Linux-libre 4.9.88-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / intel_pm.c
1 /*
2  * Copyright © 2012 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eugeni Dodonov <eugeni.dodonov@intel.com>
25  *
26  */
27
28 #include <linux/cpufreq.h>
29 #include <drm/drm_plane_helper.h>
30 #include "i915_drv.h"
31 #include "intel_drv.h"
32 #include "../../../platform/x86/intel_ips.h"
33 #include <linux/module.h>
34
35 /**
36  * DOC: RC6
37  *
38  * RC6 is a special power stage which allows the GPU to enter an very
39  * low-voltage mode when idle, using down to 0V while at this stage.  This
40  * stage is entered automatically when the GPU is idle when RC6 support is
41  * enabled, and as soon as new workload arises GPU wakes up automatically as well.
42  *
43  * There are different RC6 modes available in Intel GPU, which differentiate
44  * among each other with the latency required to enter and leave RC6 and
45  * voltage consumed by the GPU in different states.
46  *
47  * The combination of the following flags define which states GPU is allowed
48  * to enter, while RC6 is the normal RC6 state, RC6p is the deep RC6, and
49  * RC6pp is deepest RC6. Their support by hardware varies according to the
50  * GPU, BIOS, chipset and platform. RC6 is usually the safest one and the one
51  * which brings the most power savings; deeper states save more power, but
52  * require higher latency to switch to and wake up.
53  */
54 #define INTEL_RC6_ENABLE                        (1<<0)
55 #define INTEL_RC6p_ENABLE                       (1<<1)
56 #define INTEL_RC6pp_ENABLE                      (1<<2)
57
58 static void gen9_init_clock_gating(struct drm_device *dev)
59 {
60         struct drm_i915_private *dev_priv = dev->dev_private;
61
62         /* See Bspec note for PSR2_CTL bit 31, Wa#828:skl,bxt,kbl */
63         I915_WRITE(CHICKEN_PAR1_1,
64                    I915_READ(CHICKEN_PAR1_1) | SKL_EDP_PSR_FIX_RDWRAP);
65
66         I915_WRITE(GEN8_CONFIG0,
67                    I915_READ(GEN8_CONFIG0) | GEN9_DEFAULT_FIXES);
68
69         /* WaEnableChickenDCPR:skl,bxt,kbl */
70         I915_WRITE(GEN8_CHICKEN_DCPR_1,
71                    I915_READ(GEN8_CHICKEN_DCPR_1) | MASK_WAKEMEM);
72
73         /* WaFbcTurnOffFbcWatermark:skl,bxt,kbl */
74         /* WaFbcWakeMemOn:skl,bxt,kbl */
75         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
76                    DISP_FBC_WM_DIS |
77                    DISP_FBC_MEMORY_WAKE);
78
79         /* WaFbcHighMemBwCorruptionAvoidance:skl,bxt,kbl */
80         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
81                    ILK_DPFC_DISABLE_DUMMY0);
82 }
83
84 static void bxt_init_clock_gating(struct drm_device *dev)
85 {
86         struct drm_i915_private *dev_priv = to_i915(dev);
87
88         gen9_init_clock_gating(dev);
89
90         /* WaDisableSDEUnitClockGating:bxt */
91         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
92                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
93
94         /*
95          * FIXME:
96          * GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ applies on 3x6 GT SKUs only.
97          */
98         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
99                    GEN8_HDCUNIT_CLOCK_GATE_DISABLE_HDCREQ);
100
101         /*
102          * Wa: Backlight PWM may stop in the asserted state, causing backlight
103          * to stay fully on.
104          */
105         if (IS_BXT_REVID(dev_priv, BXT_REVID_B0, REVID_FOREVER))
106                 I915_WRITE(GEN9_CLKGATE_DIS_0, I915_READ(GEN9_CLKGATE_DIS_0) |
107                            PWM1_GATING_DIS | PWM2_GATING_DIS);
108 }
109
110 static void i915_pineview_get_mem_freq(struct drm_device *dev)
111 {
112         struct drm_i915_private *dev_priv = to_i915(dev);
113         u32 tmp;
114
115         tmp = I915_READ(CLKCFG);
116
117         switch (tmp & CLKCFG_FSB_MASK) {
118         case CLKCFG_FSB_533:
119                 dev_priv->fsb_freq = 533; /* 133*4 */
120                 break;
121         case CLKCFG_FSB_800:
122                 dev_priv->fsb_freq = 800; /* 200*4 */
123                 break;
124         case CLKCFG_FSB_667:
125                 dev_priv->fsb_freq =  667; /* 167*4 */
126                 break;
127         case CLKCFG_FSB_400:
128                 dev_priv->fsb_freq = 400; /* 100*4 */
129                 break;
130         }
131
132         switch (tmp & CLKCFG_MEM_MASK) {
133         case CLKCFG_MEM_533:
134                 dev_priv->mem_freq = 533;
135                 break;
136         case CLKCFG_MEM_667:
137                 dev_priv->mem_freq = 667;
138                 break;
139         case CLKCFG_MEM_800:
140                 dev_priv->mem_freq = 800;
141                 break;
142         }
143
144         /* detect pineview DDR3 setting */
145         tmp = I915_READ(CSHRDDR3CTL);
146         dev_priv->is_ddr3 = (tmp & CSHRDDR3CTL_DDR3) ? 1 : 0;
147 }
148
149 static void i915_ironlake_get_mem_freq(struct drm_device *dev)
150 {
151         struct drm_i915_private *dev_priv = to_i915(dev);
152         u16 ddrpll, csipll;
153
154         ddrpll = I915_READ16(DDRMPLL1);
155         csipll = I915_READ16(CSIPLL0);
156
157         switch (ddrpll & 0xff) {
158         case 0xc:
159                 dev_priv->mem_freq = 800;
160                 break;
161         case 0x10:
162                 dev_priv->mem_freq = 1066;
163                 break;
164         case 0x14:
165                 dev_priv->mem_freq = 1333;
166                 break;
167         case 0x18:
168                 dev_priv->mem_freq = 1600;
169                 break;
170         default:
171                 DRM_DEBUG_DRIVER("unknown memory frequency 0x%02x\n",
172                                  ddrpll & 0xff);
173                 dev_priv->mem_freq = 0;
174                 break;
175         }
176
177         dev_priv->ips.r_t = dev_priv->mem_freq;
178
179         switch (csipll & 0x3ff) {
180         case 0x00c:
181                 dev_priv->fsb_freq = 3200;
182                 break;
183         case 0x00e:
184                 dev_priv->fsb_freq = 3733;
185                 break;
186         case 0x010:
187                 dev_priv->fsb_freq = 4266;
188                 break;
189         case 0x012:
190                 dev_priv->fsb_freq = 4800;
191                 break;
192         case 0x014:
193                 dev_priv->fsb_freq = 5333;
194                 break;
195         case 0x016:
196                 dev_priv->fsb_freq = 5866;
197                 break;
198         case 0x018:
199                 dev_priv->fsb_freq = 6400;
200                 break;
201         default:
202                 DRM_DEBUG_DRIVER("unknown fsb frequency 0x%04x\n",
203                                  csipll & 0x3ff);
204                 dev_priv->fsb_freq = 0;
205                 break;
206         }
207
208         if (dev_priv->fsb_freq == 3200) {
209                 dev_priv->ips.c_m = 0;
210         } else if (dev_priv->fsb_freq > 3200 && dev_priv->fsb_freq <= 4800) {
211                 dev_priv->ips.c_m = 1;
212         } else {
213                 dev_priv->ips.c_m = 2;
214         }
215 }
216
217 static const struct cxsr_latency cxsr_latency_table[] = {
218         {1, 0, 800, 400, 3382, 33382, 3983, 33983},    /* DDR2-400 SC */
219         {1, 0, 800, 667, 3354, 33354, 3807, 33807},    /* DDR2-667 SC */
220         {1, 0, 800, 800, 3347, 33347, 3763, 33763},    /* DDR2-800 SC */
221         {1, 1, 800, 667, 6420, 36420, 6873, 36873},    /* DDR3-667 SC */
222         {1, 1, 800, 800, 5902, 35902, 6318, 36318},    /* DDR3-800 SC */
223
224         {1, 0, 667, 400, 3400, 33400, 4021, 34021},    /* DDR2-400 SC */
225         {1, 0, 667, 667, 3372, 33372, 3845, 33845},    /* DDR2-667 SC */
226         {1, 0, 667, 800, 3386, 33386, 3822, 33822},    /* DDR2-800 SC */
227         {1, 1, 667, 667, 6438, 36438, 6911, 36911},    /* DDR3-667 SC */
228         {1, 1, 667, 800, 5941, 35941, 6377, 36377},    /* DDR3-800 SC */
229
230         {1, 0, 400, 400, 3472, 33472, 4173, 34173},    /* DDR2-400 SC */
231         {1, 0, 400, 667, 3443, 33443, 3996, 33996},    /* DDR2-667 SC */
232         {1, 0, 400, 800, 3430, 33430, 3946, 33946},    /* DDR2-800 SC */
233         {1, 1, 400, 667, 6509, 36509, 7062, 37062},    /* DDR3-667 SC */
234         {1, 1, 400, 800, 5985, 35985, 6501, 36501},    /* DDR3-800 SC */
235
236         {0, 0, 800, 400, 3438, 33438, 4065, 34065},    /* DDR2-400 SC */
237         {0, 0, 800, 667, 3410, 33410, 3889, 33889},    /* DDR2-667 SC */
238         {0, 0, 800, 800, 3403, 33403, 3845, 33845},    /* DDR2-800 SC */
239         {0, 1, 800, 667, 6476, 36476, 6955, 36955},    /* DDR3-667 SC */
240         {0, 1, 800, 800, 5958, 35958, 6400, 36400},    /* DDR3-800 SC */
241
242         {0, 0, 667, 400, 3456, 33456, 4103, 34106},    /* DDR2-400 SC */
243         {0, 0, 667, 667, 3428, 33428, 3927, 33927},    /* DDR2-667 SC */
244         {0, 0, 667, 800, 3443, 33443, 3905, 33905},    /* DDR2-800 SC */
245         {0, 1, 667, 667, 6494, 36494, 6993, 36993},    /* DDR3-667 SC */
246         {0, 1, 667, 800, 5998, 35998, 6460, 36460},    /* DDR3-800 SC */
247
248         {0, 0, 400, 400, 3528, 33528, 4255, 34255},    /* DDR2-400 SC */
249         {0, 0, 400, 667, 3500, 33500, 4079, 34079},    /* DDR2-667 SC */
250         {0, 0, 400, 800, 3487, 33487, 4029, 34029},    /* DDR2-800 SC */
251         {0, 1, 400, 667, 6566, 36566, 7145, 37145},    /* DDR3-667 SC */
252         {0, 1, 400, 800, 6042, 36042, 6584, 36584},    /* DDR3-800 SC */
253 };
254
255 static const struct cxsr_latency *intel_get_cxsr_latency(int is_desktop,
256                                                          int is_ddr3,
257                                                          int fsb,
258                                                          int mem)
259 {
260         const struct cxsr_latency *latency;
261         int i;
262
263         if (fsb == 0 || mem == 0)
264                 return NULL;
265
266         for (i = 0; i < ARRAY_SIZE(cxsr_latency_table); i++) {
267                 latency = &cxsr_latency_table[i];
268                 if (is_desktop == latency->is_desktop &&
269                     is_ddr3 == latency->is_ddr3 &&
270                     fsb == latency->fsb_freq && mem == latency->mem_freq)
271                         return latency;
272         }
273
274         DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
275
276         return NULL;
277 }
278
279 static void chv_set_memory_dvfs(struct drm_i915_private *dev_priv, bool enable)
280 {
281         u32 val;
282
283         mutex_lock(&dev_priv->rps.hw_lock);
284
285         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
286         if (enable)
287                 val &= ~FORCE_DDR_HIGH_FREQ;
288         else
289                 val |= FORCE_DDR_HIGH_FREQ;
290         val &= ~FORCE_DDR_LOW_FREQ;
291         val |= FORCE_DDR_FREQ_REQ_ACK;
292         vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
293
294         if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
295                       FORCE_DDR_FREQ_REQ_ACK) == 0, 3))
296                 DRM_ERROR("timed out waiting for Punit DDR DVFS request\n");
297
298         mutex_unlock(&dev_priv->rps.hw_lock);
299 }
300
301 static void chv_set_memory_pm5(struct drm_i915_private *dev_priv, bool enable)
302 {
303         u32 val;
304
305         mutex_lock(&dev_priv->rps.hw_lock);
306
307         val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
308         if (enable)
309                 val |= DSP_MAXFIFO_PM5_ENABLE;
310         else
311                 val &= ~DSP_MAXFIFO_PM5_ENABLE;
312         vlv_punit_write(dev_priv, PUNIT_REG_DSPFREQ, val);
313
314         mutex_unlock(&dev_priv->rps.hw_lock);
315 }
316
317 #define FW_WM(value, plane) \
318         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK)
319
320 void intel_set_memory_cxsr(struct drm_i915_private *dev_priv, bool enable)
321 {
322         struct drm_device *dev = &dev_priv->drm;
323         u32 val;
324
325         if (IS_VALLEYVIEW(dev) || IS_CHERRYVIEW(dev)) {
326                 I915_WRITE(FW_BLC_SELF_VLV, enable ? FW_CSPWRDWNEN : 0);
327                 POSTING_READ(FW_BLC_SELF_VLV);
328                 dev_priv->wm.vlv.cxsr = enable;
329         } else if (IS_G4X(dev) || IS_CRESTLINE(dev)) {
330                 I915_WRITE(FW_BLC_SELF, enable ? FW_BLC_SELF_EN : 0);
331                 POSTING_READ(FW_BLC_SELF);
332         } else if (IS_PINEVIEW(dev)) {
333                 val = I915_READ(DSPFW3) & ~PINEVIEW_SELF_REFRESH_EN;
334                 val |= enable ? PINEVIEW_SELF_REFRESH_EN : 0;
335                 I915_WRITE(DSPFW3, val);
336                 POSTING_READ(DSPFW3);
337         } else if (IS_I945G(dev) || IS_I945GM(dev)) {
338                 val = enable ? _MASKED_BIT_ENABLE(FW_BLC_SELF_EN) :
339                                _MASKED_BIT_DISABLE(FW_BLC_SELF_EN);
340                 I915_WRITE(FW_BLC_SELF, val);
341                 POSTING_READ(FW_BLC_SELF);
342         } else if (IS_I915GM(dev)) {
343                 /*
344                  * FIXME can't find a bit like this for 915G, and
345                  * and yet it does have the related watermark in
346                  * FW_BLC_SELF. What's going on?
347                  */
348                 val = enable ? _MASKED_BIT_ENABLE(INSTPM_SELF_EN) :
349                                _MASKED_BIT_DISABLE(INSTPM_SELF_EN);
350                 I915_WRITE(INSTPM, val);
351                 POSTING_READ(INSTPM);
352         } else {
353                 return;
354         }
355
356         DRM_DEBUG_KMS("memory self-refresh is %s\n",
357                       enable ? "enabled" : "disabled");
358 }
359
360
361 /*
362  * Latency for FIFO fetches is dependent on several factors:
363  *   - memory configuration (speed, channels)
364  *   - chipset
365  *   - current MCH state
366  * It can be fairly high in some situations, so here we assume a fairly
367  * pessimal value.  It's a tradeoff between extra memory fetches (if we
368  * set this value too high, the FIFO will fetch frequently to stay full)
369  * and power consumption (set it too low to save power and we might see
370  * FIFO underruns and display "flicker").
371  *
372  * A value of 5us seems to be a good balance; safe for very low end
373  * platforms but not overly aggressive on lower latency configs.
374  */
375 static const int pessimal_latency_ns = 5000;
376
377 #define VLV_FIFO_START(dsparb, dsparb2, lo_shift, hi_shift) \
378         ((((dsparb) >> (lo_shift)) & 0xff) | ((((dsparb2) >> (hi_shift)) & 0x1) << 8))
379
380 static int vlv_get_fifo_size(struct drm_device *dev,
381                               enum pipe pipe, int plane)
382 {
383         struct drm_i915_private *dev_priv = to_i915(dev);
384         int sprite0_start, sprite1_start, size;
385
386         switch (pipe) {
387                 uint32_t dsparb, dsparb2, dsparb3;
388         case PIPE_A:
389                 dsparb = I915_READ(DSPARB);
390                 dsparb2 = I915_READ(DSPARB2);
391                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 0, 0);
392                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 8, 4);
393                 break;
394         case PIPE_B:
395                 dsparb = I915_READ(DSPARB);
396                 dsparb2 = I915_READ(DSPARB2);
397                 sprite0_start = VLV_FIFO_START(dsparb, dsparb2, 16, 8);
398                 sprite1_start = VLV_FIFO_START(dsparb, dsparb2, 24, 12);
399                 break;
400         case PIPE_C:
401                 dsparb2 = I915_READ(DSPARB2);
402                 dsparb3 = I915_READ(DSPARB3);
403                 sprite0_start = VLV_FIFO_START(dsparb3, dsparb2, 0, 16);
404                 sprite1_start = VLV_FIFO_START(dsparb3, dsparb2, 8, 20);
405                 break;
406         default:
407                 return 0;
408         }
409
410         switch (plane) {
411         case 0:
412                 size = sprite0_start;
413                 break;
414         case 1:
415                 size = sprite1_start - sprite0_start;
416                 break;
417         case 2:
418                 size = 512 - 1 - sprite1_start;
419                 break;
420         default:
421                 return 0;
422         }
423
424         DRM_DEBUG_KMS("Pipe %c %s %c FIFO size: %d\n",
425                       pipe_name(pipe), plane == 0 ? "primary" : "sprite",
426                       plane == 0 ? plane_name(pipe) : sprite_name(pipe, plane - 1),
427                       size);
428
429         return size;
430 }
431
432 static int i9xx_get_fifo_size(struct drm_device *dev, int plane)
433 {
434         struct drm_i915_private *dev_priv = to_i915(dev);
435         uint32_t dsparb = I915_READ(DSPARB);
436         int size;
437
438         size = dsparb & 0x7f;
439         if (plane)
440                 size = ((dsparb >> DSPARB_CSTART_SHIFT) & 0x7f) - size;
441
442         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
443                       plane ? "B" : "A", size);
444
445         return size;
446 }
447
448 static int i830_get_fifo_size(struct drm_device *dev, int plane)
449 {
450         struct drm_i915_private *dev_priv = to_i915(dev);
451         uint32_t dsparb = I915_READ(DSPARB);
452         int size;
453
454         size = dsparb & 0x1ff;
455         if (plane)
456                 size = ((dsparb >> DSPARB_BEND_SHIFT) & 0x1ff) - size;
457         size >>= 1; /* Convert to cachelines */
458
459         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
460                       plane ? "B" : "A", size);
461
462         return size;
463 }
464
465 static int i845_get_fifo_size(struct drm_device *dev, int plane)
466 {
467         struct drm_i915_private *dev_priv = to_i915(dev);
468         uint32_t dsparb = I915_READ(DSPARB);
469         int size;
470
471         size = dsparb & 0x7f;
472         size >>= 2; /* Convert to cachelines */
473
474         DRM_DEBUG_KMS("FIFO size - (0x%08x) %s: %d\n", dsparb,
475                       plane ? "B" : "A",
476                       size);
477
478         return size;
479 }
480
481 /* Pineview has different values for various configs */
482 static const struct intel_watermark_params pineview_display_wm = {
483         .fifo_size = PINEVIEW_DISPLAY_FIFO,
484         .max_wm = PINEVIEW_MAX_WM,
485         .default_wm = PINEVIEW_DFT_WM,
486         .guard_size = PINEVIEW_GUARD_WM,
487         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
488 };
489 static const struct intel_watermark_params pineview_display_hplloff_wm = {
490         .fifo_size = PINEVIEW_DISPLAY_FIFO,
491         .max_wm = PINEVIEW_MAX_WM,
492         .default_wm = PINEVIEW_DFT_HPLLOFF_WM,
493         .guard_size = PINEVIEW_GUARD_WM,
494         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
495 };
496 static const struct intel_watermark_params pineview_cursor_wm = {
497         .fifo_size = PINEVIEW_CURSOR_FIFO,
498         .max_wm = PINEVIEW_CURSOR_MAX_WM,
499         .default_wm = PINEVIEW_CURSOR_DFT_WM,
500         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
501         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
502 };
503 static const struct intel_watermark_params pineview_cursor_hplloff_wm = {
504         .fifo_size = PINEVIEW_CURSOR_FIFO,
505         .max_wm = PINEVIEW_CURSOR_MAX_WM,
506         .default_wm = PINEVIEW_CURSOR_DFT_WM,
507         .guard_size = PINEVIEW_CURSOR_GUARD_WM,
508         .cacheline_size = PINEVIEW_FIFO_LINE_SIZE,
509 };
510 static const struct intel_watermark_params g4x_wm_info = {
511         .fifo_size = G4X_FIFO_SIZE,
512         .max_wm = G4X_MAX_WM,
513         .default_wm = G4X_MAX_WM,
514         .guard_size = 2,
515         .cacheline_size = G4X_FIFO_LINE_SIZE,
516 };
517 static const struct intel_watermark_params g4x_cursor_wm_info = {
518         .fifo_size = I965_CURSOR_FIFO,
519         .max_wm = I965_CURSOR_MAX_WM,
520         .default_wm = I965_CURSOR_DFT_WM,
521         .guard_size = 2,
522         .cacheline_size = G4X_FIFO_LINE_SIZE,
523 };
524 static const struct intel_watermark_params i965_cursor_wm_info = {
525         .fifo_size = I965_CURSOR_FIFO,
526         .max_wm = I965_CURSOR_MAX_WM,
527         .default_wm = I965_CURSOR_DFT_WM,
528         .guard_size = 2,
529         .cacheline_size = I915_FIFO_LINE_SIZE,
530 };
531 static const struct intel_watermark_params i945_wm_info = {
532         .fifo_size = I945_FIFO_SIZE,
533         .max_wm = I915_MAX_WM,
534         .default_wm = 1,
535         .guard_size = 2,
536         .cacheline_size = I915_FIFO_LINE_SIZE,
537 };
538 static const struct intel_watermark_params i915_wm_info = {
539         .fifo_size = I915_FIFO_SIZE,
540         .max_wm = I915_MAX_WM,
541         .default_wm = 1,
542         .guard_size = 2,
543         .cacheline_size = I915_FIFO_LINE_SIZE,
544 };
545 static const struct intel_watermark_params i830_a_wm_info = {
546         .fifo_size = I855GM_FIFO_SIZE,
547         .max_wm = I915_MAX_WM,
548         .default_wm = 1,
549         .guard_size = 2,
550         .cacheline_size = I830_FIFO_LINE_SIZE,
551 };
552 static const struct intel_watermark_params i830_bc_wm_info = {
553         .fifo_size = I855GM_FIFO_SIZE,
554         .max_wm = I915_MAX_WM/2,
555         .default_wm = 1,
556         .guard_size = 2,
557         .cacheline_size = I830_FIFO_LINE_SIZE,
558 };
559 static const struct intel_watermark_params i845_wm_info = {
560         .fifo_size = I830_FIFO_SIZE,
561         .max_wm = I915_MAX_WM,
562         .default_wm = 1,
563         .guard_size = 2,
564         .cacheline_size = I830_FIFO_LINE_SIZE,
565 };
566
567 /**
568  * intel_calculate_wm - calculate watermark level
569  * @clock_in_khz: pixel clock
570  * @wm: chip FIFO params
571  * @cpp: bytes per pixel
572  * @latency_ns: memory latency for the platform
573  *
574  * Calculate the watermark level (the level at which the display plane will
575  * start fetching from memory again).  Each chip has a different display
576  * FIFO size and allocation, so the caller needs to figure that out and pass
577  * in the correct intel_watermark_params structure.
578  *
579  * As the pixel clock runs, the FIFO will be drained at a rate that depends
580  * on the pixel size.  When it reaches the watermark level, it'll start
581  * fetching FIFO line sized based chunks from memory until the FIFO fills
582  * past the watermark point.  If the FIFO drains completely, a FIFO underrun
583  * will occur, and a display engine hang could result.
584  */
585 static unsigned long intel_calculate_wm(unsigned long clock_in_khz,
586                                         const struct intel_watermark_params *wm,
587                                         int fifo_size, int cpp,
588                                         unsigned long latency_ns)
589 {
590         long entries_required, wm_size;
591
592         /*
593          * Note: we need to make sure we don't overflow for various clock &
594          * latency values.
595          * clocks go from a few thousand to several hundred thousand.
596          * latency is usually a few thousand
597          */
598         entries_required = ((clock_in_khz / 1000) * cpp * latency_ns) /
599                 1000;
600         entries_required = DIV_ROUND_UP(entries_required, wm->cacheline_size);
601
602         DRM_DEBUG_KMS("FIFO entries required for mode: %ld\n", entries_required);
603
604         wm_size = fifo_size - (entries_required + wm->guard_size);
605
606         DRM_DEBUG_KMS("FIFO watermark level: %ld\n", wm_size);
607
608         /* Don't promote wm_size to unsigned... */
609         if (wm_size > (long)wm->max_wm)
610                 wm_size = wm->max_wm;
611         if (wm_size <= 0)
612                 wm_size = wm->default_wm;
613
614         /*
615          * Bspec seems to indicate that the value shouldn't be lower than
616          * 'burst size + 1'. Certainly 830 is quite unhappy with low values.
617          * Lets go for 8 which is the burst size since certain platforms
618          * already use a hardcoded 8 (which is what the spec says should be
619          * done).
620          */
621         if (wm_size <= 8)
622                 wm_size = 8;
623
624         return wm_size;
625 }
626
627 static struct drm_crtc *single_enabled_crtc(struct drm_device *dev)
628 {
629         struct drm_crtc *crtc, *enabled = NULL;
630
631         for_each_crtc(dev, crtc) {
632                 if (intel_crtc_active(crtc)) {
633                         if (enabled)
634                                 return NULL;
635                         enabled = crtc;
636                 }
637         }
638
639         return enabled;
640 }
641
642 static void pineview_update_wm(struct drm_crtc *unused_crtc)
643 {
644         struct drm_device *dev = unused_crtc->dev;
645         struct drm_i915_private *dev_priv = to_i915(dev);
646         struct drm_crtc *crtc;
647         const struct cxsr_latency *latency;
648         u32 reg;
649         unsigned long wm;
650
651         latency = intel_get_cxsr_latency(IS_PINEVIEW_G(dev), dev_priv->is_ddr3,
652                                          dev_priv->fsb_freq, dev_priv->mem_freq);
653         if (!latency) {
654                 DRM_DEBUG_KMS("Unknown FSB/MEM found, disable CxSR\n");
655                 intel_set_memory_cxsr(dev_priv, false);
656                 return;
657         }
658
659         crtc = single_enabled_crtc(dev);
660         if (crtc) {
661                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
662                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
663                 int clock = adjusted_mode->crtc_clock;
664
665                 /* Display SR */
666                 wm = intel_calculate_wm(clock, &pineview_display_wm,
667                                         pineview_display_wm.fifo_size,
668                                         cpp, latency->display_sr);
669                 reg = I915_READ(DSPFW1);
670                 reg &= ~DSPFW_SR_MASK;
671                 reg |= FW_WM(wm, SR);
672                 I915_WRITE(DSPFW1, reg);
673                 DRM_DEBUG_KMS("DSPFW1 register is %x\n", reg);
674
675                 /* cursor SR */
676                 wm = intel_calculate_wm(clock, &pineview_cursor_wm,
677                                         pineview_display_wm.fifo_size,
678                                         cpp, latency->cursor_sr);
679                 reg = I915_READ(DSPFW3);
680                 reg &= ~DSPFW_CURSOR_SR_MASK;
681                 reg |= FW_WM(wm, CURSOR_SR);
682                 I915_WRITE(DSPFW3, reg);
683
684                 /* Display HPLL off SR */
685                 wm = intel_calculate_wm(clock, &pineview_display_hplloff_wm,
686                                         pineview_display_hplloff_wm.fifo_size,
687                                         cpp, latency->display_hpll_disable);
688                 reg = I915_READ(DSPFW3);
689                 reg &= ~DSPFW_HPLL_SR_MASK;
690                 reg |= FW_WM(wm, HPLL_SR);
691                 I915_WRITE(DSPFW3, reg);
692
693                 /* cursor HPLL off SR */
694                 wm = intel_calculate_wm(clock, &pineview_cursor_hplloff_wm,
695                                         pineview_display_hplloff_wm.fifo_size,
696                                         cpp, latency->cursor_hpll_disable);
697                 reg = I915_READ(DSPFW3);
698                 reg &= ~DSPFW_HPLL_CURSOR_MASK;
699                 reg |= FW_WM(wm, HPLL_CURSOR);
700                 I915_WRITE(DSPFW3, reg);
701                 DRM_DEBUG_KMS("DSPFW3 register is %x\n", reg);
702
703                 intel_set_memory_cxsr(dev_priv, true);
704         } else {
705                 intel_set_memory_cxsr(dev_priv, false);
706         }
707 }
708
709 static bool g4x_compute_wm0(struct drm_device *dev,
710                             int plane,
711                             const struct intel_watermark_params *display,
712                             int display_latency_ns,
713                             const struct intel_watermark_params *cursor,
714                             int cursor_latency_ns,
715                             int *plane_wm,
716                             int *cursor_wm)
717 {
718         struct drm_crtc *crtc;
719         const struct drm_display_mode *adjusted_mode;
720         int htotal, hdisplay, clock, cpp;
721         int line_time_us, line_count;
722         int entries, tlb_miss;
723
724         crtc = intel_get_crtc_for_plane(dev, plane);
725         if (!intel_crtc_active(crtc)) {
726                 *cursor_wm = cursor->guard_size;
727                 *plane_wm = display->guard_size;
728                 return false;
729         }
730
731         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
732         clock = adjusted_mode->crtc_clock;
733         htotal = adjusted_mode->crtc_htotal;
734         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
735         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
736
737         /* Use the small buffer method to calculate plane watermark */
738         entries = ((clock * cpp / 1000) * display_latency_ns) / 1000;
739         tlb_miss = display->fifo_size*display->cacheline_size - hdisplay * 8;
740         if (tlb_miss > 0)
741                 entries += tlb_miss;
742         entries = DIV_ROUND_UP(entries, display->cacheline_size);
743         *plane_wm = entries + display->guard_size;
744         if (*plane_wm > (int)display->max_wm)
745                 *plane_wm = display->max_wm;
746
747         /* Use the large buffer method to calculate cursor watermark */
748         line_time_us = max(htotal * 1000 / clock, 1);
749         line_count = (cursor_latency_ns / line_time_us + 1000) / 1000;
750         entries = line_count * crtc->cursor->state->crtc_w * cpp;
751         tlb_miss = cursor->fifo_size*cursor->cacheline_size - hdisplay * 8;
752         if (tlb_miss > 0)
753                 entries += tlb_miss;
754         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
755         *cursor_wm = entries + cursor->guard_size;
756         if (*cursor_wm > (int)cursor->max_wm)
757                 *cursor_wm = (int)cursor->max_wm;
758
759         return true;
760 }
761
762 /*
763  * Check the wm result.
764  *
765  * If any calculated watermark values is larger than the maximum value that
766  * can be programmed into the associated watermark register, that watermark
767  * must be disabled.
768  */
769 static bool g4x_check_srwm(struct drm_device *dev,
770                            int display_wm, int cursor_wm,
771                            const struct intel_watermark_params *display,
772                            const struct intel_watermark_params *cursor)
773 {
774         DRM_DEBUG_KMS("SR watermark: display plane %d, cursor %d\n",
775                       display_wm, cursor_wm);
776
777         if (display_wm > display->max_wm) {
778                 DRM_DEBUG_KMS("display watermark is too large(%d/%ld), disabling\n",
779                               display_wm, display->max_wm);
780                 return false;
781         }
782
783         if (cursor_wm > cursor->max_wm) {
784                 DRM_DEBUG_KMS("cursor watermark is too large(%d/%ld), disabling\n",
785                               cursor_wm, cursor->max_wm);
786                 return false;
787         }
788
789         if (!(display_wm || cursor_wm)) {
790                 DRM_DEBUG_KMS("SR latency is 0, disabling\n");
791                 return false;
792         }
793
794         return true;
795 }
796
797 static bool g4x_compute_srwm(struct drm_device *dev,
798                              int plane,
799                              int latency_ns,
800                              const struct intel_watermark_params *display,
801                              const struct intel_watermark_params *cursor,
802                              int *display_wm, int *cursor_wm)
803 {
804         struct drm_crtc *crtc;
805         const struct drm_display_mode *adjusted_mode;
806         int hdisplay, htotal, cpp, clock;
807         unsigned long line_time_us;
808         int line_count, line_size;
809         int small, large;
810         int entries;
811
812         if (!latency_ns) {
813                 *display_wm = *cursor_wm = 0;
814                 return false;
815         }
816
817         crtc = intel_get_crtc_for_plane(dev, plane);
818         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
819         clock = adjusted_mode->crtc_clock;
820         htotal = adjusted_mode->crtc_htotal;
821         hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
822         cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
823
824         line_time_us = max(htotal * 1000 / clock, 1);
825         line_count = (latency_ns / line_time_us + 1000) / 1000;
826         line_size = hdisplay * cpp;
827
828         /* Use the minimum of the small and large buffer method for primary */
829         small = ((clock * cpp / 1000) * latency_ns) / 1000;
830         large = line_count * line_size;
831
832         entries = DIV_ROUND_UP(min(small, large), display->cacheline_size);
833         *display_wm = entries + display->guard_size;
834
835         /* calculate the self-refresh watermark for display cursor */
836         entries = line_count * cpp * crtc->cursor->state->crtc_w;
837         entries = DIV_ROUND_UP(entries, cursor->cacheline_size);
838         *cursor_wm = entries + cursor->guard_size;
839
840         return g4x_check_srwm(dev,
841                               *display_wm, *cursor_wm,
842                               display, cursor);
843 }
844
845 #define FW_WM_VLV(value, plane) \
846         (((value) << DSPFW_ ## plane ## _SHIFT) & DSPFW_ ## plane ## _MASK_VLV)
847
848 static void vlv_write_wm_values(struct intel_crtc *crtc,
849                                 const struct vlv_wm_values *wm)
850 {
851         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
852         enum pipe pipe = crtc->pipe;
853
854         I915_WRITE(VLV_DDL(pipe),
855                    (wm->ddl[pipe].cursor << DDL_CURSOR_SHIFT) |
856                    (wm->ddl[pipe].sprite[1] << DDL_SPRITE_SHIFT(1)) |
857                    (wm->ddl[pipe].sprite[0] << DDL_SPRITE_SHIFT(0)) |
858                    (wm->ddl[pipe].primary << DDL_PLANE_SHIFT));
859
860         I915_WRITE(DSPFW1,
861                    FW_WM(wm->sr.plane, SR) |
862                    FW_WM(wm->pipe[PIPE_B].cursor, CURSORB) |
863                    FW_WM_VLV(wm->pipe[PIPE_B].primary, PLANEB) |
864                    FW_WM_VLV(wm->pipe[PIPE_A].primary, PLANEA));
865         I915_WRITE(DSPFW2,
866                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[1], SPRITEB) |
867                    FW_WM(wm->pipe[PIPE_A].cursor, CURSORA) |
868                    FW_WM_VLV(wm->pipe[PIPE_A].sprite[0], SPRITEA));
869         I915_WRITE(DSPFW3,
870                    FW_WM(wm->sr.cursor, CURSOR_SR));
871
872         if (IS_CHERRYVIEW(dev_priv)) {
873                 I915_WRITE(DSPFW7_CHV,
874                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
875                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
876                 I915_WRITE(DSPFW8_CHV,
877                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[1], SPRITEF) |
878                            FW_WM_VLV(wm->pipe[PIPE_C].sprite[0], SPRITEE));
879                 I915_WRITE(DSPFW9_CHV,
880                            FW_WM_VLV(wm->pipe[PIPE_C].primary, PLANEC) |
881                            FW_WM(wm->pipe[PIPE_C].cursor, CURSORC));
882                 I915_WRITE(DSPHOWM,
883                            FW_WM(wm->sr.plane >> 9, SR_HI) |
884                            FW_WM(wm->pipe[PIPE_C].sprite[1] >> 8, SPRITEF_HI) |
885                            FW_WM(wm->pipe[PIPE_C].sprite[0] >> 8, SPRITEE_HI) |
886                            FW_WM(wm->pipe[PIPE_C].primary >> 8, PLANEC_HI) |
887                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
888                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
889                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
890                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
891                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
892                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
893         } else {
894                 I915_WRITE(DSPFW7,
895                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[1], SPRITED) |
896                            FW_WM_VLV(wm->pipe[PIPE_B].sprite[0], SPRITEC));
897                 I915_WRITE(DSPHOWM,
898                            FW_WM(wm->sr.plane >> 9, SR_HI) |
899                            FW_WM(wm->pipe[PIPE_B].sprite[1] >> 8, SPRITED_HI) |
900                            FW_WM(wm->pipe[PIPE_B].sprite[0] >> 8, SPRITEC_HI) |
901                            FW_WM(wm->pipe[PIPE_B].primary >> 8, PLANEB_HI) |
902                            FW_WM(wm->pipe[PIPE_A].sprite[1] >> 8, SPRITEB_HI) |
903                            FW_WM(wm->pipe[PIPE_A].sprite[0] >> 8, SPRITEA_HI) |
904                            FW_WM(wm->pipe[PIPE_A].primary >> 8, PLANEA_HI));
905         }
906
907         /* zero (unused) WM1 watermarks */
908         I915_WRITE(DSPFW4, 0);
909         I915_WRITE(DSPFW5, 0);
910         I915_WRITE(DSPFW6, 0);
911         I915_WRITE(DSPHOWM1, 0);
912
913         POSTING_READ(DSPFW1);
914 }
915
916 #undef FW_WM_VLV
917
918 enum vlv_wm_level {
919         VLV_WM_LEVEL_PM2,
920         VLV_WM_LEVEL_PM5,
921         VLV_WM_LEVEL_DDR_DVFS,
922 };
923
924 /* latency must be in 0.1us units. */
925 static unsigned int vlv_wm_method2(unsigned int pixel_rate,
926                                    unsigned int pipe_htotal,
927                                    unsigned int horiz_pixels,
928                                    unsigned int cpp,
929                                    unsigned int latency)
930 {
931         unsigned int ret;
932
933         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
934         ret = (ret + 1) * horiz_pixels * cpp;
935         ret = DIV_ROUND_UP(ret, 64);
936
937         return ret;
938 }
939
940 static void vlv_setup_wm_latency(struct drm_device *dev)
941 {
942         struct drm_i915_private *dev_priv = to_i915(dev);
943
944         /* all latencies in usec */
945         dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM2] = 3;
946
947         dev_priv->wm.max_level = VLV_WM_LEVEL_PM2;
948
949         if (IS_CHERRYVIEW(dev_priv)) {
950                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_PM5] = 12;
951                 dev_priv->wm.pri_latency[VLV_WM_LEVEL_DDR_DVFS] = 33;
952
953                 dev_priv->wm.max_level = VLV_WM_LEVEL_DDR_DVFS;
954         }
955 }
956
957 static uint16_t vlv_compute_wm_level(struct intel_plane *plane,
958                                      struct intel_crtc *crtc,
959                                      const struct intel_plane_state *state,
960                                      int level)
961 {
962         struct drm_i915_private *dev_priv = to_i915(plane->base.dev);
963         int clock, htotal, cpp, width, wm;
964
965         if (dev_priv->wm.pri_latency[level] == 0)
966                 return USHRT_MAX;
967
968         if (!state->base.visible)
969                 return 0;
970
971         cpp = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
972         clock = crtc->config->base.adjusted_mode.crtc_clock;
973         htotal = crtc->config->base.adjusted_mode.crtc_htotal;
974         width = crtc->config->pipe_src_w;
975         if (WARN_ON(htotal == 0))
976                 htotal = 1;
977
978         if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
979                 /*
980                  * FIXME the formula gives values that are
981                  * too big for the cursor FIFO, and hence we
982                  * would never be able to use cursors. For
983                  * now just hardcode the watermark.
