Linux-libre 4.11.5-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / i915_irq.c
1 /* i915_irq.c -- IRQ support for the I915 -*- linux-c -*-
2  */
3 /*
4  * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
5  * All Rights Reserved.
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a
8  * copy of this software and associated documentation files (the
9  * "Software"), to deal in the Software without restriction, including
10  * without limitation the rights to use, copy, modify, merge, publish,
11  * distribute, sub license, and/or sell copies of the Software, and to
12  * permit persons to whom the Software is furnished to do so, subject to
13  * the following conditions:
14  *
15  * The above copyright notice and this permission notice (including the
16  * next paragraph) shall be included in all copies or substantial portions
17  * of the Software.
18  *
19  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
20  * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
21  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
22  * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
23  * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
24  * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
25  * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
26  *
27  */
28
29 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
30
31 #include <linux/sysrq.h>
32 #include <linux/slab.h>
33 #include <linux/circ_buf.h>
34 #include <drm/drmP.h>
35 #include <drm/i915_drm.h>
36 #include "i915_drv.h"
37 #include "i915_trace.h"
38 #include "intel_drv.h"
39
40 /**
41  * DOC: interrupt handling
42  *
43  * These functions provide the basic support for enabling and disabling the
44  * interrupt handling support. There's a lot more functionality in i915_irq.c
45  * and related files, but that will be described in separate chapters.
46  */
47
48 static const u32 hpd_ilk[HPD_NUM_PINS] = {
49         [HPD_PORT_A] = DE_DP_A_HOTPLUG,
50 };
51
52 static const u32 hpd_ivb[HPD_NUM_PINS] = {
53         [HPD_PORT_A] = DE_DP_A_HOTPLUG_IVB,
54 };
55
56 static const u32 hpd_bdw[HPD_NUM_PINS] = {
57         [HPD_PORT_A] = GEN8_PORT_DP_A_HOTPLUG,
58 };
59
60 static const u32 hpd_ibx[HPD_NUM_PINS] = {
61         [HPD_CRT] = SDE_CRT_HOTPLUG,
62         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG,
63         [HPD_PORT_B] = SDE_PORTB_HOTPLUG,
64         [HPD_PORT_C] = SDE_PORTC_HOTPLUG,
65         [HPD_PORT_D] = SDE_PORTD_HOTPLUG
66 };
67
68 static const u32 hpd_cpt[HPD_NUM_PINS] = {
69         [HPD_CRT] = SDE_CRT_HOTPLUG_CPT,
70         [HPD_SDVO_B] = SDE_SDVOB_HOTPLUG_CPT,
71         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
72         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
73         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT
74 };
75
76 static const u32 hpd_spt[HPD_NUM_PINS] = {
77         [HPD_PORT_A] = SDE_PORTA_HOTPLUG_SPT,
78         [HPD_PORT_B] = SDE_PORTB_HOTPLUG_CPT,
79         [HPD_PORT_C] = SDE_PORTC_HOTPLUG_CPT,
80         [HPD_PORT_D] = SDE_PORTD_HOTPLUG_CPT,
81         [HPD_PORT_E] = SDE_PORTE_HOTPLUG_SPT
82 };
83
84 static const u32 hpd_mask_i915[HPD_NUM_PINS] = {
85         [HPD_CRT] = CRT_HOTPLUG_INT_EN,
86         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_EN,
87         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_EN,
88         [HPD_PORT_B] = PORTB_HOTPLUG_INT_EN,
89         [HPD_PORT_C] = PORTC_HOTPLUG_INT_EN,
90         [HPD_PORT_D] = PORTD_HOTPLUG_INT_EN
91 };
92
93 static const u32 hpd_status_g4x[HPD_NUM_PINS] = {
94         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
95         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_G4X,
96         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_G4X,
97         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
98         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
99         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
100 };
101
102 static const u32 hpd_status_i915[HPD_NUM_PINS] = {
103         [HPD_CRT] = CRT_HOTPLUG_INT_STATUS,
104         [HPD_SDVO_B] = SDVOB_HOTPLUG_INT_STATUS_I915,
105         [HPD_SDVO_C] = SDVOC_HOTPLUG_INT_STATUS_I915,
106         [HPD_PORT_B] = PORTB_HOTPLUG_INT_STATUS,
107         [HPD_PORT_C] = PORTC_HOTPLUG_INT_STATUS,
108         [HPD_PORT_D] = PORTD_HOTPLUG_INT_STATUS
109 };
110
111 /* BXT hpd list */
112 static const u32 hpd_bxt[HPD_NUM_PINS] = {
113         [HPD_PORT_A] = BXT_DE_PORT_HP_DDIA,
114         [HPD_PORT_B] = BXT_DE_PORT_HP_DDIB,
115         [HPD_PORT_C] = BXT_DE_PORT_HP_DDIC
116 };
117
118 /* IIR can theoretically queue up two events. Be paranoid. */
119 #define GEN8_IRQ_RESET_NDX(type, which) do { \
120         I915_WRITE(GEN8_##type##_IMR(which), 0xffffffff); \
121         POSTING_READ(GEN8_##type##_IMR(which)); \
122         I915_WRITE(GEN8_##type##_IER(which), 0); \
123         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
124         POSTING_READ(GEN8_##type##_IIR(which)); \
125         I915_WRITE(GEN8_##type##_IIR(which), 0xffffffff); \
126         POSTING_READ(GEN8_##type##_IIR(which)); \
127 } while (0)
128
129 #define GEN5_IRQ_RESET(type) do { \
130         I915_WRITE(type##IMR, 0xffffffff); \
131         POSTING_READ(type##IMR); \
132         I915_WRITE(type##IER, 0); \
133         I915_WRITE(type##IIR, 0xffffffff); \
134         POSTING_READ(type##IIR); \
135         I915_WRITE(type##IIR, 0xffffffff); \
136         POSTING_READ(type##IIR); \
137 } while (0)
138
139 /*
140  * We should clear IMR at preinstall/uninstall, and just check at postinstall.
