;
1174
1175         mutex_init(&_manager->lock);
1176         INIT_LIST_HEAD(&_manager->pools);
1177
1178         _manager->options.max_size = max_pages;
1179         _manager->options.small = SMALL_ALLOCATION;
1180         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1181
1182         /* This takes care of auto-freeing the _manager */
1183         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1184                                    &glob->kobj, "dma_pool");
1185         if (unlikely(ret != 0))
1186                 goto error;
1187
1188         ret = ttm_dma_pool_mm_shrink_init(_manager);
1189         if (unlikely(ret != 0))
1190                 goto error;
1191         return 0;
1192
1193 error:
1194         kobject_put(&_manager->kobj);
1195         _manager = NULL;
1196         return ret;
1197 }
1198
1199 void ttm_dma_page_alloc_fini(void)
1200 {
1201         struct device_pools *p, *t;
1202
1203         pr_info("Finalizing DMA pool allocator\n");
1204         ttm_dma_pool_mm_shrink_fini(_manager);
1205
1206         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1207                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1208                         current->pid);
1209                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1210                         ttm_dma_pool_match, p->pool));
1211                 ttm_dma_free_pool(p->dev, p->pool->type);
1212         }
1213         kobject_put(&_manager->kobj);
1214         _manager = NULL;
1215 }
1216
1217 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1218 {
1219         struct device_pools *p;
1220         struct dma_pool *pool = NULL;
1221
1222         if (!_manager) {
1223                 seq_printf(m, "No pool allocator running.\n");
1224                 return 0;
1225         }
1226         seq_printf(m, "         pool      refills   pages freed    inuse available     name\n");
1227         mutex_lock(&_manager->lock);
1228         list_for_each_entry(p, &_manager->pools, pools) {
1229                 struct device *dev = p->dev;
1230                 if (!dev)
1231                         continue;
1232                 pool = p->pool;
1233                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1234                                 pool->name, pool->nrefills,
1235                                 pool->nfrees, pool->npages_in_use,
1236                                 pool->npages_free,
1237                                 pool->dev_name);
1238         }
1239         mutex_unlock(&_manager->lock);
1240         return 0;
1241 }
1242 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);
1243
1244 #endif