984                  */
985                 wm = 63;
986         } else {
987                 wm = vlv_wm_method2(clock, htotal, width, cpp,
988                                     dev_priv->wm.pri_latency[level] * 10);
989         }
990
991         return min_t(int, wm, USHRT_MAX);
992 }
993
994 static void vlv_compute_fifo(struct intel_crtc *crtc)
995 {
996         struct drm_device *dev = crtc->base.dev;
997         struct vlv_wm_state *wm_state = &crtc->wm_state;
998         struct intel_plane *plane;
999         unsigned int total_rate = 0;
1000         const int fifo_size = 512 - 1;
1001         int fifo_extra, fifo_left = fifo_size;
1002
1003         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1004                 struct intel_plane_state *state =
1005                         to_intel_plane_state(plane->base.state);
1006
1007                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1008                         continue;
1009
1010                 if (state->base.visible) {
1011                         wm_state->num_active_planes++;
1012                         total_rate += drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1013                 }
1014         }
1015
1016         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1017                 struct intel_plane_state *state =
1018                         to_intel_plane_state(plane->base.state);
1019                 unsigned int rate;
1020
1021                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1022                         plane->wm.fifo_size = 63;
1023                         continue;
1024                 }
1025
1026                 if (!state->base.visible) {
1027                         plane->wm.fifo_size = 0;
1028                         continue;
1029                 }
1030
1031                 rate = drm_format_plane_cpp(state->base.fb->pixel_format, 0);
1032                 plane->wm.fifo_size = fifo_size * rate / total_rate;
1033                 fifo_left -= plane->wm.fifo_size;
1034         }
1035
1036         fifo_extra = DIV_ROUND_UP(fifo_left, wm_state->num_active_planes ?: 1);
1037
1038         /* spread the remainder evenly */
1039         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1040                 int plane_extra;
1041
1042                 if (fifo_left == 0)
1043                         break;
1044
1045                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR)
1046                         continue;
1047
1048                 /* give it all to the first plane if none are active */
1049                 if (plane->wm.fifo_size == 0 &&
1050                     wm_state->num_active_planes)
1051                         continue;
1052
1053                 plane_extra = min(fifo_extra, fifo_left);
1054                 plane->wm.fifo_size += plane_extra;
1055                 fifo_left -= plane_extra;
1056         }
1057
1058         WARN_ON(fifo_left != 0);
1059 }
1060
1061 static void vlv_invert_wms(struct intel_crtc *crtc)
1062 {
1063         struct vlv_wm_state *wm_state = &crtc->wm_state;
1064         int level;
1065
1066         for (level = 0; level < wm_state->num_levels; level++) {
1067                 struct drm_device *dev = crtc->base.dev;
1068                 const int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1069                 struct intel_plane *plane;
1070
1071                 wm_state->sr[level].plane = sr_fifo_size - wm_state->sr[level].plane;
1072                 wm_state->sr[level].cursor = 63 - wm_state->sr[level].cursor;
1073
1074                 for_each_intel_plane_on_crtc(dev, crtc, plane) {
1075                         switch (plane->base.type) {
1076                                 int sprite;
1077                         case DRM_PLANE_TYPE_CURSOR:
1078                                 wm_state->wm[level].cursor = plane->wm.fifo_size -
1079                                         wm_state->wm[level].cursor;
1080                                 break;
1081                         case DRM_PLANE_TYPE_PRIMARY:
1082                                 wm_state->wm[level].primary = plane->wm.fifo_size -
1083                                         wm_state->wm[level].primary;
1084                                 break;
1085                         case DRM_PLANE_TYPE_OVERLAY:
1086                                 sprite = plane->plane;
1087                                 wm_state->wm[level].sprite[sprite] = plane->wm.fifo_size -
1088                                         wm_state->wm[level].sprite[sprite];
1089                                 break;
1090                         }
1091                 }
1092         }
1093 }
1094
1095 static void vlv_compute_wm(struct intel_crtc *crtc)
1096 {
1097         struct drm_device *dev = crtc->base.dev;
1098         struct vlv_wm_state *wm_state = &crtc->wm_state;
1099         struct intel_plane *plane;
1100         int sr_fifo_size = INTEL_INFO(dev)->num_pipes * 512 - 1;
1101         int level;
1102
1103         memset(wm_state, 0, sizeof(*wm_state));
1104
1105         wm_state->cxsr = crtc->pipe != PIPE_C && crtc->wm.cxsr_allowed;
1106         wm_state->num_levels = to_i915(dev)->wm.max_level + 1;
1107
1108         wm_state->num_active_planes = 0;
1109
1110         vlv_compute_fifo(crtc);
1111
1112         if (wm_state->num_active_planes != 1)
1113                 wm_state->cxsr = false;
1114
1115         if (wm_state->cxsr) {
1116                 for (level = 0; level < wm_state->num_levels; level++) {
1117                         wm_state->sr[level].plane = sr_fifo_size;
1118                         wm_state->sr[level].cursor = 63;
1119                 }
1120         }
1121
1122         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1123                 struct intel_plane_state *state =
1124                         to_intel_plane_state(plane->base.state);
1125
1126                 if (!state->base.visible)
1127                         continue;
1128
1129                 /* normal watermarks */
1130                 for (level = 0; level < wm_state->num_levels; level++) {
1131                         int wm = vlv_compute_wm_level(plane, crtc, state, level);
1132                         int max_wm = plane->base.type == DRM_PLANE_TYPE_CURSOR ? 63 : 511;
1133
1134                         /* hack */
1135                         if (WARN_ON(level == 0 && wm > max_wm))
1136                                 wm = max_wm;
1137
1138                         if (wm > plane->wm.fifo_size)
1139                                 break;
1140
1141                         switch (plane->base.type) {
1142                                 int sprite;
1143                         case DRM_PLANE_TYPE_CURSOR:
1144                                 wm_state->wm[level].cursor = wm;
1145                                 break;
1146                         case DRM_PLANE_TYPE_PRIMARY:
1147                                 wm_state->wm[level].primary = wm;
1148                                 break;
1149                         case DRM_PLANE_TYPE_OVERLAY:
1150                                 sprite = plane->plane;
1151                                 wm_state->wm[level].sprite[sprite] = wm;
1152                                 break;
1153                         }
1154                 }
1155
1156                 wm_state->num_levels = level;
1157
1158                 if (!wm_state->cxsr)
1159                         continue;
1160
1161                 /* maxfifo watermarks */
1162                 switch (plane->base.type) {
1163                         int sprite, level;
1164                 case DRM_PLANE_TYPE_CURSOR:
1165                         for (level = 0; level < wm_state->num_levels; level++)
1166                                 wm_state->sr[level].cursor =
1167                                         wm_state->wm[level].cursor;
1168                         break;
1169                 case DRM_PLANE_TYPE_PRIMARY:
1170                         for (level = 0; level < wm_state->num_levels; level++)
1171                                 wm_state->sr[level].plane =
1172                                         min(wm_state->sr[level].plane,
1173                                             wm_state->wm[level].primary);
1174                         break;
1175                 case DRM_PLANE_TYPE_OVERLAY:
1176                         sprite = plane->plane;
1177                         for (level = 0; level < wm_state->num_levels; level++)
1178                                 wm_state->sr[level].plane =
1179                                         min(wm_state->sr[level].plane,
1180                                             wm_state->wm[level].sprite[sprite]);
1181                         break;
1182                 }
1183         }
1184
1185         /* clear any (partially) filled invalid levels */
1186         for (level = wm_state->num_levels; level < to_i915(dev)->wm.max_level + 1; level++) {
1187                 memset(&wm_state->wm[level], 0, sizeof(wm_state->wm[level]));
1188                 memset(&wm_state->sr[level], 0, sizeof(wm_state->sr[level]));
1189         }
1190
1191         vlv_invert_wms(crtc);
1192 }
1193
1194 #define VLV_FIFO(plane, value) \
1195         (((value) << DSPARB_ ## plane ## _SHIFT_VLV) & DSPARB_ ## plane ## _MASK_VLV)
1196
1197 static void vlv_pipe_set_fifo_size(struct intel_crtc *crtc)
1198 {
1199         struct drm_device *dev = crtc->base.dev;
1200         struct drm_i915_private *dev_priv = to_i915(dev);
1201         struct intel_plane *plane;
1202         int sprite0_start = 0, sprite1_start = 0, fifo_size = 0;
1203
1204         for_each_intel_plane_on_crtc(dev, crtc, plane) {
1205                 if (plane->base.type == DRM_PLANE_TYPE_CURSOR) {
1206                         WARN_ON(plane->wm.fifo_size != 63);
1207                         continue;
1208                 }
1209
1210                 if (plane->base.type == DRM_PLANE_TYPE_PRIMARY)
1211                         sprite0_start = plane->wm.fifo_size;
1212                 else if (plane->plane == 0)
1213                         sprite1_start = sprite0_start + plane->wm.fifo_size;
1214                 else
1215                         fifo_size = sprite1_start + plane->wm.fifo_size;
1216         }
1217
1218         WARN_ON(fifo_size != 512 - 1);
1219
1220         DRM_DEBUG_KMS("Pipe %c FIFO split %d / %d / %d\n",
1221                       pipe_name(crtc->pipe), sprite0_start,
1222                       sprite1_start, fifo_size);
1223
1224         switch (crtc->pipe) {
1225                 uint32_t dsparb, dsparb2, dsparb3;
1226         case PIPE_A:
1227                 dsparb = I915_READ(DSPARB);
1228                 dsparb2 = I915_READ(DSPARB2);
1229
1230                 dsparb &= ~(VLV_FIFO(SPRITEA, 0xff) |
1231                             VLV_FIFO(SPRITEB, 0xff));
1232                 dsparb |= (VLV_FIFO(SPRITEA, sprite0_start) |
1233                            VLV_FIFO(SPRITEB, sprite1_start));
1234
1235                 dsparb2 &= ~(VLV_FIFO(SPRITEA_HI, 0x1) |
1236                              VLV_FIFO(SPRITEB_HI, 0x1));
1237                 dsparb2 |= (VLV_FIFO(SPRITEA_HI, sprite0_start >> 8) |
1238                            VLV_FIFO(SPRITEB_HI, sprite1_start >> 8));
1239
1240                 I915_WRITE(DSPARB, dsparb);
1241                 I915_WRITE(DSPARB2, dsparb2);
1242                 break;
1243         case PIPE_B:
1244                 dsparb = I915_READ(DSPARB);
1245                 dsparb2 = I915_READ(DSPARB2);
1246
1247                 dsparb &= ~(VLV_FIFO(SPRITEC, 0xff) |
1248                             VLV_FIFO(SPRITED, 0xff));
1249                 dsparb |= (VLV_FIFO(SPRITEC, sprite0_start) |
1250                            VLV_FIFO(SPRITED, sprite1_start));
1251
1252                 dsparb2 &= ~(VLV_FIFO(SPRITEC_HI, 0xff) |
1253                              VLV_FIFO(SPRITED_HI, 0xff));
1254                 dsparb2 |= (VLV_FIFO(SPRITEC_HI, sprite0_start >> 8) |
1255                            VLV_FIFO(SPRITED_HI, sprite1_start >> 8));
1256
1257                 I915_WRITE(DSPARB, dsparb);
1258                 I915_WRITE(DSPARB2, dsparb2);
1259                 break;
1260         case PIPE_C:
1261                 dsparb3 = I915_READ(DSPARB3);
1262                 dsparb2 = I915_READ(DSPARB2);
1263
1264                 dsparb3 &= ~(VLV_FIFO(SPRITEE, 0xff) |
1265                              VLV_FIFO(SPRITEF, 0xff));
1266                 dsparb3 |= (VLV_FIFO(SPRITEE, sprite0_start) |
1267                             VLV_FIFO(SPRITEF, sprite1_start));
1268
1269                 dsparb2 &= ~(VLV_FIFO(SPRITEE_HI, 0xff) |
1270                              VLV_FIFO(SPRITEF_HI, 0xff));
1271                 dsparb2 |= (VLV_FIFO(SPRITEE_HI, sprite0_start >> 8) |
1272                            VLV_FIFO(SPRITEF_HI, sprite1_start >> 8));
1273
1274                 I915_WRITE(DSPARB3, dsparb3);
1275                 I915_WRITE(DSPARB2, dsparb2);
1276                 break;
1277         default:
1278                 break;
1279         }
1280 }
1281
1282 #undef VLV_FIFO
1283
1284 static void vlv_merge_wm(struct drm_device *dev,
1285                          struct vlv_wm_values *wm)
1286 {
1287         struct intel_crtc *crtc;
1288         int num_active_crtcs = 0;
1289
1290         wm->level = to_i915(dev)->wm.max_level;
1291         wm->cxsr = true;
1292
1293         for_each_intel_crtc(dev, crtc) {
1294                 const struct vlv_wm_state *wm_state = &crtc->wm_state;
1295
1296                 if (!crtc->active)
1297                         continue;
1298
1299                 if (!wm_state->cxsr)
1300                         wm->cxsr = false;
1301
1302                 num_active_crtcs++;
1303                 wm->level = min_t(int, wm->level, wm_state->num_levels - 1);
1304         }
1305
1306         if (num_active_crtcs != 1)
1307                 wm->cxsr = false;
1308
1309         if (num_active_crtcs > 1)
1310                 wm->level = VLV_WM_LEVEL_PM2;
1311
1312         for_each_intel_crtc(dev, crtc) {
1313                 struct vlv_wm_state *wm_state = &crtc->wm_state;
1314                 enum pipe pipe = crtc->pipe;
1315
1316                 if (!crtc->active)
1317                         continue;
1318
1319                 wm->pipe[pipe] = wm_state->wm[wm->level];
1320                 if (wm->cxsr)
1321                         wm->sr = wm_state->sr[wm->level];
1322
1323                 wm->ddl[pipe].primary = DDL_PRECISION_HIGH | 2;
1324                 wm->ddl[pipe].sprite[0] = DDL_PRECISION_HIGH | 2;
1325                 wm->ddl[pipe].sprite[1] = DDL_PRECISION_HIGH | 2;
1326                 wm->ddl[pipe].cursor = DDL_PRECISION_HIGH | 2;
1327         }
1328 }
1329
1330 static void vlv_update_wm(struct drm_crtc *crtc)
1331 {
1332         struct drm_device *dev = crtc->dev;
1333         struct drm_i915_private *dev_priv = to_i915(dev);
1334         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
1335         enum pipe pipe = intel_crtc->pipe;
1336         struct vlv_wm_values wm = {};
1337
1338         vlv_compute_wm(intel_crtc);
1339         vlv_merge_wm(dev, &wm);
1340
1341         if (memcmp(&dev_priv->wm.vlv, &wm, sizeof(wm)) == 0) {
1342                 /* FIXME should be part of crtc atomic commit */
1343                 vlv_pipe_set_fifo_size(intel_crtc);
1344                 return;
1345         }
1346
1347         if (wm.level < VLV_WM_LEVEL_DDR_DVFS &&
1348             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_DDR_DVFS)
1349                 chv_set_memory_dvfs(dev_priv, false);
1350
1351         if (wm.level < VLV_WM_LEVEL_PM5 &&
1352             dev_priv->wm.vlv.level >= VLV_WM_LEVEL_PM5)
1353                 chv_set_memory_pm5(dev_priv, false);
1354
1355         if (!wm.cxsr && dev_priv->wm.vlv.cxsr)
1356                 intel_set_memory_cxsr(dev_priv, false);
1357
1358         /* FIXME should be part of crtc atomic commit */
1359         vlv_pipe_set_fifo_size(intel_crtc);
1360
1361         vlv_write_wm_values(intel_crtc, &wm);
1362
1363         DRM_DEBUG_KMS("Setting FIFO watermarks - %c: plane=%d, cursor=%d, "
1364                       "sprite0=%d, sprite1=%d, SR: plane=%d, cursor=%d level=%d cxsr=%d\n",
1365                       pipe_name(pipe), wm.pipe[pipe].primary, wm.pipe[pipe].cursor,
1366                       wm.pipe[pipe].sprite[0], wm.pipe[pipe].sprite[1],
1367                       wm.sr.plane, wm.sr.cursor, wm.level, wm.cxsr);
1368
1369         if (wm.cxsr && !dev_priv->wm.vlv.cxsr)
1370                 intel_set_memory_cxsr(dev_priv, true);
1371
1372         if (wm.level >= VLV_WM_LEVEL_PM5 &&
1373             dev_priv->wm.vlv.level < VLV_WM_LEVEL_PM5)
1374                 chv_set_memory_pm5(dev_priv, true);
1375
1376         if (wm.level >= VLV_WM_LEVEL_DDR_DVFS &&
1377             dev_priv->wm.vlv.level < VLV_WM_LEVEL_DDR_DVFS)
1378                 chv_set_memory_dvfs(dev_priv, true);
1379
1380         dev_priv->wm.vlv = wm;
1381 }
1382
1383 #define single_plane_enabled(mask) is_power_of_2(mask)
1384
1385 static void g4x_update_wm(struct drm_crtc *crtc)
1386 {
1387         struct drm_device *dev = crtc->dev;
1388         static const int sr_latency_ns = 12000;
1389         struct drm_i915_private *dev_priv = to_i915(dev);
1390         int planea_wm, planeb_wm, cursora_wm, cursorb_wm;
1391         int plane_sr, cursor_sr;
1392         unsigned int enabled = 0;
1393         bool cxsr_enabled;
1394
1395         if (g4x_compute_wm0(dev, PIPE_A,
1396                             &g4x_wm_info, pessimal_latency_ns,
1397                             &g4x_cursor_wm_info, pessimal_latency_ns,
1398                             &planea_wm, &cursora_wm))
1399                 enabled |= 1 << PIPE_A;
1400
1401         if (g4x_compute_wm0(dev, PIPE_B,
1402                             &g4x_wm_info, pessimal_latency_ns,
1403                             &g4x_cursor_wm_info, pessimal_latency_ns,
1404                             &planeb_wm, &cursorb_wm))
1405                 enabled |= 1 << PIPE_B;
1406
1407         if (single_plane_enabled(enabled) &&
1408             g4x_compute_srwm(dev, ffs(enabled) - 1,
1409                              sr_latency_ns,
1410                              &g4x_wm_info,
1411                              &g4x_cursor_wm_info,
1412                              &plane_sr, &cursor_sr)) {
1413                 cxsr_enabled = true;
1414         } else {
1415                 cxsr_enabled = false;
1416                 intel_set_memory_cxsr(dev_priv, false);
1417                 plane_sr = cursor_sr = 0;
1418         }
1419
1420         DRM_DEBUG_KMS("Setting FIFO watermarks - A: plane=%d, cursor=%d, "
1421                       "B: plane=%d, cursor=%d, SR: plane=%d, cursor=%d\n",
1422                       planea_wm, cursora_wm,
1423                       planeb_wm, cursorb_wm,
1424                       plane_sr, cursor_sr);
1425
1426         I915_WRITE(DSPFW1,
1427                    FW_WM(plane_sr, SR) |
1428                    FW_WM(cursorb_wm, CURSORB) |
1429                    FW_WM(planeb_wm, PLANEB) |
1430                    FW_WM(planea_wm, PLANEA));
1431         I915_WRITE(DSPFW2,
1432                    (I915_READ(DSPFW2) & ~DSPFW_CURSORA_MASK) |
1433                    FW_WM(cursora_wm, CURSORA));
1434         /* HPLL off in SR has some issues on G4x... disable it */
1435         I915_WRITE(DSPFW3,
1436                    (I915_READ(DSPFW3) & ~(DSPFW_HPLL_SR_EN | DSPFW_CURSOR_SR_MASK)) |
1437                    FW_WM(cursor_sr, CURSOR_SR));
1438
1439         if (cxsr_enabled)
1440                 intel_set_memory_cxsr(dev_priv, true);
1441 }
1442
1443 static void i965_update_wm(struct drm_crtc *unused_crtc)
1444 {
1445         struct drm_device *dev = unused_crtc->dev;
1446         struct drm_i915_private *dev_priv = to_i915(dev);
1447         struct drm_crtc *crtc;
1448         int srwm = 1;
1449         int cursor_sr = 16;
1450         bool cxsr_enabled;
1451
1452         /* Calc sr entries for one plane configs */
1453         crtc = single_enabled_crtc(dev);
1454         if (crtc) {
1455                 /* self-refresh has much higher latency */
1456                 static const int sr_latency_ns = 12000;
1457                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1458                 int clock = adjusted_mode->crtc_clock;
1459                 int htotal = adjusted_mode->crtc_htotal;
1460                 int hdisplay = to_intel_crtc(crtc)->config->pipe_src_w;
1461                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1462                 unsigned long line_time_us;
1463                 int entries;
1464
1465                 line_time_us = max(htotal * 1000 / clock, 1);
1466
1467                 /* Use ns/us then divide to preserve precision */
1468                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1469                         cpp * hdisplay;
1470                 entries = DIV_ROUND_UP(entries, I915_FIFO_LINE_SIZE);
1471                 srwm = I965_FIFO_SIZE - entries;
1472                 if (srwm < 0)
1473                         srwm = 1;
1474                 srwm &= 0x1ff;
1475                 DRM_DEBUG_KMS("self-refresh entries: %d, wm: %d\n",
1476                               entries, srwm);
1477
1478                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1479                         cpp * crtc->cursor->state->crtc_w;
1480                 entries = DIV_ROUND_UP(entries,
1481                                           i965_cursor_wm_info.cacheline_size);
1482                 cursor_sr = i965_cursor_wm_info.fifo_size -
1483                         (entries + i965_cursor_wm_info.guard_size);
1484
1485                 if (cursor_sr > i965_cursor_wm_info.max_wm)
1486                         cursor_sr = i965_cursor_wm_info.max_wm;
1487
1488                 DRM_DEBUG_KMS("self-refresh watermark: display plane %d "
1489                               "cursor %d\n", srwm, cursor_sr);
1490
1491                 cxsr_enabled = true;
1492         } else {
1493                 cxsr_enabled = false;
1494                 /* Turn off self refresh if both pipes are enabled */
1495                 intel_set_memory_cxsr(dev_priv, false);
1496         }
1497
1498         DRM_DEBUG_KMS("Setting FIFO watermarks - A: 8, B: 8, C: 8, SR %d\n",
1499                       srwm);
1500
1501         /* 965 has limitations... */
1502         I915_WRITE(DSPFW1, FW_WM(srwm, SR) |
1503                    FW_WM(8, CURSORB) |
1504                    FW_WM(8, PLANEB) |
1505                    FW_WM(8, PLANEA));
1506         I915_WRITE(DSPFW2, FW_WM(8, CURSORA) |
1507                    FW_WM(8, PLANEC_OLD));
1508         /* update cursor SR watermark */
1509         I915_WRITE(DSPFW3, FW_WM(cursor_sr, CURSOR_SR));
1510
1511         if (cxsr_enabled)
1512                 intel_set_memory_cxsr(dev_priv, true);
1513 }
1514
1515 #undef FW_WM
1516
1517 static void i9xx_update_wm(struct drm_crtc *unused_crtc)
1518 {
1519         struct drm_device *dev = unused_crtc->dev;
1520         struct drm_i915_private *dev_priv = to_i915(dev);
1521         const struct intel_watermark_params *wm_info;
1522         uint32_t fwater_lo;
1523         uint32_t fwater_hi;
1524         int cwm, srwm = 1;
1525         int fifo_size;
1526         int planea_wm, planeb_wm;
1527         struct drm_crtc *crtc, *enabled = NULL;
1528
1529         if (IS_I945GM(dev))
1530                 wm_info = &i945_wm_info;
1531         else if (!IS_GEN2(dev))
1532                 wm_info = &i915_wm_info;
1533         else
1534                 wm_info = &i830_a_wm_info;
1535
1536         fifo_size = dev_priv->display.get_fifo_size(dev, 0);
1537         crtc = intel_get_crtc_for_plane(dev, 0);
1538         if (intel_crtc_active(crtc)) {
1539                 const struct drm_display_mode *adjusted_mode;
1540                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1541                 if (IS_GEN2(dev))
1542                         cpp = 4;
1543
1544                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1545                 planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1546                                                wm_info, fifo_size, cpp,
1547                                                pessimal_latency_ns);
1548                 enabled = crtc;
1549         } else {
1550                 planea_wm = fifo_size - wm_info->guard_size;
1551                 if (planea_wm > (long)wm_info->max_wm)
1552                         planea_wm = wm_info->max_wm;
1553         }
1554
1555         if (IS_GEN2(dev))
1556                 wm_info = &i830_bc_wm_info;
1557
1558         fifo_size = dev_priv->display.get_fifo_size(dev, 1);
1559         crtc = intel_get_crtc_for_plane(dev, 1);
1560         if (intel_crtc_active(crtc)) {
1561                 const struct drm_display_mode *adjusted_mode;
1562                 int cpp = drm_format_plane_cpp(crtc->primary->state->fb->pixel_format, 0);
1563                 if (IS_GEN2(dev))
1564                         cpp = 4;
1565
1566                 adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1567                 planeb_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1568                                                wm_info, fifo_size, cpp,
1569                                                pessimal_latency_ns);
1570                 if (enabled == NULL)
1571                         enabled = crtc;
1572                 else
1573                         enabled = NULL;
1574         } else {
1575                 planeb_wm = fifo_size - wm_info->guard_size;
1576                 if (planeb_wm > (long)wm_info->max_wm)
1577                         planeb_wm = wm_info->max_wm;
1578         }
1579
1580         DRM_DEBUG_KMS("FIFO watermarks - A: %d, B: %d\n", planea_wm, planeb_wm);
1581
1582         if (IS_I915GM(dev) && enabled) {
1583                 struct drm_i915_gem_object *obj;
1584
1585                 obj = intel_fb_obj(enabled->primary->state->fb);
1586
1587                 /* self-refresh seems busted with untiled */
1588                 if (!i915_gem_object_is_tiled(obj))
1589                         enabled = NULL;
1590         }
1591
1592         /*
1593          * Overlay gets an aggressive default since video jitter is bad.
1594          */
1595         cwm = 2;
1596
1597         /* Play safe and disable self-refresh before adjusting watermarks. */
1598         intel_set_memory_cxsr(dev_priv, false);
1599
1600         /* Calc sr entries for one plane configs */
1601         if (HAS_FW_BLC(dev) && enabled) {
1602                 /* self-refresh has much higher latency */
1603                 static const int sr_latency_ns = 6000;
1604                 const struct drm_display_mode *adjusted_mode = &to_intel_crtc(enabled)->config->base.adjusted_mode;
1605                 int clock = adjusted_mode->crtc_clock;
1606                 int htotal = adjusted_mode->crtc_htotal;
1607                 int hdisplay = to_intel_crtc(enabled)->config->pipe_src_w;
1608                 int cpp = drm_format_plane_cpp(enabled->primary->state->fb->pixel_format, 0);
1609                 unsigned long line_time_us;
1610                 int entries;
1611
1612                 if (IS_I915GM(dev) || IS_I945GM(dev))
1613                         cpp = 4;
1614
1615                 line_time_us = max(htotal * 1000 / clock, 1);
1616
1617                 /* Use ns/us then divide to preserve precision */
1618                 entries = (((sr_latency_ns / line_time_us) + 1000) / 1000) *
1619                         cpp * hdisplay;
1620                 entries = DIV_ROUND_UP(entries, wm_info->cacheline_size);
1621                 DRM_DEBUG_KMS("self-refresh entries: %d\n", entries);
1622                 srwm = wm_info->fifo_size - entries;
1623                 if (srwm < 0)
1624                         srwm = 1;
1625
1626                 if (IS_I945G(dev) || IS_I945GM(dev))
1627                         I915_WRITE(FW_BLC_SELF,
1628                                    FW_BLC_SELF_FIFO_MASK | (srwm & 0xff));
1629                 else
1630                         I915_WRITE(FW_BLC_SELF, srwm & 0x3f);
1631         }
1632
1633         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d, B: %d, C: %d, SR %d\n",
1634                       planea_wm, planeb_wm, cwm, srwm);
1635
1636         fwater_lo = ((planeb_wm & 0x3f) << 16) | (planea_wm & 0x3f);
1637         fwater_hi = (cwm & 0x1f);
1638
1639         /* Set request length to 8 cachelines per fetch */
1640         fwater_lo = fwater_lo | (1 << 24) | (1 << 8);
1641         fwater_hi = fwater_hi | (1 << 8);
1642
1643         I915_WRITE(FW_BLC, fwater_lo);
1644         I915_WRITE(FW_BLC2, fwater_hi);
1645
1646         if (enabled)
1647                 intel_set_memory_cxsr(dev_priv, true);
1648 }
1649
1650 static void i845_update_wm(struct drm_crtc *unused_crtc)
1651 {
1652         struct drm_device *dev = unused_crtc->dev;
1653         struct drm_i915_private *dev_priv = to_i915(dev);
1654         struct drm_crtc *crtc;
1655         const struct drm_display_mode *adjusted_mode;
1656         uint32_t fwater_lo;
1657         int planea_wm;
1658
1659         crtc = single_enabled_crtc(dev);
1660         if (crtc == NULL)
1661                 return;
1662
1663         adjusted_mode = &to_intel_crtc(crtc)->config->base.adjusted_mode;
1664         planea_wm = intel_calculate_wm(adjusted_mode->crtc_clock,
1665                                        &i845_wm_info,
1666                                        dev_priv->display.get_fifo_size(dev, 0),
1667                                        4, pessimal_latency_ns);
1668         fwater_lo = I915_READ(FW_BLC) & ~0xfff;
1669         fwater_lo |= (3<<8) | planea_wm;
1670
1671         DRM_DEBUG_KMS("Setting FIFO watermarks - A: %d\n", planea_wm);
1672
1673         I915_WRITE(FW_BLC, fwater_lo);
1674 }
1675
1676 uint32_t ilk_pipe_pixel_rate(const struct intel_crtc_state *pipe_config)
1677 {
1678         uint32_t pixel_rate;
1679
1680         pixel_rate = pipe_config->base.adjusted_mode.crtc_clock;
1681
1682         /* We only use IF-ID interlacing. If we ever use PF-ID we'll need to
1683          * adjust the pixel_rate here. */
1684
1685         if (pipe_config->pch_pfit.enabled) {
1686                 uint64_t pipe_w, pipe_h, pfit_w, pfit_h;
1687                 uint32_t pfit_size = pipe_config->pch_pfit.size;
1688
1689                 pipe_w = pipe_config->pipe_src_w;
1690                 pipe_h = pipe_config->pipe_src_h;
1691
1692                 pfit_w = (pfit_size >> 16) & 0xFFFF;
1693                 pfit_h = pfit_size & 0xFFFF;
1694                 if (pipe_w < pfit_w)
1695                         pipe_w = pfit_w;
1696                 if (pipe_h < pfit_h)
1697                         pipe_h = pfit_h;
1698
1699                 if (WARN_ON(!pfit_w || !pfit_h))
1700                         return pixel_rate;
1701
1702                 pixel_rate = div_u64((uint64_t) pixel_rate * pipe_w * pipe_h,
1703                                      pfit_w * pfit_h);
1704         }
1705
1706         return pixel_rate;
1707 }
1708
1709 /* latency must be in 0.1us units. */
1710 static uint32_t ilk_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
1711 {
1712         uint64_t ret;
1713
1714         if (WARN(latency == 0, "Latency value missing\n"))
1715                 return UINT_MAX;
1716
1717         ret = (uint64_t) pixel_rate * cpp * latency;
1718         ret = DIV_ROUND_UP_ULL(ret, 64 * 10000) + 2;
1719
1720         return ret;
1721 }
1722
1723 /* latency must be in 0.1us units. */
1724 static uint32_t ilk_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
1725                                uint32_t horiz_pixels, uint8_t cpp,
1726                                uint32_t latency)
1727 {
1728         uint32_t ret;
1729
1730         if (WARN(latency == 0, "Latency value missing\n"))
1731                 return UINT_MAX;
1732         if (WARN_ON(!pipe_htotal))
1733                 return UINT_MAX;
1734
1735         ret = (latency * pixel_rate) / (pipe_htotal * 10000);
1736         ret = (ret + 1) * horiz_pixels * cpp;
1737         ret = DIV_ROUND_UP(ret, 64) + 2;
1738         return ret;
1739 }
1740
1741 static uint32_t ilk_wm_fbc(uint32_t pri_val, uint32_t horiz_pixels,
1742                            uint8_t cpp)
1743 {
1744         /*
1745          * Neither of these should be possible since this function shouldn't be
1746          * called if the CRTC is off or the plane is invisible.  But let's be
1747          * extra paranoid to avoid a potential divide-by-zero if we screw up
1748          * elsewhere in the driver.
1749          */
1750         if (WARN_ON(!cpp))
1751                 return 0;
1752         if (WARN_ON(!horiz_pixels))
1753                 return 0;
1754
1755         return DIV_ROUND_UP(pri_val * 64, horiz_pixels * cpp) + 2;
1756 }
1757
1758 struct ilk_wm_maximums {
1759         uint16_t pri;
1760         uint16_t spr;
1761         uint16_t cur;
1762         uint16_t fbc;
1763 };
1764
1765 /*
1766  * For both WM_PIPE and WM_LP.
1767  * mem_value must be in 0.1us units.
1768  */
1769 static uint32_t ilk_compute_pri_wm(const struct intel_crtc_state *cstate,
1770                                    const struct intel_plane_state *pstate,
1771                                    uint32_t mem_value,
1772                                    bool is_lp)
1773 {
1774         int cpp = pstate->base.fb ?
1775                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1776         uint32_t method1, method2;
1777
1778         if (!cstate->base.active || !pstate->base.visible)
1779                 return 0;
1780
1781         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1782
1783         if (!is_lp)
1784                 return method1;
1785
1786         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1787                                  cstate->base.adjusted_mode.crtc_htotal,
1788                                  drm_rect_width(&pstate->base.dst),
1789                                  cpp, mem_value);
1790
1791         return min(method1, method2);
1792 }
1793
1794 /*
1795  * For both WM_PIPE and WM_LP.
1796  * mem_value must be in 0.1us units.
1797  */
1798 static uint32_t ilk_compute_spr_wm(const struct intel_crtc_state *cstate,
1799                                    const struct intel_plane_state *pstate,
1800                                    uint32_t mem_value)
1801 {
1802         int cpp = pstate->base.fb ?
1803                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1804         uint32_t method1, method2;
1805
1806         if (!cstate->base.active || !pstate->base.visible)
1807                 return 0;
1808
1809         method1 = ilk_wm_method1(ilk_pipe_pixel_rate(cstate), cpp, mem_value);
1810         method2 = ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1811                                  cstate->base.adjusted_mode.crtc_htotal,
1812                                  drm_rect_width(&pstate->base.dst),
1813                                  cpp, mem_value);
1814         return min(method1, method2);
1815 }
1816
1817 /*
1818  * For both WM_PIPE and WM_LP.
1819  * mem_value must be in 0.1us units.
1820  */
1821 static uint32_t ilk_compute_cur_wm(const struct intel_crtc_state *cstate,
1822                                    const struct intel_plane_state *pstate,
1823                                    uint32_t mem_value)
1824 {
1825         /*
1826          * We treat the cursor plane as always-on for the purposes of watermark
1827          * calculation.  Until we have two-stage watermark programming merged,
1828          * this is necessary to avoid flickering.
1829          */
1830         int cpp = 4;
1831         int width = pstate->base.visible ? pstate->base.crtc_w : 64;
1832
1833         if (!cstate->base.active)
1834                 return 0;
1835
1836         return ilk_wm_method2(ilk_pipe_pixel_rate(cstate),
1837                               cstate->base.adjusted_mode.crtc_htotal,
1838                               width, cpp, mem_value);
1839 }
1840
1841 /* Only for WM_LP. */
1842 static uint32_t ilk_compute_fbc_wm(const struct intel_crtc_state *cstate,
1843                                    const struct intel_plane_state *pstate,
1844                                    uint32_t pri_val)
1845 {
1846         int cpp = pstate->base.fb ?
1847                 drm_format_plane_cpp(pstate->base.fb->pixel_format, 0) : 0;
1848
1849         if (!cstate->base.active || !pstate->base.visible)
1850                 return 0;
1851
1852         return ilk_wm_fbc(pri_val, drm_rect_width(&pstate->base.dst), cpp);
1853 }
1854
1855 static unsigned int ilk_display_fifo_size(const struct drm_device *dev)
1856 {
1857         if (INTEL_INFO(dev)->gen >= 8)
1858                 return 3072;
1859         else if (INTEL_INFO(dev)->gen >= 7)
1860                 return 768;
1861         else
1862                 return 512;
1863 }
1864
1865 static unsigned int ilk_plane_wm_reg_max(const struct drm_device *dev,
1866                                          int level, bool is_sprite)
1867 {
1868         if (INTEL_INFO(dev)->gen >= 8)
1869                 /* BDW primary/sprite plane watermarks */
1870                 return level == 0 ? 255 : 2047;
1871         else if (INTEL_INFO(dev)->gen >= 7)
1872                 /* IVB/HSW primary/sprite plane watermarks */
1873                 return level == 0 ? 127 : 1023;
1874         else if (!is_sprite)
1875                 /* ILK/SNB primary plane watermarks */
1876                 return level == 0 ? 127 : 511;
1877         else
1878                 /* ILK/SNB sprite plane watermarks */
1879                 return level == 0 ? 63 : 255;
1880 }
1881
1882 static unsigned int ilk_cursor_wm_reg_max(const struct drm_device *dev,
1883                                           int level)
1884 {
1885         if (INTEL_INFO(dev)->gen >= 7)
1886                 return level == 0 ? 63 : 255;
1887         else
1888                 return level == 0 ? 31 : 63;
1889 }
1890
1891 static unsigned int ilk_fbc_wm_reg_max(const struct drm_device *dev)
1892 {
1893         if (INTEL_INFO(dev)->gen >= 8)
1894                 return 31;
1895         else
1896                 return 15;
1897 }
1898
1899 /* Calculate the maximum primary/sprite plane watermark */
1900 static unsigned int ilk_plane_wm_max(const struct drm_device *dev,
1901                                      int level,
1902                                      const struct intel_wm_config *config,
1903                                      enum intel_ddb_partitioning ddb_partitioning,
1904                                      bool is_sprite)
1905 {
1906         unsigned int fifo_size = ilk_display_fifo_size(dev);
1907
1908         /* if sprites aren't enabled, sprites get nothing */
1909         if (is_sprite && !config->sprites_enabled)
1910                 return 0;
1911
1912         /* HSW allows LP1+ watermarks even with multiple pipes */
1913         if (level == 0 || config->num_pipes_active > 1) {
1914                 fifo_size /= INTEL_INFO(dev)->num_pipes;
1915
1916                 /*
1917                  * For some reason the non self refresh
1918                  * FIFO size is only half of the self
1919                  * refresh FIFO size on ILK/SNB.
1920                  */
1921                 if (INTEL_INFO(dev)->gen <= 6)
1922                         fifo_size /= 2;
1923         }
1924
1925         if (config->sprites_enabled) {
1926                 /* level 0 is always calculated with 1:1 split */
1927                 if (level > 0 && ddb_partitioning == INTEL_DDB_PART_5_6) {
1928                         if (is_sprite)
1929                                 fifo_size *= 5;
1930                         fifo_size /= 6;
1931                 } else {
1932                         fifo_size /= 2;
1933                 }
1934         }
1935
1936         /* clamp to max that the registers can hold */
1937         return min(fifo_size, ilk_plane_wm_reg_max(dev, level, is_sprite));
1938 }
1939
1940 /* Calculate the maximum cursor plane watermark */
1941 static unsigned int ilk_cursor_wm_max(const struct drm_device *dev,
1942                                       int level,
1943                                       const struct intel_wm_config *config)
1944 {
1945         /* HSW LP1+ watermarks w/ multiple pipes */
1946         if (level > 0 && config->num_pipes_active > 1)
1947                 return 64;
1948
1949         /* otherwise just report max that registers can hold */
1950         return ilk_cursor_wm_reg_max(dev, level);
1951 }
1952
1953 static void ilk_compute_wm_maximums(const struct drm_device *dev,
1954                                     int level,
1955                                     const struct intel_wm_config *config,
1956                                     enum intel_ddb_partitioning ddb_partitioning,
1957                                     struct ilk_wm_maximums *max)
1958 {
1959         max->pri = ilk_plane_wm_max(dev, level, config, ddb_partitioning, false);
1960         max->spr = ilk_plane_wm_max(dev, level, config, ddb_partitioning, true);
1961         max->cur = ilk_cursor_wm_max(dev, level, config);
1962         max->fbc = ilk_fbc_wm_reg_max(dev);
1963 }
1964
1965 static void ilk_compute_wm_reg_maximums(struct drm_device *dev,
1966                                         int level,
1967                                         struct ilk_wm_maximums *max)
1968 {
1969         max->pri = ilk_plane_wm_reg_max(dev, level, false);
1970         max->spr = ilk_plane_wm_reg_max(dev, level, true);
1971         max->cur = ilk_cursor_wm_reg_max(dev, level);
1972         max->fbc = ilk_fbc_wm_reg_max(dev);
1973 }
1974
1975 static bool ilk_validate_wm_level(int level,
1976                                   const struct ilk_wm_maximums *max,
1977                                   struct intel_wm_level *result)
1978 {
1979         bool ret;
1980
1981         /* already determined to be invalid? */
1982         if (!result->enable)
1983                 return false;
1984
1985         result->enable = result->pri_val <= max->pri &&
1986                          result->spr_val <= max->spr &&
1987                          result->cur_val <= max->cur;
1988
1989         ret = result->enable;
1990
1991         /*
1992          * HACK until we can pre-compute everything,
1993          * and thus fail gracefully if LP0 watermarks
1994          * are exceeded...
1995          */
1996         if (level == 0 && !result->enable) {
1997                 if (result->pri_val > max->pri)
1998                         DRM_DEBUG_KMS("Primary WM%d too large %u (max %u)\n",
1999                                       level, result->pri_val, max->pri);
2000                 if (result->spr_val > max->spr)
2001                         DRM_DEBUG_KMS("Sprite WM%d too large %u (max %u)\n",
2002                                       level, result->spr_val, max->spr);
2003                 if (result->cur_val > max->cur)
2004                         DRM_DEBUG_KMS("Cursor WM%d too large %u (max %u)\n",
2005                                       level, result->cur_val, max->cur);
2006
2007                 result->pri_val = min_t(uint32_t, result->pri_val, max->pri);
2008                 result->spr_val = min_t(uint32_t, result->spr_val, max->spr);
2009                 result->cur_val = min_t(uint32_t, result->cur_val, max->cur);
2010                 result->enable = true;
2011         }
2012
2013         return ret;
2014 }
2015
2016 static void ilk_compute_wm_level(const struct drm_i915_private *dev_priv,
2017                                  const struct intel_crtc *intel_crtc,
2018                                  int level,
2019                                  struct intel_crtc_state *cstate,
2020                                  struct intel_plane_state *pristate,
2021                                  struct intel_plane_state *sprstate,
2022                                  struct intel_plane_state *curstate,
2023                                  struct intel_wm_level *result)
2024 {
2025         uint16_t pri_latency = dev_priv->wm.pri_latency[level];
2026         uint16_t spr_latency = dev_priv->wm.spr_latency[level];
2027         uint16_t cur_latency = dev_priv->wm.cur_latency[level];
2028
2029         /* WM1+ latency values stored in 0.5us units */
2030         if (level > 0) {
2031                 pri_latency *= 5;
2032                 spr_latency *= 5;
2033                 cur_latency *= 5;
2034         }
2035
2036         if (pristate) {
2037                 result->pri_val = ilk_compute_pri_wm(cstate, pristate,
2038                                                      pri_latency, level);
2039                 result->fbc_val = ilk_compute_fbc_wm(cstate, pristate, result->pri_val);
2040         }
2041
2042         if (sprstate)
2043                 result->spr_val = ilk_compute_spr_wm(cstate, sprstate, spr_latency);
2044
2045         if (curstate)
2046                 result->cur_val = ilk_compute_cur_wm(cstate, curstate, cur_latency);
2047
2048         result->enable = true;
2049 }
2050
2051 static uint32_t
2052 hsw_compute_linetime_wm(const struct intel_crtc_state *cstate)
2053 {
2054         const struct intel_atomic_state *intel_state =
2055                 to_intel_atomic_state(cstate->base.state);
2056         const struct drm_display_mode *adjusted_mode =
2057                 &cstate->base.adjusted_mode;
2058         u32 linetime, ips_linetime;
2059
2060         if (!cstate->base.active)
2061                 return 0;
2062         if (WARN_ON(adjusted_mode->crtc_clock == 0))
2063                 return 0;
2064         if (WARN_ON(intel_state->cdclk == 0))
2065                 return 0;
2066
2067         /* The WM are computed with base on how long it takes to fill a single
2068          * row at the given clock rate, multiplied by 8.
