Linux-libre 3.4.8-gnu1
[librecmc/linux-libre.git] / drivers / gpu / drm / ttm / ttm_page_alloc_dma.c
1 /*
2  * Copyright 2011 (c) Oracle Corp.
3
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sub license,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the
12  * next paragraph) shall be included in all copies or substantial portions
13  * of the Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT. IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER
21  * DEALINGS IN THE SOFTWARE.
22  *
23  * Author: Konrad Rzeszutek Wilk <konrad.wilk@oracle.com>
24  */
25
26 /*
27  * A simple DMA pool losely based on dmapool.c. It has certain advantages
28  * over the DMA pools:
29  * - Pool collects resently freed pages for reuse (and hooks up to
30  *   the shrinker).
31  * - Tracks currently in use pages
32  * - Tracks whether the page is UC, WB or cached (and reverts to WB
33  *   when freed).
34  */
35
36 #define pr_fmt(fmt) "[TTM] " fmt
37
38 #include <linux/dma-mapping.h>
39 #include <linux/list.h>
40 #include <linux/seq_file.h> /* for seq_printf */
41 #include <linux/slab.h>
42 #include <linux/spinlock.h>
43 #include <linux/highmem.h>
44 #include <linux/mm_types.h>
45 #include <linux/module.h>
46 #include <linux/mm.h>
47 #include <linux/atomic.h>
48 #include <linux/device.h>
49 #include <linux/kthread.h>
50 #include "ttm/ttm_bo_driver.h"
51 #include "ttm/ttm_page_alloc.h"
52 #ifdef TTM_HAS_AGP
53 #include <asm/agp.h>
54 #endif
55
56 #define NUM_PAGES_TO_ALLOC              (PAGE_SIZE/sizeof(struct page *))
57 #define SMALL_ALLOCATION                4
58 #define FREE_ALL_PAGES                  (~0U)
59 /* times are in msecs */
60 #define IS_UNDEFINED                    (0)
61 #define IS_WC                           (1<<1)
62 #define IS_UC                           (1<<2)
63 #define IS_CACHED                       (1<<3)
64 #define IS_DMA32                        (1<<4)
65
66 enum pool_type {
67         POOL_IS_UNDEFINED,
68         POOL_IS_WC = IS_WC,
69         POOL_IS_UC = IS_UC,
70         POOL_IS_CACHED = IS_CACHED,
71         POOL_IS_WC_DMA32 = IS_WC | IS_DMA32,
72         POOL_IS_UC_DMA32 = IS_UC | IS_DMA32,
73         POOL_IS_CACHED_DMA32 = IS_CACHED | IS_DMA32,
74 };
75 /*
76  * The pool structure. There are usually six pools:
77  *  - generic (not restricted to DMA32):
78  *      - write combined, uncached, cached.
79  *  - dma32 (up to 2^32 - so up 4GB):
80  *      - write combined, uncached, cached.
81  * for each 'struct device'. The 'cached' is for pages that are actively used.
82  * The other ones can be shrunk by the shrinker API if neccessary.
83  * @pools: The 'struct device->dma_pools' link.
84  * @type: Type of the pool
85  * @lock: Protects the inuse_list and free_list from concurrnet access. Must be
86  * used with irqsave/irqrestore variants because pool allocator maybe called
87  * from delayed work.
88  * @inuse_list: Pool of pages that are in use. The order is very important and
89  *   it is in the order that the TTM pages that are put back are in.
90  * @free_list: Pool of pages that are free to be used. No order requirements.
91  * @dev: The device that is associated with these pools.
92  * @size: Size used during DMA allocation.
93  * @npages_free: Count of available pages for re-use.
94  * @npages_in_use: Count of pages that are in use.
95  * @nfrees: Stats when pool is shrinking.
96  * @nrefills: Stats when the pool is grown.
97  * @gfp_flags: Flags to pass for alloc_page.
98  * @name: Name of the pool.
99  * @dev_name: Name derieved from dev - similar to how dev_info works.
100  *   Used during shutdown as the dev_info during release is unavailable.
101  */
102 struct dma_pool {
103         struct list_head pools; /* The 'struct device->dma_pools link */
104         enum pool_type type;
105         spinlock_t lock;
106         struct list_head inuse_list;
107         struct list_head free_list;
108         struct device *dev;
109         unsigned size;
110         unsigned npages_free;
111         unsigned npages_in_use;
112         unsigned long nfrees; /* Stats when shrunk. */
113         unsigned long nrefills; /* Stats when grown. */
114         gfp_t gfp_flags;
115         char name[13]; /* "cached dma32" */
116         char dev_name[64]; /* Constructed from dev */
117 };
118
119 /*
120  * The accounting page keeping track of the allocated page along with
121  * the DMA address.
122  * @page_list: The link to the 'page_list' in 'struct dma_pool'.
123  * @vaddr: The virtual address of the page
124  * @dma: The bus address of the page. If the page is not allocated
125  *   via the DMA API, it will be -1.
126  */
127 struct dma_page {
128         struct list_head page_list;
129         void *vaddr;
130         struct page *p;
131         dma_addr_t dma;
132 };
133
134 /*
135  * Limits for the pool. They are handled without locks because only place where
136  * they may change is in sysfs store. They won't have immediate effect anyway
137  * so forcing serialization to access them is pointless.