2069          * */
2070         linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2071                                      adjusted_mode->crtc_clock);
2072         ips_linetime = DIV_ROUND_CLOSEST(adjusted_mode->crtc_htotal * 1000 * 8,
2073                                          intel_state->cdclk);
2074
2075         return PIPE_WM_LINETIME_IPS_LINETIME(ips_linetime) |
2076                PIPE_WM_LINETIME_TIME(linetime);
2077 }
2078
2079 static void intel_read_wm_latency(struct drm_device *dev, uint16_t wm[8])
2080 {
2081         struct drm_i915_private *dev_priv = to_i915(dev);
2082
2083         if (IS_GEN9(dev)) {
2084                 uint32_t val;
2085                 int ret, i;
2086                 int level, max_level = ilk_wm_max_level(dev);
2087
2088                 /* read the first set of memory latencies[0:3] */
2089                 val = 0; /* data0 to be programmed to 0 for first set */
2090                 mutex_lock(&dev_priv->rps.hw_lock);
2091                 ret = sandybridge_pcode_read(dev_priv,
2092                                              GEN9_PCODE_READ_MEM_LATENCY,
2093                                              &val);
2094                 mutex_unlock(&dev_priv->rps.hw_lock);
2095
2096                 if (ret) {
2097                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2098                         return;
2099                 }
2100
2101                 wm[0] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2102                 wm[1] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2103                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2104                 wm[2] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2105                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2106                 wm[3] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2107                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2108
2109                 /* read the second set of memory latencies[4:7] */
2110                 val = 1; /* data0 to be programmed to 1 for second set */
2111                 mutex_lock(&dev_priv->rps.hw_lock);
2112                 ret = sandybridge_pcode_read(dev_priv,
2113                                              GEN9_PCODE_READ_MEM_LATENCY,
2114                                              &val);
2115                 mutex_unlock(&dev_priv->rps.hw_lock);
2116                 if (ret) {
2117                         DRM_ERROR("SKL Mailbox read error = %d\n", ret);
2118                         return;
2119                 }
2120
2121                 wm[4] = val & GEN9_MEM_LATENCY_LEVEL_MASK;
2122                 wm[5] = (val >> GEN9_MEM_LATENCY_LEVEL_1_5_SHIFT) &
2123                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2124                 wm[6] = (val >> GEN9_MEM_LATENCY_LEVEL_2_6_SHIFT) &
2125                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2126                 wm[7] = (val >> GEN9_MEM_LATENCY_LEVEL_3_7_SHIFT) &
2127                                 GEN9_MEM_LATENCY_LEVEL_MASK;
2128
2129                 /*
2130                  * If a level n (n > 1) has a 0us latency, all levels m (m >= n)
2131                  * need to be disabled. We make sure to sanitize the values out
2132                  * of the punit to satisfy this requirement.
2133                  */
2134                 for (level = 1; level <= max_level; level++) {
2135                         if (wm[level] == 0) {
2136                                 for (i = level + 1; i <= max_level; i++)
2137                                         wm[i] = 0;
2138                                 break;
2139                         }
2140                 }
2141
2142                 /*
2143                  * WaWmMemoryReadLatency:skl
2144                  *
2145                  * punit doesn't take into account the read latency so we need
2146                  * to add 2us to the various latency levels we retrieve from the
2147                  * punit when level 0 response data us 0us.
2148                  */
2149                 if (wm[0] == 0) {
2150                         wm[0] += 2;
2151                         for (level = 1; level <= max_level; level++) {
2152                                 if (wm[level] == 0)
2153                                         break;
2154                                 wm[level] += 2;
2155                         }
2156                 }
2157
2158         } else if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2159                 uint64_t sskpd = I915_READ64(MCH_SSKPD);
2160
2161                 wm[0] = (sskpd >> 56) & 0xFF;
2162                 if (wm[0] == 0)
2163                         wm[0] = sskpd & 0xF;
2164                 wm[1] = (sskpd >> 4) & 0xFF;
2165                 wm[2] = (sskpd >> 12) & 0xFF;
2166                 wm[3] = (sskpd >> 20) & 0x1FF;
2167                 wm[4] = (sskpd >> 32) & 0x1FF;
2168         } else if (INTEL_INFO(dev)->gen >= 6) {
2169                 uint32_t sskpd = I915_READ(MCH_SSKPD);
2170
2171                 wm[0] = (sskpd >> SSKPD_WM0_SHIFT) & SSKPD_WM_MASK;
2172                 wm[1] = (sskpd >> SSKPD_WM1_SHIFT) & SSKPD_WM_MASK;
2173                 wm[2] = (sskpd >> SSKPD_WM2_SHIFT) & SSKPD_WM_MASK;
2174                 wm[3] = (sskpd >> SSKPD_WM3_SHIFT) & SSKPD_WM_MASK;
2175         } else if (INTEL_INFO(dev)->gen >= 5) {
2176                 uint32_t mltr = I915_READ(MLTR_ILK);
2177
2178                 /* ILK primary LP0 latency is 700 ns */
2179                 wm[0] = 7;
2180                 wm[1] = (mltr >> MLTR_WM1_SHIFT) & ILK_SRLT_MASK;
2181                 wm[2] = (mltr >> MLTR_WM2_SHIFT) & ILK_SRLT_MASK;
2182         }
2183 }
2184
2185 static void intel_fixup_spr_wm_latency(struct drm_device *dev, uint16_t wm[5])
2186 {
2187         /* ILK sprite LP0 latency is 1300 ns */
2188         if (IS_GEN5(dev))
2189                 wm[0] = 13;
2190 }
2191
2192 static void intel_fixup_cur_wm_latency(struct drm_device *dev, uint16_t wm[5])
2193 {
2194         /* ILK cursor LP0 latency is 1300 ns */
2195         if (IS_GEN5(dev))
2196                 wm[0] = 13;
2197
2198         /* WaDoubleCursorLP3Latency:ivb */
2199         if (IS_IVYBRIDGE(dev))
2200                 wm[3] *= 2;
2201 }
2202
2203 int ilk_wm_max_level(const struct drm_device *dev)
2204 {
2205         /* how many WM levels are we expecting */
2206         if (INTEL_INFO(dev)->gen >= 9)
2207                 return 7;
2208         else if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2209                 return 4;
2210         else if (INTEL_INFO(dev)->gen >= 6)
2211                 return 3;
2212         else
2213                 return 2;
2214 }
2215
2216 static void intel_print_wm_latency(struct drm_device *dev,
2217                                    const char *name,
2218                                    const uint16_t wm[8])
2219 {
2220         int level, max_level = ilk_wm_max_level(dev);
2221
2222         for (level = 0; level <= max_level; level++) {
2223                 unsigned int latency = wm[level];
2224
2225                 if (latency == 0) {
2226                         DRM_ERROR("%s WM%d latency not provided\n",
2227                                   name, level);
2228                         continue;
2229                 }
2230
2231                 /*
2232                  * - latencies are in us on gen9.
2233                  * - before then, WM1+ latency values are in 0.5us units
2234                  */
2235                 if (IS_GEN9(dev))
2236                         latency *= 10;
2237                 else if (level > 0)
2238                         latency *= 5;
2239
2240                 DRM_DEBUG_KMS("%s WM%d latency %u (%u.%u usec)\n",
2241                               name, level, wm[level],
2242                               latency / 10, latency % 10);
2243         }
2244 }
2245
2246 static bool ilk_increase_wm_latency(struct drm_i915_private *dev_priv,
2247                                     uint16_t wm[5], uint16_t min)
2248 {
2249         int level, max_level = ilk_wm_max_level(&dev_priv->drm);
2250
2251         if (wm[0] >= min)
2252                 return false;
2253
2254         wm[0] = max(wm[0], min);
2255         for (level = 1; level <= max_level; level++)
2256                 wm[level] = max_t(uint16_t, wm[level], DIV_ROUND_UP(min, 5));
2257
2258         return true;
2259 }
2260
2261 static void snb_wm_latency_quirk(struct drm_device *dev)
2262 {
2263         struct drm_i915_private *dev_priv = to_i915(dev);
2264         bool changed;
2265
2266         /*
2267          * The BIOS provided WM memory latency values are often
2268          * inadequate for high resolution displays. Adjust them.
2269          */
2270         changed = ilk_increase_wm_latency(dev_priv, dev_priv->wm.pri_latency, 12) |
2271                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.spr_latency, 12) |
2272                 ilk_increase_wm_latency(dev_priv, dev_priv->wm.cur_latency, 12);
2273
2274         if (!changed)
2275                 return;
2276
2277         DRM_DEBUG_KMS("WM latency values increased to avoid potential underruns\n");
2278         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2279         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2280         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2281 }
2282
2283 static void ilk_setup_wm_latency(struct drm_device *dev)
2284 {
2285         struct drm_i915_private *dev_priv = to_i915(dev);
2286
2287         intel_read_wm_latency(dev, dev_priv->wm.pri_latency);
2288
2289         memcpy(dev_priv->wm.spr_latency, dev_priv->wm.pri_latency,
2290                sizeof(dev_priv->wm.pri_latency));
2291         memcpy(dev_priv->wm.cur_latency, dev_priv->wm.pri_latency,
2292                sizeof(dev_priv->wm.pri_latency));
2293
2294         intel_fixup_spr_wm_latency(dev, dev_priv->wm.spr_latency);
2295         intel_fixup_cur_wm_latency(dev, dev_priv->wm.cur_latency);
2296
2297         intel_print_wm_latency(dev, "Primary", dev_priv->wm.pri_latency);
2298         intel_print_wm_latency(dev, "Sprite", dev_priv->wm.spr_latency);
2299         intel_print_wm_latency(dev, "Cursor", dev_priv->wm.cur_latency);
2300
2301         if (IS_GEN6(dev))
2302                 snb_wm_latency_quirk(dev);
2303 }
2304
2305 static void skl_setup_wm_latency(struct drm_device *dev)
2306 {
2307         struct drm_i915_private *dev_priv = to_i915(dev);
2308
2309         intel_read_wm_latency(dev, dev_priv->wm.skl_latency);
2310         intel_print_wm_latency(dev, "Gen9 Plane", dev_priv->wm.skl_latency);
2311 }
2312
2313 static bool ilk_validate_pipe_wm(struct drm_device *dev,
2314                                  struct intel_pipe_wm *pipe_wm)
2315 {
2316         /* LP0 watermark maximums depend on this pipe alone */
2317         const struct intel_wm_config config = {
2318                 .num_pipes_active = 1,
2319                 .sprites_enabled = pipe_wm->sprites_enabled,
2320                 .sprites_scaled = pipe_wm->sprites_scaled,
2321         };
2322         struct ilk_wm_maximums max;
2323
2324         /* LP0 watermarks always use 1/2 DDB partitioning */
2325         ilk_compute_wm_maximums(dev, 0, &config, INTEL_DDB_PART_1_2, &max);
2326
2327         /* At least LP0 must be valid */
2328         if (!ilk_validate_wm_level(0, &max, &pipe_wm->wm[0])) {
2329                 DRM_DEBUG_KMS("LP0 watermark invalid\n");
2330                 return false;
2331         }
2332
2333         return true;
2334 }
2335
2336 /* Compute new watermarks for the pipe */
2337 static int ilk_compute_pipe_wm(struct intel_crtc_state *cstate)
2338 {
2339         struct drm_atomic_state *state = cstate->base.state;
2340         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
2341         struct intel_pipe_wm *pipe_wm;
2342         struct drm_device *dev = state->dev;
2343         const struct drm_i915_private *dev_priv = to_i915(dev);
2344         struct intel_plane *intel_plane;
2345         struct intel_plane_state *pristate = NULL;
2346         struct intel_plane_state *sprstate = NULL;
2347         struct intel_plane_state *curstate = NULL;
2348         int level, max_level = ilk_wm_max_level(dev), usable_level;
2349         struct ilk_wm_maximums max;
2350
2351         pipe_wm = &cstate->wm.ilk.optimal;
2352
2353         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
2354                 struct intel_plane_state *ps;
2355
2356                 ps = intel_atomic_get_existing_plane_state(state,
2357                                                            intel_plane);
2358                 if (!ps)
2359                         continue;
2360
2361                 if (intel_plane->base.type == DRM_PLANE_TYPE_PRIMARY)
2362                         pristate = ps;
2363                 else if (intel_plane->base.type == DRM_PLANE_TYPE_OVERLAY)
2364                         sprstate = ps;
2365                 else if (intel_plane->base.type == DRM_PLANE_TYPE_CURSOR)
2366                         curstate = ps;
2367         }
2368
2369         pipe_wm->pipe_enabled = cstate->base.active;
2370         if (sprstate) {
2371                 pipe_wm->sprites_enabled = sprstate->base.visible;
2372                 pipe_wm->sprites_scaled = sprstate->base.visible &&
2373                         (drm_rect_width(&sprstate->base.dst) != drm_rect_width(&sprstate->base.src) >> 16 ||
2374                          drm_rect_height(&sprstate->base.dst) != drm_rect_height(&sprstate->base.src) >> 16);
2375         }
2376
2377         usable_level = max_level;
2378
2379         /* ILK/SNB: LP2+ watermarks only w/o sprites */
2380         if (INTEL_INFO(dev)->gen <= 6 && pipe_wm->sprites_enabled)
2381                 usable_level = 1;
2382
2383         /* ILK/SNB/IVB: LP1+ watermarks only w/o scaling */
2384         if (pipe_wm->sprites_scaled)
2385                 usable_level = 0;
2386
2387         ilk_compute_wm_level(dev_priv, intel_crtc, 0, cstate,
2388                              pristate, sprstate, curstate, &pipe_wm->raw_wm[0]);
2389
2390         memset(&pipe_wm->wm, 0, sizeof(pipe_wm->wm));
2391         pipe_wm->wm[0] = pipe_wm->raw_wm[0];
2392
2393         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2394                 pipe_wm->linetime = hsw_compute_linetime_wm(cstate);
2395
2396         if (!ilk_validate_pipe_wm(dev, pipe_wm))
2397                 return -EINVAL;
2398
2399         ilk_compute_wm_reg_maximums(dev, 1, &max);
2400
2401         for (level = 1; level <= max_level; level++) {
2402                 struct intel_wm_level *wm = &pipe_wm->raw_wm[level];
2403
2404                 ilk_compute_wm_level(dev_priv, intel_crtc, level, cstate,
2405                                      pristate, sprstate, curstate, wm);
2406
2407                 /*
2408                  * Disable any watermark level that exceeds the
2409                  * register maximums since such watermarks are
2410                  * always invalid.
2411                  */
2412                 if (level > usable_level)
2413                         continue;
2414
2415                 if (ilk_validate_wm_level(level, &max, wm))
2416                         pipe_wm->wm[level] = *wm;
2417                 else
2418                         usable_level = level;
2419         }
2420
2421         return 0;
2422 }
2423
2424 /*
2425  * Build a set of 'intermediate' watermark values that satisfy both the old
2426  * state and the new state.  These can be programmed to the hardware
2427  * immediately.
2428  */
2429 static int ilk_compute_intermediate_wm(struct drm_device *dev,
2430                                        struct intel_crtc *intel_crtc,
2431                                        struct intel_crtc_state *newstate)
2432 {
2433         struct intel_pipe_wm *a = &newstate->wm.ilk.intermediate;
2434         struct intel_pipe_wm *b = &intel_crtc->wm.active.ilk;
2435         int level, max_level = ilk_wm_max_level(dev);
2436
2437         /*
2438          * Start with the final, target watermarks, then combine with the
2439          * currently active watermarks to get values that are safe both before
2440          * and after the vblank.
2441          */
2442         *a = newstate->wm.ilk.optimal;
2443         a->pipe_enabled |= b->pipe_enabled;
2444         a->sprites_enabled |= b->sprites_enabled;
2445         a->sprites_scaled |= b->sprites_scaled;
2446
2447         for (level = 0; level <= max_level; level++) {
2448                 struct intel_wm_level *a_wm = &a->wm[level];
2449                 const struct intel_wm_level *b_wm = &b->wm[level];
2450
2451                 a_wm->enable &= b_wm->enable;
2452                 a_wm->pri_val = max(a_wm->pri_val, b_wm->pri_val);
2453                 a_wm->spr_val = max(a_wm->spr_val, b_wm->spr_val);
2454                 a_wm->cur_val = max(a_wm->cur_val, b_wm->cur_val);
2455                 a_wm->fbc_val = max(a_wm->fbc_val, b_wm->fbc_val);
2456         }
2457
2458         /*
2459          * We need to make sure that these merged watermark values are
2460          * actually a valid configuration themselves.  If they're not,
2461          * there's no safe way to transition from the old state to
2462          * the new state, so we need to fail the atomic transaction.
2463          */
2464         if (!ilk_validate_pipe_wm(dev, a))
2465                 return -EINVAL;
2466
2467         /*
2468          * If our intermediate WM are identical to the final WM, then we can
2469          * omit the post-vblank programming; only update if it's different.
2470          */
2471         if (memcmp(a, &newstate->wm.ilk.optimal, sizeof(*a)) == 0)
2472                 newstate->wm.need_postvbl_update = false;
2473
2474         return 0;
2475 }
2476
2477 /*
2478  * Merge the watermarks from all active pipes for a specific level.
2479  */
2480 static void ilk_merge_wm_level(struct drm_device *dev,
2481                                int level,
2482                                struct intel_wm_level *ret_wm)
2483 {
2484         const struct intel_crtc *intel_crtc;
2485
2486         ret_wm->enable = true;
2487
2488         for_each_intel_crtc(dev, intel_crtc) {
2489                 const struct intel_pipe_wm *active = &intel_crtc->wm.active.ilk;
2490                 const struct intel_wm_level *wm = &active->wm[level];
2491
2492                 if (!active->pipe_enabled)
2493                         continue;
2494
2495                 /*
2496                  * The watermark values may have been used in the past,
2497                  * so we must maintain them in the registers for some
2498                  * time even if the level is now disabled.
2499                  */
2500                 if (!wm->enable)
2501                         ret_wm->enable = false;
2502
2503                 ret_wm->pri_val = max(ret_wm->pri_val, wm->pri_val);
2504                 ret_wm->spr_val = max(ret_wm->spr_val, wm->spr_val);
2505                 ret_wm->cur_val = max(ret_wm->cur_val, wm->cur_val);
2506                 ret_wm->fbc_val = max(ret_wm->fbc_val, wm->fbc_val);
2507         }
2508 }
2509
2510 /*
2511  * Merge all low power watermarks for all active pipes.
2512  */
2513 static void ilk_wm_merge(struct drm_device *dev,
2514                          const struct intel_wm_config *config,
2515                          const struct ilk_wm_maximums *max,
2516                          struct intel_pipe_wm *merged)
2517 {
2518         struct drm_i915_private *dev_priv = to_i915(dev);
2519         int level, max_level = ilk_wm_max_level(dev);
2520         int last_enabled_level = max_level;
2521
2522         /* ILK/SNB/IVB: LP1+ watermarks only w/ single pipe */
2523         if ((INTEL_INFO(dev)->gen <= 6 || IS_IVYBRIDGE(dev)) &&
2524             config->num_pipes_active > 1)
2525                 last_enabled_level = 0;
2526
2527         /* ILK: FBC WM must be disabled always */
2528         merged->fbc_wm_enabled = INTEL_INFO(dev)->gen >= 6;
2529
2530         /* merge each WM1+ level */
2531         for (level = 1; level <= max_level; level++) {
2532                 struct intel_wm_level *wm = &merged->wm[level];
2533
2534                 ilk_merge_wm_level(dev, level, wm);
2535
2536                 if (level > last_enabled_level)
2537                         wm->enable = false;
2538                 else if (!ilk_validate_wm_level(level, max, wm))
2539                         /* make sure all following levels get disabled */
2540                         last_enabled_level = level - 1;
2541
2542                 /*
2543                  * The spec says it is preferred to disable
2544                  * FBC WMs instead of disabling a WM level.
2545                  */
2546                 if (wm->fbc_val > max->fbc) {
2547                         if (wm->enable)
2548                                 merged->fbc_wm_enabled = false;
2549                         wm->fbc_val = 0;
2550                 }
2551         }
2552
2553         /* ILK: LP2+ must be disabled when FBC WM is disabled but FBC enabled */
2554         /*
2555          * FIXME this is racy. FBC might get enabled later.
2556          * What we should check here is whether FBC can be
2557          * enabled sometime later.
2558          */
2559         if (IS_GEN5(dev) && !merged->fbc_wm_enabled &&
2560             intel_fbc_is_active(dev_priv)) {
2561                 for (level = 2; level <= max_level; level++) {
2562                         struct intel_wm_level *wm = &merged->wm[level];
2563
2564                         wm->enable = false;
2565                 }
2566         }
2567 }
2568
2569 static int ilk_wm_lp_to_level(int wm_lp, const struct intel_pipe_wm *pipe_wm)
2570 {
2571         /* LP1,LP2,LP3 levels are either 1,2,3 or 1,3,4 */
2572         return wm_lp + (wm_lp >= 2 && pipe_wm->wm[4].enable);
2573 }
2574
2575 /* The value we need to program into the WM_LPx latency field */
2576 static unsigned int ilk_wm_lp_latency(struct drm_device *dev, int level)
2577 {
2578         struct drm_i915_private *dev_priv = to_i915(dev);
2579
2580         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
2581                 return 2 * level;
2582         else
2583                 return dev_priv->wm.pri_latency[level];
2584 }
2585
2586 static void ilk_compute_wm_results(struct drm_device *dev,
2587                                    const struct intel_pipe_wm *merged,
2588                                    enum intel_ddb_partitioning partitioning,
2589                                    struct ilk_wm_values *results)
2590 {
2591         struct intel_crtc *intel_crtc;
2592         int level, wm_lp;
2593
2594         results->enable_fbc_wm = merged->fbc_wm_enabled;
2595         results->partitioning = partitioning;
2596
2597         /* LP1+ register values */
2598         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2599                 const struct intel_wm_level *r;
2600
2601                 level = ilk_wm_lp_to_level(wm_lp, merged);
2602
2603                 r = &merged->wm[level];
2604
2605                 /*
2606                  * Maintain the watermark values even if the level is
2607                  * disabled. Doing otherwise could cause underruns.
2608                  */
2609                 results->wm_lp[wm_lp - 1] =
2610                         (ilk_wm_lp_latency(dev, level) << WM1_LP_LATENCY_SHIFT) |
2611                         (r->pri_val << WM1_LP_SR_SHIFT) |
2612                         r->cur_val;
2613
2614                 if (r->enable)
2615                         results->wm_lp[wm_lp - 1] |= WM1_LP_SR_EN;
2616
2617                 if (INTEL_INFO(dev)->gen >= 8)
2618                         results->wm_lp[wm_lp - 1] |=
2619                                 r->fbc_val << WM1_LP_FBC_SHIFT_BDW;
2620                 else
2621                         results->wm_lp[wm_lp - 1] |=
2622                                 r->fbc_val << WM1_LP_FBC_SHIFT;
2623
2624                 /*
2625                  * Always set WM1S_LP_EN when spr_val != 0, even if the
2626                  * level is disabled. Doing otherwise could cause underruns.
2627                  */
2628                 if (INTEL_INFO(dev)->gen <= 6 && r->spr_val) {
2629                         WARN_ON(wm_lp != 1);
2630                         results->wm_lp_spr[wm_lp - 1] = WM1S_LP_EN | r->spr_val;
2631                 } else
2632                         results->wm_lp_spr[wm_lp - 1] = r->spr_val;
2633         }
2634
2635         /* LP0 register values */
2636         for_each_intel_crtc(dev, intel_crtc) {
2637                 enum pipe pipe = intel_crtc->pipe;
2638                 const struct intel_wm_level *r =
2639                         &intel_crtc->wm.active.ilk.wm[0];
2640
2641                 if (WARN_ON(!r->enable))
2642                         continue;
2643
2644                 results->wm_linetime[pipe] = intel_crtc->wm.active.ilk.linetime;
2645
2646                 results->wm_pipe[pipe] =
2647                         (r->pri_val << WM0_PIPE_PLANE_SHIFT) |
2648                         (r->spr_val << WM0_PIPE_SPRITE_SHIFT) |
2649                         r->cur_val;
2650         }
2651 }
2652
2653 /* Find the result with the highest level enabled. Check for enable_fbc_wm in
2654  * case both are at the same level. Prefer r1 in case they're the same. */
2655 static struct intel_pipe_wm *ilk_find_best_result(struct drm_device *dev,
2656                                                   struct intel_pipe_wm *r1,
2657                                                   struct intel_pipe_wm *r2)
2658 {
2659         int level, max_level = ilk_wm_max_level(dev);
2660         int level1 = 0, level2 = 0;
2661
2662         for (level = 1; level <= max_level; level++) {
2663                 if (r1->wm[level].enable)
2664                         level1 = level;
2665                 if (r2->wm[level].enable)
2666                         level2 = level;
2667         }
2668
2669         if (level1 == level2) {
2670                 if (r2->fbc_wm_enabled && !r1->fbc_wm_enabled)
2671                         return r2;
2672                 else
2673                         return r1;
2674         } else if (level1 > level2) {
2675                 return r1;
2676         } else {
2677                 return r2;
2678         }
2679 }
2680
2681 /* dirty bits used to track which watermarks need changes */
2682 #define WM_DIRTY_PIPE(pipe) (1 << (pipe))
2683 #define WM_DIRTY_LINETIME(pipe) (1 << (8 + (pipe)))
2684 #define WM_DIRTY_LP(wm_lp) (1 << (15 + (wm_lp)))
2685 #define WM_DIRTY_LP_ALL (WM_DIRTY_LP(1) | WM_DIRTY_LP(2) | WM_DIRTY_LP(3))
2686 #define WM_DIRTY_FBC (1 << 24)
2687 #define WM_DIRTY_DDB (1 << 25)
2688
2689 static unsigned int ilk_compute_wm_dirty(struct drm_i915_private *dev_priv,
2690                                          const struct ilk_wm_values *old,
2691                                          const struct ilk_wm_values *new)
2692 {
2693         unsigned int dirty = 0;
2694         enum pipe pipe;
2695         int wm_lp;
2696
2697         for_each_pipe(dev_priv, pipe) {
2698                 if (old->wm_linetime[pipe] != new->wm_linetime[pipe]) {
2699                         dirty |= WM_DIRTY_LINETIME(pipe);
2700                         /* Must disable LP1+ watermarks too */
2701                         dirty |= WM_DIRTY_LP_ALL;
2702                 }
2703
2704                 if (old->wm_pipe[pipe] != new->wm_pipe[pipe]) {
2705                         dirty |= WM_DIRTY_PIPE(pipe);
2706                         /* Must disable LP1+ watermarks too */
2707                         dirty |= WM_DIRTY_LP_ALL;
2708                 }
2709         }
2710
2711         if (old->enable_fbc_wm != new->enable_fbc_wm) {
2712                 dirty |= WM_DIRTY_FBC;
2713                 /* Must disable LP1+ watermarks too */
2714                 dirty |= WM_DIRTY_LP_ALL;
2715         }
2716
2717         if (old->partitioning != new->partitioning) {
2718                 dirty |= WM_DIRTY_DDB;
2719                 /* Must disable LP1+ watermarks too */
2720                 dirty |= WM_DIRTY_LP_ALL;
2721         }
2722
2723         /* LP1+ watermarks already deemed dirty, no need to continue */
2724         if (dirty & WM_DIRTY_LP_ALL)
2725                 return dirty;
2726
2727         /* Find the lowest numbered LP1+ watermark in need of an update... */
2728         for (wm_lp = 1; wm_lp <= 3; wm_lp++) {
2729                 if (old->wm_lp[wm_lp - 1] != new->wm_lp[wm_lp - 1] ||
2730                     old->wm_lp_spr[wm_lp - 1] != new->wm_lp_spr[wm_lp - 1])
2731                         break;
2732         }
2733
2734         /* ...and mark it and all higher numbered LP1+ watermarks as dirty */
2735         for (; wm_lp <= 3; wm_lp++)
2736                 dirty |= WM_DIRTY_LP(wm_lp);
2737
2738         return dirty;
2739 }
2740
2741 static bool _ilk_disable_lp_wm(struct drm_i915_private *dev_priv,
2742                                unsigned int dirty)
2743 {
2744         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2745         bool changed = false;
2746
2747         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] & WM1_LP_SR_EN) {
2748                 previous->wm_lp[2] &= ~WM1_LP_SR_EN;
2749                 I915_WRITE(WM3_LP_ILK, previous->wm_lp[2]);
2750                 changed = true;
2751         }
2752         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] & WM1_LP_SR_EN) {
2753                 previous->wm_lp[1] &= ~WM1_LP_SR_EN;
2754                 I915_WRITE(WM2_LP_ILK, previous->wm_lp[1]);
2755                 changed = true;
2756         }
2757         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] & WM1_LP_SR_EN) {
2758                 previous->wm_lp[0] &= ~WM1_LP_SR_EN;
2759                 I915_WRITE(WM1_LP_ILK, previous->wm_lp[0]);
2760                 changed = true;
2761         }
2762
2763         /*
2764          * Don't touch WM1S_LP_EN here.
2765          * Doing so could cause underruns.
2766          */
2767
2768         return changed;
2769 }
2770
2771 /*
2772  * The spec says we shouldn't write when we don't need, because every write
2773  * causes WMs to be re-evaluated, expending some power.
2774  */
2775 static void ilk_write_wm_values(struct drm_i915_private *dev_priv,
2776                                 struct ilk_wm_values *results)
2777 {
2778         struct drm_device *dev = &dev_priv->drm;
2779         struct ilk_wm_values *previous = &dev_priv->wm.hw;
2780         unsigned int dirty;
2781         uint32_t val;
2782
2783         dirty = ilk_compute_wm_dirty(dev_priv, previous, results);
2784         if (!dirty)
2785                 return;
2786
2787         _ilk_disable_lp_wm(dev_priv, dirty);
2788
2789         if (dirty & WM_DIRTY_PIPE(PIPE_A))
2790                 I915_WRITE(WM0_PIPEA_ILK, results->wm_pipe[0]);
2791         if (dirty & WM_DIRTY_PIPE(PIPE_B))
2792                 I915_WRITE(WM0_PIPEB_ILK, results->wm_pipe[1]);
2793         if (dirty & WM_DIRTY_PIPE(PIPE_C))
2794                 I915_WRITE(WM0_PIPEC_IVB, results->wm_pipe[2]);
2795
2796         if (dirty & WM_DIRTY_LINETIME(PIPE_A))
2797                 I915_WRITE(PIPE_WM_LINETIME(PIPE_A), results->wm_linetime[0]);
2798         if (dirty & WM_DIRTY_LINETIME(PIPE_B))
2799                 I915_WRITE(PIPE_WM_LINETIME(PIPE_B), results->wm_linetime[1]);
2800         if (dirty & WM_DIRTY_LINETIME(PIPE_C))
2801                 I915_WRITE(PIPE_WM_LINETIME(PIPE_C), results->wm_linetime[2]);
2802
2803         if (dirty & WM_DIRTY_DDB) {
2804                 if (IS_HASWELL(dev) || IS_BROADWELL(dev)) {
2805                         val = I915_READ(WM_MISC);
2806                         if (results->partitioning == INTEL_DDB_PART_1_2)
2807                                 val &= ~WM_MISC_DATA_PARTITION_5_6;
2808                         else
2809                                 val |= WM_MISC_DATA_PARTITION_5_6;
2810                         I915_WRITE(WM_MISC, val);
2811                 } else {
2812                         val = I915_READ(DISP_ARB_CTL2);
2813                         if (results->partitioning == INTEL_DDB_PART_1_2)
2814                                 val &= ~DISP_DATA_PARTITION_5_6;
2815                         else
2816                                 val |= DISP_DATA_PARTITION_5_6;
2817                         I915_WRITE(DISP_ARB_CTL2, val);
2818                 }
2819         }
2820
2821         if (dirty & WM_DIRTY_FBC) {
2822                 val = I915_READ(DISP_ARB_CTL);
2823                 if (results->enable_fbc_wm)
2824                         val &= ~DISP_FBC_WM_DIS;
2825                 else
2826                         val |= DISP_FBC_WM_DIS;
2827                 I915_WRITE(DISP_ARB_CTL, val);
2828         }
2829
2830         if (dirty & WM_DIRTY_LP(1) &&
2831             previous->wm_lp_spr[0] != results->wm_lp_spr[0])
2832                 I915_WRITE(WM1S_LP_ILK, results->wm_lp_spr[0]);
2833
2834         if (INTEL_INFO(dev)->gen >= 7) {
2835                 if (dirty & WM_DIRTY_LP(2) && previous->wm_lp_spr[1] != results->wm_lp_spr[1])
2836                         I915_WRITE(WM2S_LP_IVB, results->wm_lp_spr[1]);
2837                 if (dirty & WM_DIRTY_LP(3) && previous->wm_lp_spr[2] != results->wm_lp_spr[2])
2838                         I915_WRITE(WM3S_LP_IVB, results->wm_lp_spr[2]);
2839         }
2840
2841         if (dirty & WM_DIRTY_LP(1) && previous->wm_lp[0] != results->wm_lp[0])
2842                 I915_WRITE(WM1_LP_ILK, results->wm_lp[0]);
2843         if (dirty & WM_DIRTY_LP(2) && previous->wm_lp[1] != results->wm_lp[1])
2844                 I915_WRITE(WM2_LP_ILK, results->wm_lp[1]);
2845         if (dirty & WM_DIRTY_LP(3) && previous->wm_lp[2] != results->wm_lp[2])
2846                 I915_WRITE(WM3_LP_ILK, results->wm_lp[2]);
2847
2848         dev_priv->wm.hw = *results;
2849 }
2850
2851 bool ilk_disable_lp_wm(struct drm_device *dev)
2852 {
2853         struct drm_i915_private *dev_priv = to_i915(dev);
2854
2855         return _ilk_disable_lp_wm(dev_priv, WM_DIRTY_LP_ALL);
2856 }
2857
2858 #define SKL_SAGV_BLOCK_TIME     30 /* µs */
2859
2860 /*
2861  * Return the index of a plane in the SKL DDB and wm result arrays.  Primary
2862  * plane is always in slot 0, cursor is always in slot I915_MAX_PLANES-1, and
2863  * other universal planes are in indices 1..n.  Note that this may leave unused
2864  * indices between the top "sprite" plane and the cursor.
2865  */
2866 static int
2867 skl_wm_plane_id(const struct intel_plane *plane)
2868 {
2869         switch (plane->base.type) {
2870         case DRM_PLANE_TYPE_PRIMARY:
2871                 return 0;
2872         case DRM_PLANE_TYPE_CURSOR:
2873                 return PLANE_CURSOR;
2874         case DRM_PLANE_TYPE_OVERLAY:
2875                 return plane->plane + 1;
2876         default:
2877                 MISSING_CASE(plane->base.type);
2878                 return plane->plane;
2879         }
2880 }
2881
2882 /*
2883  * FIXME: We still don't have the proper code detect if we need to apply the WA,
2884  * so assume we'll always need it in order to avoid underruns.
2885  */
2886 static bool skl_needs_memory_bw_wa(struct intel_atomic_state *state)
2887 {
2888         struct drm_i915_private *dev_priv = to_i915(state->base.dev);
2889
2890         if (IS_SKYLAKE(dev_priv) || IS_BROXTON(dev_priv) ||
2891             IS_KABYLAKE(dev_priv))
2892                 return true;
2893
2894         return false;
2895 }
2896
2897 static bool
2898 intel_has_sagv(struct drm_i915_private *dev_priv)
2899 {
2900         if (IS_KABYLAKE(dev_priv))
2901                 return true;
2902
2903         if (IS_SKYLAKE(dev_priv) &&
2904             dev_priv->sagv_status != I915_SAGV_NOT_CONTROLLED)
2905                 return true;
2906
2907         return false;
2908 }
2909
2910 /*
2911  * SAGV dynamically adjusts the system agent voltage and clock frequencies
2912  * depending on power and performance requirements. The display engine access
2913  * to system memory is blocked during the adjustment time. Because of the
2914  * blocking time, having this enabled can cause full system hangs and/or pipe
2915  * underruns if we don't meet all of the following requirements:
2916  *
2917  *  - <= 1 pipe enabled
2918  *  - All planes can enable watermarks for latencies >= SAGV engine block time
2919  *  - We're not using an interlaced display configuration
2920  */
2921 int
2922 intel_enable_sagv(struct drm_i915_private *dev_priv)
2923 {
2924         int ret;
2925
2926         if (!intel_has_sagv(dev_priv))
2927                 return 0;
2928
2929         if (dev_priv->sagv_status == I915_SAGV_ENABLED)
2930                 return 0;
2931
2932         DRM_DEBUG_KMS("Enabling the SAGV\n");
2933         mutex_lock(&dev_priv->rps.hw_lock);
2934
2935         ret = sandybridge_pcode_write(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2936                                       GEN9_SAGV_ENABLE);
2937
2938         /* We don't need to wait for the SAGV when enabling */
2939         mutex_unlock(&dev_priv->rps.hw_lock);
2940
2941         /*
2942          * Some skl systems, pre-release machines in particular,
2943          * don't actually have an SAGV.
2944          */
2945         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2946                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2947                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2948                 return 0;
2949         } else if (ret < 0) {
2950                 DRM_ERROR("Failed to enable the SAGV\n");
2951                 return ret;
2952         }
2953
2954         dev_priv->sagv_status = I915_SAGV_ENABLED;
2955         return 0;
2956 }
2957
2958 int
2959 intel_disable_sagv(struct drm_i915_private *dev_priv)
2960 {
2961         int ret;
2962
2963         if (!intel_has_sagv(dev_priv))
2964                 return 0;
2965
2966         if (dev_priv->sagv_status == I915_SAGV_DISABLED)
2967                 return 0;
2968
2969         DRM_DEBUG_KMS("Disabling the SAGV\n");
2970         mutex_lock(&dev_priv->rps.hw_lock);
2971
2972         /* bspec says to keep retrying for at least 1 ms */
2973         ret = skl_pcode_request(dev_priv, GEN9_PCODE_SAGV_CONTROL,
2974                                 GEN9_SAGV_DISABLE,
2975                                 GEN9_SAGV_IS_DISABLED, GEN9_SAGV_IS_DISABLED,
2976                                 1);
2977         mutex_unlock(&dev_priv->rps.hw_lock);
2978
2979         /*
2980          * Some skl systems, pre-release machines in particular,
2981          * don't actually have an SAGV.
2982          */
2983         if (IS_SKYLAKE(dev_priv) && ret == -ENXIO) {
2984                 DRM_DEBUG_DRIVER("No SAGV found on system, ignoring\n");
2985                 dev_priv->sagv_status = I915_SAGV_NOT_CONTROLLED;
2986                 return 0;
2987         } else if (ret < 0) {
2988                 DRM_ERROR("Failed to disable the SAGV (%d)\n", ret);
2989                 return ret;
2990         }
2991
2992         dev_priv->sagv_status = I915_SAGV_DISABLED;
2993         return 0;
2994 }
2995
2996 bool intel_can_enable_sagv(struct drm_atomic_state *state)
2997 {
2998         struct drm_device *dev = state->dev;
2999         struct drm_i915_private *dev_priv = to_i915(dev);
3000         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3001         struct intel_crtc *crtc;
3002         struct intel_plane *plane;
3003         enum pipe pipe;
3004         int level, id, latency;
3005
3006         if (!intel_has_sagv(dev_priv))
3007                 return false;
3008
3009         /*
3010          * SKL workaround: bspec recommends we disable the SAGV when we have
3011          * more then one pipe enabled
3012          *
3013          * If there are no active CRTCs, no additional checks need be performed
3014          */
3015         if (hweight32(intel_state->active_crtcs) == 0)
3016                 return true;
3017         else if (hweight32(intel_state->active_crtcs) > 1)
3018                 return false;
3019
3020         /* Since we're now guaranteed to only have one active CRTC... */
3021         pipe = ffs(intel_state->active_crtcs) - 1;
3022         crtc = to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3023
3024         if (crtc->base.state->mode.flags & DRM_MODE_FLAG_INTERLACE)
3025                 return false;
3026
3027         for_each_intel_plane_on_crtc(dev, crtc, plane) {
3028                 id = skl_wm_plane_id(plane);
3029
3030                 /* Skip this plane if it's not enabled */
3031                 if (intel_state->wm_results.plane[pipe][id][0] == 0)
3032                         continue;
3033
3034                 /* Find the highest enabled wm level for this plane */
3035                 for (level = ilk_wm_max_level(dev);
3036                      intel_state->wm_results.plane[pipe][id][level] == 0; --level)
3037                      { }
3038
3039                 latency = dev_priv->wm.skl_latency[level];
3040
3041                 if (skl_needs_memory_bw_wa(intel_state) &&
3042                     plane->base.state->fb->modifier[0] ==
3043                     I915_FORMAT_MOD_X_TILED)
3044                         latency += 15;
3045
3046                 /*
3047                  * If any of the planes on this pipe don't enable wm levels
3048                  * that incur memory latencies higher then 30µs we can't enable
3049                  * the SAGV
3050                  */
3051                 if (latency < SKL_SAGV_BLOCK_TIME)
3052                         return false;
3053         }
3054
3055         return true;
3056 }
3057
3058 static void
3059 skl_ddb_get_pipe_allocation_limits(struct drm_device *dev,
3060                                    const struct intel_crtc_state *cstate,
3061                                    struct skl_ddb_entry *alloc, /* out */
3062                                    int *num_active /* out */)
3063 {
3064         struct drm_atomic_state *state = cstate->base.state;
3065         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3066         struct drm_i915_private *dev_priv = to_i915(dev);
3067         struct drm_crtc *for_crtc = cstate->base.crtc;
3068         unsigned int pipe_size, ddb_size;
3069         int nth_active_pipe;
3070         int pipe = to_intel_crtc(for_crtc)->pipe;
3071
3072         if (WARN_ON(!state) || !cstate->base.active) {
3073                 alloc->start = 0;
3074                 alloc->end = 0;
3075                 *num_active = hweight32(dev_priv->active_crtcs);
3076                 return;
3077         }
3078
3079         if (intel_state->active_pipe_changes)
3080                 *num_active = hweight32(intel_state->active_crtcs);
3081         else
3082                 *num_active = hweight32(dev_priv->active_crtcs);
3083
3084         ddb_size = INTEL_INFO(dev_priv)->ddb_size;
3085         WARN_ON(ddb_size == 0);
3086
3087         ddb_size -= 4; /* 4 blocks for bypass path allocation */
3088
3089         /*
3090          * If the state doesn't change the active CRTC's, then there's
3091          * no need to recalculate; the existing pipe allocation limits
3092          * should remain unchanged.  Note that we're safe from racing
3093          * commits since any racing commit that changes the active CRTC
3094          * list would need to grab _all_ crtc locks, including the one
3095          * we currently hold.