138  */
139
140 struct ttm_pool_opts {
141         unsigned        alloc_size;
142         unsigned        max_size;
143         unsigned        small;
144 };
145
146 /*
147  * Contains the list of all of the 'struct device' and their corresponding
148  * DMA pools. Guarded by _mutex->lock.
149  * @pools: The link to 'struct ttm_pool_manager->pools'
150  * @dev: The 'struct device' associated with the 'pool'
151  * @pool: The 'struct dma_pool' associated with the 'dev'
152  */
153 struct device_pools {
154         struct list_head pools;
155         struct device *dev;
156         struct dma_pool *pool;
157 };
158
159 /*
160  * struct ttm_pool_manager - Holds memory pools for fast allocation
161  *
162  * @lock: Lock used when adding/removing from pools
163  * @pools: List of 'struct device' and 'struct dma_pool' tuples.
164  * @options: Limits for the pool.
165  * @npools: Total amount of pools in existence.
166  * @shrinker: The structure used by [un|]register_shrinker
167  */
168 struct ttm_pool_manager {
169         struct mutex            lock;
170         struct list_head        pools;
171         struct ttm_pool_opts    options;
172         unsigned                npools;
173         struct shrinker         mm_shrink;
174         struct kobject          kobj;
175 };
176
177 static struct ttm_pool_manager *_manager;
178
179 static struct attribute ttm_page_pool_max = {
180         .name = "pool_max_size",
181         .mode = S_IRUGO | S_IWUSR
182 };
183 static struct attribute ttm_page_pool_small = {
184         .name = "pool_small_allocation",
185         .mode = S_IRUGO | S_IWUSR
186 };
187 static struct attribute ttm_page_pool_alloc_size = {
188         .name = "pool_allocation_size",
189         .mode = S_IRUGO | S_IWUSR
190 };
191
192 static struct attribute *ttm_pool_attrs[] = {
193         &ttm_page_pool_max,
194         &ttm_page_pool_small,
195         &ttm_page_pool_alloc_size,
196         NULL
197 };
198
199 static void ttm_pool_kobj_release(struct kobject *kobj)
200 {
201         struct ttm_pool_manager *m =
202                 container_of(kobj, struct ttm_pool_manager, kobj);
203         kfree(m);
204 }
205
206 static ssize_t ttm_pool_store(struct kobject *kobj, struct attribute *attr,
207                               const char *buffer, size_t size)
208 {
209         struct ttm_pool_manager *m =
210                 container_of(kobj, struct ttm_pool_manager, kobj);
211         int chars;
212         unsigned val;
213         chars = sscanf(buffer, "%u", &val);
214         if (chars == 0)
215                 return size;
216
217         /* Convert kb to number of pages */
218         val = val / (PAGE_SIZE >> 10);
219
220         if (attr == &ttm_page_pool_max)
221                 m->options.max_size = val;
222         else if (attr == &ttm_page_pool_small)
223                 m->options.small = val;
224         else if (attr == &ttm_page_pool_alloc_size) {
225                 if (val > NUM_PAGES_TO_ALLOC*8) {
226                         pr_err("Setting allocation size to %lu is not allowed. Recommended size is %lu\n",
227                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 7),
228                                NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
229                         return size;
230                 } else if (val > NUM_PAGES_TO_ALLOC) {
231                         pr_warn("Setting allocation size to larger than %lu is not recommended\n",
232                                 NUM_PAGES_TO_ALLOC*(PAGE_SIZE >> 10));
233                 }
234                 m->options.alloc_size = val;
235         }
236
237         return size;
238 }
239
240 static ssize_t ttm_pool_show(struct kobject *kobj, struct attribute *attr,
241                              char *buffer)
242 {
243         struct ttm_pool_manager *m =
244                 container_of(kobj, struct ttm_pool_manager, kobj);
245         unsigned val = 0;
246
247         if (attr == &ttm_page_pool_max)
248                 val = m->options.max_size;
249         else if (attr == &ttm_page_pool_small)
250                 val = m->options.small;
251         else if (attr == &ttm_page_pool_alloc_size)
252                 val = m->options.alloc_size;
253
254         val = val * (PAGE_SIZE >> 10);
255
256         return snprintf(buffer, PAGE_SIZE, "%u\n", val);
257 }
258
259 static const struct sysfs_ops ttm_pool_sysfs_ops = {
260         .show = &ttm_pool_show,
261         .store = &ttm_pool_store,
262 };
263
264 static struct kobj_type ttm_pool_kobj_type = {
265         .release = &ttm_pool_kobj_release,
266         .sysfs_ops = &ttm_pool_sysfs_ops,
267         .default_attrs = ttm_pool_attrs,
268 };
269
270 #ifndef CONFIG_X86
271 static int set_pages_array_wb(struct page **pages, int addrinarray)
272 {
273 #ifdef TTM_HAS_AGP
274         int i;
275
276         for (i = 0; i < addrinarray; i++)
277                 unmap_page_from_agp(pages[i]);
278 #endif
279         return 0;
280 }
281
282 static int set_pages_array_wc(struct page **pages, int addrinarray)
283 {
284 #ifdef TTM_HAS_AGP
285         int i;
286
287         for (i = 0; i < addrinarray; i++)
288                 map_page_into_agp(pages[i]);
289 #endif
290         return 0;
291 }
292
293 static int set_pages_array_uc(struct page **pages, int addrinarray)
294 {
295 #ifdef TTM_HAS_AGP
296         int i;
297
298         for (i = 0; i < addrinarray; i++)
299                 map_page_into_agp(pages[i]);
300 #endif
301         return 0;
302 }
303 #endif /* for !CONFIG_X86 */
304
305 static int ttm_set_pages_caching(struct dma_pool *pool,
306                                  struct page **pages, unsigned cpages)
307 {
308         int r = 0;
309         /* Set page caching */
310         if (pool->type & IS_UC) {
311                 r = set_pages_array_uc(pages, cpages);
312                 if (r)
313                         pr_err("%s: Failed to set %d pages to uc!\n",
314                                pool->dev_name, cpages);
315         }
316         if (pool->type & IS_WC) {
317                 r = set_pages_array_wc(pages, cpages);
318                 if (r)
319                         pr_err("%s: Failed to set %d pages to wc!\n",
320                                pool->dev_name, cpages);
321         }
322         return r;
323 }
324
325 static void __ttm_dma_free_page(struct dma_pool *pool, struct dma_page *d_page)
326 {
327         dma_addr_t dma = d_page->dma;
328         dma_free_coherent(pool->dev, pool->size, d_page->vaddr, dma);
329
330         kfree(d_page);
331         d_page = NULL;
332 }
333 static struct dma_page *__ttm_dma_alloc_page(struct dma_pool *pool)
334 {
335         struct dma_page *d_page;
336
337         d_page = kmalloc(sizeof(struct dma_page), GFP_KERNEL);
338         if (!d_page)
339                 return NULL;
340
341         d_page->vaddr = dma_alloc_coherent(pool->dev, pool->size,
342                                            &d_page->dma,
343                                            pool->gfp_flags);
344         if (d_page->vaddr)
345                 d_page->p = virt_to_page(d_page->vaddr);
346         else {
347                 kfree(d_page);
348                 d_page = NULL;
349         }
350         return d_page;
351 }
352 static enum pool_type ttm_to_type(int flags, enum ttm_caching_state cstate)
353 {
354         enum pool_type type = IS_UNDEFINED;
355
356         if (flags & TTM_PAGE_FLAG_DMA32)
357                 type |= IS_DMA32;
358         if (cstate == tt_cached)
359                 type |= IS_CACHED;
360         else if (cstate == tt_uncached)
361                 type |= IS_UC;
362         else
363                 type |= IS_WC;
364
365         return type;
366 }
367
368 static void ttm_pool_update_free_locked(struct dma_pool *pool,
369                                         unsigned freed_pages)
370 {
371         pool->npages_free -= freed_pages;
372         pool->nfrees += freed_pages;
373
374 }
375
376 /* set memory back to wb and free the pages. */
377 static void ttm_dma_pages_put(struct dma_pool *pool, struct list_head *d_pages,
378                               struct page *pages[], unsigned npages)
379 {
380         struct dma_page *d_page, *tmp;
381
382         /* Don't set WB on WB page pool. */
383         if (npages && !(pool->type & IS_CACHED) &&
384             set_pages_array_wb(pages, npages))
385                 pr_err("%s: Failed to set %d pages to wb!\n",
386                        pool->dev_name, npages);
387
388         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
389                 list_del(&d_page->page_list);
390                 __ttm_dma_free_page(pool, d_page);
391         }
392 }
393
394 static void ttm_dma_page_put(struct dma_pool *pool, struct dma_page *d_page)
395 {
396         /* Don't set WB on WB page pool. */
397         if (!(pool->type & IS_CACHED) && set_pages_array_wb(&d_page->p, 1))
398                 pr_err("%s: Failed to set %d pages to wb!\n",
399                        pool->dev_name, 1);
400
401         list_del(&d_page->page_list);
402         __ttm_dma_free_page(pool, d_page);
403 }
404
405 /*
406  * Free pages from pool.
407  *
408  * To prevent hogging the ttm_swap process we only free NUM_PAGES_TO_ALLOC
409  * number of pages in one go.
410  *
411  * @pool: to free the pages from
412  * @nr_free: If set to true will free all pages in pool
413  **/
414 static unsigned ttm_dma_page_pool_free(struct dma_pool *pool, unsigned nr_free)
415 {
416         unsigned long irq_flags;
417         struct dma_page *dma_p, *tmp;
418         struct page **pages_to_free;
419         struct list_head d_pages;
420         unsigned freed_pages = 0,
421                  npages_to_free = nr_free;
422
423         if (NUM_PAGES_TO_ALLOC < nr_free)
424                 npages_to_free = NUM_PAGES_TO_ALLOC;
425 #if 0
426         if (nr_free > 1) {
427                 pr_debug("%s: (%s:%d) Attempting to free %d (%d) pages\n",
428                          pool->dev_name, pool->name, current->pid,
429                          npages_to_free, nr_free);
430         }
431 #endif
432         pages_to_free = kmalloc(npages_to_free * sizeof(struct page *),
433                         GFP_KERNEL);
434
435         if (!pages_to_free) {
436                 pr_err("%s: Failed to allocate memory for pool free operation\n",
437                        pool->dev_name);
438                 return 0;
439         }
440         INIT_LIST_HEAD(&d_pages);
441 restart:
442         spin_lock_irqsave(&pool->lock, irq_flags);
443
444         /* We picking the oldest ones off the list */
445         list_for_each_entry_safe_reverse(dma_p, tmp, &pool->free_list,
446                                          page_list) {
447                 if (freed_pages >= npages_to_free)
448                         break;
449
450                 /* Move the dma_page from one list to another. */
451                 list_move(&dma_p->page_list, &d_pages);
452
453                 pages_to_free[freed_pages++] = dma_p->p;
454                 /* We can only remove NUM_PAGES_TO_ALLOC at a time. */
455                 if (freed_pages >= NUM_PAGES_TO_ALLOC) {
456
457                         ttm_pool_update_free_locked(pool, freed_pages);
458                         /**
459                          * Because changing page caching is costly
460                          * we unlock the pool to prevent stalling.