3096          */
3097         if (!intel_state->active_pipe_changes) {
3098                 *alloc = dev_priv->wm.skl_hw.ddb.pipe[pipe];
3099                 return;
3100         }
3101
3102         nth_active_pipe = hweight32(intel_state->active_crtcs &
3103                                     (drm_crtc_mask(for_crtc) - 1));
3104         pipe_size = ddb_size / hweight32(intel_state->active_crtcs);
3105         alloc->start = nth_active_pipe * ddb_size / *num_active;
3106         alloc->end = alloc->start + pipe_size;
3107 }
3108
3109 static unsigned int skl_cursor_allocation(int num_active)
3110 {
3111         if (num_active == 1)
3112                 return 32;
3113
3114         return 8;
3115 }
3116
3117 static void skl_ddb_entry_init_from_hw(struct skl_ddb_entry *entry, u32 reg)
3118 {
3119         entry->start = reg & 0x3ff;
3120         entry->end = (reg >> 16) & 0x3ff;
3121         if (entry->end)
3122                 entry->end += 1;
3123 }
3124
3125 void skl_ddb_get_hw_state(struct drm_i915_private *dev_priv,
3126                           struct skl_ddb_allocation *ddb /* out */)
3127 {
3128         enum pipe pipe;
3129         int plane;
3130         u32 val;
3131
3132         memset(ddb, 0, sizeof(*ddb));
3133
3134         for_each_pipe(dev_priv, pipe) {
3135                 enum intel_display_power_domain power_domain;
3136
3137                 power_domain = POWER_DOMAIN_PIPE(pipe);
3138                 if (!intel_display_power_get_if_enabled(dev_priv, power_domain))
3139                         continue;
3140
3141                 for_each_plane(dev_priv, pipe, plane) {
3142                         val = I915_READ(PLANE_BUF_CFG(pipe, plane));
3143                         skl_ddb_entry_init_from_hw(&ddb->plane[pipe][plane],
3144                                                    val);
3145                 }
3146
3147                 val = I915_READ(CUR_BUF_CFG(pipe));
3148                 skl_ddb_entry_init_from_hw(&ddb->plane[pipe][PLANE_CURSOR],
3149                                            val);
3150
3151                 intel_display_power_put(dev_priv, power_domain);
3152         }
3153 }
3154
3155 /*
3156  * Determines the downscale amount of a plane for the purposes of watermark calculations.
3157  * The bspec defines downscale amount as:
3158  *
3159  * """
3160  * Horizontal down scale amount = maximum[1, Horizontal source size /
3161  *                                           Horizontal destination size]
3162  * Vertical down scale amount = maximum[1, Vertical source size /
3163  *                                         Vertical destination size]
3164  * Total down scale amount = Horizontal down scale amount *
3165  *                           Vertical down scale amount
3166  * """
3167  *
3168  * Return value is provided in 16.16 fixed point form to retain fractional part.
3169  * Caller should take care of dividing & rounding off the value.
3170  */
3171 static uint32_t
3172 skl_plane_downscale_amount(const struct intel_plane_state *pstate)
3173 {
3174         uint32_t downscale_h, downscale_w;
3175         uint32_t src_w, src_h, dst_w, dst_h;
3176
3177         if (WARN_ON(!pstate->base.visible))
3178                 return DRM_PLANE_HELPER_NO_SCALING;
3179
3180         /* n.b., src is 16.16 fixed point, dst is whole integer */
3181         src_w = drm_rect_width(&pstate->base.src);
3182         src_h = drm_rect_height(&pstate->base.src);
3183         dst_w = drm_rect_width(&pstate->base.dst);
3184         dst_h = drm_rect_height(&pstate->base.dst);
3185         if (intel_rotation_90_or_270(pstate->base.rotation))
3186                 swap(dst_w, dst_h);
3187
3188         downscale_h = max(src_h / dst_h, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3189         downscale_w = max(src_w / dst_w, (uint32_t)DRM_PLANE_HELPER_NO_SCALING);
3190
3191         /* Provide result in 16.16 fixed point */
3192         return (uint64_t)downscale_w * downscale_h >> 16;
3193 }
3194
3195 static unsigned int
3196 skl_plane_relative_data_rate(const struct intel_crtc_state *cstate,
3197                              const struct drm_plane_state *pstate,
3198                              int y)
3199 {
3200         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3201         struct drm_framebuffer *fb = pstate->fb;
3202         uint32_t down_scale_amount, data_rate;
3203         uint32_t width = 0, height = 0;
3204         unsigned format = fb ? fb->pixel_format : DRM_FORMAT_XRGB8888;
3205
3206         if (!intel_pstate->base.visible)
3207                 return 0;
3208         if (pstate->plane->type == DRM_PLANE_TYPE_CURSOR)
3209                 return 0;
3210         if (y && format != DRM_FORMAT_NV12)
3211                 return 0;
3212
3213         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3214         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3215
3216         if (intel_rotation_90_or_270(pstate->rotation))
3217                 swap(width, height);
3218
3219         /* for planar format */
3220         if (format == DRM_FORMAT_NV12) {
3221                 if (y)  /* y-plane data rate */
3222                         data_rate = width * height *
3223                                 drm_format_plane_cpp(format, 0);
3224                 else    /* uv-plane data rate */
3225                         data_rate = (width / 2) * (height / 2) *
3226                                 drm_format_plane_cpp(format, 1);
3227         } else {
3228                 /* for packed formats */
3229                 data_rate = width * height * drm_format_plane_cpp(format, 0);
3230         }
3231
3232         down_scale_amount = skl_plane_downscale_amount(intel_pstate);
3233
3234         return (uint64_t)data_rate * down_scale_amount >> 16;
3235 }
3236
3237 /*
3238  * We don't overflow 32 bits. Worst case is 3 planes enabled, each fetching
3239  * a 8192x4096@32bpp framebuffer:
3240  *   3 * 4096 * 8192  * 4 < 2^32
3241  */
3242 static unsigned int
3243 skl_get_total_relative_data_rate(struct intel_crtc_state *intel_cstate)
3244 {
3245         struct drm_crtc_state *cstate = &intel_cstate->base;
3246         struct drm_atomic_state *state = cstate->state;
3247         struct drm_crtc *crtc = cstate->crtc;
3248         struct drm_device *dev = crtc->dev;
3249         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3250         const struct drm_plane *plane;
3251         const struct intel_plane *intel_plane;
3252         struct drm_plane_state *pstate;
3253         unsigned int rate, total_data_rate = 0;
3254         int id;
3255         int i;
3256
3257         if (WARN_ON(!state))
3258                 return 0;
3259
3260         /* Calculate and cache data rate for each plane */
3261         for_each_plane_in_state(state, plane, pstate, i) {
3262                 id = skl_wm_plane_id(to_intel_plane(plane));
3263                 intel_plane = to_intel_plane(plane);
3264
3265                 if (intel_plane->pipe != intel_crtc->pipe)
3266                         continue;
3267
3268                 /* packed/uv */
3269                 rate = skl_plane_relative_data_rate(intel_cstate,
3270                                                     pstate, 0);
3271                 intel_cstate->wm.skl.plane_data_rate[id] = rate;
3272
3273                 /* y-plane */
3274                 rate = skl_plane_relative_data_rate(intel_cstate,
3275                                                     pstate, 1);
3276                 intel_cstate->wm.skl.plane_y_data_rate[id] = rate;
3277         }
3278
3279         /* Calculate CRTC's total data rate from cached values */
3280         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3281                 int id = skl_wm_plane_id(intel_plane);
3282
3283                 /* packed/uv */
3284                 total_data_rate += intel_cstate->wm.skl.plane_data_rate[id];
3285                 total_data_rate += intel_cstate->wm.skl.plane_y_data_rate[id];
3286         }
3287
3288         return total_data_rate;
3289 }
3290
3291 static uint16_t
3292 skl_ddb_min_alloc(const struct drm_plane_state *pstate,
3293                   const int y)
3294 {
3295         struct drm_framebuffer *fb = pstate->fb;
3296         struct intel_plane_state *intel_pstate = to_intel_plane_state(pstate);
3297         uint32_t src_w, src_h;
3298         uint32_t min_scanlines = 8;
3299         uint8_t plane_bpp;
3300
3301         if (WARN_ON(!fb))
3302                 return 0;
3303
3304         /* For packed formats, no y-plane, return 0 */
3305         if (y && fb->pixel_format != DRM_FORMAT_NV12)
3306                 return 0;
3307
3308         /* For Non Y-tile return 8-blocks */
3309         if (fb->modifier[0] != I915_FORMAT_MOD_Y_TILED &&
3310             fb->modifier[0] != I915_FORMAT_MOD_Yf_TILED)
3311                 return 8;
3312
3313         src_w = drm_rect_width(&intel_pstate->base.src) >> 16;
3314         src_h = drm_rect_height(&intel_pstate->base.src) >> 16;
3315
3316         if (intel_rotation_90_or_270(pstate->rotation))
3317                 swap(src_w, src_h);
3318
3319         /* Halve UV plane width and height for NV12 */
3320         if (fb->pixel_format == DRM_FORMAT_NV12 && !y) {
3321                 src_w /= 2;
3322                 src_h /= 2;
3323         }
3324
3325         if (fb->pixel_format == DRM_FORMAT_NV12 && !y)
3326                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 1);
3327         else
3328                 plane_bpp = drm_format_plane_cpp(fb->pixel_format, 0);
3329
3330         if (intel_rotation_90_or_270(pstate->rotation)) {
3331                 switch (plane_bpp) {
3332                 case 1:
3333                         min_scanlines = 32;
3334                         break;
3335                 case 2:
3336                         min_scanlines = 16;
3337                         break;
3338                 case 4:
3339                         min_scanlines = 8;
3340                         break;
3341                 case 8:
3342                         min_scanlines = 4;
3343                         break;
3344                 default:
3345                         WARN(1, "Unsupported pixel depth %u for rotation",
3346                              plane_bpp);
3347                         min_scanlines = 32;
3348                 }
3349         }
3350
3351         return DIV_ROUND_UP((4 * src_w * plane_bpp), 512) * min_scanlines/4 + 3;
3352 }
3353
3354 static int
3355 skl_allocate_pipe_ddb(struct intel_crtc_state *cstate,
3356                       struct skl_ddb_allocation *ddb /* out */)
3357 {
3358         struct drm_atomic_state *state = cstate->base.state;
3359         struct drm_crtc *crtc = cstate->base.crtc;
3360         struct drm_device *dev = crtc->dev;
3361         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3362         struct intel_plane *intel_plane;
3363         struct drm_plane *plane;
3364         struct drm_plane_state *pstate;
3365         enum pipe pipe = intel_crtc->pipe;
3366         struct skl_ddb_entry *alloc = &ddb->pipe[pipe];
3367         uint16_t alloc_size, start, cursor_blocks;
3368         uint16_t *minimum = cstate->wm.skl.minimum_blocks;
3369         uint16_t *y_minimum = cstate->wm.skl.minimum_y_blocks;
3370         unsigned int total_data_rate;
3371         int num_active;
3372         int id, i;
3373
3374         /* Clear the partitioning for disabled planes. */
3375         memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3376         memset(ddb->y_plane[pipe], 0, sizeof(ddb->y_plane[pipe]));
3377
3378         if (WARN_ON(!state))
3379                 return 0;
3380
3381         if (!cstate->base.active) {
3382                 ddb->pipe[pipe].start = ddb->pipe[pipe].end = 0;
3383                 return 0;
3384         }
3385
3386         skl_ddb_get_pipe_allocation_limits(dev, cstate, alloc, &num_active);
3387         alloc_size = skl_ddb_entry_size(alloc);
3388         if (alloc_size == 0) {
3389                 memset(ddb->plane[pipe], 0, sizeof(ddb->plane[pipe]));
3390                 return 0;
3391         }
3392
3393         cursor_blocks = skl_cursor_allocation(num_active);
3394         ddb->plane[pipe][PLANE_CURSOR].start = alloc->end - cursor_blocks;
3395         ddb->plane[pipe][PLANE_CURSOR].end = alloc->end;
3396
3397         alloc_size -= cursor_blocks;
3398
3399         /* 1. Allocate the mininum required blocks for each active plane */
3400         for_each_plane_in_state(state, plane, pstate, i) {
3401                 intel_plane = to_intel_plane(plane);
3402                 id = skl_wm_plane_id(intel_plane);
3403
3404                 if (intel_plane->pipe != pipe)
3405                         continue;
3406
3407                 if (!to_intel_plane_state(pstate)->base.visible) {
3408                         minimum[id] = 0;
3409                         y_minimum[id] = 0;
3410                         continue;
3411                 }
3412                 if (plane->type == DRM_PLANE_TYPE_CURSOR) {
3413                         minimum[id] = 0;
3414                         y_minimum[id] = 0;
3415                         continue;
3416                 }
3417
3418                 minimum[id] = skl_ddb_min_alloc(pstate, 0);
3419                 y_minimum[id] = skl_ddb_min_alloc(pstate, 1);
3420         }
3421
3422         for (i = 0; i < PLANE_CURSOR; i++) {
3423                 alloc_size -= minimum[i];
3424                 alloc_size -= y_minimum[i];
3425         }
3426
3427         /*
3428          * 2. Distribute the remaining space in proportion to the amount of
3429          * data each plane needs to fetch from memory.
3430          *
3431          * FIXME: we may not allocate every single block here.
3432          */
3433         total_data_rate = skl_get_total_relative_data_rate(cstate);
3434         if (total_data_rate == 0)
3435                 return 0;
3436
3437         start = alloc->start;
3438         for_each_intel_plane_on_crtc(dev, intel_crtc, intel_plane) {
3439                 unsigned int data_rate, y_data_rate;
3440                 uint16_t plane_blocks, y_plane_blocks = 0;
3441                 int id = skl_wm_plane_id(intel_plane);
3442
3443                 data_rate = cstate->wm.skl.plane_data_rate[id];
3444
3445                 /*
3446                  * allocation for (packed formats) or (uv-plane part of planar format):
3447                  * promote the expression to 64 bits to avoid overflowing, the
3448                  * result is < available as data_rate / total_data_rate < 1
3449                  */
3450                 plane_blocks = minimum[id];
3451                 plane_blocks += div_u64((uint64_t)alloc_size * data_rate,
3452                                         total_data_rate);
3453
3454                 /* Leave disabled planes at (0,0) */
3455                 if (data_rate) {
3456                         ddb->plane[pipe][id].start = start;
3457                         ddb->plane[pipe][id].end = start + plane_blocks;
3458                 }
3459
3460                 start += plane_blocks;
3461
3462                 /*
3463                  * allocation for y_plane part of planar format:
3464                  */
3465                 y_data_rate = cstate->wm.skl.plane_y_data_rate[id];
3466
3467                 y_plane_blocks = y_minimum[id];
3468                 y_plane_blocks += div_u64((uint64_t)alloc_size * y_data_rate,
3469                                         total_data_rate);
3470
3471                 if (y_data_rate) {
3472                         ddb->y_plane[pipe][id].start = start;
3473                         ddb->y_plane[pipe][id].end = start + y_plane_blocks;
3474                 }
3475
3476                 start += y_plane_blocks;
3477         }
3478
3479         return 0;
3480 }
3481
3482 /*
3483  * The max latency should be 257 (max the punit can code is 255 and we add 2us
3484  * for the read latency) and cpp should always be <= 8, so that
3485  * should allow pixel_rate up to ~2 GHz which seems sufficient since max
3486  * 2xcdclk is 1350 MHz and the pixel rate should never exceed that.
3487 */
3488 static uint32_t skl_wm_method1(uint32_t pixel_rate, uint8_t cpp, uint32_t latency)
3489 {
3490         uint32_t wm_intermediate_val, ret;
3491
3492         if (latency == 0)
3493                 return UINT_MAX;
3494
3495         wm_intermediate_val = latency * pixel_rate * cpp / 512;
3496         ret = DIV_ROUND_UP(wm_intermediate_val, 1000);
3497
3498         return ret;
3499 }
3500
3501 static uint32_t skl_wm_method2(uint32_t pixel_rate, uint32_t pipe_htotal,
3502                                uint32_t latency, uint32_t plane_blocks_per_line)
3503 {
3504         uint32_t ret;
3505         uint32_t wm_intermediate_val;
3506
3507         if (latency == 0)
3508                 return UINT_MAX;
3509
3510         wm_intermediate_val = latency * pixel_rate;
3511         ret = DIV_ROUND_UP(wm_intermediate_val, pipe_htotal * 1000) *
3512                                 plane_blocks_per_line;
3513
3514         return ret;
3515 }
3516
3517 static uint32_t skl_adjusted_plane_pixel_rate(const struct intel_crtc_state *cstate,
3518                                               struct intel_plane_state *pstate)
3519 {
3520         uint64_t adjusted_pixel_rate;
3521         uint64_t downscale_amount;
3522         uint64_t pixel_rate;
3523
3524         /* Shouldn't reach here on disabled planes... */
3525         if (WARN_ON(!pstate->base.visible))
3526                 return 0;
3527
3528         /*
3529          * Adjusted plane pixel rate is just the pipe's adjusted pixel rate
3530          * with additional adjustments for plane-specific scaling.
3531          */
3532         adjusted_pixel_rate = ilk_pipe_pixel_rate(cstate);
3533         downscale_amount = skl_plane_downscale_amount(pstate);
3534
3535         pixel_rate = adjusted_pixel_rate * downscale_amount >> 16;
3536         WARN_ON(pixel_rate != clamp_t(uint32_t, pixel_rate, 0, ~0));
3537
3538         return pixel_rate;
3539 }
3540
3541 static int skl_compute_plane_wm(const struct drm_i915_private *dev_priv,
3542                                 struct intel_crtc_state *cstate,
3543                                 struct intel_plane_state *intel_pstate,
3544                                 uint16_t ddb_allocation,
3545                                 int level,
3546                                 uint16_t *out_blocks, /* out */
3547                                 uint8_t *out_lines, /* out */
3548                                 bool *enabled /* out */)
3549 {
3550         struct drm_plane_state *pstate = &intel_pstate->base;
3551         struct drm_framebuffer *fb = pstate->fb;
3552         uint32_t latency = dev_priv->wm.skl_latency[level];
3553         uint32_t method1, method2;
3554         uint32_t plane_bytes_per_line, plane_blocks_per_line;
3555         uint32_t res_blocks, res_lines;
3556         uint32_t selected_result;
3557         uint8_t cpp;
3558         uint32_t width = 0, height = 0;
3559         uint32_t plane_pixel_rate;
3560         uint32_t y_tile_minimum, y_min_scanlines;
3561         struct intel_atomic_state *state =
3562                 to_intel_atomic_state(cstate->base.state);
3563         bool apply_memory_bw_wa = skl_needs_memory_bw_wa(state);
3564
3565         if (latency == 0 || !cstate->base.active || !intel_pstate->base.visible) {
3566                 *enabled = false;
3567                 return 0;
3568         }
3569
3570         if (apply_memory_bw_wa && fb->modifier[0] == I915_FORMAT_MOD_X_TILED)
3571                 latency += 15;
3572
3573         width = drm_rect_width(&intel_pstate->base.src) >> 16;
3574         height = drm_rect_height(&intel_pstate->base.src) >> 16;
3575
3576         if (intel_rotation_90_or_270(pstate->rotation))
3577                 swap(width, height);
3578
3579         cpp = drm_format_plane_cpp(fb->pixel_format, 0);
3580         plane_pixel_rate = skl_adjusted_plane_pixel_rate(cstate, intel_pstate);
3581
3582         if (intel_rotation_90_or_270(pstate->rotation)) {
3583                 int cpp = (fb->pixel_format == DRM_FORMAT_NV12) ?
3584                         drm_format_plane_cpp(fb->pixel_format, 1) :
3585                         drm_format_plane_cpp(fb->pixel_format, 0);
3586
3587                 switch (cpp) {
3588                 case 1:
3589                         y_min_scanlines = 16;
3590                         break;
3591                 case 2:
3592                         y_min_scanlines = 8;
3593                         break;
3594                 default:
3595                         WARN(1, "Unsupported pixel depth for rotation");
3596                 case 4:
3597                         y_min_scanlines = 4;
3598                         break;
3599                 }
3600         } else {
3601                 y_min_scanlines = 4;
3602         }
3603
3604         if (apply_memory_bw_wa)
3605                 y_min_scanlines *= 2;
3606
3607         plane_bytes_per_line = width * cpp;
3608         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3609             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3610                 plane_blocks_per_line =
3611                       DIV_ROUND_UP(plane_bytes_per_line * y_min_scanlines, 512);
3612                 plane_blocks_per_line /= y_min_scanlines;
3613         } else if (fb->modifier[0] == DRM_FORMAT_MOD_NONE) {
3614                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512)
3615                                         + 1;
3616         } else {
3617                 plane_blocks_per_line = DIV_ROUND_UP(plane_bytes_per_line, 512);
3618         }
3619
3620         method1 = skl_wm_method1(plane_pixel_rate, cpp, latency);
3621         method2 = skl_wm_method2(plane_pixel_rate,
3622                                  cstate->base.adjusted_mode.crtc_htotal,
3623                                  latency,
3624                                  plane_blocks_per_line);
3625
3626         y_tile_minimum = plane_blocks_per_line * y_min_scanlines;
3627
3628         if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3629             fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3630                 selected_result = max(method2, y_tile_minimum);
3631         } else {
3632                 if ((ddb_allocation / plane_blocks_per_line) >= 1)
3633                         selected_result = min(method1, method2);
3634                 else
3635                         selected_result = method1;
3636         }
3637
3638         res_blocks = selected_result + 1;
3639         res_lines = DIV_ROUND_UP(selected_result, plane_blocks_per_line);
3640
3641         if (level >= 1 && level <= 7) {
3642                 if (fb->modifier[0] == I915_FORMAT_MOD_Y_TILED ||
3643                     fb->modifier[0] == I915_FORMAT_MOD_Yf_TILED) {
3644                         res_blocks += y_tile_minimum;
3645                         res_lines += y_min_scanlines;
3646                 } else {
3647                         res_blocks++;
3648                 }
3649         }
3650
3651         if (res_blocks >= ddb_allocation || res_lines > 31) {
3652                 *enabled = false;
3653
3654                 /*
3655                  * If there are no valid level 0 watermarks, then we can't
3656                  * support this display configuration.
3657                  */
3658                 if (level) {
3659                         return 0;
3660                 } else {
3661                         DRM_DEBUG_KMS("Requested display configuration exceeds system watermark limitations\n");
3662                         DRM_DEBUG_KMS("Plane %d.%d: blocks required = %u/%u, lines required = %u/31\n",
3663                                       to_intel_crtc(cstate->base.crtc)->pipe,
3664                                       skl_wm_plane_id(to_intel_plane(pstate->plane)),
3665                                       res_blocks, ddb_allocation, res_lines);
3666
3667                         return -EINVAL;
3668                 }
3669         }
3670
3671         *out_blocks = res_blocks;
3672         *out_lines = res_lines;
3673         *enabled = true;
3674
3675         return 0;
3676 }
3677
3678 static int
3679 skl_compute_wm_level(const struct drm_i915_private *dev_priv,
3680                      struct skl_ddb_allocation *ddb,
3681                      struct intel_crtc_state *cstate,
3682                      int level,
3683                      struct skl_wm_level *result)
3684 {
3685         struct drm_atomic_state *state = cstate->base.state;
3686         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
3687         struct drm_plane *plane;
3688         struct intel_plane *intel_plane;
3689         struct intel_plane_state *intel_pstate;
3690         uint16_t ddb_blocks;
3691         enum pipe pipe = intel_crtc->pipe;
3692         int ret;
3693
3694         /*
3695          * We'll only calculate watermarks for planes that are actually
3696          * enabled, so make sure all other planes are set as disabled.
3697          */
3698         memset(result, 0, sizeof(*result));
3699
3700         for_each_intel_plane_mask(&dev_priv->drm,
3701                                   intel_plane,
3702                                   cstate->base.plane_mask) {
3703                 int i = skl_wm_plane_id(intel_plane);
3704
3705                 plane = &intel_plane->base;
3706                 intel_pstate = NULL;
3707                 if (state)
3708                         intel_pstate =
3709                                 intel_atomic_get_existing_plane_state(state,
3710                                                                       intel_plane);
3711
3712                 /*
3713                  * Note: If we start supporting multiple pending atomic commits
3714                  * against the same planes/CRTC's in the future, plane->state
3715                  * will no longer be the correct pre-state to use for the
3716                  * calculations here and we'll need to change where we get the
3717                  * 'unchanged' plane data from.
3718                  *
3719                  * For now this is fine because we only allow one queued commit
3720                  * against a CRTC.  Even if the plane isn't modified by this
3721                  * transaction and we don't have a plane lock, we still have
3722                  * the CRTC's lock, so we know that no other transactions are
3723                  * racing with us to update it.
3724                  */
3725                 if (!intel_pstate)
3726                         intel_pstate = to_intel_plane_state(plane->state);
3727
3728                 WARN_ON(!intel_pstate->base.fb);
3729
3730                 ddb_blocks = skl_ddb_entry_size(&ddb->plane[pipe][i]);
3731
3732                 ret = skl_compute_plane_wm(dev_priv,
3733                                            cstate,
3734                                            intel_pstate,
3735                                            ddb_blocks,
3736                                            level,
3737                                            &result->plane_res_b[i],
3738                                            &result->plane_res_l[i],
3739                                            &result->plane_en[i]);
3740                 if (ret)
3741                         return ret;
3742         }
3743
3744         return 0;
3745 }
3746
3747 static uint32_t
3748 skl_compute_linetime_wm(struct intel_crtc_state *cstate)
3749 {
3750         if (!cstate->base.active)
3751                 return 0;
3752
3753         if (WARN_ON(ilk_pipe_pixel_rate(cstate) == 0))
3754                 return 0;
3755
3756         return DIV_ROUND_UP(8 * cstate->base.adjusted_mode.crtc_htotal * 1000,
3757                             ilk_pipe_pixel_rate(cstate));
3758 }
3759
3760 static void skl_compute_transition_wm(struct intel_crtc_state *cstate,
3761                                       struct skl_wm_level *trans_wm /* out */)
3762 {
3763         struct drm_crtc *crtc = cstate->base.crtc;
3764         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3765         struct intel_plane *intel_plane;
3766
3767         if (!cstate->base.active)
3768                 return;
3769
3770         /* Until we know more, just disable transition WMs */
3771         for_each_intel_plane_on_crtc(crtc->dev, intel_crtc, intel_plane) {
3772                 int i = skl_wm_plane_id(intel_plane);
3773
3774                 trans_wm->plane_en[i] = false;
3775         }
3776 }
3777
3778 static int skl_build_pipe_wm(struct intel_crtc_state *cstate,
3779                              struct skl_ddb_allocation *ddb,
3780                              struct skl_pipe_wm *pipe_wm)
3781 {
3782         struct drm_device *dev = cstate->base.crtc->dev;
3783         const struct drm_i915_private *dev_priv = to_i915(dev);
3784         int level, max_level = ilk_wm_max_level(dev);
3785         int ret;
3786
3787         for (level = 0; level <= max_level; level++) {
3788                 ret = skl_compute_wm_level(dev_priv, ddb, cstate,
3789                                            level, &pipe_wm->wm[level]);
3790                 if (ret)
3791                         return ret;
3792         }
3793         pipe_wm->linetime = skl_compute_linetime_wm(cstate);
3794
3795         skl_compute_transition_wm(cstate, &pipe_wm->trans_wm);
3796
3797         return 0;
3798 }
3799
3800 static void skl_compute_wm_results(struct drm_device *dev,
3801                                    struct skl_pipe_wm *p_wm,
3802                                    struct skl_wm_values *r,
3803                                    struct intel_crtc *intel_crtc)
3804 {
3805         int level, max_level = ilk_wm_max_level(dev);
3806         enum pipe pipe = intel_crtc->pipe;
3807         uint32_t temp;
3808         int i;
3809
3810         for (level = 0; level <= max_level; level++) {
3811                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3812                         temp = 0;
3813
3814                         temp |= p_wm->wm[level].plane_res_l[i] <<
3815                                         PLANE_WM_LINES_SHIFT;
3816                         temp |= p_wm->wm[level].plane_res_b[i];
3817                         if (p_wm->wm[level].plane_en[i])
3818                                 temp |= PLANE_WM_EN;
3819
3820                         r->plane[pipe][i][level] = temp;
3821                 }
3822
3823                 temp = 0;
3824
3825                 temp |= p_wm->wm[level].plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3826                 temp |= p_wm->wm[level].plane_res_b[PLANE_CURSOR];
3827
3828                 if (p_wm->wm[level].plane_en[PLANE_CURSOR])
3829                         temp |= PLANE_WM_EN;
3830
3831                 r->plane[pipe][PLANE_CURSOR][level] = temp;
3832
3833         }
3834
3835         /* transition WMs */
3836         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
3837                 temp = 0;
3838                 temp |= p_wm->trans_wm.plane_res_l[i] << PLANE_WM_LINES_SHIFT;
3839                 temp |= p_wm->trans_wm.plane_res_b[i];
3840                 if (p_wm->trans_wm.plane_en[i])
3841                         temp |= PLANE_WM_EN;
3842
3843                 r->plane_trans[pipe][i] = temp;
3844         }
3845
3846         temp = 0;
3847         temp |= p_wm->trans_wm.plane_res_l[PLANE_CURSOR] << PLANE_WM_LINES_SHIFT;
3848         temp |= p_wm->trans_wm.plane_res_b[PLANE_CURSOR];
3849         if (p_wm->trans_wm.plane_en[PLANE_CURSOR])
3850                 temp |= PLANE_WM_EN;
3851
3852         r->plane_trans[pipe][PLANE_CURSOR] = temp;
3853
3854         r->wm_linetime[pipe] = p_wm->linetime;
3855 }
3856
3857 static void skl_ddb_entry_write(struct drm_i915_private *dev_priv,
3858                                 i915_reg_t reg,
3859                                 const struct skl_ddb_entry *entry)
3860 {
3861         if (entry->end)
3862                 I915_WRITE(reg, (entry->end - 1) << 16 | entry->start);
3863         else
3864                 I915_WRITE(reg, 0);
3865 }
3866
3867 void skl_write_plane_wm(struct intel_crtc *intel_crtc,
3868                         const struct skl_wm_values *wm,
3869                         int plane)
3870 {
3871         struct drm_crtc *crtc = &intel_crtc->base;
3872         struct drm_device *dev = crtc->dev;
3873         struct drm_i915_private *dev_priv = to_i915(dev);
3874         int level, max_level = ilk_wm_max_level(dev);
3875         enum pipe pipe = intel_crtc->pipe;
3876
3877         for (level = 0; level <= max_level; level++) {
3878                 I915_WRITE(PLANE_WM(pipe, plane, level),
3879                            wm->plane[pipe][plane][level]);
3880         }
3881         I915_WRITE(PLANE_WM_TRANS(pipe, plane), wm->plane_trans[pipe][plane]);
3882
3883         skl_ddb_entry_write(dev_priv, PLANE_BUF_CFG(pipe, plane),
3884                             &wm->ddb.plane[pipe][plane]);
3885         skl_ddb_entry_write(dev_priv, PLANE_NV12_BUF_CFG(pipe, plane),
3886                             &wm->ddb.y_plane[pipe][plane]);
3887 }
3888
3889 void skl_write_cursor_wm(struct intel_crtc *intel_crtc,
3890                          const struct skl_wm_values *wm)
3891 {
3892         struct drm_crtc *crtc = &intel_crtc->base;
3893         struct drm_device *dev = crtc->dev;
3894         struct drm_i915_private *dev_priv = to_i915(dev);
3895         int level, max_level = ilk_wm_max_level(dev);
3896         enum pipe pipe = intel_crtc->pipe;
3897
3898         for (level = 0; level <= max_level; level++) {
3899                 I915_WRITE(CUR_WM(pipe, level),
3900                            wm->plane[pipe][PLANE_CURSOR][level]);
3901         }
3902         I915_WRITE(CUR_WM_TRANS(pipe), wm->plane_trans[pipe][PLANE_CURSOR]);
3903
3904         skl_ddb_entry_write(dev_priv, CUR_BUF_CFG(pipe),
3905                             &wm->ddb.plane[pipe][PLANE_CURSOR]);
3906 }
3907
3908 bool skl_ddb_allocation_equals(const struct skl_ddb_allocation *old,
3909                                const struct skl_ddb_allocation *new,
3910                                enum pipe pipe)
3911 {
3912         return new->pipe[pipe].start == old->pipe[pipe].start &&
3913                new->pipe[pipe].end == old->pipe[pipe].end;
3914 }
3915
3916 static inline bool skl_ddb_entries_overlap(const struct skl_ddb_entry *a,
3917                                            const struct skl_ddb_entry *b)
3918 {
3919         return a->start < b->end && b->start < a->end;
3920 }
3921
3922 bool skl_ddb_allocation_overlaps(struct drm_atomic_state *state,
3923                                  const struct skl_ddb_allocation *old,
3924                                  const struct skl_ddb_allocation *new,
3925                                  enum pipe pipe)
3926 {
3927         struct drm_device *dev = state->dev;
3928         struct intel_crtc *intel_crtc;
3929         enum pipe otherp;
3930
3931         for_each_intel_crtc(dev, intel_crtc) {
3932                 otherp = intel_crtc->pipe;
3933
3934                 if (otherp == pipe)
3935                         continue;
3936
3937                 if (skl_ddb_entries_overlap(&new->pipe[pipe],
3938                                             &old->pipe[otherp]))
3939                         return true;
3940         }
3941
3942         return false;
3943 }
3944
3945 static int skl_update_pipe_wm(struct drm_crtc_state *cstate,
3946                               struct skl_ddb_allocation *ddb, /* out */
3947                               struct skl_pipe_wm *pipe_wm, /* out */
3948                               bool *changed /* out */)
3949 {
3950         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->crtc);
3951         struct intel_crtc_state *intel_cstate = to_intel_crtc_state(cstate);
3952         int ret;
3953
3954         ret = skl_build_pipe_wm(intel_cstate, ddb, pipe_wm);
3955         if (ret)
3956                 return ret;
3957
3958         if (!memcmp(&intel_crtc->wm.active.skl, pipe_wm, sizeof(*pipe_wm)))
3959                 *changed = false;
3960         else
3961                 *changed = true;
3962
3963         return 0;
3964 }
3965
3966 static uint32_t
3967 pipes_modified(struct drm_atomic_state *state)
3968 {
3969         struct drm_crtc *crtc;
3970         struct drm_crtc_state *cstate;
3971         uint32_t i, ret = 0;
3972
3973         for_each_crtc_in_state(state, crtc, cstate, i)
3974                 ret |= drm_crtc_mask(crtc);
3975
3976         return ret;
3977 }
3978
3979 int
3980 skl_ddb_add_affected_planes(struct intel_crtc_state *cstate)
3981 {
3982         struct drm_atomic_state *state = cstate->base.state;
3983         struct drm_device *dev = state->dev;
3984         struct drm_crtc *crtc = cstate->base.crtc;
3985         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
3986         struct drm_i915_private *dev_priv = to_i915(dev);
3987         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
3988         struct skl_ddb_allocation *new_ddb = &intel_state->wm_results.ddb;
3989         struct skl_ddb_allocation *cur_ddb = &dev_priv->wm.skl_hw.ddb;
3990         struct drm_plane_state *plane_state;
3991         struct drm_plane *plane;
3992         enum pipe pipe = intel_crtc->pipe;
3993         int id;
3994
3995         WARN_ON(!drm_atomic_get_existing_crtc_state(state, crtc));
3996
3997         drm_for_each_plane_mask(plane, dev, crtc->state->plane_mask) {
3998                 id = skl_wm_plane_id(to_intel_plane(plane));
3999
4000                 if (skl_ddb_entry_equal(&cur_ddb->plane[pipe][id],
4001                                         &new_ddb->plane[pipe][id]) &&
4002                     skl_ddb_entry_equal(&cur_ddb->y_plane[pipe][id],
4003                                         &new_ddb->y_plane[pipe][id]))
4004                         continue;
4005
4006                 plane_state = drm_atomic_get_plane_state(state, plane);
4007                 if (IS_ERR(plane_state))
4008                         return PTR_ERR(plane_state);
4009         }
4010
4011         return 0;
4012 }
4013
4014 static int
4015 skl_compute_ddb(struct drm_atomic_state *state)
4016 {
4017         struct drm_device *dev = state->dev;
4018         struct drm_i915_private *dev_priv = to_i915(dev);
4019         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4020         struct intel_crtc *intel_crtc;
4021         struct skl_ddb_allocation *ddb = &intel_state->wm_results.ddb;
4022         uint32_t realloc_pipes = pipes_modified(state);
4023         int ret;
4024
4025         /*
4026          * If this is our first atomic update following hardware readout,
4027          * we can't trust the DDB that the BIOS programmed for us.  Let's
4028          * pretend that all pipes switched active status so that we'll
4029          * ensure a full DDB recompute.
4030          */
4031         if (dev_priv->wm.distrust_bios_wm) {
4032                 ret = drm_modeset_lock(&dev->mode_config.connection_mutex,
4033                                        state->acquire_ctx);
4034                 if (ret)
4035                         return ret;
4036
4037                 intel_state->active_pipe_changes = ~0;
4038
4039                 /*
4040                  * We usually only initialize intel_state->active_crtcs if we
4041                  * we're doing a modeset; make sure this field is always
4042                  * initialized during the sanitization process that happens
4043                  * on the first commit too.
4044                  */
4045                 if (!intel_state->modeset)
4046                         intel_state->active_crtcs = dev_priv->active_crtcs;
4047         }
4048
4049         /*
4050          * If the modeset changes which CRTC's are active, we need to
4051          * recompute the DDB allocation for *all* active pipes, even
4052          * those that weren't otherwise being modified in any way by this
4053          * atomic commit.  Due to the shrinking of the per-pipe allocations
4054          * when new active CRTC's are added, it's possible for a pipe that
4055          * we were already using and aren't changing at all here to suddenly
4056          * become invalid if its DDB needs exceeds its new allocation.
4057          *
4058          * Note that if we wind up doing a full DDB recompute, we can't let
4059          * any other display updates race with this transaction, so we need
4060          * to grab the lock on *all* CRTC's.
4061          */
4062         if (intel_state->active_pipe_changes) {
4063                 realloc_pipes = ~0;
4064                 intel_state->wm_results.dirty_pipes = ~0;
4065         }
4066
4067         /*
4068          * We're not recomputing for the pipes not included in the commit, so
4069          * make sure we start with the current state.
4070          */
4071         memcpy(ddb, &dev_priv->wm.skl_hw.ddb, sizeof(*ddb));
4072
4073         for_each_intel_crtc_mask(dev, intel_crtc, realloc_pipes) {
4074                 struct intel_crtc_state *cstate;
4075
4076                 cstate = intel_atomic_get_crtc_state(state, intel_crtc);
4077                 if (IS_ERR(cstate))
4078                         return PTR_ERR(cstate);
4079
4080                 ret = skl_allocate_pipe_ddb(cstate, ddb);
4081                 if (ret)
4082                         return ret;
4083
4084                 ret = skl_ddb_add_affected_planes(cstate);
4085                 if (ret)
4086                         return ret;
4087         }
4088
4089         return 0;
4090 }
4091
4092 static void
4093 skl_copy_wm_for_pipe(struct skl_wm_values *dst,
4094                      struct skl_wm_values *src,
4095                      enum pipe pipe)
4096 {
4097         dst->wm_linetime[pipe] = src->wm_linetime[pipe];
4098         memcpy(dst->plane[pipe], src->plane[pipe],
4099                sizeof(dst->plane[pipe]));
4100         memcpy(dst->plane_trans[pipe], src->plane_trans[pipe],
4101                sizeof(dst->plane_trans[pipe]));
4102
4103         dst->ddb.pipe[pipe] = src->ddb.pipe[pipe];
4104         memcpy(dst->ddb.y_plane[pipe], src->ddb.y_plane[pipe],
4105                sizeof(dst->ddb.y_plane[pipe]));
4106         memcpy(dst->ddb.plane[pipe], src->ddb.plane[pipe],
4107                sizeof(dst->ddb.plane[pipe]));
4108 }
4109
4110 static int
4111 skl_compute_wm(struct drm_atomic_state *state)
4112 {
4113         struct drm_crtc *crtc;
4114         struct drm_crtc_state *cstate;
4115         struct intel_atomic_state *intel_state = to_intel_atomic_state(state);
4116         struct skl_wm_values *results = &intel_state->wm_results;
4117         struct drm_device *dev = state->dev;
4118         struct skl_pipe_wm *pipe_wm;
4119         bool changed = false;
4120         int ret, i;
4121
4122         /*
4123          * When we distrust bios wm we always need to recompute to set the
4124          * expected DDB allocations for each CRTC.
4125          */
4126         if (to_i915(dev)->wm.distrust_bios_wm)
4127                 changed = true;
4128
4129         /*
4130          * If this transaction isn't actually touching any CRTC's, don't
4131          * bother with watermark calculation.  Note that if we pass this
4132          * test, we're guaranteed to hold at least one CRTC state mutex,
4133          * which means we can safely use values like dev_priv->active_crtcs
4134          * since any racing commits that want to update them would need to
4135          * hold _all_ CRTC state mutexes.
4136          */
4137         for_each_crtc_in_state(state, crtc, cstate, i)
4138                 changed = true;
4139
4140         if (!changed)
4141                 return 0;
4142
4143         /* Clear all dirty flags */
4144         results->dirty_pipes = 0;
4145
4146         ret = skl_compute_ddb(state);
4147         if (ret)
4148                 return ret;
4149
4150         /*
4151          * Calculate WM's for all pipes that are part of this transaction.
4152          * Note that the DDB allocation above may have added more CRTC's that
4153          * weren't otherwise being modified (and set bits in dirty_pipes) if
4154          * pipe allocations had to change.
4155          *
4156          * FIXME:  Now that we're doing this in the atomic check phase, we
4157          * should allow skl_update_pipe_wm() to return failure in cases where
4158          * no suitable watermark values can be found.