461                          */
462                         spin_unlock_irqrestore(&pool->lock, irq_flags);
463
464                         ttm_dma_pages_put(pool, &d_pages, pages_to_free,
465                                           freed_pages);
466
467                         INIT_LIST_HEAD(&d_pages);
468
469                         if (likely(nr_free != FREE_ALL_PAGES))
470                                 nr_free -= freed_pages;
471
472                         if (NUM_PAGES_TO_ALLOC >= nr_free)
473                                 npages_to_free = nr_free;
474                         else
475                                 npages_to_free = NUM_PAGES_TO_ALLOC;
476
477                         freed_pages = 0;
478
479                         /* free all so restart the processing */
480                         if (nr_free)
481                                 goto restart;
482
483                         /* Not allowed to fall through or break because
484                          * following context is inside spinlock while we are
485                          * outside here.
486                          */
487                         goto out;
488
489                 }
490         }
491
492         /* remove range of pages from the pool */
493         if (freed_pages) {
494                 ttm_pool_update_free_locked(pool, freed_pages);
495                 nr_free -= freed_pages;
496         }
497
498         spin_unlock_irqrestore(&pool->lock, irq_flags);
499
500         if (freed_pages)
501                 ttm_dma_pages_put(pool, &d_pages, pages_to_free, freed_pages);
502 out:
503         kfree(pages_to_free);
504         return nr_free;
505 }
506
507 static void ttm_dma_free_pool(struct device *dev, enum pool_type type)
508 {
509         struct device_pools *p;
510         struct dma_pool *pool;
511
512         if (!dev)
513                 return;
514
515         mutex_lock(&_manager->lock);
516         list_for_each_entry_reverse(p, &_manager->pools, pools) {
517                 if (p->dev != dev)
518                         continue;
519                 pool = p->pool;
520                 if (pool->type != type)
521                         continue;
522
523                 list_del(&p->pools);
524                 kfree(p);
525                 _manager->npools--;
526                 break;
527         }
528         list_for_each_entry_reverse(pool, &dev->dma_pools, pools) {
529                 if (pool->type != type)
530                         continue;
531                 /* Takes a spinlock.. */
532                 ttm_dma_page_pool_free(pool, FREE_ALL_PAGES);
533                 WARN_ON(((pool->npages_in_use + pool->npages_free) != 0));
534                 /* This code path is called after _all_ references to the
535                  * struct device has been dropped - so nobody should be
536                  * touching it. In case somebody is trying to _add_ we are
537                  * guarded by the mutex. */
538                 list_del(&pool->pools);
539                 kfree(pool);
540                 break;
541         }
542         mutex_unlock(&_manager->lock);
543 }
544
545 /*
546  * On free-ing of the 'struct device' this deconstructor is run.
547  * Albeit the pool might have already been freed earlier.