4159          */
4160         for_each_crtc_in_state(state, crtc, cstate, i) {
4161                 struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4162                 struct intel_crtc_state *intel_cstate =
4163                         to_intel_crtc_state(cstate);
4164
4165                 pipe_wm = &intel_cstate->wm.skl.optimal;
4166                 ret = skl_update_pipe_wm(cstate, &results->ddb, pipe_wm,
4167                                          &changed);
4168                 if (ret)
4169                         return ret;
4170
4171                 if (changed)
4172                         results->dirty_pipes |= drm_crtc_mask(crtc);
4173
4174                 if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4175                         /* This pipe's WM's did not change */
4176                         continue;
4177
4178                 intel_cstate->update_wm_pre = true;
4179                 skl_compute_wm_results(crtc->dev, pipe_wm, results, intel_crtc);
4180         }
4181
4182         return 0;
4183 }
4184
4185 static void skl_update_wm(struct drm_crtc *crtc)
4186 {
4187         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4188         struct drm_device *dev = crtc->dev;
4189         struct drm_i915_private *dev_priv = to_i915(dev);
4190         struct skl_wm_values *results = &dev_priv->wm.skl_results;
4191         struct skl_wm_values *hw_vals = &dev_priv->wm.skl_hw;
4192         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4193         struct skl_pipe_wm *pipe_wm = &cstate->wm.skl.optimal;
4194         enum pipe pipe = intel_crtc->pipe;
4195
4196         if ((results->dirty_pipes & drm_crtc_mask(crtc)) == 0)
4197                 return;
4198
4199         intel_crtc->wm.active.skl = *pipe_wm;
4200
4201         mutex_lock(&dev_priv->wm.wm_mutex);
4202
4203         /*
4204          * If this pipe isn't active already, we're going to be enabling it
4205          * very soon. Since it's safe to update a pipe's ddb allocation while
4206          * the pipe's shut off, just do so here. Already active pipes will have
4207          * their watermarks updated once we update their planes.
4208          */
4209         if (crtc->state->active_changed) {
4210                 int plane;
4211
4212                 for (plane = 0; plane < intel_num_planes(intel_crtc); plane++)
4213                         skl_write_plane_wm(intel_crtc, results, plane);
4214
4215                 skl_write_cursor_wm(intel_crtc, results);
4216         }
4217
4218         skl_copy_wm_for_pipe(hw_vals, results, pipe);
4219
4220         mutex_unlock(&dev_priv->wm.wm_mutex);
4221 }
4222
4223 static void ilk_compute_wm_config(struct drm_device *dev,
4224                                   struct intel_wm_config *config)
4225 {
4226         struct intel_crtc *crtc;
4227
4228         /* Compute the currently _active_ config */
4229         for_each_intel_crtc(dev, crtc) {
4230                 const struct intel_pipe_wm *wm = &crtc->wm.active.ilk;
4231
4232                 if (!wm->pipe_enabled)
4233                         continue;
4234
4235                 config->sprites_enabled |= wm->sprites_enabled;
4236                 config->sprites_scaled |= wm->sprites_scaled;
4237                 config->num_pipes_active++;
4238         }
4239 }
4240
4241 static void ilk_program_watermarks(struct drm_i915_private *dev_priv)
4242 {
4243         struct drm_device *dev = &dev_priv->drm;
4244         struct intel_pipe_wm lp_wm_1_2 = {}, lp_wm_5_6 = {}, *best_lp_wm;
4245         struct ilk_wm_maximums max;
4246         struct intel_wm_config config = {};
4247         struct ilk_wm_values results = {};
4248         enum intel_ddb_partitioning partitioning;
4249
4250         ilk_compute_wm_config(dev, &config);
4251
4252         ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_1_2, &max);
4253         ilk_wm_merge(dev, &config, &max, &lp_wm_1_2);
4254
4255         /* 5/6 split only in single pipe config on IVB+ */
4256         if (INTEL_INFO(dev)->gen >= 7 &&
4257             config.num_pipes_active == 1 && config.sprites_enabled) {
4258                 ilk_compute_wm_maximums(dev, 1, &config, INTEL_DDB_PART_5_6, &max);
4259                 ilk_wm_merge(dev, &config, &max, &lp_wm_5_6);
4260
4261                 best_lp_wm = ilk_find_best_result(dev, &lp_wm_1_2, &lp_wm_5_6);
4262         } else {
4263                 best_lp_wm = &lp_wm_1_2;
4264         }
4265
4266         partitioning = (best_lp_wm == &lp_wm_1_2) ?
4267                        INTEL_DDB_PART_1_2 : INTEL_DDB_PART_5_6;
4268
4269         ilk_compute_wm_results(dev, best_lp_wm, partitioning, &results);
4270
4271         ilk_write_wm_values(dev_priv, &results);
4272 }
4273
4274 static void ilk_initial_watermarks(struct intel_crtc_state *cstate)
4275 {
4276         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4277         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4278
4279         mutex_lock(&dev_priv->wm.wm_mutex);
4280         intel_crtc->wm.active.ilk = cstate->wm.ilk.intermediate;
4281         ilk_program_watermarks(dev_priv);
4282         mutex_unlock(&dev_priv->wm.wm_mutex);
4283 }
4284
4285 static void ilk_optimize_watermarks(struct intel_crtc_state *cstate)
4286 {
4287         struct drm_i915_private *dev_priv = to_i915(cstate->base.crtc->dev);
4288         struct intel_crtc *intel_crtc = to_intel_crtc(cstate->base.crtc);
4289
4290         mutex_lock(&dev_priv->wm.wm_mutex);
4291         if (cstate->wm.need_postvbl_update) {
4292                 intel_crtc->wm.active.ilk = cstate->wm.ilk.optimal;
4293                 ilk_program_watermarks(dev_priv);
4294         }
4295         mutex_unlock(&dev_priv->wm.wm_mutex);
4296 }
4297
4298 static void skl_pipe_wm_active_state(uint32_t val,
4299                                      struct skl_pipe_wm *active,
4300                                      bool is_transwm,
4301                                      bool is_cursor,
4302                                      int i,
4303                                      int level)
4304 {
4305         bool is_enabled = (val & PLANE_WM_EN) != 0;
4306
4307         if (!is_transwm) {
4308                 if (!is_cursor) {
4309                         active->wm[level].plane_en[i] = is_enabled;
4310                         active->wm[level].plane_res_b[i] =
4311                                         val & PLANE_WM_BLOCKS_MASK;
4312                         active->wm[level].plane_res_l[i] =
4313                                         (val >> PLANE_WM_LINES_SHIFT) &
4314                                                 PLANE_WM_LINES_MASK;
4315                 } else {
4316                         active->wm[level].plane_en[PLANE_CURSOR] = is_enabled;
4317                         active->wm[level].plane_res_b[PLANE_CURSOR] =
4318                                         val & PLANE_WM_BLOCKS_MASK;
4319                         active->wm[level].plane_res_l[PLANE_CURSOR] =
4320                                         (val >> PLANE_WM_LINES_SHIFT) &
4321                                                 PLANE_WM_LINES_MASK;
4322                 }
4323         } else {
4324                 if (!is_cursor) {
4325                         active->trans_wm.plane_en[i] = is_enabled;
4326                         active->trans_wm.plane_res_b[i] =
4327                                         val & PLANE_WM_BLOCKS_MASK;
4328                         active->trans_wm.plane_res_l[i] =
4329                                         (val >> PLANE_WM_LINES_SHIFT) &
4330                                                 PLANE_WM_LINES_MASK;
4331                 } else {
4332                         active->trans_wm.plane_en[PLANE_CURSOR] = is_enabled;
4333                         active->trans_wm.plane_res_b[PLANE_CURSOR] =
4334                                         val & PLANE_WM_BLOCKS_MASK;
4335                         active->trans_wm.plane_res_l[PLANE_CURSOR] =
4336                                         (val >> PLANE_WM_LINES_SHIFT) &
4337                                                 PLANE_WM_LINES_MASK;
4338                 }
4339         }
4340 }
4341
4342 static void skl_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4343 {
4344         struct drm_device *dev = crtc->dev;
4345         struct drm_i915_private *dev_priv = to_i915(dev);
4346         struct skl_wm_values *hw = &dev_priv->wm.skl_hw;
4347         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4348         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4349         struct skl_pipe_wm *active = &cstate->wm.skl.optimal;
4350         enum pipe pipe = intel_crtc->pipe;
4351         int level, i, max_level;
4352         uint32_t temp;
4353
4354         max_level = ilk_wm_max_level(dev);
4355
4356         hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4357
4358         for (level = 0; level <= max_level; level++) {
4359                 for (i = 0; i < intel_num_planes(intel_crtc); i++)
4360                         hw->plane[pipe][i][level] =
4361                                         I915_READ(PLANE_WM(pipe, i, level));
4362                 hw->plane[pipe][PLANE_CURSOR][level] = I915_READ(CUR_WM(pipe, level));
4363         }
4364
4365         for (i = 0; i < intel_num_planes(intel_crtc); i++)
4366                 hw->plane_trans[pipe][i] = I915_READ(PLANE_WM_TRANS(pipe, i));
4367         hw->plane_trans[pipe][PLANE_CURSOR] = I915_READ(CUR_WM_TRANS(pipe));
4368
4369         if (!intel_crtc->active)
4370                 return;
4371
4372         hw->dirty_pipes |= drm_crtc_mask(crtc);
4373
4374         active->linetime = hw->wm_linetime[pipe];
4375
4376         for (level = 0; level <= max_level; level++) {
4377                 for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4378                         temp = hw->plane[pipe][i][level];
4379                         skl_pipe_wm_active_state(temp, active, false,
4380                                                 false, i, level);
4381                 }
4382                 temp = hw->plane[pipe][PLANE_CURSOR][level];
4383                 skl_pipe_wm_active_state(temp, active, false, true, i, level);
4384         }
4385
4386         for (i = 0; i < intel_num_planes(intel_crtc); i++) {
4387                 temp = hw->plane_trans[pipe][i];
4388                 skl_pipe_wm_active_state(temp, active, true, false, i, 0);
4389         }
4390
4391         temp = hw->plane_trans[pipe][PLANE_CURSOR];
4392         skl_pipe_wm_active_state(temp, active, true, true, i, 0);
4393
4394         intel_crtc->wm.active.skl = *active;
4395 }
4396
4397 void skl_wm_get_hw_state(struct drm_device *dev)
4398 {
4399         struct drm_i915_private *dev_priv = to_i915(dev);
4400         struct skl_ddb_allocation *ddb = &dev_priv->wm.skl_hw.ddb;
4401         struct drm_crtc *crtc;
4402
4403         skl_ddb_get_hw_state(dev_priv, ddb);
4404         list_for_each_entry(crtc, &dev->mode_config.crtc_list, head)
4405                 skl_pipe_wm_get_hw_state(crtc);
4406
4407         if (dev_priv->active_crtcs) {
4408                 /* Fully recompute DDB on first atomic commit */
4409                 dev_priv->wm.distrust_bios_wm = true;
4410         } else {
4411                 /* Easy/common case; just sanitize DDB now if everything off */
4412                 memset(ddb, 0, sizeof(*ddb));
4413         }
4414 }
4415
4416 static void ilk_pipe_wm_get_hw_state(struct drm_crtc *crtc)
4417 {
4418         struct drm_device *dev = crtc->dev;
4419         struct drm_i915_private *dev_priv = to_i915(dev);
4420         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4421         struct intel_crtc *intel_crtc = to_intel_crtc(crtc);
4422         struct intel_crtc_state *cstate = to_intel_crtc_state(crtc->state);
4423         struct intel_pipe_wm *active = &cstate->wm.ilk.optimal;
4424         enum pipe pipe = intel_crtc->pipe;
4425         static const i915_reg_t wm0_pipe_reg[] = {
4426                 [PIPE_A] = WM0_PIPEA_ILK,
4427                 [PIPE_B] = WM0_PIPEB_ILK,
4428                 [PIPE_C] = WM0_PIPEC_IVB,
4429         };
4430
4431         hw->wm_pipe[pipe] = I915_READ(wm0_pipe_reg[pipe]);
4432         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4433                 hw->wm_linetime[pipe] = I915_READ(PIPE_WM_LINETIME(pipe));
4434
4435         memset(active, 0, sizeof(*active));
4436
4437         active->pipe_enabled = intel_crtc->active;
4438
4439         if (active->pipe_enabled) {
4440                 u32 tmp = hw->wm_pipe[pipe];
4441
4442                 /*
4443                  * For active pipes LP0 watermark is marked as
4444                  * enabled, and LP1+ watermaks as disabled since
4445                  * we can't really reverse compute them in case
4446                  * multiple pipes are active.
4447                  */
4448                 active->wm[0].enable = true;
4449                 active->wm[0].pri_val = (tmp & WM0_PIPE_PLANE_MASK) >> WM0_PIPE_PLANE_SHIFT;
4450                 active->wm[0].spr_val = (tmp & WM0_PIPE_SPRITE_MASK) >> WM0_PIPE_SPRITE_SHIFT;
4451                 active->wm[0].cur_val = tmp & WM0_PIPE_CURSOR_MASK;
4452                 active->linetime = hw->wm_linetime[pipe];
4453         } else {
4454                 int level, max_level = ilk_wm_max_level(dev);
4455
4456                 /*
4457                  * For inactive pipes, all watermark levels
4458                  * should be marked as enabled but zeroed,
4459                  * which is what we'd compute them to.
4460                  */
4461                 for (level = 0; level <= max_level; level++)
4462                         active->wm[level].enable = true;
4463         }
4464
4465         intel_crtc->wm.active.ilk = *active;
4466 }
4467
4468 #define _FW_WM(value, plane) \
4469         (((value) & DSPFW_ ## plane ## _MASK) >> DSPFW_ ## plane ## _SHIFT)
4470 #define _FW_WM_VLV(value, plane) \
4471         (((value) & DSPFW_ ## plane ## _MASK_VLV) >> DSPFW_ ## plane ## _SHIFT)
4472
4473 static void vlv_read_wm_values(struct drm_i915_private *dev_priv,
4474                                struct vlv_wm_values *wm)
4475 {
4476         enum pipe pipe;
4477         uint32_t tmp;
4478
4479         for_each_pipe(dev_priv, pipe) {
4480                 tmp = I915_READ(VLV_DDL(pipe));
4481
4482                 wm->ddl[pipe].primary =
4483                         (tmp >> DDL_PLANE_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4484                 wm->ddl[pipe].cursor =
4485                         (tmp >> DDL_CURSOR_SHIFT) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4486                 wm->ddl[pipe].sprite[0] =
4487                         (tmp >> DDL_SPRITE_SHIFT(0)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4488                 wm->ddl[pipe].sprite[1] =
4489                         (tmp >> DDL_SPRITE_SHIFT(1)) & (DDL_PRECISION_HIGH | DRAIN_LATENCY_MASK);
4490         }
4491
4492         tmp = I915_READ(DSPFW1);
4493         wm->sr.plane = _FW_WM(tmp, SR);
4494         wm->pipe[PIPE_B].cursor = _FW_WM(tmp, CURSORB);
4495         wm->pipe[PIPE_B].primary = _FW_WM_VLV(tmp, PLANEB);
4496         wm->pipe[PIPE_A].primary = _FW_WM_VLV(tmp, PLANEA);
4497
4498         tmp = I915_READ(DSPFW2);
4499         wm->pipe[PIPE_A].sprite[1] = _FW_WM_VLV(tmp, SPRITEB);
4500         wm->pipe[PIPE_A].cursor = _FW_WM(tmp, CURSORA);
4501         wm->pipe[PIPE_A].sprite[0] = _FW_WM_VLV(tmp, SPRITEA);
4502
4503         tmp = I915_READ(DSPFW3);
4504         wm->sr.cursor = _FW_WM(tmp, CURSOR_SR);
4505
4506         if (IS_CHERRYVIEW(dev_priv)) {
4507                 tmp = I915_READ(DSPFW7_CHV);
4508                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4509                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4510
4511                 tmp = I915_READ(DSPFW8_CHV);
4512                 wm->pipe[PIPE_C].sprite[1] = _FW_WM_VLV(tmp, SPRITEF);
4513                 wm->pipe[PIPE_C].sprite[0] = _FW_WM_VLV(tmp, SPRITEE);
4514
4515                 tmp = I915_READ(DSPFW9_CHV);
4516                 wm->pipe[PIPE_C].primary = _FW_WM_VLV(tmp, PLANEC);
4517                 wm->pipe[PIPE_C].cursor = _FW_WM(tmp, CURSORC);
4518
4519                 tmp = I915_READ(DSPHOWM);
4520                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4521                 wm->pipe[PIPE_C].sprite[1] |= _FW_WM(tmp, SPRITEF_HI) << 8;
4522                 wm->pipe[PIPE_C].sprite[0] |= _FW_WM(tmp, SPRITEE_HI) << 8;
4523                 wm->pipe[PIPE_C].primary |= _FW_WM(tmp, PLANEC_HI) << 8;
4524                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4525                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4526                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4527                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4528                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4529                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4530         } else {
4531                 tmp = I915_READ(DSPFW7);
4532                 wm->pipe[PIPE_B].sprite[1] = _FW_WM_VLV(tmp, SPRITED);
4533                 wm->pipe[PIPE_B].sprite[0] = _FW_WM_VLV(tmp, SPRITEC);
4534
4535                 tmp = I915_READ(DSPHOWM);
4536                 wm->sr.plane |= _FW_WM(tmp, SR_HI) << 9;
4537                 wm->pipe[PIPE_B].sprite[1] |= _FW_WM(tmp, SPRITED_HI) << 8;
4538                 wm->pipe[PIPE_B].sprite[0] |= _FW_WM(tmp, SPRITEC_HI) << 8;
4539                 wm->pipe[PIPE_B].primary |= _FW_WM(tmp, PLANEB_HI) << 8;
4540                 wm->pipe[PIPE_A].sprite[1] |= _FW_WM(tmp, SPRITEB_HI) << 8;
4541                 wm->pipe[PIPE_A].sprite[0] |= _FW_WM(tmp, SPRITEA_HI) << 8;
4542                 wm->pipe[PIPE_A].primary |= _FW_WM(tmp, PLANEA_HI) << 8;
4543         }
4544 }
4545
4546 #undef _FW_WM
4547 #undef _FW_WM_VLV
4548
4549 void vlv_wm_get_hw_state(struct drm_device *dev)
4550 {
4551         struct drm_i915_private *dev_priv = to_i915(dev);
4552         struct vlv_wm_values *wm = &dev_priv->wm.vlv;
4553         struct intel_plane *plane;
4554         enum pipe pipe;
4555         u32 val;
4556
4557         vlv_read_wm_values(dev_priv, wm);
4558
4559         for_each_intel_plane(dev, plane) {
4560                 switch (plane->base.type) {
4561                         int sprite;
4562                 case DRM_PLANE_TYPE_CURSOR:
4563                         plane->wm.fifo_size = 63;
4564                         break;
4565                 case DRM_PLANE_TYPE_PRIMARY:
4566                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, 0);
4567                         break;
4568                 case DRM_PLANE_TYPE_OVERLAY:
4569                         sprite = plane->plane;
4570                         plane->wm.fifo_size = vlv_get_fifo_size(dev, plane->pipe, sprite + 1);
4571                         break;
4572                 }
4573         }
4574
4575         wm->cxsr = I915_READ(FW_BLC_SELF_VLV) & FW_CSPWRDWNEN;
4576         wm->level = VLV_WM_LEVEL_PM2;
4577
4578         if (IS_CHERRYVIEW(dev_priv)) {
4579                 mutex_lock(&dev_priv->rps.hw_lock);
4580
4581                 val = vlv_punit_read(dev_priv, PUNIT_REG_DSPFREQ);
4582                 if (val & DSP_MAXFIFO_PM5_ENABLE)
4583                         wm->level = VLV_WM_LEVEL_PM5;
4584
4585                 /*
4586                  * If DDR DVFS is disabled in the BIOS, Punit
4587                  * will never ack the request. So if that happens
4588                  * assume we don't have to enable/disable DDR DVFS
4589                  * dynamically. To test that just set the REQ_ACK
4590                  * bit to poke the Punit, but don't change the
4591                  * HIGH/LOW bits so that we don't actually change
4592                  * the current state.
4593                  */
4594                 val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4595                 val |= FORCE_DDR_FREQ_REQ_ACK;
4596                 vlv_punit_write(dev_priv, PUNIT_REG_DDR_SETUP2, val);
4597
4598                 if (wait_for((vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2) &
4599                               FORCE_DDR_FREQ_REQ_ACK) == 0, 3)) {
4600                         DRM_DEBUG_KMS("Punit not acking DDR DVFS request, "
4601                                       "assuming DDR DVFS is disabled\n");
4602                         dev_priv->wm.max_level = VLV_WM_LEVEL_PM5;
4603                 } else {
4604                         val = vlv_punit_read(dev_priv, PUNIT_REG_DDR_SETUP2);
4605                         if ((val & FORCE_DDR_HIGH_FREQ) == 0)
4606                                 wm->level = VLV_WM_LEVEL_DDR_DVFS;
4607                 }
4608
4609                 mutex_unlock(&dev_priv->rps.hw_lock);
4610         }
4611
4612         for_each_pipe(dev_priv, pipe)
4613                 DRM_DEBUG_KMS("Initial watermarks: pipe %c, plane=%d, cursor=%d, sprite0=%d, sprite1=%d\n",
4614                               pipe_name(pipe), wm->pipe[pipe].primary, wm->pipe[pipe].cursor,
4615                               wm->pipe[pipe].sprite[0], wm->pipe[pipe].sprite[1]);
4616
4617         DRM_DEBUG_KMS("Initial watermarks: SR plane=%d, SR cursor=%d level=%d cxsr=%d\n",
4618                       wm->sr.plane, wm->sr.cursor, wm->level, wm->cxsr);
4619 }
4620
4621 void ilk_wm_get_hw_state(struct drm_device *dev)
4622 {
4623         struct drm_i915_private *dev_priv = to_i915(dev);
4624         struct ilk_wm_values *hw = &dev_priv->wm.hw;
4625         struct drm_crtc *crtc;
4626
4627         for_each_crtc(dev, crtc)
4628                 ilk_pipe_wm_get_hw_state(crtc);
4629
4630         hw->wm_lp[0] = I915_READ(WM1_LP_ILK);
4631         hw->wm_lp[1] = I915_READ(WM2_LP_ILK);
4632         hw->wm_lp[2] = I915_READ(WM3_LP_ILK);
4633
4634         hw->wm_lp_spr[0] = I915_READ(WM1S_LP_ILK);
4635         if (INTEL_INFO(dev)->gen >= 7) {
4636                 hw->wm_lp_spr[1] = I915_READ(WM2S_LP_IVB);
4637                 hw->wm_lp_spr[2] = I915_READ(WM3S_LP_IVB);
4638         }
4639
4640         if (IS_HASWELL(dev) || IS_BROADWELL(dev))
4641                 hw->partitioning = (I915_READ(WM_MISC) & WM_MISC_DATA_PARTITION_5_6) ?
4642                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4643         else if (IS_IVYBRIDGE(dev))
4644                 hw->partitioning = (I915_READ(DISP_ARB_CTL2) & DISP_DATA_PARTITION_5_6) ?
4645                         INTEL_DDB_PART_5_6 : INTEL_DDB_PART_1_2;
4646
4647         hw->enable_fbc_wm =
4648                 !(I915_READ(DISP_ARB_CTL) & DISP_FBC_WM_DIS);
4649 }
4650
4651 /**
4652  * intel_update_watermarks - update FIFO watermark values based on current modes
4653  *
4654  * Calculate watermark values for the various WM regs based on current mode
4655  * and plane configuration.
4656  *
4657  * There are several cases to deal with here:
4658  *   - normal (i.e. non-self-refresh)
4659  *   - self-refresh (SR) mode
4660  *   - lines are large relative to FIFO size (buffer can hold up to 2)
4661  *   - lines are small relative to FIFO size (buffer can hold more than 2
4662  *     lines), so need to account for TLB latency
4663  *
4664  *   The normal calculation is:
4665  *     watermark = dotclock * bytes per pixel * latency
4666  *   where latency is platform & configuration dependent (we assume pessimal
4667  *   values here).
4668  *
4669  *   The SR calculation is:
4670  *     watermark = (trunc(latency/line time)+1) * surface width *
4671  *       bytes per pixel
4672  *   where
4673  *     line time = htotal / dotclock
4674  *     surface width = hdisplay for normal plane and 64 for cursor
4675  *   and latency is assumed to be high, as above.
4676  *
4677  * The final value programmed to the register should always be rounded up,
4678  * and include an extra 2 entries to account for clock crossings.
4679  *
4680  * We don't use the sprite, so we can ignore that.  And on Crestline we have
4681  * to set the non-SR watermarks to 8.
4682  */
4683 void intel_update_watermarks(struct drm_crtc *crtc)
4684 {
4685         struct drm_i915_private *dev_priv = to_i915(crtc->dev);
4686
4687         if (dev_priv->display.update_wm)
4688                 dev_priv->display.update_wm(crtc);
4689 }
4690
4691 /*
4692  * Lock protecting IPS related data structures
4693  */
4694 DEFINE_SPINLOCK(mchdev_lock);
4695
4696 /* Global for IPS driver to get at the current i915 device. Protected by
4697  * mchdev_lock. */
4698 static struct drm_i915_private *i915_mch_dev;
4699
4700 bool ironlake_set_drps(struct drm_i915_private *dev_priv, u8 val)
4701 {
4702         u16 rgvswctl;
4703
4704         assert_spin_locked(&mchdev_lock);
4705
4706         rgvswctl = I915_READ16(MEMSWCTL);
4707         if (rgvswctl & MEMCTL_CMD_STS) {
4708                 DRM_DEBUG("gpu busy, RCS change rejected\n");
4709                 return false; /* still busy with another command */
4710         }
4711
4712         rgvswctl = (MEMCTL_CMD_CHFREQ << MEMCTL_CMD_SHIFT) |
4713                 (val << MEMCTL_FREQ_SHIFT) | MEMCTL_SFCAVM;
4714         I915_WRITE16(MEMSWCTL, rgvswctl);
4715         POSTING_READ16(MEMSWCTL);
4716
4717         rgvswctl |= MEMCTL_CMD_STS;
4718         I915_WRITE16(MEMSWCTL, rgvswctl);
4719
4720         return true;
4721 }
4722
4723 static void ironlake_enable_drps(struct drm_i915_private *dev_priv)
4724 {
4725         u32 rgvmodectl;
4726         u8 fmax, fmin, fstart, vstart;
4727
4728         spin_lock_irq(&mchdev_lock);
4729
4730         rgvmodectl = I915_READ(MEMMODECTL);
4731
4732         /* Enable temp reporting */
4733         I915_WRITE16(PMMISC, I915_READ(PMMISC) | MCPPCE_EN);
4734         I915_WRITE16(TSC1, I915_READ(TSC1) | TSE);
4735
4736         /* 100ms RC evaluation intervals */
4737         I915_WRITE(RCUPEI, 100000);
4738         I915_WRITE(RCDNEI, 100000);
4739
4740         /* Set max/min thresholds to 90ms and 80ms respectively */
4741         I915_WRITE(RCBMAXAVG, 90000);
4742         I915_WRITE(RCBMINAVG, 80000);
4743
4744         I915_WRITE(MEMIHYST, 1);
4745
4746         /* Set up min, max, and cur for interrupt handling */
4747         fmax = (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT;
4748         fmin = (rgvmodectl & MEMMODE_FMIN_MASK);
4749         fstart = (rgvmodectl & MEMMODE_FSTART_MASK) >>
4750                 MEMMODE_FSTART_SHIFT;
4751
4752         vstart = (I915_READ(PXVFREQ(fstart)) & PXVFREQ_PX_MASK) >>
4753                 PXVFREQ_PX_SHIFT;
4754
4755         dev_priv->ips.fmax = fmax; /* IPS callback will increase this */
4756         dev_priv->ips.fstart = fstart;
4757
4758         dev_priv->ips.max_delay = fstart;
4759         dev_priv->ips.min_delay = fmin;
4760         dev_priv->ips.cur_delay = fstart;
4761
4762         DRM_DEBUG_DRIVER("fmax: %d, fmin: %d, fstart: %d\n",
4763                          fmax, fmin, fstart);
4764
4765         I915_WRITE(MEMINTREN, MEMINT_CX_SUPR_EN | MEMINT_EVAL_CHG_EN);
4766
4767         /*
4768          * Interrupts will be enabled in ironlake_irq_postinstall
4769          */
4770
4771         I915_WRITE(VIDSTART, vstart);
4772         POSTING_READ(VIDSTART);
4773
4774         rgvmodectl |= MEMMODE_SWMODE_EN;
4775         I915_WRITE(MEMMODECTL, rgvmodectl);
4776
4777         if (wait_for_atomic((I915_READ(MEMSWCTL) & MEMCTL_CMD_STS) == 0, 10))
4778                 DRM_ERROR("stuck trying to change perf mode\n");
4779         mdelay(1);
4780
4781         ironlake_set_drps(dev_priv, fstart);
4782
4783         dev_priv->ips.last_count1 = I915_READ(DMIEC) +
4784                 I915_READ(DDREC) + I915_READ(CSIEC);
4785         dev_priv->ips.last_time1 = jiffies_to_msecs(jiffies);
4786         dev_priv->ips.last_count2 = I915_READ(GFXEC);
4787         dev_priv->ips.last_time2 = ktime_get_raw_ns();
4788
4789         spin_unlock_irq(&mchdev_lock);
4790 }
4791
4792 static void ironlake_disable_drps(struct drm_i915_private *dev_priv)
4793 {
4794         u16 rgvswctl;
4795
4796         spin_lock_irq(&mchdev_lock);
4797
4798         rgvswctl = I915_READ16(MEMSWCTL);
4799
4800         /* Ack interrupts, disable EFC interrupt */
4801         I915_WRITE(MEMINTREN, I915_READ(MEMINTREN) & ~MEMINT_EVAL_CHG_EN);
4802         I915_WRITE(MEMINTRSTS, MEMINT_EVAL_CHG);
4803         I915_WRITE(DEIER, I915_READ(DEIER) & ~DE_PCU_EVENT);
4804         I915_WRITE(DEIIR, DE_PCU_EVENT);
4805         I915_WRITE(DEIMR, I915_READ(DEIMR) | DE_PCU_EVENT);
4806
4807         /* Go back to the starting frequency */
4808         ironlake_set_drps(dev_priv, dev_priv->ips.fstart);
4809         mdelay(1);
4810         rgvswctl |= MEMCTL_CMD_STS;
4811         I915_WRITE(MEMSWCTL, rgvswctl);
4812         mdelay(1);
4813
4814         spin_unlock_irq(&mchdev_lock);
4815 }
4816
4817 /* There's a funny hw issue where the hw returns all 0 when reading from
4818  * GEN6_RP_INTERRUPT_LIMITS. Hence we always need to compute the desired value
4819  * ourselves, instead of doing a rmw cycle (which might result in us clearing
4820  * all limits and the gpu stuck at whatever frequency it is at atm).
4821  */
4822 static u32 intel_rps_limits(struct drm_i915_private *dev_priv, u8 val)
4823 {
4824         u32 limits;
4825
4826         /* Only set the down limit when we've reached the lowest level to avoid
4827          * getting more interrupts, otherwise leave this clear. This prevents a
4828          * race in the hw when coming out of rc6: There's a tiny window where
4829          * the hw runs at the minimal clock before selecting the desired
4830          * frequency, if the down threshold expires in that window we will not
4831          * receive a down interrupt. */
4832         if (IS_GEN9(dev_priv)) {
4833                 limits = (dev_priv->rps.max_freq_softlimit) << 23;
4834                 if (val <= dev_priv->rps.min_freq_softlimit)
4835                         limits |= (dev_priv->rps.min_freq_softlimit) << 14;
4836         } else {
4837                 limits = dev_priv->rps.max_freq_softlimit << 24;
4838                 if (val <= dev_priv->rps.min_freq_softlimit)
4839                         limits |= dev_priv->rps.min_freq_softlimit << 16;
4840         }
4841
4842         return limits;
4843 }
4844
4845 static void gen6_set_rps_thresholds(struct drm_i915_private *dev_priv, u8 val)
4846 {
4847         int new_power;
4848         u32 threshold_up = 0, threshold_down = 0; /* in % */
4849         u32 ei_up = 0, ei_down = 0;
4850
4851         new_power = dev_priv->rps.power;
4852         switch (dev_priv->rps.power) {
4853         case LOW_POWER:
4854                 if (val > dev_priv->rps.efficient_freq + 1 &&
4855                     val > dev_priv->rps.cur_freq)
4856                         new_power = BETWEEN;
4857                 break;
4858
4859         case BETWEEN:
4860                 if (val <= dev_priv->rps.efficient_freq &&
4861                     val < dev_priv->rps.cur_freq)
4862                         new_power = LOW_POWER;
4863                 else if (val >= dev_priv->rps.rp0_freq &&
4864                          val > dev_priv->rps.cur_freq)
4865                         new_power = HIGH_POWER;
4866                 break;
4867
4868         case HIGH_POWER:
4869                 if (val < (dev_priv->rps.rp1_freq + dev_priv->rps.rp0_freq) >> 1 &&
4870                     val < dev_priv->rps.cur_freq)
4871                         new_power = BETWEEN;
4872                 break;
4873         }
4874         /* Max/min bins are special */
4875         if (val <= dev_priv->rps.min_freq_softlimit)
4876                 new_power = LOW_POWER;
4877         if (val >= dev_priv->rps.max_freq_softlimit)
4878                 new_power = HIGH_POWER;
4879         if (new_power == dev_priv->rps.power)
4880                 return;
4881
4882         /* Note the units here are not exactly 1us, but 1280ns. */
4883         switch (new_power) {
4884         case LOW_POWER:
4885                 /* Upclock if more than 95% busy over 16ms */
4886                 ei_up = 16000;
4887                 threshold_up = 95;
4888
4889                 /* Downclock if less than 85% busy over 32ms */
4890                 ei_down = 32000;
4891                 threshold_down = 85;
4892                 break;
4893
4894         case BETWEEN:
4895                 /* Upclock if more than 90% busy over 13ms */
4896                 ei_up = 13000;
4897                 threshold_up = 90;
4898
4899                 /* Downclock if less than 75% busy over 32ms */
4900                 ei_down = 32000;
4901                 threshold_down = 75;
4902                 break;
4903
4904         case HIGH_POWER:
4905                 /* Upclock if more than 85% busy over 10ms */
4906                 ei_up = 10000;
4907                 threshold_up = 85;
4908
4909                 /* Downclock if less than 60% busy over 32ms */
4910                 ei_down = 32000;
4911                 threshold_down = 60;
4912                 break;
4913         }
4914
4915         /* When byt can survive without system hang with dynamic
4916          * sw freq adjustments, this restriction can be lifted.
4917          */
4918         if (IS_VALLEYVIEW(dev_priv))
4919                 goto skip_hw_write;
4920
4921         I915_WRITE(GEN6_RP_UP_EI,
4922                    GT_INTERVAL_FROM_US(dev_priv, ei_up));
4923         I915_WRITE(GEN6_RP_UP_THRESHOLD,
4924                    GT_INTERVAL_FROM_US(dev_priv,
4925                                        ei_up * threshold_up / 100));
4926
4927         I915_WRITE(GEN6_RP_DOWN_EI,
4928                    GT_INTERVAL_FROM_US(dev_priv, ei_down));
4929         I915_WRITE(GEN6_RP_DOWN_THRESHOLD,
4930                    GT_INTERVAL_FROM_US(dev_priv,
4931                                        ei_down * threshold_down / 100));
4932
4933         I915_WRITE(GEN6_RP_CONTROL,
4934                    GEN6_RP_MEDIA_TURBO |
4935                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
4936                    GEN6_RP_MEDIA_IS_GFX |
4937                    GEN6_RP_ENABLE |
4938                    GEN6_RP_UP_BUSY_AVG |
4939                    GEN6_RP_DOWN_IDLE_AVG);
4940
4941 skip_hw_write:
4942         dev_priv->rps.power = new_power;
4943         dev_priv->rps.up_threshold = threshold_up;
4944         dev_priv->rps.down_threshold = threshold_down;
4945         dev_priv->rps.last_adj = 0;
4946 }
4947
4948 static u32 gen6_rps_pm_mask(struct drm_i915_private *dev_priv, u8 val)
4949 {
4950         u32 mask = 0;
4951
4952         /* We use UP_EI_EXPIRED interupts for both up/down in manual mode */
4953         if (val > dev_priv->rps.min_freq_softlimit)
4954                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_DOWN_THRESHOLD | GEN6_PM_RP_DOWN_TIMEOUT;
4955         if (val < dev_priv->rps.max_freq_softlimit)
4956                 mask |= GEN6_PM_RP_UP_EI_EXPIRED | GEN6_PM_RP_UP_THRESHOLD;
4957
4958         mask &= dev_priv->pm_rps_events;
4959
4960         return gen6_sanitize_rps_pm_mask(dev_priv, ~mask);
4961 }
4962
4963 /* gen6_set_rps is called to update the frequency request, but should also be
4964  * called when the range (min_delay and max_delay) is modified so that we can
4965  * update the GEN6_RP_INTERRUPT_LIMITS register accordingly. */
4966 static void gen6_set_rps(struct drm_i915_private *dev_priv, u8 val)
4967 {
4968         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
4969         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1))
4970                 return;
4971
4972         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
4973         WARN_ON(val > dev_priv->rps.max_freq);
4974         WARN_ON(val < dev_priv->rps.min_freq);
4975
4976         /* min/max delay may still have been modified so be sure to
4977          * write the limits value.
4978          */
4979         if (val != dev_priv->rps.cur_freq) {
4980                 gen6_set_rps_thresholds(dev_priv, val);
4981
4982                 if (IS_GEN9(dev_priv))
4983                         I915_WRITE(GEN6_RPNSWREQ,
4984                                    GEN9_FREQUENCY(val));
4985                 else if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
4986                         I915_WRITE(GEN6_RPNSWREQ,
4987                                    HSW_FREQUENCY(val));
4988                 else
4989                         I915_WRITE(GEN6_RPNSWREQ,
4990                                    GEN6_FREQUENCY(val) |
4991                                    GEN6_OFFSET(0) |
4992                                    GEN6_AGGRESSIVE_TURBO);
4993         }
4994
4995         /* Make sure we continue to get interrupts
4996          * until we hit the minimum or maximum frequencies.
4997          */
4998         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS, intel_rps_limits(dev_priv, val));
4999         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5000
5001         POSTING_READ(GEN6_RPNSWREQ);
5002
5003         dev_priv->rps.cur_freq = val;
5004         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5005 }
5006
5007 static void valleyview_set_rps(struct drm_i915_private *dev_priv, u8 val)
5008 {
5009         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5010         WARN_ON(val > dev_priv->rps.max_freq);
5011         WARN_ON(val < dev_priv->rps.min_freq);
5012
5013         if (WARN_ONCE(IS_CHERRYVIEW(dev_priv) && (val & 1),
5014                       "Odd GPU freq value\n"))
5015                 val &= ~1;
5016
5017         I915_WRITE(GEN6_PMINTRMSK, gen6_rps_pm_mask(dev_priv, val));
5018
5019         if (val != dev_priv->rps.cur_freq) {
5020                 vlv_punit_write(dev_priv, PUNIT_REG_GPU_FREQ_REQ, val);
5021                 if (!IS_CHERRYVIEW(dev_priv))
5022                         gen6_set_rps_thresholds(dev_priv, val);
5023         }
5024
5025         dev_priv->rps.cur_freq = val;
5026         trace_intel_gpu_freq_change(intel_gpu_freq(dev_priv, val));
5027 }
5028
5029 /* vlv_set_rps_idle: Set the frequency to idle, if Gfx clocks are down
5030  *
5031  * * If Gfx is Idle, then
5032  * 1. Forcewake Media well.
5033  * 2. Request idle freq.
5034  * 3. Release Forcewake of Media well.
5035 */
5036 static void vlv_set_rps_idle(struct drm_i915_private *dev_priv)
5037 {
5038         u32 val = dev_priv->rps.idle_freq;
5039
5040         if (dev_priv->rps.cur_freq <= val)
5041                 return;
5042
5043         /* Wake up the media well, as that takes a lot less
5044          * power than the Render well. */
5045         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_MEDIA);
5046         valleyview_set_rps(dev_priv, val);
5047         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_MEDIA);
5048 }
5049
5050 void gen6_rps_busy(struct drm_i915_private *dev_priv)
5051 {
5052         mutex_lock(&dev_priv->rps.hw_lock);
5053         if (dev_priv->rps.enabled) {
5054                 if (dev_priv->pm_rps_events & GEN6_PM_RP_UP_EI_EXPIRED)
5055                         gen6_rps_reset_ei(dev_priv);
5056                 I915_WRITE(GEN6_PMINTRMSK,
5057                            gen6_rps_pm_mask(dev_priv, dev_priv->rps.cur_freq));
5058
5059                 gen6_enable_rps_interrupts(dev_priv);
5060
5061                 /* Ensure we start at the user's desired frequency */
5062                 intel_set_rps(dev_priv,
5063                               clamp(dev_priv->rps.cur_freq,
5064                                     dev_priv->rps.min_freq_softlimit,
5065                                     dev_priv->rps.max_freq_softlimit));
5066         }
5067         mutex_unlock(&dev_priv->rps.hw_lock);
5068 }
5069
5070 void gen6_rps_idle(struct drm_i915_private *dev_priv)
5071 {
5072         /* Flush our bottom-half so that it does not race with us
5073          * setting the idle frequency and so that it is bounded by
5074          * our rpm wakeref. And then disable the interrupts to stop any
5075          * futher RPS reclocking whilst we are asleep.
5076          */
5077         gen6_disable_rps_interrupts(dev_priv);
5078
5079         mutex_lock(&dev_priv->rps.hw_lock);
5080         if (dev_priv->rps.enabled) {
5081                 if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5082                         vlv_set_rps_idle(dev_priv);
5083                 else
5084                         gen6_set_rps(dev_priv, dev_priv->rps.idle_freq);
5085                 dev_priv->rps.last_adj = 0;
5086                 I915_WRITE(GEN6_PMINTRMSK,
5087                            gen6_sanitize_rps_pm_mask(dev_priv, ~0));
5088         }
5089         mutex_unlock(&dev_priv->rps.hw_lock);
5090
5091         spin_lock(&dev_priv->rps.client_lock);
5092         while (!list_empty(&dev_priv->rps.clients))
5093                 list_del_init(dev_priv->rps.clients.next);
5094         spin_unlock(&dev_priv->rps.client_lock);
5095 }
5096
5097 void gen6_rps_boost(struct drm_i915_private *dev_priv,
5098                     struct intel_rps_client *rps,
5099                     unsigned long submitted)
5100 {
5101         /* This is intentionally racy! We peek at the state here, then
5102          * validate inside the RPS worker.
5103          */
5104         if (!(dev_priv->gt.awake &&
5105               dev_priv->rps.enabled &&
5106               dev_priv->rps.cur_freq < dev_priv->rps.boost_freq))
5107                 return;
5108
5109         /* Force a RPS boost (and don't count it against the client) if
5110          * the GPU is severely congested.
5111          */
5112         if (rps && time_after(jiffies, submitted + DRM_I915_THROTTLE_JIFFIES))
5113                 rps = NULL;
5114
5115         spin_lock(&dev_priv->rps.client_lock);
5116         if (rps == NULL || list_empty(&rps->link)) {
5117                 spin_lock_irq(&dev_priv->irq_lock);
5118                 if (dev_priv->rps.interrupts_enabled) {
5119                         dev_priv->rps.client_boost = true;
5120                         schedule_work(&dev_priv->rps.work);
5121                 }
5122                 spin_unlock_irq(&dev_priv->irq_lock);
5123
5124                 if (rps != NULL) {
5125                         list_add(&rps->link, &dev_priv->rps.clients);
5126                         rps->boosts++;
5127                 } else
5128                         dev_priv->rps.boosts++;
5129         }
5130         spin_unlock(&dev_priv->rps.client_lock);
5131 }
5132
5133 void intel_set_rps(struct drm_i915_private *dev_priv, u8 val)
5134 {
5135         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
5136                 valleyview_set_rps(dev_priv, val);
5137         else
5138                 gen6_set_rps(dev_priv, val);
5139 }
5140
5141 static void gen9_disable_rc6(struct drm_i915_private *dev_priv)
5142 {
5143         I915_WRITE(GEN6_RC_CONTROL, 0);
5144         I915_WRITE(GEN9_PG_ENABLE, 0);
5145 }
5146
5147 static void gen9_disable_rps(struct drm_i915_private *dev_priv)
5148 {
5149         I915_WRITE(GEN6_RP_CONTROL, 0);
5150 }
5151
5152 static void gen6_disable_rps(struct drm_i915_private *dev_priv)
5153 {
5154         I915_WRITE(GEN6_RC_CONTROL, 0);
5155         I915_WRITE(GEN6_RPNSWREQ, 1 << 31);
5156         I915_WRITE(GEN6_RP_CONTROL, 0);
5157 }
5158
5159 static void cherryview_disable_rps(struct drm_i915_private *dev_priv)
5160 {
5161         I915_WRITE(GEN6_RC_CONTROL, 0);
5162 }
5163
5164 static void valleyview_disable_rps(struct drm_i915_private *dev_priv)
5165 {
5166         /* we're doing forcewake before Disabling RC6,
5167          * This what the BIOS expects when going into suspend */
5168         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5169
5170         I915_WRITE(GEN6_RC_CONTROL, 0);
5171
5172         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5173 }
5174
5175 static void intel_print_rc6_info(struct drm_i915_private *dev_priv, u32 mode)
5176 {
5177         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv)) {
5178                 if (mode & (GEN7_RC_CTL_TO_MODE | GEN6_RC_CTL_EI_MODE(1)))
5179                         mode = GEN6_RC_CTL_RC6_ENABLE;
5180                 else
5181                         mode = 0;
5182         }
5183         if (HAS_RC6p(dev_priv))
5184                 DRM_DEBUG_DRIVER("Enabling RC6 states: "
5185                                  "RC6 %s RC6p %s RC6pp %s\n",
5186                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE),
5187                                  onoff(mode & GEN6_RC_CTL_RC6p_ENABLE),
5188                                  onoff(mode & GEN6_RC_CTL_RC6pp_ENABLE));
5189
5190         else
5191                 DRM_DEBUG_DRIVER("Enabling RC6 states: RC6 %s\n",
5192                                  onoff(mode & GEN6_RC_CTL_RC6_ENABLE));
5193 }
5194
5195 static bool bxt_check_bios_rc6_setup(struct drm_i915_private *dev_priv)
5196 {
5197         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5198         bool enable_rc6 = true;
5199         unsigned long rc6_ctx_base;
5200         u32 rc_ctl;
5201         int rc_sw_target;
5202
5203         rc_ctl = I915_READ(GEN6_RC_CONTROL);
5204         rc_sw_target = (I915_READ(GEN6_RC_STATE) & RC_SW_TARGET_STATE_MASK) >>
5205                        RC_SW_TARGET_STATE_SHIFT;
5206         DRM_DEBUG_DRIVER("BIOS enabled RC states: "
5207                          "HW_CTRL %s HW_RC6 %s SW_TARGET_STATE %x\n",
5208                          onoff(rc_ctl & GEN6_RC_CTL_HW_ENABLE),
5209                          onoff(rc_ctl & GEN6_RC_CTL_RC6_ENABLE),
5210                          rc_sw_target);
5211
5212         if (!(I915_READ(RC6_LOCATION) & RC6_CTX_IN_DRAM)) {
5213                 DRM_DEBUG_DRIVER("RC6 Base location not set properly.\n");
5214                 enable_rc6 = false;
5215         }
5216
5217         /*
5218          * The exact context size is not known for BXT, so assume a page size
5219          * for this check.
5220          */
5221         rc6_ctx_base = I915_READ(RC6_CTX_BASE) & RC6_CTX_BASE_MASK;
5222         if (!((rc6_ctx_base >= ggtt->stolen_reserved_base) &&
5223               (rc6_ctx_base + PAGE_SIZE <= ggtt->stolen_reserved_base +
5224                                         ggtt->stolen_reserved_size))) {
5225                 DRM_DEBUG_DRIVER("RC6 Base address not as expected.\n");
5226                 enable_rc6 = false;
5227         }
5228
5229         if (!(((I915_READ(PWRCTX_MAXCNT_RCSUNIT) & IDLE_TIME_MASK) > 1) &&
5230               ((I915_READ(PWRCTX_MAXCNT_VCSUNIT0) & IDLE_TIME_MASK) > 1) &&
5231               ((I915_READ(PWRCTX_MAXCNT_BCSUNIT) & IDLE_TIME_MASK) > 1) &&
5232               ((I915_READ(PWRCTX_MAXCNT_VECSUNIT) & IDLE_TIME_MASK) > 1))) {
5233                 DRM_DEBUG_DRIVER("Engine Idle wait time not set properly.\n");
5234                 enable_rc6 = false;
5235         }
5236
5237         if (!I915_READ(GEN8_PUSHBUS_CONTROL) ||
5238             !I915_READ(GEN8_PUSHBUS_ENABLE) ||
5239             !I915_READ(GEN8_PUSHBUS_SHIFT)) {
5240                 DRM_DEBUG_DRIVER("Pushbus not setup properly.\n");
5241                 enable_rc6 = false;
5242         }
5243
5244         if (!I915_READ(GEN6_GFXPAUSE)) {
5245                 DRM_DEBUG_DRIVER("GFX pause not setup properly.\n");
5246                 enable_rc6 = false;
5247         }
5248
5249         if (!I915_READ(GEN8_MISC_CTRL0)) {
5250                 DRM_DEBUG_DRIVER("GPM control not setup properly.\n");
5251                 enable_rc6 = false;
5252         }
5253
5254         return enable_rc6;
5255 }
5256
5257 int sanitize_rc6_option(struct drm_i915_private *dev_priv, int enable_rc6)
5258 {
5259         /* No RC6 before Ironlake and code is gone for ilk. */
5260         if (INTEL_INFO(dev_priv)->gen < 6)
5261                 return 0;
5262
5263         if (!enable_rc6)
5264                 return 0;
5265
5266         if (IS_BROXTON(dev_priv) && !bxt_check_bios_rc6_setup(dev_priv)) {
5267                 DRM_INFO("RC6 disabled by BIOS\n");
5268                 return 0;
5269         }
5270
5271         /* Respect the kernel parameter if it is set */
5272         if (enable_rc6 >= 0) {
5273                 int mask;
5274
5275                 if (HAS_RC6p(dev_priv))
5276                         mask = INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE |
5277                                INTEL_RC6pp_ENABLE;
5278                 else
5279                         mask = INTEL_RC6_ENABLE;
5280
5281                 if ((enable_rc6 & mask) != enable_rc6)
5282                         DRM_DEBUG_DRIVER("Adjusting RC6 mask to %d "
5283                                          "(requested %d, valid %d)\n",
5284                                          enable_rc6 & mask, enable_rc6, mask);
5285
5286                 return enable_rc6 & mask;
5287         }
5288
5289         if (IS_IVYBRIDGE(dev_priv))
5290                 return (INTEL_RC6_ENABLE | INTEL_RC6p_ENABLE);
5291
5292         return INTEL_RC6_ENABLE;
5293 }
5294
5295 static void gen6_init_rps_frequencies(struct drm_i915_private *dev_priv)
5296 {
5297         /* All of these values are in units of 50MHz */
5298
5299         /* static values from HW: RP0 > RP1 > RPn (min_freq) */
5300         if (IS_BROXTON(dev_priv)) {
5301                 u32 rp_state_cap = I915_READ(BXT_RP_STATE_CAP);
5302                 dev_priv->rps.rp0_freq = (rp_state_cap >> 16) & 0xff;
5303                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5304                 dev_priv->rps.min_freq = (rp_state_cap >>  0) & 0xff;
5305         } else {
5306                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
5307                 dev_priv->rps.rp0_freq = (rp_state_cap >>  0) & 0xff;
5308                 dev_priv->rps.rp1_freq = (rp_state_cap >>  8) & 0xff;
5309                 dev_priv->rps.min_freq = (rp_state_cap >> 16) & 0xff;
5310         }
5311         /* hw_max = RP0 until we check for overclocking */
5312         dev_priv->rps.max_freq = dev_priv->rps.rp0_freq;
5313
5314         dev_priv->rps.efficient_freq = dev_priv->rps.rp1_freq;
5315         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv) ||
5316             IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5317                 u32 ddcc_status = 0;
5318
5319                 if (sandybridge_pcode_read(dev_priv,
5320                                            HSW_PCODE_DYNAMIC_DUTY_CYCLE_CONTROL,
5321                                            &ddcc_status) == 0)
5322                         dev_priv->rps.efficient_freq =
5323                                 clamp_t(u8,
5324                                         ((ddcc_status >> 8) & 0xff),
5325                                         dev_priv->rps.min_freq,
5326                                         dev_priv->rps.max_freq);
5327         }
5328
5329         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5330                 /* Store the frequency values in 16.66 MHZ units, which is
5331                  * the natural hardware unit for SKL
5332                  */
5333                 dev_priv->rps.rp0_freq *= GEN9_FREQ_SCALER;
5334                 dev_priv->rps.rp1_freq *= GEN9_FREQ_SCALER;
5335                 dev_priv->rps.min_freq *= GEN9_FREQ_SCALER;
5336                 dev_priv->rps.max_freq *= GEN9_FREQ_SCALER;
5337                 dev_priv->rps.efficient_freq *= GEN9_FREQ_SCALER;
5338         }
5339 }
5340
5341 static void reset_rps(struct drm_i915_private *dev_priv,
5342                       void (*set)(struct drm_i915_private *, u8))
5343 {
5344         u8 freq = dev_priv->rps.cur_freq;
5345
5346         /* force a reset */
5347         dev_priv->rps.power = -1;
5348         dev_priv->rps.cur_freq = -1;
5349
5350         set(dev_priv, freq);
5351 }
5352
5353 /* See the Gen9_GT_PM_Programming_Guide doc for the below */
5354 static void gen9_enable_rps(struct drm_i915_private *dev_priv)
5355 {
5356         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5357
5358         /* WaGsvDisableTurbo: Workaround to disable turbo on BXT A* */
5359         if (IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5360                 /*
5361                  * BIOS could leave the Hw Turbo enabled, so need to explicitly
5362                  * clear out the Control register just to avoid inconsitency
5363                  * with debugfs interface, which will show  Turbo as enabled
5364                  * only and that is not expected by the User after adding the
5365                  * WaGsvDisableTurbo. Apart from this there is no problem even
5366                  * if the Turbo is left enabled in the Control register, as the
5367                  * Up/Down interrupts would remain masked.
5368                  */
5369                 gen9_disable_rps(dev_priv);
5370                 intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5371                 return;
5372         }
5373
5374         /* Program defaults and thresholds for RPS*/
5375         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5376                 GEN9_FREQUENCY(dev_priv->rps.rp1_freq));
5377
5378         /* 1 second timeout*/
5379         I915_WRITE(GEN6_RP_DOWN_TIMEOUT,
5380                 GT_INTERVAL_FROM_US(dev_priv, 1000000));
5381
5382         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 0xa);
5383
5384         /* Leaning on the below call to gen6_set_rps to program/setup the
5385          * Up/Down EI & threshold registers, as well as the RP_CONTROL,
5386          * RP_INTERRUPT_LIMITS & RPNSWREQ registers */
5387         reset_rps(dev_priv, gen6_set_rps);
5388
5389         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5390 }
5391
5392 static void gen9_enable_rc6(struct drm_i915_private *dev_priv)
5393 {
5394         struct intel_engine_cs *engine;
5395         uint32_t rc6_mask = 0;
5396
5397         /* 1a: Software RC state - RC0 */
5398         I915_WRITE(GEN6_RC_STATE, 0);
5399
5400         /* 1b: Get forcewake during program sequence. Although the driver
5401          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5402         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5403
5404         /* 2a: Disable RC states. */
5405         I915_WRITE(GEN6_RC_CONTROL, 0);
5406
5407         /* 2b: Program RC6 thresholds.*/
5408
5409         /* WaRsDoubleRc6WrlWithCoarsePowerGating: Doubling WRL only when CPG is enabled */
5410         if (IS_SKYLAKE(dev_priv))
5411                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 108 << 16);
5412         else
5413                 I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 54 << 16);
5414         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5415         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5416         for_each_engine(engine, dev_priv)
5417                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5418
5419         if (HAS_GUC(dev_priv))
5420                 I915_WRITE(GUC_MAX_IDLE_COUNT, 0xA);
5421
5422         I915_WRITE(GEN6_RC_SLEEP, 0);
5423
5424         /* 2c: Program Coarse Power Gating Policies. */
5425         I915_WRITE(GEN9_MEDIA_PG_IDLE_HYSTERESIS, 25);
5426         I915_WRITE(GEN9_RENDER_PG_IDLE_HYSTERESIS, 25);
5427
5428         /* 3a: Enable RC6 */
5429         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5430                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5431         DRM_INFO("RC6 %s\n", onoff(rc6_mask & GEN6_RC_CTL_RC6_ENABLE));
5432         /* WaRsUseTimeoutMode */
5433         if (IS_SKL_REVID(dev_priv, 0, SKL_REVID_D0) ||
5434             IS_BXT_REVID(dev_priv, 0, BXT_REVID_A1)) {
5435                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us */
5436                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5437                            GEN7_RC_CTL_TO_MODE |
5438                            rc6_mask);
5439         } else {
5440                 I915_WRITE(GEN6_RC6_THRESHOLD, 37500); /* 37.5/125ms per EI */
5441                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5442                            GEN6_RC_CTL_EI_MODE(1) |
5443                            rc6_mask);
5444         }
5445
5446         /*
5447          * 3b: Enable Coarse Power Gating only when RC6 is enabled.
5448          * WaRsDisableCoarsePowerGating:skl,bxt - Render/Media PG need to be disabled with RC6.
5449          */
5450         if (NEEDS_WaRsDisableCoarsePowerGating(dev_priv))
5451                 I915_WRITE(GEN9_PG_ENABLE, 0);
5452         else
5453                 I915_WRITE(GEN9_PG_ENABLE, (rc6_mask & GEN6_RC_CTL_RC6_ENABLE) ?
5454                                 (GEN9_RENDER_PG_ENABLE | GEN9_MEDIA_PG_ENABLE) : 0);
5455
5456         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5457 }
5458
5459 static void gen8_enable_rps(struct drm_i915_private *dev_priv)
5460 {
5461         struct intel_engine_cs *engine;
5462         uint32_t rc6_mask = 0;
5463
5464         /* 1a: Software RC state - RC0 */
5465         I915_WRITE(GEN6_RC_STATE, 0);
5466
5467         /* 1c & 1d: Get forcewake during program sequence. Although the driver
5468          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
5469         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5470
5471         /* 2a: Disable RC states. */
5472         I915_WRITE(GEN6_RC_CONTROL, 0);
5473
5474         /* 2b: Program RC6 thresholds.*/
5475         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
5476         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
5477         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
5478         for_each_engine(engine, dev_priv)
5479                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5480         I915_WRITE(GEN6_RC_SLEEP, 0);
5481         if (IS_BROADWELL(dev_priv))
5482                 I915_WRITE(GEN6_RC6_THRESHOLD, 625); /* 800us/1.28 for TO */
5483         else
5484                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000); /* 50/125ms per EI */
5485
5486         /* 3: Enable RC6 */
5487         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
5488                 rc6_mask = GEN6_RC_CTL_RC6_ENABLE;
5489         intel_print_rc6_info(dev_priv, rc6_mask);
5490         if (IS_BROADWELL(dev_priv))
5491                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5492                                 GEN7_RC_CTL_TO_MODE |
5493                                 rc6_mask);
5494         else
5495                 I915_WRITE(GEN6_RC_CONTROL, GEN6_RC_CTL_HW_ENABLE |
5496                                 GEN6_RC_CTL_EI_MODE(1) |
5497                                 rc6_mask);
5498
5499         /* 4 Program defaults and thresholds for RPS*/
5500         I915_WRITE(GEN6_RPNSWREQ,
5501                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5502         I915_WRITE(GEN6_RC_VIDEO_FREQ,
5503                    HSW_FREQUENCY(dev_priv->rps.rp1_freq));
5504         /* NB: Docs say 1s, and 1000000 - which aren't equivalent */
5505         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 100000000 / 128); /* 1 second timeout */
5506
5507         /* Docs recommend 900MHz, and 300 MHz respectively */
5508         I915_WRITE(GEN6_RP_INTERRUPT_LIMITS,
5509                    dev_priv->rps.max_freq_softlimit << 24 |
5510                    dev_priv->rps.min_freq_softlimit << 16);
5511
5512         I915_WRITE(GEN6_RP_UP_THRESHOLD, 7600000 / 128); /* 76ms busyness per EI, 90% */
5513         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 31300000 / 128); /* 313ms busyness per EI, 70%*/
5514         I915_WRITE(GEN6_RP_UP_EI, 66000); /* 84.48ms, XXX: random? */
5515         I915_WRITE(GEN6_RP_DOWN_EI, 350000); /* 448ms, XXX: random? */
5516
5517         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5518
5519         /* 5: Enable RPS */
5520         I915_WRITE(GEN6_RP_CONTROL,
5521                    GEN6_RP_MEDIA_TURBO |
5522                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
5523                    GEN6_RP_MEDIA_IS_GFX |
5524                    GEN6_RP_ENABLE |
5525                    GEN6_RP_UP_BUSY_AVG |
5526                    GEN6_RP_DOWN_IDLE_AVG);
5527
5528         /* 6: Ring frequency + overclocking (our driver does this later */
5529
5530         reset_rps(dev_priv, gen6_set_rps);
5531
5532         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5533 }
5534
5535 static void gen6_enable_rps(struct drm_i915_private *dev_priv)
5536 {
5537         struct intel_engine_cs *engine;
5538         u32 rc6vids, rc6_mask = 0;
5539         u32 gtfifodbg;
5540         int rc6_mode;
5541         int ret;
5542
5543         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5544
5545         /* Here begins a magic sequence of register writes to enable
5546          * auto-downclocking.
5547          *
5548          * Perhaps there might be some value in exposing these to
5549          * userspace...
5550          */
5551         I915_WRITE(GEN6_RC_STATE, 0);
5552
5553         /* Clear the DBG now so we don't confuse earlier errors */
5554         gtfifodbg = I915_READ(GTFIFODBG);
5555         if (gtfifodbg) {
5556                 DRM_ERROR("GT fifo had a previous error %x\n", gtfifodbg);
5557                 I915_WRITE(GTFIFODBG, gtfifodbg);
5558         }
5559
5560         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
5561
5562         /* disable the counters and set deterministic thresholds */
5563         I915_WRITE(GEN6_RC_CONTROL, 0);
5564
5565         I915_WRITE(GEN6_RC1_WAKE_RATE_LIMIT, 1000 << 16);
5566         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16 | 30);
5567         I915_WRITE(GEN6_RC6pp_WAKE_RATE_LIMIT, 30);
5568         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
5569         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
5570
5571         for_each_engine(engine, dev_priv)
5572                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
5573
5574         I915_WRITE(GEN6_RC_SLEEP, 0);
5575         I915_WRITE(GEN6_RC1e_THRESHOLD, 1000);
5576         if (IS_IVYBRIDGE(dev_priv))
5577                 I915_WRITE(GEN6_RC6_THRESHOLD, 125000);
5578         else
5579                 I915_WRITE(GEN6_RC6_THRESHOLD, 50000);
5580         I915_WRITE(GEN6_RC6p_THRESHOLD, 150000);
5581         I915_WRITE(GEN6_RC6pp_THRESHOLD, 64000); /* unused */
5582
5583         /* Check if we are enabling RC6 */
5584         rc6_mode = intel_enable_rc6();
5585         if (rc6_mode & INTEL_RC6_ENABLE)
5586                 rc6_mask |= GEN6_RC_CTL_RC6_ENABLE;
5587
5588         /* We don't use those on Haswell */
5589         if (!IS_HASWELL(dev_priv)) {
5590                 if (rc6_mode & INTEL_RC6p_ENABLE)
5591                         rc6_mask |= GEN6_RC_CTL_RC6p_ENABLE;
5592
5593                 if (rc6_mode & INTEL_RC6pp_ENABLE)
5594                         rc6_mask |= GEN6_RC_CTL_RC6pp_ENABLE;
5595         }
5596
5597         intel_print_rc6_info(dev_priv, rc6_mask);
5598
5599         I915_WRITE(GEN6_RC_CONTROL,
5600                    rc6_mask |
5601                    GEN6_RC_CTL_EI_MODE(1) |
5602                    GEN6_RC_CTL_HW_ENABLE);
5603
5604         /* Power down if completely idle for over 50ms */
5605         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 50000);
5606         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
5607
5608         ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_MIN_FREQ_TABLE, 0);
5609         if (ret)
5610                 DRM_DEBUG_DRIVER("Failed to set the min frequency\n");
5611
5612         reset_rps(dev_priv, gen6_set_rps);
5613
5614         rc6vids = 0;
5615         ret = sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
5616         if (IS_GEN6(dev_priv) && ret) {
5617                 DRM_DEBUG_DRIVER("Couldn't check for BIOS workaround\n");
5618         } else if (IS_GEN6(dev_priv) && (GEN6_DECODE_RC6_VID(rc6vids & 0xff) < 450)) {
5619                 DRM_DEBUG_DRIVER("You should update your BIOS. Correcting minimum rc6 voltage (%dmV->%dmV)\n",
5620                           GEN6_DECODE_RC6_VID(rc6vids & 0xff), 450);
5621                 rc6vids &= 0xffff00;
5622                 rc6vids |= GEN6_ENCODE_RC6_VID(450);
5623                 ret = sandybridge_pcode_write(dev_priv, GEN6_PCODE_WRITE_RC6VIDS, rc6vids);
5624                 if (ret)
5625                         DRM_ERROR("Couldn't fix incorrect rc6 voltage\n");
5626         }
5627
5628         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
5629 }
5630
5631 static void gen6_update_ring_freq(struct drm_i915_private *dev_priv)
5632 {
5633         int min_freq = 15;
5634         unsigned int gpu_freq;
5635         unsigned int max_ia_freq, min_ring_freq;
5636         unsigned int max_gpu_freq, min_gpu_freq;
5637         int scaling_factor = 180;
5638         struct cpufreq_policy *policy;
5639
5640         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
5641
5642         policy = cpufreq_cpu_get(0);
5643         if (policy) {
5644                 max_ia_freq = policy->cpuinfo.max_freq;
5645                 cpufreq_cpu_put(policy);
5646         } else {
5647                 /*
5648                  * Default to measured freq if none found, PCU will ensure we
5649                  * don't go over
5650                  */
5651                 max_ia_freq = tsc_khz;
5652         }
5653
5654         /* Convert from kHz to MHz */
5655         max_ia_freq /= 1000;
5656
5657         min_ring_freq = I915_READ(DCLK) & 0xf;
5658         /* convert DDR frequency from units of 266.6MHz to bandwidth */
5659         min_ring_freq = mult_frac(min_ring_freq, 8, 3);
5660
5661         if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5662                 /* Convert GT frequency to 50 HZ units */
5663                 min_gpu_freq = dev_priv->rps.min_freq / GEN9_FREQ_SCALER;
5664                 max_gpu_freq = dev_priv->rps.max_freq / GEN9_FREQ_SCALER;
5665         } else {
5666                 min_gpu_freq = dev_priv->rps.min_freq;
5667                 max_gpu_freq = dev_priv->rps.max_freq;
5668         }
5669
5670         /*
5671          * For each potential GPU frequency, load a ring frequency we'd like
5672          * to use for memory access.  We do this by specifying the IA frequency
5673          * the PCU should use as a reference to determine the ring frequency.
5674          */
5675         for (gpu_freq = max_gpu_freq; gpu_freq >= min_gpu_freq; gpu_freq--) {
5676                 int diff = max_gpu_freq - gpu_freq;
5677                 unsigned int ia_freq = 0, ring_freq = 0;
5678
5679                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv)) {
5680                         /*
5681                          * ring_freq = 2 * GT. ring_freq is in 100MHz units
5682                          * No floor required for ring frequency on SKL.
5683                          */
5684                         ring_freq = gpu_freq;
5685                 } else if (INTEL_INFO(dev_priv)->gen >= 8) {
5686                         /* max(2 * GT, DDR). NB: GT is 50MHz units */
5687                         ring_freq = max(min_ring_freq, gpu_freq);
5688                 } else if (IS_HASWELL(dev_priv)) {
5689                         ring_freq = mult_frac(gpu_freq, 5, 4);
5690                         ring_freq = max(min_ring_freq, ring_freq);
5691                         /* leave ia_freq as the default, chosen by cpufreq */
5692                 } else {
5693                         /* On older processors, there is no separate ring
5694                          * clock domain, so in order to boost the bandwidth
5695                          * of the ring, we need to upclock the CPU (ia_freq).
5696                          *
5697                          * For GPU frequencies less than 750MHz,
5698                          * just use the lowest ring freq.
5699                          */
5700                         if (gpu_freq < min_freq)
5701                                 ia_freq = 800;
5702                         else
5703                                 ia_freq = max_ia_freq - ((diff * scaling_factor) / 2);
5704                         ia_freq = DIV_ROUND_CLOSEST(ia_freq, 100);
5705                 }
5706
5707                 sandybridge_pcode_write(dev_priv,
5708                                         GEN6_PCODE_WRITE_MIN_FREQ_TABLE,
5709                                         ia_freq << GEN6_PCODE_FREQ_IA_RATIO_SHIFT |
5710                                         ring_freq << GEN6_PCODE_FREQ_RING_RATIO_SHIFT |
5711                                         gpu_freq);
5712         }
5713 }
5714
5715 static int cherryview_rps_max_freq(struct drm_i915_private *dev_priv)
5716 {
5717         u32 val, rp0;
5718
5719         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5720
5721         switch (INTEL_INFO(dev_priv)->sseu.eu_total) {
5722         case 8:
5723                 /* (2 * 4) config */
5724                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS4EU_FUSE_SHIFT);
5725                 break;
5726         case 12:
5727                 /* (2 * 6) config */
5728                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS6EU_FUSE_SHIFT);
5729                 break;
5730         case 16:
5731                 /* (2 * 8) config */
5732         default:
5733                 /* Setting (2 * 8) Min RP0 for any other combination */
5734                 rp0 = (val >> FB_GFX_FMAX_AT_VMAX_2SS8EU_FUSE_SHIFT);
5735                 break;
5736         }
5737
5738         rp0 = (rp0 & FB_GFX_FREQ_FUSE_MASK);
5739
5740         return rp0;
5741 }
5742
5743 static int cherryview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5744 {
5745         u32 val, rpe;
5746
5747         val = vlv_punit_read(dev_priv, PUNIT_GPU_DUTYCYCLE_REG);
5748         rpe = (val >> PUNIT_GPU_DUTYCYCLE_RPE_FREQ_SHIFT) & PUNIT_GPU_DUTYCYCLE_RPE_FREQ_MASK;
5749
5750         return rpe;
5751 }
5752
5753 static int cherryview_rps_guar_freq(struct drm_i915_private *dev_priv)
5754 {
5755         u32 val, rp1;
5756
5757         val = vlv_punit_read(dev_priv, FB_GFX_FMAX_AT_VMAX_FUSE);
5758         rp1 = (val & FB_GFX_FREQ_FUSE_MASK);
5759
5760         return rp1;
5761 }
5762
5763 static int valleyview_rps_guar_freq(struct drm_i915_private *dev_priv)
5764 {
5765         u32 val, rp1;
5766
5767         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5768
5769         rp1 = (val & FB_GFX_FGUARANTEED_FREQ_FUSE_MASK) >> FB_GFX_FGUARANTEED_FREQ_FUSE_SHIFT;
5770
5771         return rp1;
5772 }
5773
5774 static int valleyview_rps_max_freq(struct drm_i915_private *dev_priv)
5775 {
5776         u32 val, rp0;
5777
5778         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FREQ_FUSE);
5779
5780         rp0 = (val & FB_GFX_MAX_FREQ_FUSE_MASK) >> FB_GFX_MAX_FREQ_FUSE_SHIFT;
5781         /* Clamp to max */
5782         rp0 = min_t(u32, rp0, 0xea);
5783
5784         return rp0;
5785 }
5786
5787 static int valleyview_rps_rpe_freq(struct drm_i915_private *dev_priv)
5788 {
5789         u32 val, rpe;
5790
5791         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_LO);
5792         rpe = (val & FB_FMAX_VMIN_FREQ_LO_MASK) >> FB_FMAX_VMIN_FREQ_LO_SHIFT;
5793         val = vlv_nc_read(dev_priv, IOSF_NC_FB_GFX_FMAX_FUSE_HI);
5794         rpe |= (val & FB_FMAX_VMIN_FREQ_HI_MASK) << 5;
5795
5796         return rpe;
5797 }
5798
5799 static int valleyview_rps_min_freq(struct drm_i915_private *dev_priv)
5800 {
5801         u32 val;
5802
5803         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_LFM) & 0xff;
5804         /*
5805          * According to the BYT Punit GPU turbo HAS 1.1.6.3 the minimum value
5806          * for the minimum frequency in GPLL mode is 0xc1. Contrary to this on
5807          * a BYT-M B0 the above register contains 0xbf. Moreover when setting
5808          * a frequency Punit will not allow values below 0xc0. Clamp it 0xc0
5809          * to make sure it matches what Punit accepts.
5810          */
5811         return max_t(u32, val, 0xc0);
5812 }
5813
5814 /* Check that the pctx buffer wasn't move under us. */
5815 static void valleyview_check_pctx(struct drm_i915_private *dev_priv)
5816 {
5817         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5818
5819         WARN_ON(pctx_addr != dev_priv->mm.stolen_base +
5820                              dev_priv->vlv_pctx->stolen->start);
5821 }
5822
5823
5824 /* Check that the pcbr address is not empty. */
5825 static void cherryview_check_pctx(struct drm_i915_private *dev_priv)
5826 {
5827         unsigned long pctx_addr = I915_READ(VLV_PCBR) & ~4095;
5828
5829         WARN_ON((pctx_addr >> VLV_PCBR_ADDR_SHIFT) == 0);
5830 }
5831
5832 static void cherryview_setup_pctx(struct drm_i915_private *dev_priv)
5833 {
5834         struct i915_ggtt *ggtt = &dev_priv->ggtt;
5835         unsigned long pctx_paddr, paddr;
5836         u32 pcbr;
5837         int pctx_size = 32*1024;
5838
5839         pcbr = I915_READ(VLV_PCBR);
5840         if ((pcbr >> VLV_PCBR_ADDR_SHIFT) == 0) {
5841                 DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5842                 paddr = (dev_priv->mm.stolen_base +
5843                          (ggtt->stolen_size - pctx_size));
5844
5845                 pctx_paddr = (paddr & (~4095));
5846                 I915_WRITE(VLV_PCBR, pctx_paddr);
5847         }
5848
5849         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5850 }
5851
5852 static void valleyview_setup_pctx(struct drm_i915_private *dev_priv)
5853 {
5854         struct drm_i915_gem_object *pctx;
5855         unsigned long pctx_paddr;
5856         u32 pcbr;
5857         int pctx_size = 24*1024;
5858
5859         pcbr = I915_READ(VLV_PCBR);
5860         if (pcbr) {
5861                 /* BIOS set it up already, grab the pre-alloc'd space */
5862                 int pcbr_offset;
5863
5864                 pcbr_offset = (pcbr & (~4095)) - dev_priv->mm.stolen_base;
5865                 pctx = i915_gem_object_create_stolen_for_preallocated(&dev_priv->drm,
5866                                                                       pcbr_offset,
5867                                                                       I915_GTT_OFFSET_NONE,
5868                                                                       pctx_size);
5869                 goto out;
5870         }
5871
5872         DRM_DEBUG_DRIVER("BIOS didn't set up PCBR, fixing up\n");
5873
5874         /*
5875          * From the Gunit register HAS:
5876          * The Gfx driver is expected to program this register and ensure
5877          * proper allocation within Gfx stolen memory.  For example, this
5878          * register should be programmed such than the PCBR range does not
5879          * overlap with other ranges, such as the frame buffer, protected
5880          * memory, or any other relevant ranges.
5881          */
5882         pctx = i915_gem_object_create_stolen(&dev_priv->drm, pctx_size);
5883         if (!pctx) {
5884                 DRM_DEBUG("not enough stolen space for PCTX, disabling\n");
5885                 goto out;
5886         }
5887
5888         pctx_paddr = dev_priv->mm.stolen_base + pctx->stolen->start;
5889         I915_WRITE(VLV_PCBR, pctx_paddr);
5890
5891 out:
5892         DRM_DEBUG_DRIVER("PCBR: 0x%08x\n", I915_READ(VLV_PCBR));
5893         dev_priv->vlv_pctx = pctx;
5894 }
5895
5896 static void valleyview_cleanup_pctx(struct drm_i915_private *dev_priv)
5897 {
5898         if (WARN_ON(!dev_priv->vlv_pctx))
5899                 return;
5900
5901         i915_gem_object_put_unlocked(dev_priv->vlv_pctx);
5902         dev_priv->vlv_pctx = NULL;
5903 }
5904
5905 static void vlv_init_gpll_ref_freq(struct drm_i915_private *dev_priv)
5906 {
5907         dev_priv->rps.gpll_ref_freq =
5908                 vlv_get_cck_clock(dev_priv, "GPLL ref",
5909                                   CCK_GPLL_CLOCK_CONTROL,
5910                                   dev_priv->czclk_freq);
5911
5912         DRM_DEBUG_DRIVER("GPLL reference freq: %d kHz\n",
5913                          dev_priv->rps.gpll_ref_freq);
5914 }
5915
5916 static void valleyview_init_gt_powersave(struct drm_i915_private *dev_priv)
5917 {
5918         u32 val;
5919
5920         valleyview_setup_pctx(dev_priv);
5921
5922         vlv_init_gpll_ref_freq(dev_priv);
5923
5924         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
5925         switch ((val >> 6) & 3) {
5926         case 0:
5927         case 1:
5928                 dev_priv->mem_freq = 800;
5929                 break;
5930         case 2:
5931                 dev_priv->mem_freq = 1066;
5932                 break;
5933         case 3:
5934                 dev_priv->mem_freq = 1333;
5935                 break;
5936         }
5937         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5938
5939         dev_priv->rps.max_freq = valleyview_rps_max_freq(dev_priv);
5940         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5941         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5942                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5943                          dev_priv->rps.max_freq);
5944
5945         dev_priv->rps.efficient_freq = valleyview_rps_rpe_freq(dev_priv);
5946         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5947                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5948                          dev_priv->rps.efficient_freq);
5949
5950         dev_priv->rps.rp1_freq = valleyview_rps_guar_freq(dev_priv);
5951         DRM_DEBUG_DRIVER("RP1(Guar Freq) GPU freq: %d MHz (%u)\n",
5952                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5953                          dev_priv->rps.rp1_freq);
5954
5955         dev_priv->rps.min_freq = valleyview_rps_min_freq(dev_priv);
5956         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
5957                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
5958                          dev_priv->rps.min_freq);
5959 }
5960
5961 static void cherryview_init_gt_powersave(struct drm_i915_private *dev_priv)
5962 {
5963         u32 val;
5964
5965         cherryview_setup_pctx(dev_priv);
5966
5967         vlv_init_gpll_ref_freq(dev_priv);
5968
5969         mutex_lock(&dev_priv->sb_lock);
5970         val = vlv_cck_read(dev_priv, CCK_FUSE_REG);
5971         mutex_unlock(&dev_priv->sb_lock);
5972
5973         switch ((val >> 2) & 0x7) {
5974         case 3:
5975                 dev_priv->mem_freq = 2000;
5976                 break;
5977         default:
5978                 dev_priv->mem_freq = 1600;
5979                 break;
5980         }
5981         DRM_DEBUG_DRIVER("DDR speed: %d MHz\n", dev_priv->mem_freq);
5982
5983         dev_priv->rps.max_freq = cherryview_rps_max_freq(dev_priv);
5984         dev_priv->rps.rp0_freq = dev_priv->rps.max_freq;
5985         DRM_DEBUG_DRIVER("max GPU freq: %d MHz (%u)\n",
5986                          intel_gpu_freq(dev_priv, dev_priv->rps.max_freq),
5987                          dev_priv->rps.max_freq);
5988
5989         dev_priv->rps.efficient_freq = cherryview_rps_rpe_freq(dev_priv);
5990         DRM_DEBUG_DRIVER("RPe GPU freq: %d MHz (%u)\n",
5991                          intel_gpu_freq(dev_priv, dev_priv->rps.efficient_freq),
5992                          dev_priv->rps.efficient_freq);
5993
5994         dev_priv->rps.rp1_freq = cherryview_rps_guar_freq(dev_priv);
5995         DRM_DEBUG_DRIVER("RP1(Guar) GPU freq: %d MHz (%u)\n",
5996                          intel_gpu_freq(dev_priv, dev_priv->rps.rp1_freq),
5997                          dev_priv->rps.rp1_freq);
5998
5999         /* PUnit validated range is only [RPe, RP0] */
6000         dev_priv->rps.min_freq = dev_priv->rps.efficient_freq;
6001         DRM_DEBUG_DRIVER("min GPU freq: %d MHz (%u)\n",
6002                          intel_gpu_freq(dev_priv, dev_priv->rps.min_freq),
6003                          dev_priv->rps.min_freq);
6004
6005         WARN_ONCE((dev_priv->rps.max_freq |
6006                    dev_priv->rps.efficient_freq |
6007                    dev_priv->rps.rp1_freq |
6008                    dev_priv->rps.min_freq) & 1,
6009                   "Odd GPU freq values\n");
6010 }
6011
6012 static void valleyview_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6013 {
6014         valleyview_cleanup_pctx(dev_priv);
6015 }
6016
6017 static void cherryview_enable_rps(struct drm_i915_private *dev_priv)
6018 {
6019         struct intel_engine_cs *engine;
6020         u32 gtfifodbg, val, rc6_mode = 0, pcbr;
6021
6022         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6023
6024         gtfifodbg = I915_READ(GTFIFODBG) & ~(GT_FIFO_SBDEDICATE_FREE_ENTRY_CHV |
6025                                              GT_FIFO_FREE_ENTRIES_CHV);
6026         if (gtfifodbg) {
6027                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6028                                  gtfifodbg);
6029                 I915_WRITE(GTFIFODBG, gtfifodbg);
6030         }
6031
6032         cherryview_check_pctx(dev_priv);
6033
6034         /* 1a & 1b: Get forcewake during program sequence. Although the driver
6035          * hasn't enabled a state yet where we need forcewake, BIOS may have.*/
6036         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6037
6038         /*  Disable RC states. */
6039         I915_WRITE(GEN6_RC_CONTROL, 0);
6040
6041         /* 2a: Program RC6 thresholds.*/
6042         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 40 << 16);
6043         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000); /* 12500 * 1280ns */
6044         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25); /* 25 * 1280ns */
6045
6046         for_each_engine(engine, dev_priv)
6047                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6048         I915_WRITE(GEN6_RC_SLEEP, 0);
6049
6050         /* TO threshold set to 500 us ( 0x186 * 1.28 us) */
6051         I915_WRITE(GEN6_RC6_THRESHOLD, 0x186);
6052
6053         /* allows RC6 residency counter to work */
6054         I915_WRITE(VLV_COUNTER_CONTROL,
6055                    _MASKED_BIT_ENABLE(VLV_COUNT_RANGE_HIGH |
6056                                       VLV_MEDIA_RC6_COUNT_EN |
6057                                       VLV_RENDER_RC6_COUNT_EN));
6058
6059         /* For now we assume BIOS is allocating and populating the PCBR  */
6060         pcbr = I915_READ(VLV_PCBR);
6061
6062         /* 3: Enable RC6 */
6063         if ((intel_enable_rc6() & INTEL_RC6_ENABLE) &&
6064             (pcbr >> VLV_PCBR_ADDR_SHIFT))
6065                 rc6_mode = GEN7_RC_CTL_TO_MODE;
6066
6067         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6068
6069         /* 4 Program defaults and thresholds for RPS*/
6070         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6071         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6072         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6073         I915_WRITE(GEN6_RP_UP_EI, 66000);
6074         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6075
6076         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6077
6078         /* 5: Enable RPS */
6079         I915_WRITE(GEN6_RP_CONTROL,
6080                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6081                    GEN6_RP_MEDIA_IS_GFX |
6082                    GEN6_RP_ENABLE |
6083                    GEN6_RP_UP_BUSY_AVG |
6084                    GEN6_RP_DOWN_IDLE_AVG);
6085
6086         /* Setting Fixed Bias */
6087         val = VLV_OVERRIDE_EN |
6088                   VLV_SOC_TDP_EN |
6089                   CHV_BIAS_CPU_50_SOC_50;
6090         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6091
6092         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6093
6094         /* RPS code assumes GPLL is used */
6095         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6096
6097         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6098         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6099
6100         reset_rps(dev_priv, valleyview_set_rps);
6101
6102         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6103 }
6104
6105 static void valleyview_enable_rps(struct drm_i915_private *dev_priv)
6106 {
6107         struct intel_engine_cs *engine;
6108         u32 gtfifodbg, val, rc6_mode = 0;
6109
6110         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
6111
6112         valleyview_check_pctx(dev_priv);
6113
6114         gtfifodbg = I915_READ(GTFIFODBG);
6115         if (gtfifodbg) {
6116                 DRM_DEBUG_DRIVER("GT fifo had a previous error %x\n",
6117                                  gtfifodbg);
6118                 I915_WRITE(GTFIFODBG, gtfifodbg);
6119         }
6120
6121         /* If VLV, Forcewake all wells, else re-direct to regular path */
6122         intel_uncore_forcewake_get(dev_priv, FORCEWAKE_ALL);
6123
6124         /*  Disable RC states. */
6125         I915_WRITE(GEN6_RC_CONTROL, 0);
6126
6127         I915_WRITE(GEN6_RP_DOWN_TIMEOUT, 1000000);
6128         I915_WRITE(GEN6_RP_UP_THRESHOLD, 59400);
6129         I915_WRITE(GEN6_RP_DOWN_THRESHOLD, 245000);
6130         I915_WRITE(GEN6_RP_UP_EI, 66000);
6131         I915_WRITE(GEN6_RP_DOWN_EI, 350000);
6132
6133         I915_WRITE(GEN6_RP_IDLE_HYSTERSIS, 10);
6134
6135         I915_WRITE(GEN6_RP_CONTROL,
6136                    GEN6_RP_MEDIA_TURBO |
6137                    GEN6_RP_MEDIA_HW_NORMAL_MODE |
6138                    GEN6_RP_MEDIA_IS_GFX |
6139                    GEN6_RP_ENABLE |
6140                    GEN6_RP_UP_BUSY_AVG |
6141                    GEN6_RP_DOWN_IDLE_CONT);
6142
6143         I915_WRITE(GEN6_RC6_WAKE_RATE_LIMIT, 0x00280000);
6144         I915_WRITE(GEN6_RC_EVALUATION_INTERVAL, 125000);
6145         I915_WRITE(GEN6_RC_IDLE_HYSTERSIS, 25);
6146
6147         for_each_engine(engine, dev_priv)
6148                 I915_WRITE(RING_MAX_IDLE(engine->mmio_base), 10);
6149
6150         I915_WRITE(GEN6_RC6_THRESHOLD, 0x557);
6151
6152         /* allows RC6 residency counter to work */
6153         I915_WRITE(VLV_COUNTER_CONTROL,
6154                    _MASKED_BIT_ENABLE(VLV_MEDIA_RC0_COUNT_EN |
6155                                       VLV_RENDER_RC0_COUNT_EN |
6156                                       VLV_MEDIA_RC6_COUNT_EN |
6157                                       VLV_RENDER_RC6_COUNT_EN));
6158
6159         if (intel_enable_rc6() & INTEL_RC6_ENABLE)
6160                 rc6_mode = GEN7_RC_CTL_TO_MODE | VLV_RC_CTL_CTX_RST_PARALLEL;
6161
6162         intel_print_rc6_info(dev_priv, rc6_mode);
6163
6164         I915_WRITE(GEN6_RC_CONTROL, rc6_mode);
6165
6166         /* Setting Fixed Bias */
6167         val = VLV_OVERRIDE_EN |
6168                   VLV_SOC_TDP_EN |
6169                   VLV_BIAS_CPU_125_SOC_875;
6170         vlv_punit_write(dev_priv, VLV_TURBO_SOC_OVERRIDE, val);
6171
6172         val = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
6173
6174         /* RPS code assumes GPLL is used */
6175         WARN_ONCE((val & GPLLENABLE) == 0, "GPLL not enabled\n");
6176
6177         DRM_DEBUG_DRIVER("GPLL enabled? %s\n", yesno(val & GPLLENABLE));
6178         DRM_DEBUG_DRIVER("GPU status: 0x%08x\n", val);
6179
6180         reset_rps(dev_priv, valleyview_set_rps);
6181
6182         intel_uncore_forcewake_put(dev_priv, FORCEWAKE_ALL);
6183 }
6184
6185 static unsigned long intel_pxfreq(u32 vidfreq)
6186 {
6187         unsigned long freq;
6188         int div = (vidfreq & 0x3f0000) >> 16;
6189         int post = (vidfreq & 0x3000) >> 12;
6190         int pre = (vidfreq & 0x7);
6191
6192         if (!pre)
6193                 return 0;
6194
6195         freq = ((div * 133333) / ((1<<post) * pre));
6196
6197         return freq;
6198 }
6199
6200 static const struct cparams {
6201         u16 i;
6202         u16 t;
6203         u16 m;
6204         u16 c;
6205 } cparams[] = {
6206         { 1, 1333, 301, 28664 },
6207         { 1, 1066, 294, 24460 },
6208         { 1, 800, 294, 25192 },
6209         { 0, 1333, 276, 27605 },
6210         { 0, 1066, 276, 27605 },
6211         { 0, 800, 231, 23784 },
6212 };
6213
6214 static unsigned long __i915_chipset_val(struct drm_i915_private *dev_priv)
6215 {
6216         u64 total_count, diff, ret;
6217         u32 count1, count2, count3, m = 0, c = 0;
6218         unsigned long now = jiffies_to_msecs(jiffies), diff1;
6219         int i;
6220
6221         assert_spin_locked(&mchdev_lock);
6222
6223         diff1 = now - dev_priv->ips.last_time1;
6224
6225         /* Prevent division-by-zero if we are asking too fast.