548  */
549 static void ttm_dma_pool_release(struct device *dev, void *res)
550 {
551         struct dma_pool *pool = *(struct dma_pool **)res;
552
553         if (pool)
554                 ttm_dma_free_pool(dev, pool->type);
555 }
556
557 static int ttm_dma_pool_match(struct device *dev, void *res, void *match_data)
558 {
559         return *(struct dma_pool **)res == match_data;
560 }
561
562 static struct dma_pool *ttm_dma_pool_init(struct device *dev, gfp_t flags,
563                                           enum pool_type type)
564 {
565         char *n[] = {"wc", "uc", "cached", " dma32", "unknown",};
566         enum pool_type t[] = {IS_WC, IS_UC, IS_CACHED, IS_DMA32, IS_UNDEFINED};
567         struct device_pools *sec_pool = NULL;
568         struct dma_pool *pool = NULL, **ptr;
569         unsigned i;
570         int ret = -ENODEV;
571         char *p;
572
573         if (!dev)
574                 return NULL;
575
576         ptr = devres_alloc(ttm_dma_pool_release, sizeof(*ptr), GFP_KERNEL);
577         if (!ptr)
578                 return NULL;
579
580         ret = -ENOMEM;
581
582         pool = kmalloc_node(sizeof(struct dma_pool), GFP_KERNEL,
583                             dev_to_node(dev));
584         if (!pool)
585                 goto err_mem;
586
587         sec_pool = kmalloc_node(sizeof(struct device_pools), GFP_KERNEL,
588                                 dev_to_node(dev));
589         if (!sec_pool)
590                 goto err_mem;
591
592         INIT_LIST_HEAD(&sec_pool->pools);
593         sec_pool->dev = dev;
594         sec_pool->pool =  pool;
595
596         INIT_LIST_HEAD(&pool->free_list);
597         INIT_LIST_HEAD(&pool->inuse_list);
598         INIT_LIST_HEAD(&pool->pools);
599         spin_lock_init(&pool->lock);
600         pool->dev = dev;
601         pool->npages_free = pool->npages_in_use = 0;
602         pool->nfrees = 0;
603         pool->gfp_flags = flags;
604         pool->size = PAGE_SIZE;
605         pool->type = type;
606         pool->nrefills = 0;
607         p = pool->name;
608         for (i = 0; i < 5; i++) {
609                 if (type & t[i]) {
610                         p += snprintf(p, sizeof(pool->name) - (p - pool->name),
611                                       "%s", n[i]);
612                 }
613         }
614         *p = 0;
615         /* We copy the name for pr_ calls b/c when dma_pool_destroy is called
616          * - the kobj->name has already been deallocated.*/
617         snprintf(pool->dev_name, sizeof(pool->dev_name), "%s %s",
618                  dev_driver_string(dev), dev_name(dev));
619         mutex_lock(&_manager->lock);
620         /* You can get the dma_pool from either the global: */
621         list_add(&sec_pool->pools, &_manager->pools);
622         _manager->npools++;
623         /* or from 'struct device': */
624         list_add(&pool->pools, &dev->dma_pools);
625         mutex_unlock(&_manager->lock);
626
627         *ptr = pool;
628         devres_add(dev, ptr);
629
630         return pool;
631 err_mem:
632         devres_free(ptr);
633         kfree(sec_pool);
634         kfree(pool);
635         return ERR_PTR(ret);
636 }
637
638 static struct dma_pool *ttm_dma_find_pool(struct device *dev,
639                                           enum pool_type type)
640 {
641         struct dma_pool *pool, *tmp, *found = NULL;
642
643         if (type == IS_UNDEFINED)
644                 return found;
645
646         /* NB: We iterate on the 'struct dev' which has no spinlock, but
647          * it does have a kref which we have taken. The kref is taken during
648          * graphic driver loading - in the drm_pci_init it calls either
649          * pci_dev_get or pci_register_driver which both end up taking a kref
650          * on 'struct device'.
651          *
652          * On teardown, the graphic drivers end up quiescing the TTM (put_pages)
653          * and calls the dev_res deconstructors: ttm_dma_pool_release. The nice
654          * thing is at that point of time there are no pages associated with the
655          * driver so this function will not be called.
656          */
657         list_for_each_entry_safe(pool, tmp, &dev->dma_pools, pools) {
658                 if (pool->type != type)
659                         continue;
660                 found = pool;
661                 break;
662         }
663         return found;
664 }
665
666 /*
667  * Free pages the pages that failed to change the caching state. If there
668  * are pages that have changed their caching state already put them to the
669  * pool.
670  */
671 static void ttm_dma_handle_caching_state_failure(struct dma_pool *pool,
672                                                  struct list_head *d_pages,
673                                                  struct page **failed_pages,
674                                                  unsigned cpages)
675 {
676         struct dma_page *d_page, *tmp;
677         struct page *p;
678         unsigned i = 0;
679
680         p = failed_pages[0];
681         if (!p)
682                 return;
683         /* Find the failed page. */
684         list_for_each_entry_safe(d_page, tmp, d_pages, page_list) {
685                 if (d_page->p != p)
686                         continue;
687                 /* .. and then progress over the full list. */
688                 list_del(&d_page->page_list);
689                 __ttm_dma_free_page(pool, d_page);
690                 if (++i < cpages)
691                         p = failed_pages[i];
692                 else
693                         break;
694         }
695
696 }
697
698 /*
699  * Allocate 'count' pages, and put 'need' number of them on the
700  * 'pages' and as well on the 'dma_address' starting at 'dma_offset' offset.
701  * The full list of pages should also be on 'd_pages'.
702  * We return zero for success, and negative numbers as errors.