6226          * Also, we don't get interesting results if we are polling
6227          * faster than once in 10ms, so just return the saved value
6228          * in such cases.
6229          */
6230         if (diff1 <= 10)
6231                 return dev_priv->ips.chipset_power;
6232
6233         count1 = I915_READ(DMIEC);
6234         count2 = I915_READ(DDREC);
6235         count3 = I915_READ(CSIEC);
6236
6237         total_count = count1 + count2 + count3;
6238
6239         /* FIXME: handle per-counter overflow */
6240         if (total_count < dev_priv->ips.last_count1) {
6241                 diff = ~0UL - dev_priv->ips.last_count1;
6242                 diff += total_count;
6243         } else {
6244                 diff = total_count - dev_priv->ips.last_count1;
6245         }
6246
6247         for (i = 0; i < ARRAY_SIZE(cparams); i++) {
6248                 if (cparams[i].i == dev_priv->ips.c_m &&
6249                     cparams[i].t == dev_priv->ips.r_t) {
6250                         m = cparams[i].m;
6251                         c = cparams[i].c;
6252                         break;
6253                 }
6254         }
6255
6256         diff = div_u64(diff, diff1);
6257         ret = ((m * diff) + c);
6258         ret = div_u64(ret, 10);
6259
6260         dev_priv->ips.last_count1 = total_count;
6261         dev_priv->ips.last_time1 = now;
6262
6263         dev_priv->ips.chipset_power = ret;
6264
6265         return ret;
6266 }
6267
6268 unsigned long i915_chipset_val(struct drm_i915_private *dev_priv)
6269 {
6270         unsigned long val;
6271
6272         if (INTEL_INFO(dev_priv)->gen != 5)
6273                 return 0;
6274
6275         spin_lock_irq(&mchdev_lock);
6276
6277         val = __i915_chipset_val(dev_priv);
6278
6279         spin_unlock_irq(&mchdev_lock);
6280
6281         return val;
6282 }
6283
6284 unsigned long i915_mch_val(struct drm_i915_private *dev_priv)
6285 {
6286         unsigned long m, x, b;
6287         u32 tsfs;
6288
6289         tsfs = I915_READ(TSFS);
6290
6291         m = ((tsfs & TSFS_SLOPE_MASK) >> TSFS_SLOPE_SHIFT);
6292         x = I915_READ8(TR1);
6293
6294         b = tsfs & TSFS_INTR_MASK;
6295
6296         return ((m * x) / 127) - b;
6297 }
6298
6299 static int _pxvid_to_vd(u8 pxvid)
6300 {
6301         if (pxvid == 0)
6302                 return 0;
6303
6304         if (pxvid >= 8 && pxvid < 31)
6305                 pxvid = 31;
6306
6307         return (pxvid + 2) * 125;
6308 }
6309
6310 static u32 pvid_to_extvid(struct drm_i915_private *dev_priv, u8 pxvid)
6311 {
6312         const int vd = _pxvid_to_vd(pxvid);
6313         const int vm = vd - 1125;
6314
6315         if (INTEL_INFO(dev_priv)->is_mobile)
6316                 return vm > 0 ? vm : 0;
6317
6318         return vd;
6319 }
6320
6321 static void __i915_update_gfx_val(struct drm_i915_private *dev_priv)
6322 {
6323         u64 now, diff, diffms;
6324         u32 count;
6325
6326         assert_spin_locked(&mchdev_lock);
6327
6328         now = ktime_get_raw_ns();
6329         diffms = now - dev_priv->ips.last_time2;
6330         do_div(diffms, NSEC_PER_MSEC);
6331
6332         /* Don't divide by 0 */
6333         if (!diffms)
6334                 return;
6335
6336         count = I915_READ(GFXEC);
6337
6338         if (count < dev_priv->ips.last_count2) {
6339                 diff = ~0UL - dev_priv->ips.last_count2;
6340                 diff += count;
6341         } else {
6342                 diff = count - dev_priv->ips.last_count2;
6343         }
6344
6345         dev_priv->ips.last_count2 = count;
6346         dev_priv->ips.last_time2 = now;
6347
6348         /* More magic constants... */
6349         diff = diff * 1181;
6350         diff = div_u64(diff, diffms * 10);
6351         dev_priv->ips.gfx_power = diff;
6352 }
6353
6354 void i915_update_gfx_val(struct drm_i915_private *dev_priv)
6355 {
6356         if (INTEL_INFO(dev_priv)->gen != 5)
6357                 return;
6358
6359         spin_lock_irq(&mchdev_lock);
6360
6361         __i915_update_gfx_val(dev_priv);
6362
6363         spin_unlock_irq(&mchdev_lock);
6364 }
6365
6366 static unsigned long __i915_gfx_val(struct drm_i915_private *dev_priv)
6367 {
6368         unsigned long t, corr, state1, corr2, state2;
6369         u32 pxvid, ext_v;
6370
6371         assert_spin_locked(&mchdev_lock);
6372
6373         pxvid = I915_READ(PXVFREQ(dev_priv->rps.cur_freq));
6374         pxvid = (pxvid >> 24) & 0x7f;
6375         ext_v = pvid_to_extvid(dev_priv, pxvid);
6376
6377         state1 = ext_v;
6378
6379         t = i915_mch_val(dev_priv);
6380
6381         /* Revel in the empirically derived constants */
6382
6383         /* Correction factor in 1/100000 units */
6384         if (t > 80)
6385                 corr = ((t * 2349) + 135940);
6386         else if (t >= 50)
6387                 corr = ((t * 964) + 29317);
6388         else /* < 50 */
6389                 corr = ((t * 301) + 1004);
6390
6391         corr = corr * ((150142 * state1) / 10000 - 78642);
6392         corr /= 100000;
6393         corr2 = (corr * dev_priv->ips.corr);
6394
6395         state2 = (corr2 * state1) / 10000;
6396         state2 /= 100; /* convert to mW */
6397
6398         __i915_update_gfx_val(dev_priv);
6399
6400         return dev_priv->ips.gfx_power + state2;
6401 }
6402
6403 unsigned long i915_gfx_val(struct drm_i915_private *dev_priv)
6404 {
6405         unsigned long val;
6406
6407         if (INTEL_INFO(dev_priv)->gen != 5)
6408                 return 0;
6409
6410         spin_lock_irq(&mchdev_lock);
6411
6412         val = __i915_gfx_val(dev_priv);
6413
6414         spin_unlock_irq(&mchdev_lock);
6415
6416         return val;
6417 }
6418
6419 /**
6420  * i915_read_mch_val - return value for IPS use
6421  *
6422  * Calculate and return a value for the IPS driver to use when deciding whether
6423  * we have thermal and power headroom to increase CPU or GPU power budget.
6424  */
6425 unsigned long i915_read_mch_val(void)
6426 {
6427         struct drm_i915_private *dev_priv;
6428         unsigned long chipset_val, graphics_val, ret = 0;
6429
6430         spin_lock_irq(&mchdev_lock);
6431         if (!i915_mch_dev)
6432                 goto out_unlock;
6433         dev_priv = i915_mch_dev;
6434
6435         chipset_val = __i915_chipset_val(dev_priv);
6436         graphics_val = __i915_gfx_val(dev_priv);
6437
6438         ret = chipset_val + graphics_val;
6439
6440 out_unlock:
6441         spin_unlock_irq(&mchdev_lock);
6442
6443         return ret;
6444 }
6445 EXPORT_SYMBOL_GPL(i915_read_mch_val);
6446
6447 /**
6448  * i915_gpu_raise - raise GPU frequency limit
6449  *
6450  * Raise the limit; IPS indicates we have thermal headroom.
6451  */
6452 bool i915_gpu_raise(void)
6453 {
6454         struct drm_i915_private *dev_priv;
6455         bool ret = true;
6456
6457         spin_lock_irq(&mchdev_lock);
6458         if (!i915_mch_dev) {
6459                 ret = false;
6460                 goto out_unlock;
6461         }
6462         dev_priv = i915_mch_dev;
6463
6464         if (dev_priv->ips.max_delay > dev_priv->ips.fmax)
6465                 dev_priv->ips.max_delay--;
6466
6467 out_unlock:
6468         spin_unlock_irq(&mchdev_lock);
6469
6470         return ret;
6471 }
6472 EXPORT_SYMBOL_GPL(i915_gpu_raise);
6473
6474 /**
6475  * i915_gpu_lower - lower GPU frequency limit
6476  *
6477  * IPS indicates we're close to a thermal limit, so throttle back the GPU
6478  * frequency maximum.
6479  */
6480 bool i915_gpu_lower(void)
6481 {
6482         struct drm_i915_private *dev_priv;
6483         bool ret = true;
6484
6485         spin_lock_irq(&mchdev_lock);
6486         if (!i915_mch_dev) {
6487                 ret = false;
6488                 goto out_unlock;
6489         }
6490         dev_priv = i915_mch_dev;
6491
6492         if (dev_priv->ips.max_delay < dev_priv->ips.min_delay)
6493                 dev_priv->ips.max_delay++;
6494
6495 out_unlock:
6496         spin_unlock_irq(&mchdev_lock);
6497
6498         return ret;
6499 }
6500 EXPORT_SYMBOL_GPL(i915_gpu_lower);
6501
6502 /**
6503  * i915_gpu_busy - indicate GPU business to IPS
6504  *
6505  * Tell the IPS driver whether or not the GPU is busy.
6506  */
6507 bool i915_gpu_busy(void)
6508 {
6509         bool ret = false;
6510
6511         spin_lock_irq(&mchdev_lock);
6512         if (i915_mch_dev)
6513                 ret = i915_mch_dev->gt.awake;
6514         spin_unlock_irq(&mchdev_lock);
6515
6516         return ret;
6517 }
6518 EXPORT_SYMBOL_GPL(i915_gpu_busy);
6519
6520 /**
6521  * i915_gpu_turbo_disable - disable graphics turbo
6522  *
6523  * Disable graphics turbo by resetting the max frequency and setting the
6524  * current frequency to the default.
6525  */
6526 bool i915_gpu_turbo_disable(void)
6527 {
6528         struct drm_i915_private *dev_priv;
6529         bool ret = true;
6530
6531         spin_lock_irq(&mchdev_lock);
6532         if (!i915_mch_dev) {
6533                 ret = false;
6534                 goto out_unlock;
6535         }
6536         dev_priv = i915_mch_dev;
6537
6538         dev_priv->ips.max_delay = dev_priv->ips.fstart;
6539
6540         if (!ironlake_set_drps(dev_priv, dev_priv->ips.fstart))
6541                 ret = false;
6542
6543 out_unlock:
6544         spin_unlock_irq(&mchdev_lock);
6545
6546         return ret;
6547 }
6548 EXPORT_SYMBOL_GPL(i915_gpu_turbo_disable);
6549
6550 /**
6551  * Tells the intel_ips driver that the i915 driver is now loaded, if
6552  * IPS got loaded first.
6553  *
6554  * This awkward dance is so that neither module has to depend on the
6555  * other in order for IPS to do the appropriate communication of
6556  * GPU turbo limits to i915.
6557  */
6558 static void
6559 ips_ping_for_i915_load(void)
6560 {
6561         void (*link)(void);
6562
6563         link = symbol_get(ips_link_to_i915_driver);
6564         if (link) {
6565                 link();
6566                 symbol_put(ips_link_to_i915_driver);
6567         }
6568 }
6569
6570 void intel_gpu_ips_init(struct drm_i915_private *dev_priv)
6571 {
6572         /* We only register the i915 ips part with intel-ips once everything is
6573          * set up, to avoid intel-ips sneaking in and reading bogus values. */
6574         spin_lock_irq(&mchdev_lock);
6575         i915_mch_dev = dev_priv;
6576         spin_unlock_irq(&mchdev_lock);
6577
6578         ips_ping_for_i915_load();
6579 }
6580
6581 void intel_gpu_ips_teardown(void)
6582 {
6583         spin_lock_irq(&mchdev_lock);
6584         i915_mch_dev = NULL;
6585         spin_unlock_irq(&mchdev_lock);
6586 }
6587
6588 static void intel_init_emon(struct drm_i915_private *dev_priv)
6589 {
6590         u32 lcfuse;
6591         u8 pxw[16];
6592         int i;
6593
6594         /* Disable to program */
6595         I915_WRITE(ECR, 0);
6596         POSTING_READ(ECR);
6597
6598         /* Program energy weights for various events */
6599         I915_WRITE(SDEW, 0x15040d00);
6600         I915_WRITE(CSIEW0, 0x007f0000);
6601         I915_WRITE(CSIEW1, 0x1e220004);
6602         I915_WRITE(CSIEW2, 0x04000004);
6603
6604         for (i = 0; i < 5; i++)
6605                 I915_WRITE(PEW(i), 0);
6606         for (i = 0; i < 3; i++)
6607                 I915_WRITE(DEW(i), 0);
6608
6609         /* Program P-state weights to account for frequency power adjustment */
6610         for (i = 0; i < 16; i++) {
6611                 u32 pxvidfreq = I915_READ(PXVFREQ(i));
6612                 unsigned long freq = intel_pxfreq(pxvidfreq);
6613                 unsigned long vid = (pxvidfreq & PXVFREQ_PX_MASK) >>
6614                         PXVFREQ_PX_SHIFT;
6615                 unsigned long val;
6616
6617                 val = vid * vid;
6618                 val *= (freq / 1000);
6619                 val *= 255;
6620                 val /= (127*127*900);
6621                 if (val > 0xff)
6622                         DRM_ERROR("bad pxval: %ld\n", val);
6623                 pxw[i] = val;
6624         }
6625         /* Render standby states get 0 weight */
6626         pxw[14] = 0;
6627         pxw[15] = 0;
6628
6629         for (i = 0; i < 4; i++) {
6630                 u32 val = (pxw[i*4] << 24) | (pxw[(i*4)+1] << 16) |
6631                         (pxw[(i*4)+2] << 8) | (pxw[(i*4)+3]);
6632                 I915_WRITE(PXW(i), val);
6633         }
6634
6635         /* Adjust magic regs to magic values (more experimental results) */
6636         I915_WRITE(OGW0, 0);
6637         I915_WRITE(OGW1, 0);
6638         I915_WRITE(EG0, 0x00007f00);
6639         I915_WRITE(EG1, 0x0000000e);
6640         I915_WRITE(EG2, 0x000e0000);
6641         I915_WRITE(EG3, 0x68000300);
6642         I915_WRITE(EG4, 0x42000000);
6643         I915_WRITE(EG5, 0x00140031);
6644         I915_WRITE(EG6, 0);
6645         I915_WRITE(EG7, 0);
6646
6647         for (i = 0; i < 8; i++)
6648                 I915_WRITE(PXWL(i), 0);
6649
6650         /* Enable PMON + select events */
6651         I915_WRITE(ECR, 0x80000019);
6652
6653         lcfuse = I915_READ(LCFUSE02);
6654
6655         dev_priv->ips.corr = (lcfuse & LCFUSE_HIV_MASK);
6656 }
6657
6658 void intel_init_gt_powersave(struct drm_i915_private *dev_priv)
6659 {
6660         /*
6661          * RPM depends on RC6 to save restore the GT HW context, so make RC6 a
6662          * requirement.
6663          */
6664         if (!i915.enable_rc6) {
6665                 DRM_INFO("RC6 disabled, disabling runtime PM support\n");
6666                 intel_runtime_pm_get(dev_priv);
6667         }
6668
6669         mutex_lock(&dev_priv->drm.struct_mutex);
6670         mutex_lock(&dev_priv->rps.hw_lock);
6671
6672         /* Initialize RPS limits (for userspace) */
6673         if (IS_CHERRYVIEW(dev_priv))
6674                 cherryview_init_gt_powersave(dev_priv);
6675         else if (IS_VALLEYVIEW(dev_priv))
6676                 valleyview_init_gt_powersave(dev_priv);
6677         else if (INTEL_GEN(dev_priv) >= 6)
6678                 gen6_init_rps_frequencies(dev_priv);
6679
6680         /* Derive initial user preferences/limits from the hardware limits */
6681         dev_priv->rps.idle_freq = dev_priv->rps.min_freq;
6682         dev_priv->rps.cur_freq = dev_priv->rps.idle_freq;
6683
6684         dev_priv->rps.max_freq_softlimit = dev_priv->rps.max_freq;
6685         dev_priv->rps.min_freq_softlimit = dev_priv->rps.min_freq;
6686
6687         if (IS_HASWELL(dev_priv) || IS_BROADWELL(dev_priv))
6688                 dev_priv->rps.min_freq_softlimit =
6689                         max_t(int,
6690                               dev_priv->rps.efficient_freq,
6691                               intel_freq_opcode(dev_priv, 450));
6692
6693         /* After setting max-softlimit, find the overclock max freq */
6694         if (IS_GEN6(dev_priv) ||
6695             IS_IVYBRIDGE(dev_priv) || IS_HASWELL(dev_priv)) {
6696                 u32 params = 0;
6697
6698                 sandybridge_pcode_read(dev_priv, GEN6_READ_OC_PARAMS, &params);
6699                 if (params & BIT(31)) { /* OC supported */
6700                         DRM_DEBUG_DRIVER("Overclocking supported, max: %dMHz, overclock: %dMHz\n",
6701                                          (dev_priv->rps.max_freq & 0xff) * 50,
6702                                          (params & 0xff) * 50);
6703                         dev_priv->rps.max_freq = params & 0xff;
6704                 }
6705         }
6706
6707         /* Finally allow us to boost to max by default */
6708         dev_priv->rps.boost_freq = dev_priv->rps.max_freq;
6709
6710         mutex_unlock(&dev_priv->rps.hw_lock);
6711         mutex_unlock(&dev_priv->drm.struct_mutex);
6712
6713         intel_autoenable_gt_powersave(dev_priv);
6714 }
6715
6716 void intel_cleanup_gt_powersave(struct drm_i915_private *dev_priv)
6717 {
6718         if (IS_VALLEYVIEW(dev_priv))
6719                 valleyview_cleanup_gt_powersave(dev_priv);
6720
6721         if (!i915.enable_rc6)
6722                 intel_runtime_pm_put(dev_priv);
6723 }
6724
6725 /**
6726  * intel_suspend_gt_powersave - suspend PM work and helper threads
6727  * @dev_priv: i915 device
6728  *
6729  * We don't want to disable RC6 or other features here, we just want
6730  * to make sure any work we've queued has finished and won't bother
6731  * us while we're suspended.
6732  */
6733 void intel_suspend_gt_powersave(struct drm_i915_private *dev_priv)
6734 {
6735         if (INTEL_GEN(dev_priv) < 6)
6736                 return;
6737
6738         if (cancel_delayed_work_sync(&dev_priv->rps.autoenable_work))
6739                 intel_runtime_pm_put(dev_priv);
6740
6741         /* gen6_rps_idle() will be called later to disable interrupts */
6742 }
6743
6744 void intel_sanitize_gt_powersave(struct drm_i915_private *dev_priv)
6745 {
6746         dev_priv->rps.enabled = true; /* force disabling */
6747         intel_disable_gt_powersave(dev_priv);
6748
6749         gen6_reset_rps_interrupts(dev_priv);
6750 }
6751
6752 void intel_disable_gt_powersave(struct drm_i915_private *dev_priv)
6753 {
6754         if (!READ_ONCE(dev_priv->rps.enabled))
6755                 return;
6756
6757         mutex_lock(&dev_priv->rps.hw_lock);
6758
6759         if (INTEL_GEN(dev_priv) >= 9) {
6760                 gen9_disable_rc6(dev_priv);
6761                 gen9_disable_rps(dev_priv);
6762         } else if (IS_CHERRYVIEW(dev_priv)) {
6763                 cherryview_disable_rps(dev_priv);
6764         } else if (IS_VALLEYVIEW(dev_priv)) {
6765                 valleyview_disable_rps(dev_priv);
6766         } else if (INTEL_GEN(dev_priv) >= 6) {
6767                 gen6_disable_rps(dev_priv);
6768         }  else if (IS_IRONLAKE_M(dev_priv)) {
6769                 ironlake_disable_drps(dev_priv);
6770         }
6771
6772         dev_priv->rps.enabled = false;
6773         mutex_unlock(&dev_priv->rps.hw_lock);
6774 }
6775
6776 void intel_enable_gt_powersave(struct drm_i915_private *dev_priv)
6777 {
6778         /* We shouldn't be disabling as we submit, so this should be less
6779          * racy than it appears!
6780          */
6781         if (READ_ONCE(dev_priv->rps.enabled))
6782                 return;
6783
6784         /* Powersaving is controlled by the host when inside a VM */
6785         if (intel_vgpu_active(dev_priv))
6786                 return;
6787
6788         mutex_lock(&dev_priv->rps.hw_lock);
6789
6790         if (IS_CHERRYVIEW(dev_priv)) {
6791                 cherryview_enable_rps(dev_priv);
6792         } else if (IS_VALLEYVIEW(dev_priv)) {
6793                 valleyview_enable_rps(dev_priv);
6794         } else if (INTEL_GEN(dev_priv) >= 9) {
6795                 gen9_enable_rc6(dev_priv);
6796                 gen9_enable_rps(dev_priv);
6797                 if (IS_SKYLAKE(dev_priv) || IS_KABYLAKE(dev_priv))
6798                         gen6_update_ring_freq(dev_priv);
6799         } else if (IS_BROADWELL(dev_priv)) {
6800                 gen8_enable_rps(dev_priv);
6801                 gen6_update_ring_freq(dev_priv);
6802         } else if (INTEL_GEN(dev_priv) >= 6) {
6803                 gen6_enable_rps(dev_priv);
6804                 gen6_update_ring_freq(dev_priv);
6805         } else if (IS_IRONLAKE_M(dev_priv)) {
6806                 ironlake_enable_drps(dev_priv);
6807                 intel_init_emon(dev_priv);
6808         }
6809
6810         WARN_ON(dev_priv->rps.max_freq < dev_priv->rps.min_freq);
6811         WARN_ON(dev_priv->rps.idle_freq > dev_priv->rps.max_freq);
6812
6813         WARN_ON(dev_priv->rps.efficient_freq < dev_priv->rps.min_freq);
6814         WARN_ON(dev_priv->rps.efficient_freq > dev_priv->rps.max_freq);
6815
6816         dev_priv->rps.enabled = true;
6817         mutex_unlock(&dev_priv->rps.hw_lock);
6818 }
6819
6820 static void __intel_autoenable_gt_powersave(struct work_struct *work)
6821 {
6822         struct drm_i915_private *dev_priv =
6823                 container_of(work, typeof(*dev_priv), rps.autoenable_work.work);
6824         struct intel_engine_cs *rcs;
6825         struct drm_i915_gem_request *req;
6826
6827         if (READ_ONCE(dev_priv->rps.enabled))
6828                 goto out;
6829
6830         rcs = &dev_priv->engine[RCS];
6831         if (rcs->last_context)
6832                 goto out;
6833
6834         if (!rcs->init_context)
6835                 goto out;
6836
6837         mutex_lock(&dev_priv->drm.struct_mutex);
6838
6839         req = i915_gem_request_alloc(rcs, dev_priv->kernel_context);
6840         if (IS_ERR(req))
6841                 goto unlock;
6842
6843         if (!i915.enable_execlists && i915_switch_context(req) == 0)
6844                 rcs->init_context(req);
6845
6846         /* Mark the device busy, calling intel_enable_gt_powersave() */
6847         i915_add_request_no_flush(req);
6848
6849 unlock:
6850         mutex_unlock(&dev_priv->drm.struct_mutex);
6851 out:
6852         intel_runtime_pm_put(dev_priv);
6853 }
6854
6855 void intel_autoenable_gt_powersave(struct drm_i915_private *dev_priv)
6856 {
6857         if (READ_ONCE(dev_priv->rps.enabled))
6858                 return;
6859
6860         if (IS_IRONLAKE_M(dev_priv)) {
6861                 ironlake_enable_drps(dev_priv);
6862                 intel_init_emon(dev_priv);
6863         } else if (INTEL_INFO(dev_priv)->gen >= 6) {
6864                 /*
6865                  * PCU communication is slow and this doesn't need to be
6866                  * done at any specific time, so do this out of our fast path
6867                  * to make resume and init faster.
6868                  *
6869                  * We depend on the HW RC6 power context save/restore
6870                  * mechanism when entering D3 through runtime PM suspend. So
6871                  * disable RPM until RPS/RC6 is properly setup. We can only
6872                  * get here via the driver load/system resume/runtime resume
6873                  * paths, so the _noresume version is enough (and in case of
6874                  * runtime resume it's necessary).
6875                  */
6876                 if (queue_delayed_work(dev_priv->wq,
6877                                        &dev_priv->rps.autoenable_work,
6878                                        round_jiffies_up_relative(HZ)))
6879                         intel_runtime_pm_get_noresume(dev_priv);
6880         }
6881 }
6882
6883 static void ibx_init_clock_gating(struct drm_device *dev)
6884 {
6885         struct drm_i915_private *dev_priv = to_i915(dev);
6886
6887         /*
6888          * On Ibex Peak and Cougar Point, we need to disable clock
6889          * gating for the panel power sequencer or it will fail to
6890          * start up when no ports are active.
6891          */
6892         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE);
6893 }
6894
6895 static void g4x_disable_trickle_feed(struct drm_device *dev)
6896 {
6897         struct drm_i915_private *dev_priv = to_i915(dev);
6898         enum pipe pipe;
6899
6900         for_each_pipe(dev_priv, pipe) {
6901                 I915_WRITE(DSPCNTR(pipe),
6902                            I915_READ(DSPCNTR(pipe)) |
6903                            DISPPLANE_TRICKLE_FEED_DISABLE);
6904
6905                 I915_WRITE(DSPSURF(pipe), I915_READ(DSPSURF(pipe)));
6906                 POSTING_READ(DSPSURF(pipe));
6907         }
6908 }
6909
6910 static void ilk_init_lp_watermarks(struct drm_device *dev)
6911 {
6912         struct drm_i915_private *dev_priv = to_i915(dev);
6913
6914         I915_WRITE(WM3_LP_ILK, I915_READ(WM3_LP_ILK) & ~WM1_LP_SR_EN);
6915         I915_WRITE(WM2_LP_ILK, I915_READ(WM2_LP_ILK) & ~WM1_LP_SR_EN);
6916         I915_WRITE(WM1_LP_ILK, I915_READ(WM1_LP_ILK) & ~WM1_LP_SR_EN);
6917
6918         /*
6919          * Don't touch WM1S_LP_EN here.
6920          * Doing so could cause underruns.
6921          */
6922 }
6923
6924 static void ironlake_init_clock_gating(struct drm_device *dev)
6925 {
6926         struct drm_i915_private *dev_priv = to_i915(dev);
6927         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
6928
6929         /*
6930          * Required for FBC
6931          * WaFbcDisableDpfcClockGating:ilk
6932          */
6933         dspclk_gate |= ILK_DPFCRUNIT_CLOCK_GATE_DISABLE |
6934                    ILK_DPFCUNIT_CLOCK_GATE_DISABLE |
6935                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE;
6936
6937         I915_WRITE(PCH_3DCGDIS0,
6938                    MARIUNIT_CLOCK_GATE_DISABLE |
6939                    SVSMUNIT_CLOCK_GATE_DISABLE);
6940         I915_WRITE(PCH_3DCGDIS1,
6941                    VFMUNIT_CLOCK_GATE_DISABLE);
6942
6943         /*
6944          * According to the spec the following bits should be set in
6945          * order to enable memory self-refresh
6946          * The bit 22/21 of 0x42004
6947          * The bit 5 of 0x42020
6948          * The bit 15 of 0x45000
6949          */
6950         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6951                    (I915_READ(ILK_DISPLAY_CHICKEN2) |
6952                     ILK_DPARB_GATE | ILK_VSDPFD_FULL));
6953         dspclk_gate |= ILK_DPARBUNIT_CLOCK_GATE_ENABLE;
6954         I915_WRITE(DISP_ARB_CTL,
6955                    (I915_READ(DISP_ARB_CTL) |
6956                     DISP_FBC_WM_DIS));
6957
6958         ilk_init_lp_watermarks(dev);
6959
6960         /*
6961          * Based on the document from hardware guys the following bits
6962          * should be set unconditionally in order to enable FBC.
6963          * The bit 22 of 0x42000
6964          * The bit 22 of 0x42004
6965          * The bit 7,8,9 of 0x42020.
6966          */
6967         if (IS_IRONLAKE_M(dev)) {
6968                 /* WaFbcAsynchFlipDisableFbcQueue:ilk */
6969                 I915_WRITE(ILK_DISPLAY_CHICKEN1,
6970                            I915_READ(ILK_DISPLAY_CHICKEN1) |
6971                            ILK_FBCQ_DIS);
6972                 I915_WRITE(ILK_DISPLAY_CHICKEN2,
6973                            I915_READ(ILK_DISPLAY_CHICKEN2) |
6974                            ILK_DPARB_GATE);
6975         }
6976
6977         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
6978
6979         I915_WRITE(ILK_DISPLAY_CHICKEN2,
6980                    I915_READ(ILK_DISPLAY_CHICKEN2) |
6981                    ILK_ELPIN_409_SELECT);
6982         I915_WRITE(_3D_CHICKEN2,
6983                    _3D_CHICKEN2_WM_READ_PIPELINED << 16 |
6984                    _3D_CHICKEN2_WM_READ_PIPELINED);
6985
6986         /* WaDisableRenderCachePipelinedFlush:ilk */
6987         I915_WRITE(CACHE_MODE_0,
6988                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
6989
6990         /* WaDisable_RenderCache_OperationalFlush:ilk */
6991         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
6992
6993         g4x_disable_trickle_feed(dev);
6994
6995         ibx_init_clock_gating(dev);
6996 }
6997
6998 static void cpt_init_clock_gating(struct drm_device *dev)
6999 {
7000         struct drm_i915_private *dev_priv = to_i915(dev);
7001         int pipe;
7002         uint32_t val;
7003
7004         /*
7005          * On Ibex Peak and Cougar Point, we need to disable clock
7006          * gating for the panel power sequencer or it will fail to
7007          * start up when no ports are active.
7008          */
7009         I915_WRITE(SOUTH_DSPCLK_GATE_D, PCH_DPLSUNIT_CLOCK_GATE_DISABLE |
7010                    PCH_DPLUNIT_CLOCK_GATE_DISABLE |
7011                    PCH_CPUNIT_CLOCK_GATE_DISABLE);
7012         I915_WRITE(SOUTH_CHICKEN2, I915_READ(SOUTH_CHICKEN2) |
7013                    DPLS_EDP_PPS_FIX_DIS);
7014         /* The below fixes the weird display corruption, a few pixels shifted
7015          * downward, on (only) LVDS of some HP laptops with IVY.
7016          */
7017         for_each_pipe(dev_priv, pipe) {
7018                 val = I915_READ(TRANS_CHICKEN2(pipe));
7019                 val |= TRANS_CHICKEN2_TIMING_OVERRIDE;
7020                 val &= ~TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7021                 if (dev_priv->vbt.fdi_rx_polarity_inverted)
7022                         val |= TRANS_CHICKEN2_FDI_POLARITY_REVERSED;
7023                 val &= ~TRANS_CHICKEN2_FRAME_START_DELAY_MASK;
7024                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_COUNTER;
7025                 val &= ~TRANS_CHICKEN2_DISABLE_DEEP_COLOR_MODESWITCH;
7026                 I915_WRITE(TRANS_CHICKEN2(pipe), val);
7027         }
7028         /* WADP0ClockGatingDisable */
7029         for_each_pipe(dev_priv, pipe) {
7030                 I915_WRITE(TRANS_CHICKEN1(pipe),
7031                            TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7032         }
7033 }
7034
7035 static void gen6_check_mch_setup(struct drm_device *dev)
7036 {
7037         struct drm_i915_private *dev_priv = to_i915(dev);
7038         uint32_t tmp;
7039
7040         tmp = I915_READ(MCH_SSKPD);
7041         if ((tmp & MCH_SSKPD_WM0_MASK) != MCH_SSKPD_WM0_VAL)
7042                 DRM_DEBUG_KMS("Wrong MCH_SSKPD value: 0x%08x This can cause underruns.\n",
7043                               tmp);
7044 }
7045
7046 static void gen6_init_clock_gating(struct drm_device *dev)
7047 {
7048         struct drm_i915_private *dev_priv = to_i915(dev);
7049         uint32_t dspclk_gate = ILK_VRHUNIT_CLOCK_GATE_DISABLE;
7050
7051         I915_WRITE(ILK_DSPCLK_GATE_D, dspclk_gate);
7052
7053         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7054                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7055                    ILK_ELPIN_409_SELECT);
7056
7057         /* WaDisableHiZPlanesWhenMSAAEnabled:snb */
7058         I915_WRITE(_3D_CHICKEN,
7059                    _MASKED_BIT_ENABLE(_3D_CHICKEN_HIZ_PLANE_DISABLE_MSAA_4X_SNB));
7060
7061         /* WaDisable_RenderCache_OperationalFlush:snb */
7062         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7063
7064         /*
7065          * BSpec recoomends 8x4 when MSAA is used,
7066          * however in practice 16x4 seems fastest.
7067          *
7068          * Note that PS/WM thread counts depend on the WIZ hashing
7069          * disable bit, which we don't touch here, but it's good
7070          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7071          */
7072         I915_WRITE(GEN6_GT_MODE,
7073                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7074
7075         ilk_init_lp_watermarks(dev);
7076
7077         I915_WRITE(CACHE_MODE_0,
7078                    _MASKED_BIT_DISABLE(CM0_STC_EVICT_DISABLE_LRA_SNB));
7079
7080         I915_WRITE(GEN6_UCGCTL1,
7081                    I915_READ(GEN6_UCGCTL1) |
7082                    GEN6_BLBUNIT_CLOCK_GATE_DISABLE |
7083                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7084
7085         /* According to the BSpec vol1g, bit 12 (RCPBUNIT) clock
7086          * gating disable must be set.  Failure to set it results in
7087          * flickering pixels due to Z write ordering failures after
7088          * some amount of runtime in the Mesa "fire" demo, and Unigine
7089          * Sanctuary and Tropics, and apparently anything else with
7090          * alpha test or pixel discard.
7091          *
7092          * According to the spec, bit 11 (RCCUNIT) must also be set,
7093          * but we didn't debug actual testcases to find it out.
7094          *
7095          * WaDisableRCCUnitClockGating:snb
7096          * WaDisableRCPBUnitClockGating:snb
7097          */
7098         I915_WRITE(GEN6_UCGCTL2,
7099                    GEN6_RCPBUNIT_CLOCK_GATE_DISABLE |
7100                    GEN6_RCCUNIT_CLOCK_GATE_DISABLE);
7101
7102         /* WaStripsFansDisableFastClipPerformanceFix:snb */
7103         I915_WRITE(_3D_CHICKEN3,
7104                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_FASTCLIP_CULL));
7105
7106         /*
7107          * Bspec says:
7108          * "This bit must be set if 3DSTATE_CLIP clip mode is set to normal and
7109          * 3DSTATE_SF number of SF output attributes is more than 16."
7110          */
7111         I915_WRITE(_3D_CHICKEN3,
7112                    _MASKED_BIT_ENABLE(_3D_CHICKEN3_SF_DISABLE_PIPELINED_ATTR_FETCH));
7113
7114         /*
7115          * According to the spec the following bits should be
7116          * set in order to enable memory self-refresh and fbc:
7117          * The bit21 and bit22 of 0x42000
7118          * The bit21 and bit22 of 0x42004
7119          * The bit5 and bit7 of 0x42020
7120          * The bit14 of 0x70180
7121          * The bit14 of 0x71180
7122          *
7123          * WaFbcAsynchFlipDisableFbcQueue:snb
7124          */
7125         I915_WRITE(ILK_DISPLAY_CHICKEN1,
7126                    I915_READ(ILK_DISPLAY_CHICKEN1) |
7127                    ILK_FBCQ_DIS | ILK_PABSTRETCH_DIS);
7128         I915_WRITE(ILK_DISPLAY_CHICKEN2,
7129                    I915_READ(ILK_DISPLAY_CHICKEN2) |
7130                    ILK_DPARB_GATE | ILK_VSDPFD_FULL);
7131         I915_WRITE(ILK_DSPCLK_GATE_D,
7132                    I915_READ(ILK_DSPCLK_GATE_D) |
7133                    ILK_DPARBUNIT_CLOCK_GATE_ENABLE  |
7134                    ILK_DPFDUNIT_CLOCK_GATE_ENABLE);
7135
7136         g4x_disable_trickle_feed(dev);
7137
7138         cpt_init_clock_gating(dev);
7139
7140         gen6_check_mch_setup(dev);
7141 }
7142
7143 static void gen7_setup_fixed_func_scheduler(struct drm_i915_private *dev_priv)
7144 {
7145         uint32_t reg = I915_READ(GEN7_FF_THREAD_MODE);
7146
7147         /*
7148          * WaVSThreadDispatchOverride:ivb,vlv
7149          *
7150          * This actually overrides the dispatch
7151          * mode for all thread types.
7152          */
7153         reg &= ~GEN7_FF_SCHED_MASK;
7154         reg |= GEN7_FF_TS_SCHED_HW;
7155         reg |= GEN7_FF_VS_SCHED_HW;
7156         reg |= GEN7_FF_DS_SCHED_HW;
7157
7158         I915_WRITE(GEN7_FF_THREAD_MODE, reg);
7159 }
7160
7161 static void lpt_init_clock_gating(struct drm_device *dev)
7162 {
7163         struct drm_i915_private *dev_priv = to_i915(dev);
7164
7165         /*
7166          * TODO: this bit should only be enabled when really needed, then
7167          * disabled when not needed anymore in order to save power.