703  */
704 static int ttm_dma_pool_alloc_new_pages(struct dma_pool *pool,
705                                         struct list_head *d_pages,
706                                         unsigned count)
707 {
708         struct page **caching_array;
709         struct dma_page *dma_p;
710         struct page *p;
711         int r = 0;
712         unsigned i, cpages;
713         unsigned max_cpages = min(count,
714                         (unsigned)(PAGE_SIZE/sizeof(struct page *)));
715
716         /* allocate array for page caching change */
717         caching_array = kmalloc(max_cpages*sizeof(struct page *), GFP_KERNEL);
718
719         if (!caching_array) {
720                 pr_err("%s: Unable to allocate table for new pages\n",
721                        pool->dev_name);
722                 return -ENOMEM;
723         }
724
725         if (count > 1) {
726                 pr_debug("%s: (%s:%d) Getting %d pages\n",
727                          pool->dev_name, pool->name, current->pid, count);
728         }
729
730         for (i = 0, cpages = 0; i < count; ++i) {
731                 dma_p = __ttm_dma_alloc_page(pool);
732                 if (!dma_p) {
733                         pr_err("%s: Unable to get page %u\n",
734                                pool->dev_name, i);
735
736                         /* store already allocated pages in the pool after
737                          * setting the caching state */
738                         if (cpages) {
739                                 r = ttm_set_pages_caching(pool, caching_array,
740                                                           cpages);
741                                 if (r)
742                                         ttm_dma_handle_caching_state_failure(
743                                                 pool, d_pages, caching_array,
744                                                 cpages);
745                         }
746                         r = -ENOMEM;
747                         goto out;
748                 }
749                 p = dma_p->p;
750 #ifdef CONFIG_HIGHMEM
751                 /* gfp flags of highmem page should never be dma32 so we
752                  * we should be fine in such case
753                  */
754                 if (!PageHighMem(p))
755 #endif
756                 {
757                         caching_array[cpages++] = p;
758                         if (cpages == max_cpages) {
759                                 /* Note: Cannot hold the spinlock */
760                                 r = ttm_set_pages_caching(pool, caching_array,
761                                                  cpages);
762                                 if (r) {
763                                         ttm_dma_handle_caching_state_failure(
764                                                 pool, d_pages, caching_array,
765                                                 cpages);
766                                         goto out;
767                                 }
768                                 cpages = 0;
769                         }
770                 }
771                 list_add(&dma_p->page_list, d_pages);
772         }
773
774         if (cpages) {
775                 r = ttm_set_pages_caching(pool, caching_array, cpages);
776                 if (r)
777                         ttm_dma_handle_caching_state_failure(pool, d_pages,
778                                         caching_array, cpages);
779         }
780 out:
781         kfree(caching_array);
782         return r;
783 }
784
785 /*
786  * @return count of pages still required to fulfill the request.
787  */
788 static int ttm_dma_page_pool_fill_locked(struct dma_pool *pool,
789                                          unsigned long *irq_flags)
790 {
791         unsigned count = _manager->options.small;
792         int r = pool->npages_free;
793
794         if (count > pool->npages_free) {
795                 struct list_head d_pages;
796
797                 INIT_LIST_HEAD(&d_pages);
798
799                 spin_unlock_irqrestore(&pool->lock, *irq_flags);
800
801                 /* Returns how many more are neccessary to fulfill the
802                  * request. */
803                 r = ttm_dma_pool_alloc_new_pages(pool, &d_pages, count);
804
805                 spin_lock_irqsave(&pool->lock, *irq_flags);
806                 if (!r) {
807                         /* Add the fresh to the end.. */
808                         list_splice(&d_pages, &pool->free_list);
809                         ++pool->nrefills;
810                         pool->npages_free += count;
811                         r = count;
812                 } else {
813                         struct dma_page *d_page;
814                         unsigned cpages = 0;
815
816                         pr_err("%s: Failed to fill %s pool (r:%d)!\n",
817                                pool->dev_name, pool->name, r);
818
819                         list_for_each_entry(d_page, &d_pages, page_list) {
820                                 cpages++;
821                         }
822                         list_splice_tail(&d_pages, &pool->free_list);
823                         pool->npages_free += cpages;
824                         r = cpages;
825                 }
826         }
827         return r;
828 }
829
830 /*
831  * @return count of pages still required to fulfill the request.
832  * The populate list is actually a stack (not that is matters as TTM
833  * allocates one page at a time.
834  */
835 static int ttm_dma_pool_get_pages(struct dma_pool *pool,
836                                   struct ttm_dma_tt *ttm_dma,
837                                   unsigned index)
838 {
839         struct dma_page *d_page;
840         struct ttm_tt *ttm = &ttm_dma->ttm;
841         unsigned long irq_flags;
842         int count, r = -ENOMEM;
843
844         spin_lock_irqsave(&pool->lock, irq_flags);
845         count = ttm_dma_page_pool_fill_locked(pool, &irq_flags);
846         if (count) {
847                 d_page = list_first_entry(&pool->free_list, struct dma_page, page_list);
848                 ttm->pages[index] = d_page->p;
849                 ttm_dma->dma_address[index] = d_page->dma;
850                 list_move_tail(&d_page->page_list, &ttm_dma->pages_list);
851                 r = 0;
852                 pool->npages_in_use += 1;
853                 pool->npages_free -= 1;
854         }
855         spin_unlock_irqrestore(&pool->lock, irq_flags);
856         return r;
857 }
858
859 /*
860  * On success pages list will hold count number of correctly
861  * cached pages. On failure will hold the negative return value (-ENOMEM, etc).
862  */
863 int ttm_dma_populate(struct ttm_dma_tt *ttm_dma, struct device *dev)
864 {
865         struct ttm_tt *ttm = &ttm_dma->ttm;
866         struct ttm_mem_global *mem_glob = ttm->glob->mem_glob;
867         struct dma_pool *pool;
868         enum pool_type type;
869         unsigned i;
870         gfp_t gfp_flags;
871         int ret;
872
873         if (ttm->state != tt_unpopulated)
874                 return 0;
875
876         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
877         if (ttm->page_flags & TTM_PAGE_FLAG_DMA32)
878                 gfp_flags = GFP_USER | GFP_DMA32;
879         else
880                 gfp_flags = GFP_HIGHUSER;
881         if (ttm->page_flags & TTM_PAGE_FLAG_ZERO_ALLOC)
882                 gfp_flags |= __GFP_ZERO;
883
884         pool = ttm_dma_find_pool(dev, type);
885         if (!pool) {
886                 pool = ttm_dma_pool_init(dev, gfp_flags, type);
887                 if (IS_ERR_OR_NULL(pool)) {
888                         return -ENOMEM;
889                 }
890         }
891
892         INIT_LIST_HEAD(&ttm_dma->pages_list);
893         for (i = 0; i < ttm->num_pages; ++i) {
894                 ret = ttm_dma_pool_get_pages(pool, ttm_dma, i);
895                 if (ret != 0) {
896                         ttm_dma_unpopulate(ttm_dma, dev);
897                         return -ENOMEM;
898                 }
899
900                 ret = ttm_mem_global_alloc_page(mem_glob, ttm->pages[i],
901                                                 false, false);
902                 if (unlikely(ret != 0)) {
903                         ttm_dma_unpopulate(ttm_dma, dev);
904                         return -ENOMEM;
905                 }
906         }
907
908         if (unlikely(ttm->page_flags & TTM_PAGE_FLAG_SWAPPED)) {
909                 ret = ttm_tt_swapin(ttm);
910                 if (unlikely(ret != 0)) {
911                         ttm_dma_unpopulate(ttm_dma, dev);
912                         return ret;
913                 }
914         }
915
916         ttm->state = tt_unbound;
917         return 0;
918 }
919 EXPORT_SYMBOL_GPL(ttm_dma_populate);
920
921 /* Get good estimation how many pages are free in pools */
922 static int ttm_dma_pool_get_num_unused_pages(void)
923 {
924         struct device_pools *p;
925         unsigned total = 0;
926
927         mutex_lock(&_manager->lock);
928         list_for_each_entry(p, &_manager->pools, pools)
929                 total += p->pool->npages_free;
930         mutex_unlock(&_manager->lock);
931         return total;
932 }
933
934 /* Put all pages in pages list to correct pool to wait for reuse */
935 void ttm_dma_unpopulate(struct ttm_dma_tt *ttm_dma, struct device *dev)
936 {
937         struct ttm_tt *ttm = &ttm_dma->ttm;
938         struct dma_pool *pool;
939         struct dma_page *d_page, *next;
940         enum pool_type type;
941         bool is_cached = false;
942         unsigned count = 0, i, npages = 0;
943         unsigned long irq_flags;
944
945         type = ttm_to_type(ttm->page_flags, ttm->caching_state);
946         pool = ttm_dma_find_pool(dev, type);
947         if (!pool)
948                 return;
949
950         is_cached = (ttm_dma_find_pool(pool->dev,
951                      ttm_to_type(ttm->page_flags, tt_cached)) == pool);
952
953         /* make sure pages array match list and count number of pages */
954         list_for_each_entry(d_page, &ttm_dma->pages_list, page_list) {
955                 ttm->pages[count] = d_page->p;
956                 count++;
957         }
958
959         spin_lock_irqsave(&pool->lock, irq_flags);
960         pool->npages_in_use -= count;
961         if (is_cached) {
962                 pool->nfrees += count;
963         } else {
964                 pool->npages_free += count;
965                 list_splice(&ttm_dma->pages_list, &pool->free_list);
966                 npages = count;
967                 if (pool->npages_free > _manager->options.max_size) {
968                         npages = pool->npages_free - _manager->options.max_size;
969                         /* free at least NUM_PAGES_TO_ALLOC number of pages
970                          * to reduce calls to set_memory_wb */
971                         if (npages < NUM_PAGES_TO_ALLOC)
972                                 npages = NUM_PAGES_TO_ALLOC;
973                 }
974         }
975         spin_unlock_irqrestore(&pool->lock, irq_flags);
976
977         if (is_cached) {
978                 list_for_each_entry_safe(d_page, next, &ttm_dma->pages_list, page_list) {
979                         ttm_mem_global_free_page(ttm->glob->mem_glob,
980                                                  d_page->p);
981                         ttm_dma_page_put(pool, d_page);
982                 }
983         } else {
984                 for (i = 0; i < count; i++) {
985                         ttm_mem_global_free_page(ttm->glob->mem_glob,
986                                                  ttm->pages[i]);
987                 }
988         }
989
990         INIT_LIST_HEAD(&ttm_dma->pages_list);
991         for (i = 0; i < ttm->num_pages; i++) {
992                 ttm->pages[i] = NULL;
993                 ttm_dma->dma_address[i] = 0;
994         }
995
996         /* shrink pool if necessary (only on !is_cached pools)*/
997         if (npages)
998                 ttm_dma_page_pool_free(pool, npages);
999         ttm->state = tt_unpopulated;
1000 }
1001 EXPORT_SYMBOL_GPL(ttm_dma_unpopulate);
1002
1003 /**
1004  * Callback for mm to request pool to reduce number of page held.