7168          */
7169         if (HAS_PCH_LPT_LP(dev))
7170                 I915_WRITE(SOUTH_DSPCLK_GATE_D,
7171                            I915_READ(SOUTH_DSPCLK_GATE_D) |
7172                            PCH_LP_PARTITION_LEVEL_DISABLE);
7173
7174         /* WADPOClockGatingDisable:hsw */
7175         I915_WRITE(TRANS_CHICKEN1(PIPE_A),
7176                    I915_READ(TRANS_CHICKEN1(PIPE_A)) |
7177                    TRANS_CHICKEN1_DP0UNIT_GC_DISABLE);
7178 }
7179
7180 static void lpt_suspend_hw(struct drm_device *dev)
7181 {
7182         struct drm_i915_private *dev_priv = to_i915(dev);
7183
7184         if (HAS_PCH_LPT_LP(dev)) {
7185                 uint32_t val = I915_READ(SOUTH_DSPCLK_GATE_D);
7186
7187                 val &= ~PCH_LP_PARTITION_LEVEL_DISABLE;
7188                 I915_WRITE(SOUTH_DSPCLK_GATE_D, val);
7189         }
7190 }
7191
7192 static void gen8_set_l3sqc_credits(struct drm_i915_private *dev_priv,
7193                                    int general_prio_credits,
7194                                    int high_prio_credits)
7195 {
7196         u32 misccpctl;
7197
7198         /* WaTempDisableDOPClkGating:bdw */
7199         misccpctl = I915_READ(GEN7_MISCCPCTL);
7200         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
7201
7202         I915_WRITE(GEN8_L3SQCREG1,
7203                    L3_GENERAL_PRIO_CREDITS(general_prio_credits) |
7204                    L3_HIGH_PRIO_CREDITS(high_prio_credits));
7205
7206         /*
7207          * Wait at least 100 clocks before re-enabling clock gating.
7208          * See the definition of L3SQCREG1 in BSpec.
7209          */
7210         POSTING_READ(GEN8_L3SQCREG1);
7211         udelay(1);
7212         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
7213 }
7214
7215 static void kabylake_init_clock_gating(struct drm_device *dev)
7216 {
7217         struct drm_i915_private *dev_priv = dev->dev_private;
7218
7219         gen9_init_clock_gating(dev);
7220
7221         /* WaDisableSDEUnitClockGating:kbl */
7222         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7223                 I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7224                            GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7225
7226         /* WaDisableGamClockGating:kbl */
7227         if (IS_KBL_REVID(dev_priv, 0, KBL_REVID_B0))
7228                 I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7229                            GEN6_GAMUNIT_CLOCK_GATE_DISABLE);
7230
7231         /* WaFbcNukeOnHostModify:kbl */
7232         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7233                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7234 }
7235
7236 static void skylake_init_clock_gating(struct drm_device *dev)
7237 {
7238         struct drm_i915_private *dev_priv = dev->dev_private;
7239
7240         gen9_init_clock_gating(dev);
7241
7242         /* WAC6entrylatency:skl */
7243         I915_WRITE(FBC_LLC_READ_CTRL, I915_READ(FBC_LLC_READ_CTRL) |
7244                    FBC_LLC_FULLY_OPEN);
7245
7246         /* WaFbcNukeOnHostModify:skl */
7247         I915_WRITE(ILK_DPFC_CHICKEN, I915_READ(ILK_DPFC_CHICKEN) |
7248                    ILK_DPFC_NUKE_ON_ANY_MODIFICATION);
7249 }
7250
7251 static void broadwell_init_clock_gating(struct drm_device *dev)
7252 {
7253         struct drm_i915_private *dev_priv = to_i915(dev);
7254         enum pipe pipe;
7255
7256         ilk_init_lp_watermarks(dev);
7257
7258         /* WaSwitchSolVfFArbitrationPriority:bdw */
7259         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7260
7261         /* WaPsrDPAMaskVBlankInSRD:bdw */
7262         I915_WRITE(CHICKEN_PAR1_1,
7263                    I915_READ(CHICKEN_PAR1_1) | DPA_MASK_VBLANK_SRD);
7264
7265         /* WaPsrDPRSUnmaskVBlankInSRD:bdw */
7266         for_each_pipe(dev_priv, pipe) {
7267                 I915_WRITE(CHICKEN_PIPESL_1(pipe),
7268                            I915_READ(CHICKEN_PIPESL_1(pipe)) |
7269                            BDW_DPRS_MASK_VBLANK_SRD);
7270         }
7271
7272         /* WaVSRefCountFullforceMissDisable:bdw */
7273         /* WaDSRefCountFullforceMissDisable:bdw */
7274         I915_WRITE(GEN7_FF_THREAD_MODE,
7275                    I915_READ(GEN7_FF_THREAD_MODE) &
7276                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7277
7278         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7279                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7280
7281         /* WaDisableSDEUnitClockGating:bdw */
7282         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7283                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7284
7285         /* WaProgramL3SqcReg1Default:bdw */
7286         gen8_set_l3sqc_credits(dev_priv, 30, 2);
7287
7288         /*
7289          * WaGttCachingOffByDefault:bdw
7290          * GTT cache may not work with big pages, so if those
7291          * are ever enabled GTT cache may need to be disabled.
7292          */
7293         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7294
7295         /* WaKVMNotificationOnConfigChange:bdw */
7296         I915_WRITE(CHICKEN_PAR2_1, I915_READ(CHICKEN_PAR2_1)
7297                    | KVM_CONFIG_CHANGE_NOTIFICATION_SELECT);
7298
7299         lpt_init_clock_gating(dev);
7300 }
7301
7302 static void haswell_init_clock_gating(struct drm_device *dev)
7303 {
7304         struct drm_i915_private *dev_priv = to_i915(dev);
7305
7306         ilk_init_lp_watermarks(dev);
7307
7308         /* L3 caching of data atomics doesn't work -- disable it. */
7309         I915_WRITE(HSW_SCRATCH1, HSW_SCRATCH1_L3_DATA_ATOMICS_DISABLE);
7310         I915_WRITE(HSW_ROW_CHICKEN3,
7311                    _MASKED_BIT_ENABLE(HSW_ROW_CHICKEN3_L3_GLOBAL_ATOMICS_DISABLE));
7312
7313         /* This is required by WaCatErrorRejectionIssue:hsw */
7314         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7315                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7316                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7317
7318         /* WaVSRefCountFullforceMissDisable:hsw */
7319         I915_WRITE(GEN7_FF_THREAD_MODE,
7320                    I915_READ(GEN7_FF_THREAD_MODE) & ~GEN7_FF_VS_REF_CNT_FFME);
7321
7322         /* WaDisable_RenderCache_OperationalFlush:hsw */
7323         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7324
7325         /* enable HiZ Raw Stall Optimization */
7326         I915_WRITE(CACHE_MODE_0_GEN7,
7327                    _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7328
7329         /* WaDisable4x2SubspanOptimization:hsw */
7330         I915_WRITE(CACHE_MODE_1,
7331                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7332
7333         /*
7334          * BSpec recommends 8x4 when MSAA is used,
7335          * however in practice 16x4 seems fastest.
7336          *
7337          * Note that PS/WM thread counts depend on the WIZ hashing
7338          * disable bit, which we don't touch here, but it's good
7339          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7340          */
7341         I915_WRITE(GEN7_GT_MODE,
7342                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7343
7344         /* WaSampleCChickenBitEnable:hsw */
7345         I915_WRITE(HALF_SLICE_CHICKEN3,
7346                    _MASKED_BIT_ENABLE(HSW_SAMPLE_C_PERFORMANCE));
7347
7348         /* WaSwitchSolVfFArbitrationPriority:hsw */
7349         I915_WRITE(GAM_ECOCHK, I915_READ(GAM_ECOCHK) | HSW_ECOCHK_ARB_PRIO_SOL);
7350
7351         /* WaRsPkgCStateDisplayPMReq:hsw */
7352         I915_WRITE(CHICKEN_PAR1_1,
7353                    I915_READ(CHICKEN_PAR1_1) | FORCE_ARB_IDLE_PLANES);
7354
7355         lpt_init_clock_gating(dev);
7356 }
7357
7358 static void ivybridge_init_clock_gating(struct drm_device *dev)
7359 {
7360         struct drm_i915_private *dev_priv = to_i915(dev);
7361         uint32_t snpcr;
7362
7363         ilk_init_lp_watermarks(dev);
7364
7365         I915_WRITE(ILK_DSPCLK_GATE_D, ILK_VRHUNIT_CLOCK_GATE_DISABLE);
7366
7367         /* WaDisableEarlyCull:ivb */
7368         I915_WRITE(_3D_CHICKEN3,
7369                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7370
7371         /* WaDisableBackToBackFlipFix:ivb */
7372         I915_WRITE(IVB_CHICKEN3,
7373                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7374                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7375
7376         /* WaDisablePSDDualDispatchEnable:ivb */
7377         if (IS_IVB_GT1(dev))
7378                 I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7379                            _MASKED_BIT_ENABLE(GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7380
7381         /* WaDisable_RenderCache_OperationalFlush:ivb */
7382         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7383
7384         /* Apply the WaDisableRHWOOptimizationForRenderHang:ivb workaround. */
7385         I915_WRITE(GEN7_COMMON_SLICE_CHICKEN1,
7386                    GEN7_CSC1_RHWO_OPT_DISABLE_IN_RCC);
7387
7388         /* WaApplyL3ControlAndL3ChickenMode:ivb */
7389         I915_WRITE(GEN7_L3CNTLREG1,
7390                         GEN7_WA_FOR_GEN7_L3_CONTROL);
7391         I915_WRITE(GEN7_L3_CHICKEN_MODE_REGISTER,
7392                    GEN7_WA_L3_CHICKEN_MODE);
7393         if (IS_IVB_GT1(dev))
7394                 I915_WRITE(GEN7_ROW_CHICKEN2,
7395                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7396         else {
7397                 /* must write both registers */
7398                 I915_WRITE(GEN7_ROW_CHICKEN2,
7399                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7400                 I915_WRITE(GEN7_ROW_CHICKEN2_GT2,
7401                            _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7402         }
7403
7404         /* WaForceL3Serialization:ivb */
7405         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7406                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7407
7408         /*
7409          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7410          * This implements the WaDisableRCZUnitClockGating:ivb workaround.
7411          */
7412         I915_WRITE(GEN6_UCGCTL2,
7413                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7414
7415         /* This is required by WaCatErrorRejectionIssue:ivb */
7416         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7417                         I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7418                         GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7419
7420         g4x_disable_trickle_feed(dev);
7421
7422         gen7_setup_fixed_func_scheduler(dev_priv);
7423
7424         if (0) { /* causes HiZ corruption on ivb:gt1 */
7425                 /* enable HiZ Raw Stall Optimization */
7426                 I915_WRITE(CACHE_MODE_0_GEN7,
7427                            _MASKED_BIT_DISABLE(HIZ_RAW_STALL_OPT_DISABLE));
7428         }
7429
7430         /* WaDisable4x2SubspanOptimization:ivb */
7431         I915_WRITE(CACHE_MODE_1,
7432                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7433
7434         /*
7435          * BSpec recommends 8x4 when MSAA is used,
7436          * however in practice 16x4 seems fastest.
7437          *
7438          * Note that PS/WM thread counts depend on the WIZ hashing
7439          * disable bit, which we don't touch here, but it's good
7440          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7441          */
7442         I915_WRITE(GEN7_GT_MODE,
7443                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7444
7445         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
7446         snpcr &= ~GEN6_MBC_SNPCR_MASK;
7447         snpcr |= GEN6_MBC_SNPCR_MED;
7448         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
7449
7450         if (!HAS_PCH_NOP(dev))
7451                 cpt_init_clock_gating(dev);
7452
7453         gen6_check_mch_setup(dev);
7454 }
7455
7456 static void valleyview_init_clock_gating(struct drm_device *dev)
7457 {
7458         struct drm_i915_private *dev_priv = to_i915(dev);
7459
7460         /* WaDisableEarlyCull:vlv */
7461         I915_WRITE(_3D_CHICKEN3,
7462                    _MASKED_BIT_ENABLE(_3D_CHICKEN_SF_DISABLE_OBJEND_CULL));
7463
7464         /* WaDisableBackToBackFlipFix:vlv */
7465         I915_WRITE(IVB_CHICKEN3,
7466                    CHICKEN3_DGMG_REQ_OUT_FIX_DISABLE |
7467                    CHICKEN3_DGMG_DONE_FIX_DISABLE);
7468
7469         /* WaPsdDispatchEnable:vlv */
7470         /* WaDisablePSDDualDispatchEnable:vlv */
7471         I915_WRITE(GEN7_HALF_SLICE_CHICKEN1,
7472                    _MASKED_BIT_ENABLE(GEN7_MAX_PS_THREAD_DEP |
7473                                       GEN7_PSD_SINGLE_PORT_DISPATCH_ENABLE));
7474
7475         /* WaDisable_RenderCache_OperationalFlush:vlv */
7476         I915_WRITE(CACHE_MODE_0_GEN7, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7477
7478         /* WaForceL3Serialization:vlv */
7479         I915_WRITE(GEN7_L3SQCREG4, I915_READ(GEN7_L3SQCREG4) &
7480                    ~L3SQ_URB_READ_CAM_MATCH_DISABLE);
7481
7482         /* WaDisableDopClockGating:vlv */
7483         I915_WRITE(GEN7_ROW_CHICKEN2,
7484                    _MASKED_BIT_ENABLE(DOP_CLOCK_GATING_DISABLE));
7485
7486         /* This is required by WaCatErrorRejectionIssue:vlv */
7487         I915_WRITE(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG,
7488                    I915_READ(GEN7_SQ_CHICKEN_MBCUNIT_CONFIG) |
7489                    GEN7_SQ_CHICKEN_MBCUNIT_SQINTMOB);
7490
7491         gen7_setup_fixed_func_scheduler(dev_priv);
7492
7493         /*
7494          * According to the spec, bit 13 (RCZUNIT) must be set on IVB.
7495          * This implements the WaDisableRCZUnitClockGating:vlv workaround.
7496          */
7497         I915_WRITE(GEN6_UCGCTL2,
7498                    GEN6_RCZUNIT_CLOCK_GATE_DISABLE);
7499
7500         /* WaDisableL3Bank2xClockGate:vlv
7501          * Disabling L3 clock gating- MMIO 940c[25] = 1
7502          * Set bit 25, to disable L3_BANK_2x_CLK_GATING */
7503         I915_WRITE(GEN7_UCGCTL4,
7504                    I915_READ(GEN7_UCGCTL4) | GEN7_L3BANK2X_CLOCK_GATE_DISABLE);
7505
7506         /*
7507          * BSpec says this must be set, even though
7508          * WaDisable4x2SubspanOptimization isn't listed for VLV.
7509          */
7510         I915_WRITE(CACHE_MODE_1,
7511                    _MASKED_BIT_ENABLE(PIXEL_SUBSPAN_COLLECT_OPT_DISABLE));
7512
7513         /*
7514          * BSpec recommends 8x4 when MSAA is used,
7515          * however in practice 16x4 seems fastest.
7516          *
7517          * Note that PS/WM thread counts depend on the WIZ hashing
7518          * disable bit, which we don't touch here, but it's good
7519          * to keep in mind (see 3DSTATE_PS and 3DSTATE_WM).
7520          */
7521         I915_WRITE(GEN7_GT_MODE,
7522                    _MASKED_FIELD(GEN6_WIZ_HASHING_MASK, GEN6_WIZ_HASHING_16x4));
7523
7524         /*
7525          * WaIncreaseL3CreditsForVLVB0:vlv
7526          * This is the hardware default actually.
7527          */
7528         I915_WRITE(GEN7_L3SQCREG1, VLV_B0_WA_L3SQCREG1_VALUE);
7529
7530         /*
7531          * WaDisableVLVClockGating_VBIIssue:vlv
7532          * Disable clock gating on th GCFG unit to prevent a delay
7533          * in the reporting of vblank events.
7534          */
7535         I915_WRITE(VLV_GUNIT_CLOCK_GATE, GCFG_DIS);
7536 }
7537
7538 static void cherryview_init_clock_gating(struct drm_device *dev)
7539 {
7540         struct drm_i915_private *dev_priv = to_i915(dev);
7541
7542         /* WaVSRefCountFullforceMissDisable:chv */
7543         /* WaDSRefCountFullforceMissDisable:chv */
7544         I915_WRITE(GEN7_FF_THREAD_MODE,
7545                    I915_READ(GEN7_FF_THREAD_MODE) &
7546                    ~(GEN8_FF_DS_REF_CNT_FFME | GEN7_FF_VS_REF_CNT_FFME));
7547
7548         /* WaDisableSemaphoreAndSyncFlipWait:chv */
7549         I915_WRITE(GEN6_RC_SLEEP_PSMI_CONTROL,
7550                    _MASKED_BIT_ENABLE(GEN8_RC_SEMA_IDLE_MSG_DISABLE));
7551
7552         /* WaDisableCSUnitClockGating:chv */
7553         I915_WRITE(GEN6_UCGCTL1, I915_READ(GEN6_UCGCTL1) |
7554                    GEN6_CSUNIT_CLOCK_GATE_DISABLE);
7555
7556         /* WaDisableSDEUnitClockGating:chv */
7557         I915_WRITE(GEN8_UCGCTL6, I915_READ(GEN8_UCGCTL6) |
7558                    GEN8_SDEUNIT_CLOCK_GATE_DISABLE);
7559
7560         /*
7561          * WaProgramL3SqcReg1Default:chv
7562          * See gfxspecs/Related Documents/Performance Guide/
7563          * LSQC Setting Recommendations.
7564          */
7565         gen8_set_l3sqc_credits(dev_priv, 38, 2);
7566
7567         /*
7568          * GTT cache may not work with big pages, so if those
7569          * are ever enabled GTT cache may need to be disabled.
7570          */
7571         I915_WRITE(HSW_GTT_CACHE_EN, GTT_CACHE_EN_ALL);
7572 }
7573
7574 static void g4x_init_clock_gating(struct drm_device *dev)
7575 {
7576         struct drm_i915_private *dev_priv = to_i915(dev);
7577         uint32_t dspclk_gate;
7578
7579         I915_WRITE(RENCLK_GATE_D1, 0);
7580         I915_WRITE(RENCLK_GATE_D2, VF_UNIT_CLOCK_GATE_DISABLE |
7581                    GS_UNIT_CLOCK_GATE_DISABLE |
7582                    CL_UNIT_CLOCK_GATE_DISABLE);
7583         I915_WRITE(RAMCLK_GATE_D, 0);
7584         dspclk_gate = VRHUNIT_CLOCK_GATE_DISABLE |
7585                 OVRUNIT_CLOCK_GATE_DISABLE |
7586                 OVCUNIT_CLOCK_GATE_DISABLE;
7587         if (IS_GM45(dev))
7588                 dspclk_gate |= DSSUNIT_CLOCK_GATE_DISABLE;
7589         I915_WRITE(DSPCLK_GATE_D, dspclk_gate);
7590
7591         /* WaDisableRenderCachePipelinedFlush */
7592         I915_WRITE(CACHE_MODE_0,
7593                    _MASKED_BIT_ENABLE(CM0_PIPELINED_RENDER_FLUSH_DISABLE));
7594
7595         /* WaDisable_RenderCache_OperationalFlush:g4x */
7596         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7597
7598         g4x_disable_trickle_feed(dev);
7599 }
7600
7601 static void crestline_init_clock_gating(struct drm_device *dev)
7602 {
7603         struct drm_i915_private *dev_priv = to_i915(dev);
7604
7605         I915_WRITE(RENCLK_GATE_D1, I965_RCC_CLOCK_GATE_DISABLE);
7606         I915_WRITE(RENCLK_GATE_D2, 0);
7607         I915_WRITE(DSPCLK_GATE_D, 0);
7608         I915_WRITE(RAMCLK_GATE_D, 0);
7609         I915_WRITE16(DEUC, 0);
7610         I915_WRITE(MI_ARB_STATE,
7611                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7612
7613         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7614         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7615 }
7616
7617 static void broadwater_init_clock_gating(struct drm_device *dev)
7618 {
7619         struct drm_i915_private *dev_priv = to_i915(dev);
7620
7621         I915_WRITE(RENCLK_GATE_D1, I965_RCZ_CLOCK_GATE_DISABLE |
7622                    I965_RCC_CLOCK_GATE_DISABLE |
7623                    I965_RCPB_CLOCK_GATE_DISABLE |
7624                    I965_ISC_CLOCK_GATE_DISABLE |
7625                    I965_FBC_CLOCK_GATE_DISABLE);
7626         I915_WRITE(RENCLK_GATE_D2, 0);
7627         I915_WRITE(MI_ARB_STATE,
7628                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7629
7630         /* WaDisable_RenderCache_OperationalFlush:gen4 */
7631         I915_WRITE(CACHE_MODE_0, _MASKED_BIT_DISABLE(RC_OP_FLUSH_ENABLE));
7632 }
7633
7634 static void gen3_init_clock_gating(struct drm_device *dev)
7635 {
7636         struct drm_i915_private *dev_priv = to_i915(dev);
7637         u32 dstate = I915_READ(D_STATE);
7638
7639         dstate |= DSTATE_PLL_D3_OFF | DSTATE_GFX_CLOCK_GATING |
7640                 DSTATE_DOT_CLOCK_GATING;
7641         I915_WRITE(D_STATE, dstate);
7642
7643         if (IS_PINEVIEW(dev))
7644                 I915_WRITE(ECOSKPD, _MASKED_BIT_ENABLE(ECO_GATING_CX_ONLY));
7645
7646         /* IIR "flip pending" means done if this bit is set */
7647         I915_WRITE(ECOSKPD, _MASKED_BIT_DISABLE(ECO_FLIP_DONE));
7648
7649         /* interrupts should cause a wake up from C3 */
7650         I915_WRITE(INSTPM, _MASKED_BIT_ENABLE(INSTPM_AGPBUSY_INT_EN));
7651
7652         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
7653         I915_WRITE(MI_ARB_STATE, _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
7654
7655         I915_WRITE(MI_ARB_STATE,
7656                    _MASKED_BIT_ENABLE(MI_ARB_DISPLAY_TRICKLE_FEED_DISABLE));
7657 }
7658
7659 static void i85x_init_clock_gating(struct drm_device *dev)
7660 {
7661         struct drm_i915_private *dev_priv = to_i915(dev);
7662
7663         I915_WRITE(RENCLK_GATE_D1, SV_CLOCK_GATE_DISABLE);
7664
7665         /* interrupts should cause a wake up from C3 */
7666         I915_WRITE(MI_STATE, _MASKED_BIT_ENABLE(MI_AGPBUSY_INT_EN) |
7667                    _MASKED_BIT_DISABLE(MI_AGPBUSY_830_MODE));
7668
7669         I915_WRITE(MEM_MODE,
7670                    _MASKED_BIT_ENABLE(MEM_DISPLAY_TRICKLE_FEED_DISABLE));
7671 }
7672
7673 static void i830_init_clock_gating(struct drm_device *dev)
7674 {
7675         struct drm_i915_private *dev_priv = to_i915(dev);
7676
7677         I915_WRITE(DSPCLK_GATE_D, OVRUNIT_CLOCK_GATE_DISABLE);
7678
7679         I915_WRITE(MEM_MODE,
7680                    _MASKED_BIT_ENABLE(MEM_DISPLAY_A_TRICKLE_FEED_DISABLE) |
7681                    _MASKED_BIT_ENABLE(MEM_DISPLAY_B_TRICKLE_FEED_DISABLE));
7682 }
7683
7684 void intel_init_clock_gating(struct drm_device *dev)
7685 {
7686         struct drm_i915_private *dev_priv = to_i915(dev);
7687
7688         dev_priv->display.init_clock_gating(dev);
7689 }
7690
7691 void intel_suspend_hw(struct drm_device *dev)
7692 {
7693         if (HAS_PCH_LPT(dev))
7694                 lpt_suspend_hw(dev);
7695 }
7696
7697 static void nop_init_clock_gating(struct drm_device *dev)
7698 {
7699         DRM_DEBUG_KMS("No clock gating settings or workarounds applied.\n");
7700 }
7701
7702 /**
7703  * intel_init_clock_gating_hooks - setup the clock gating hooks
7704  * @dev_priv: device private
7705  *
7706  * Setup the hooks that configure which clocks of a given platform can be
7707  * gated and also apply various GT and display specific workarounds for these
7708  * platforms. Note that some GT specific workarounds are applied separately
7709  * when GPU contexts or batchbuffers start their execution.
7710  */
7711 void intel_init_clock_gating_hooks(struct drm_i915_private *dev_priv)
7712 {
7713         if (IS_SKYLAKE(dev_priv))
7714                 dev_priv->display.init_clock_gating = skylake_init_clock_gating;
7715         else if (IS_KABYLAKE(dev_priv))
7716                 dev_priv->display.init_clock_gating = kabylake_init_clock_gating;
7717         else if (IS_BROXTON(dev_priv))
7718                 dev_priv->display.init_clock_gating = bxt_init_clock_gating;
7719         else if (IS_BROADWELL(dev_priv))
7720                 dev_priv->display.init_clock_gating = broadwell_init_clock_gating;
7721         else if (IS_CHERRYVIEW(dev_priv))
7722                 dev_priv->display.init_clock_gating = cherryview_init_clock_gating;
7723         else if (IS_HASWELL(dev_priv))
7724                 dev_priv->display.init_clock_gating = haswell_init_clock_gating;
7725         else if (IS_IVYBRIDGE(dev_priv))
7726                 dev_priv->display.init_clock_gating = ivybridge_init_clock_gating;
7727         else if (IS_VALLEYVIEW(dev_priv))
7728                 dev_priv->display.init_clock_gating = valleyview_init_clock_gating;
7729         else if (IS_GEN6(dev_priv))
7730                 dev_priv->display.init_clock_gating = gen6_init_clock_gating;
7731         else if (IS_GEN5(dev_priv))
7732                 dev_priv->display.init_clock_gating = ironlake_init_clock_gating;
7733         else if (IS_G4X(dev_priv))
7734                 dev_priv->display.init_clock_gating = g4x_init_clock_gating;
7735         else if (IS_CRESTLINE(dev_priv))
7736                 dev_priv->display.init_clock_gating = crestline_init_clock_gating;
7737         else if (IS_BROADWATER(dev_priv))
7738                 dev_priv->display.init_clock_gating = broadwater_init_clock_gating;
7739         else if (IS_GEN3(dev_priv))
7740                 dev_priv->display.init_clock_gating = gen3_init_clock_gating;
7741         else if (IS_I85X(dev_priv) || IS_I865G(dev_priv))
7742                 dev_priv->display.init_clock_gating = i85x_init_clock_gating;
7743         else if (IS_GEN2(dev_priv))
7744                 dev_priv->display.init_clock_gating = i830_init_clock_gating;
7745         else {
7746                 MISSING_CASE(INTEL_DEVID(dev_priv));
7747                 dev_priv->display.init_clock_gating = nop_init_clock_gating;
7748         }
7749 }
7750
7751 /* Set up chip specific power management-related functions */
7752 void intel_init_pm(struct drm_device *dev)
7753 {
7754         struct drm_i915_private *dev_priv = to_i915(dev);
7755
7756         intel_fbc_init(dev_priv);
7757
7758         /* For cxsr */
7759         if (IS_PINEVIEW(dev))
7760                 i915_pineview_get_mem_freq(dev);
7761         else if (IS_GEN5(dev))
7762                 i915_ironlake_get_mem_freq(dev);
7763
7764         /* For FIFO watermark updates */
7765         if (INTEL_INFO(dev)->gen >= 9) {
7766                 skl_setup_wm_latency(dev);
7767                 dev_priv->display.update_wm = skl_update_wm;
7768                 dev_priv->display.compute_global_watermarks = skl_compute_wm;
7769         } else if (HAS_PCH_SPLIT(dev)) {
7770                 ilk_setup_wm_latency(dev);
7771
7772                 if ((IS_GEN5(dev) && dev_priv->wm.pri_latency[1] &&
7773                      dev_priv->wm.spr_latency[1] && dev_priv->wm.cur_latency[1]) ||
7774                     (!IS_GEN5(dev) && dev_priv->wm.pri_latency[0] &&
7775                      dev_priv->wm.spr_latency[0] && dev_priv->wm.cur_latency[0])) {
7776                         dev_priv->display.compute_pipe_wm = ilk_compute_pipe_wm;
7777                         dev_priv->display.compute_intermediate_wm =
7778                                 ilk_compute_intermediate_wm;
7779                         dev_priv->display.initial_watermarks =
7780                                 ilk_initial_watermarks;
7781                         dev_priv->display.optimize_watermarks =
7782                                 ilk_optimize_watermarks;
7783                 } else {
7784                         DRM_DEBUG_KMS("Failed to read display plane latency. "
7785                                       "Disable CxSR\n");
7786                 }
7787         } else if (IS_CHERRYVIEW(dev)) {
7788                 vlv_setup_wm_latency(dev);
7789                 dev_priv->display.update_wm = vlv_update_wm;
7790         } else if (IS_VALLEYVIEW(dev)) {
7791                 vlv_setup_wm_latency(dev);
7792                 dev_priv->display.update_wm = vlv_update_wm;
7793         } else if (IS_PINEVIEW(dev)) {
7794                 if (!intel_get_cxsr_latency(IS_PINEVIEW_G(dev),
7795                                             dev_priv->is_ddr3,
7796                                             dev_priv->fsb_freq,
7797                                             dev_priv->mem_freq)) {
7798                         DRM_INFO("failed to find known CxSR latency "
7799                                  "(found ddr%s fsb freq %d, mem freq %d), "
7800                                  "disabling CxSR\n",
7801                                  (dev_priv->is_ddr3 == 1) ? "3" : "2",
7802                                  dev_priv->fsb_freq, dev_priv->mem_freq);
7803                         /* Disable CxSR and never update its watermark again */
7804                         intel_set_memory_cxsr(dev_priv, false);
7805                         dev_priv->display.update_wm = NULL;
7806                 } else
7807                         dev_priv->display.update_wm = pineview_update_wm;
7808         } else if (IS_G4X(dev)) {
7809                 dev_priv->display.update_wm = g4x_update_wm;
7810         } else if (IS_GEN4(dev)) {
7811                 dev_priv->display.update_wm = i965_update_wm;
7812         } else if (IS_GEN3(dev)) {
7813                 dev_priv->display.update_wm = i9xx_update_wm;
7814                 dev_priv->display.get_fifo_size = i9xx_get_fifo_size;
7815         } else if (IS_GEN2(dev)) {
7816                 if (INTEL_INFO(dev)->num_pipes == 1) {
7817                         dev_priv->display.update_wm = i845_update_wm;
7818                         dev_priv->display.get_fifo_size = i845_get_fifo_size;
7819                 } else {
7820                         dev_priv->display.update_wm = i9xx_update_wm;
7821                         dev_priv->display.get_fifo_size = i830_get_fifo_size;
7822                 }
7823         } else {
7824                 DRM_ERROR("unexpected fall-through in intel_init_pm\n");
7825         }
7826 }
7827
7828 static inline int gen6_check_mailbox_status(struct drm_i915_private *dev_priv)
7829 {
7830         uint32_t flags =
7831                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7832
7833         switch (flags) {
7834         case GEN6_PCODE_SUCCESS:
7835                 return 0;
7836         case GEN6_PCODE_UNIMPLEMENTED_CMD:
7837         case GEN6_PCODE_ILLEGAL_CMD:
7838                 return -ENXIO;
7839         case GEN6_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7840         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7841                 return -EOVERFLOW;
7842         case GEN6_PCODE_TIMEOUT:
7843                 return -ETIMEDOUT;
7844         default:
7845                 MISSING_CASE(flags)
7846                 return 0;
7847         }
7848 }
7849
7850 static inline int gen7_check_mailbox_status(struct drm_i915_private *dev_priv)
7851 {
7852         uint32_t flags =
7853                 I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_ERROR_MASK;
7854
7855         switch (flags) {
7856         case GEN6_PCODE_SUCCESS:
7857                 return 0;
7858         case GEN6_PCODE_ILLEGAL_CMD:
7859                 return -ENXIO;
7860         case GEN7_PCODE_TIMEOUT:
7861                 return -ETIMEDOUT;
7862         case GEN7_PCODE_ILLEGAL_DATA:
7863                 return -EINVAL;
7864         case GEN7_PCODE_MIN_FREQ_TABLE_GT_RATIO_OUT_OF_RANGE:
7865                 return -EOVERFLOW;
7866         default:
7867                 MISSING_CASE(flags);
7868                 return 0;
7869         }
7870 }
7871
7872 int sandybridge_pcode_read(struct drm_i915_private *dev_priv, u32 mbox, u32 *val)
7873 {
7874         int status;
7875
7876         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7877
7878         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7879          * use te fw I915_READ variants to reduce the amount of work
7880          * required when reading/writing.
7881          */
7882
7883         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7884                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed\n");
7885                 return -EAGAIN;
7886         }
7887
7888         I915_WRITE_FW(GEN6_PCODE_DATA, *val);
7889         I915_WRITE_FW(GEN6_PCODE_DATA1, 0);
7890         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7891
7892         if (intel_wait_for_register_fw(dev_priv,
7893                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7894                                        500)) {
7895                 DRM_ERROR("timeout waiting for pcode read (%d) to finish\n", mbox);
7896                 return -ETIMEDOUT;
7897         }
7898
7899         *val = I915_READ_FW(GEN6_PCODE_DATA);
7900         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7901
7902         if (INTEL_GEN(dev_priv) > 6)
7903                 status = gen7_check_mailbox_status(dev_priv);
7904         else
7905                 status = gen6_check_mailbox_status(dev_priv);
7906
7907         if (status) {
7908                 DRM_DEBUG_DRIVER("warning: pcode (read) mailbox access failed: %d\n",
7909                                  status);
7910                 return status;
7911         }
7912
7913         return 0;
7914 }
7915
7916 int sandybridge_pcode_write(struct drm_i915_private *dev_priv,
7917                             u32 mbox, u32 val)
7918 {
7919         int status;
7920
7921         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7922
7923         /* GEN6_PCODE_* are outside of the forcewake domain, we can
7924          * use te fw I915_READ variants to reduce the amount of work
7925          * required when reading/writing.
7926          */
7927
7928         if (I915_READ_FW(GEN6_PCODE_MAILBOX) & GEN6_PCODE_READY) {
7929                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed\n");
7930                 return -EAGAIN;
7931         }
7932
7933         I915_WRITE_FW(GEN6_PCODE_DATA, val);
7934         I915_WRITE_FW(GEN6_PCODE_MAILBOX, GEN6_PCODE_READY | mbox);
7935
7936         if (intel_wait_for_register_fw(dev_priv,
7937                                        GEN6_PCODE_MAILBOX, GEN6_PCODE_READY, 0,
7938                                        500)) {
7939                 DRM_ERROR("timeout waiting for pcode write (%d) to finish\n", mbox);
7940                 return -ETIMEDOUT;
7941         }
7942
7943         I915_WRITE_FW(GEN6_PCODE_DATA, 0);
7944
7945         if (INTEL_GEN(dev_priv) > 6)
7946                 status = gen7_check_mailbox_status(dev_priv);
7947         else
7948                 status = gen6_check_mailbox_status(dev_priv);
7949
7950         if (status) {
7951                 DRM_DEBUG_DRIVER("warning: pcode (write) mailbox access failed: %d\n",
7952                                  status);
7953                 return status;
7954         }
7955
7956         return 0;
7957 }
7958
7959 static bool skl_pcode_try_request(struct drm_i915_private *dev_priv, u32 mbox,
7960                                   u32 request, u32 reply_mask, u32 reply,
7961                                   u32 *status)
7962 {
7963         u32 val = request;
7964
7965         *status = sandybridge_pcode_read(dev_priv, mbox, &val);
7966
7967         return *status || ((val & reply_mask) == reply);
7968 }
7969
7970 /**
7971  * skl_pcode_request - send PCODE request until acknowledgment
7972  * @dev_priv: device private
7973  * @mbox: PCODE mailbox ID the request is targeted for
7974  * @request: request ID
7975  * @reply_mask: mask used to check for request acknowledgment
7976  * @reply: value used to check for request acknowledgment
7977  * @timeout_base_ms: timeout for polling with preemption enabled
7978  *
7979  * Keep resending the @request to @mbox until PCODE acknowledges it, PCODE
7980  * reports an error or an overall timeout of @timeout_base_ms+50 ms expires.
7981  * The request is acknowledged once the PCODE reply dword equals @reply after
7982  * applying @reply_mask. Polling is first attempted with preemption enabled
7983  * for @timeout_base_ms and if this times out for another 50 ms with
7984  * preemption disabled.
7985  *
7986  * Returns 0 on success, %-ETIMEDOUT in case of a timeout, <0 in case of some
7987  * other error as reported by PCODE.
7988  */
7989 int skl_pcode_request(struct drm_i915_private *dev_priv, u32 mbox, u32 request,
7990                       u32 reply_mask, u32 reply, int timeout_base_ms)
7991 {
7992         u32 status;
7993         int ret;
7994
7995         WARN_ON(!mutex_is_locked(&dev_priv->rps.hw_lock));
7996
7997 #define COND skl_pcode_try_request(dev_priv, mbox, request, reply_mask, reply, \
7998                                    &status)
7999
8000         /*
8001          * Prime the PCODE by doing a request first. Normally it guarantees
8002          * that a subsequent request, at most @timeout_base_ms later, succeeds.
8003          * _wait_for() doesn't guarantee when its passed condition is evaluated
8004          * first, so send the first request explicitly.
8005          */
8006         if (COND) {
8007                 ret = 0;
8008                 goto out;
8009         }
8010         ret = _wait_for(COND, timeout_base_ms * 1000, 10);
8011         if (!ret)
8012                 goto out;
8013
8014         /*
8015          * The above can time out if the number of requests was low (2 in the
8016          * worst case) _and_ PCODE was busy for some reason even after a
8017          * (queued) request and @timeout_base_ms delay. As a workaround retry
8018          * the poll with preemption disabled to maximize the number of
8019          * requests. Increase the timeout from @timeout_base_ms to 50ms to
8020          * account for interrupts that could reduce the number of these
8021          * requests, and for any quirks of the PCODE firmware that delays
8022          * the request completion.
8023          */
8024         DRM_DEBUG_KMS("PCODE timeout, retrying with preemption disabled\n");
8025         WARN_ON_ONCE(timeout_base_ms > 3);
8026         preempt_disable();
8027         ret = wait_for_atomic(COND, 50);
8028         preempt_enable();
8029
8030 out:
8031         return ret ? ret : status;
8032 #undef COND
8033 }
8034
8035 static int byt_gpu_freq(struct drm_i915_private *dev_priv, int val)
8036 {
8037         /*
8038          * N = val - 0xb7
8039          * Slow = Fast = GPLL ref * N
8040          */
8041         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * (val - 0xb7), 1000);
8042 }
8043
8044 static int byt_freq_opcode(struct drm_i915_private *dev_priv, int val)
8045 {
8046         return DIV_ROUND_CLOSEST(1000 * val, dev_priv->rps.gpll_ref_freq) + 0xb7;
8047 }
8048
8049 static int chv_gpu_freq(struct drm_i915_private *dev_priv, int val)
8050 {
8051         /*
8052          * N = val / 2
8053          * CU (slow) = CU2x (fast) / 2 = GPLL ref * N / 2
8054          */
8055         return DIV_ROUND_CLOSEST(dev_priv->rps.gpll_ref_freq * val, 2 * 2 * 1000);
8056 }
8057
8058 static int chv_freq_opcode(struct drm_i915_private *dev_priv, int val)
8059 {
8060         /* CHV needs even values */
8061         return DIV_ROUND_CLOSEST(2 * 1000 * val, dev_priv->rps.gpll_ref_freq) * 2;
8062 }
8063
8064 int intel_gpu_freq(struct drm_i915_private *dev_priv, int val)
8065 {
8066         if (IS_GEN9(dev_priv))
8067                 return DIV_ROUND_CLOSEST(val * GT_FREQUENCY_MULTIPLIER,
8068                                          GEN9_FREQ_SCALER);
8069         else if (IS_CHERRYVIEW(dev_priv))
8070                 return chv_gpu_freq(dev_priv, val);
8071         else if (IS_VALLEYVIEW(dev_priv))
8072                 return byt_gpu_freq(dev_priv, val);
8073         else
8074                 return val * GT_FREQUENCY_MULTIPLIER;
8075 }
8076
8077 int intel_freq_opcode(struct drm_i915_private *dev_priv, int val)
8078 {
8079         if (IS_GEN9(dev_priv))
8080                 return DIV_ROUND_CLOSEST(val * GEN9_FREQ_SCALER,
8081                                          GT_FREQUENCY_MULTIPLIER);
8082         else if (IS_CHERRYVIEW(dev_priv))
8083                 return chv_freq_opcode(dev_priv, val);
8084         else if (IS_VALLEYVIEW(dev_priv))
8085                 return byt_freq_opcode(dev_priv, val);
8086         else
8087                 return DIV_ROUND_CLOSEST(val, GT_FREQUENCY_MULTIPLIER);
8088 }
8089
8090 struct request_boost {
8091         struct work_struct work;
8092         struct drm_i915_gem_request *req;
8093 };
8094
8095 static void __intel_rps_boost_work(struct work_struct *work)
8096 {
8097         struct request_boost *boost = container_of(work, struct request_boost, work);
8098         struct drm_i915_gem_request *req = boost->req;
8099
8100         if (!i915_gem_request_completed(req))
8101                 gen6_rps_boost(req->i915, NULL, req->emitted_jiffies);
8102
8103         i915_gem_request_put(req);
8104         kfree(boost);
8105 }
8106
8107 void intel_queue_rps_boost_for_request(struct drm_i915_gem_request *req)
8108 {
8109         struct request_boost *boost;
8110
8111         if (req == NULL || INTEL_GEN(req->i915) < 6)
8112                 return;
8113
8114         if (i915_gem_request_completed(req))
8115                 return;
8116
8117         boost = kmalloc(sizeof(*boost), GFP_ATOMIC);
8118         if (boost == NULL)
8119                 return;
8120
8121         boost->req = i915_gem_request_get(req);
8122
8123         INIT_WORK(&boost->work, __intel_rps_boost_work);
8124         queue_work(req->i915->wq, &boost->work);
8125 }
8126
8127 void intel_pm_setup(struct drm_device *dev)
8128 {
8129         struct drm_i915_private *dev_priv = to_i915(dev);
8130
8131         mutex_init(&dev_priv->rps.hw_lock);
8132         spin_lock_init(&dev_priv->rps.client_lock);
8133
8134         INIT_DELAYED_WORK(&dev_priv->rps.autoenable_work,
8135                           __intel_autoenable_gt_powersave);
8136         INIT_LIST_HEAD(&dev_priv->rps.clients);
8137
8138         dev_priv->pm.suspended = false;
8139         atomic_set(&dev_priv->pm.wakeref_count, 0);
8140         atomic_set(&dev_priv->pm.atomic_seq, 0);
8141 }