1005  */
1006 static int ttm_dma_pool_mm_shrink(struct shrinker *shrink,
1007                                   struct shrink_control *sc)
1008 {
1009         static atomic_t start_pool = ATOMIC_INIT(0);
1010         unsigned idx = 0;
1011         unsigned pool_offset = atomic_add_return(1, &start_pool);
1012         unsigned shrink_pages = sc->nr_to_scan;
1013         struct device_pools *p;
1014
1015         if (list_empty(&_manager->pools))
1016                 return 0;
1017
1018         mutex_lock(&_manager->lock);
1019         pool_offset = pool_offset % _manager->npools;
1020         list_for_each_entry(p, &_manager->pools, pools) {
1021                 unsigned nr_free;
1022
1023                 if (!p->dev)
1024                         continue;
1025                 if (shrink_pages == 0)
1026                         break;
1027                 /* Do it in round-robin fashion. */
1028                 if (++idx < pool_offset)
1029                         continue;
1030                 nr_free = shrink_pages;
1031                 shrink_pages = ttm_dma_page_pool_free(p->pool, nr_free);
1032                 pr_debug("%s: (%s:%d) Asked to shrink %d, have %d more to go\n",
1033                          p->pool->dev_name, p->pool->name, current->pid,
1034                          nr_free, shrink_pages);
1035         }
1036         mutex_unlock(&_manager->lock);
1037         /* return estimated number of unused pages in pool */
1038         return ttm_dma_pool_get_num_unused_pages();
1039 }
1040
1041 static void ttm_dma_pool_mm_shrink_init(struct ttm_pool_manager *manager)
1042 {
1043         manager->mm_shrink.shrink = &ttm_dma_pool_mm_shrink;
1044         manager->mm_shrink.seeks = 1;
1045         register_shrinker(&manager->mm_shrink);
1046 }
1047
1048 static void ttm_dma_pool_mm_shrink_fini(struct ttm_pool_manager *manager)
1049 {
1050         unregister_shrinker(&manager->mm_shrink);
1051 }
1052
1053 int ttm_dma_page_alloc_init(struct ttm_mem_global *glob, unsigned max_pages)
1054 {
1055         int ret = -ENOMEM;
1056
1057         WARN_ON(_manager);
1058
1059         pr_info("Initializing DMA pool allocator\n");
1060
1061         _manager = kzalloc(sizeof(*_manager), GFP_KERNEL);
1062         if (!_manager)
1063                 goto err_manager;
1064
1065         mutex_init(&_manager->lock);
1066         INIT_LIST_HEAD(&_manager->pools);
1067
1068         _manager->options.max_size = max_pages;
1069         _manager->options.small = SMALL_ALLOCATION;
1070         _manager->options.alloc_size = NUM_PAGES_TO_ALLOC;
1071
1072         /* This takes care of auto-freeing the _manager */
1073         ret = kobject_init_and_add(&_manager->kobj, &ttm_pool_kobj_type,
1074                                    &glob->kobj, "dma_pool");
1075         if (unlikely(ret != 0)) {
1076                 kobject_put(&_manager->kobj);
1077                 goto err;
1078         }
1079         ttm_dma_pool_mm_shrink_init(_manager);
1080         return 0;
1081 err_manager:
1082         kfree(_manager);
1083         _manager = NULL;
1084 err:
1085         return ret;
1086 }
1087
1088 void ttm_dma_page_alloc_fini(void)
1089 {
1090         struct device_pools *p, *t;
1091
1092         pr_info("Finalizing DMA pool allocator\n");
1093         ttm_dma_pool_mm_shrink_fini(_manager);
1094
1095         list_for_each_entry_safe_reverse(p, t, &_manager->pools, pools) {
1096                 dev_dbg(p->dev, "(%s:%d) Freeing.\n", p->pool->name,
1097                         current->pid);
1098                 WARN_ON(devres_destroy(p->dev, ttm_dma_pool_release,
1099                         ttm_dma_pool_match, p->pool));
1100                 ttm_dma_free_pool(p->dev, p->pool->type);
1101         }
1102         kobject_put(&_manager->kobj);
1103         _manager = NULL;
1104 }
1105
1106 int ttm_dma_page_alloc_debugfs(struct seq_file *m, void *data)
1107 {
1108         struct device_pools *p;
1109         struct dma_pool *pool = NULL;
1110         char *h[] = {"pool", "refills", "pages freed", "inuse", "available",
1111                      "name", "virt", "busaddr"};
1112
1113         if (!_manager) {
1114                 seq_printf(m, "No pool allocator running.\n");
1115                 return 0;
1116         }
1117         seq_printf(m, "%13s %12s %13s %8s %8s %8s\n",
1118                    h[0], h[1], h[2], h[3], h[4], h[5]);
1119         mutex_lock(&_manager->lock);
1120         list_for_each_entry(p, &_manager->pools, pools) {
1121                 struct device *dev = p->dev;
1122                 if (!dev)
1123                         continue;
1124                 pool = p->pool;
1125                 seq_printf(m, "%13s %12ld %13ld %8d %8d %8s\n",
1126                                 pool->name, pool->nrefills,
1127                                 pool->nfrees, pool->npages_in_use,
1128                                 pool->npages_free,
1129                                 pool->dev_name);
1130         }
1131         mutex_unlock(&_manager->lock);
1132         return 0;
1133 }
1134 EXPORT_SYMBOL_GPL(ttm_dma_page_alloc_debugfs);