141  */
142 static void gen5_assert_iir_is_zero(struct drm_i915_private *dev_priv,
143                                     i915_reg_t reg)
144 {
145         u32 val = I915_READ(reg);
146
147         if (val == 0)
148                 return;
149
150         WARN(1, "Interrupt register 0x%x is not zero: 0x%08x\n",
151              i915_mmio_reg_offset(reg), val);
152         I915_WRITE(reg, 0xffffffff);
153         POSTING_READ(reg);
154         I915_WRITE(reg, 0xffffffff);
155         POSTING_READ(reg);
156 }
157
158 #define GEN8_IRQ_INIT_NDX(type, which, imr_val, ier_val) do { \
159         gen5_assert_iir_is_zero(dev_priv, GEN8_##type##_IIR(which)); \
160         I915_WRITE(GEN8_##type##_IER(which), (ier_val)); \
161         I915_WRITE(GEN8_##type##_IMR(which), (imr_val)); \
162         POSTING_READ(GEN8_##type##_IMR(which)); \
163 } while (0)
164
165 #define GEN5_IRQ_INIT(type, imr_val, ier_val) do { \
166         gen5_assert_iir_is_zero(dev_priv, type##IIR); \
167         I915_WRITE(type##IER, (ier_val)); \
168         I915_WRITE(type##IMR, (imr_val)); \
169         POSTING_READ(type##IMR); \
170 } while (0)
171
172 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
173 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir);
174
175 /* For display hotplug interrupt */
176 static inline void
177 i915_hotplug_interrupt_update_locked(struct drm_i915_private *dev_priv,
178                                      uint32_t mask,
179                                      uint32_t bits)
180 {
181         uint32_t val;
182
183         assert_spin_locked(&dev_priv->irq_lock);
184         WARN_ON(bits & ~mask);
185
186         val = I915_READ(PORT_HOTPLUG_EN);
187         val &= ~mask;
188         val |= bits;
189         I915_WRITE(PORT_HOTPLUG_EN, val);
190 }
191
192 /**
193  * i915_hotplug_interrupt_update - update hotplug interrupt enable
194  * @dev_priv: driver private
195  * @mask: bits to update
196  * @bits: bits to enable
197  * NOTE: the HPD enable bits are modified both inside and outside
198  * of an interrupt context. To avoid that read-modify-write cycles
199  * interfer, these bits are protected by a spinlock. Since this
200  * function is usually not called from a context where the lock is
201  * held already, this function acquires the lock itself. A non-locking
202  * version is also available.
203  */
204 void i915_hotplug_interrupt_update(struct drm_i915_private *dev_priv,
205                                    uint32_t mask,
206                                    uint32_t bits)
207 {
208         spin_lock_irq(&dev_priv->irq_lock);
209         i915_hotplug_interrupt_update_locked(dev_priv, mask, bits);
210         spin_unlock_irq(&dev_priv->irq_lock);
211 }
212
213 /**
214  * ilk_update_display_irq - update DEIMR
215  * @dev_priv: driver private
216  * @interrupt_mask: mask of interrupt bits to update
217  * @enabled_irq_mask: mask of interrupt bits to enable
218  */
219 void ilk_update_display_irq(struct drm_i915_private *dev_priv,
220                             uint32_t interrupt_mask,
221                             uint32_t enabled_irq_mask)
222 {
223         uint32_t new_val;
224
225         assert_spin_locked(&dev_priv->irq_lock);
226
227         WARN_ON(enabled_irq_mask & ~interrupt_mask);
228
229         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
230                 return;
231
232         new_val = dev_priv->irq_mask;
233         new_val &= ~interrupt_mask;
234         new_val |= (~enabled_irq_mask & interrupt_mask);
235
236         if (new_val != dev_priv->irq_mask) {
237                 dev_priv->irq_mask = new_val;
238                 I915_WRITE(DEIMR, dev_priv->irq_mask);
239                 POSTING_READ(DEIMR);
240         }
241 }
242
243 /**
244  * ilk_update_gt_irq - update GTIMR
245  * @dev_priv: driver private
246  * @interrupt_mask: mask of interrupt bits to update
247  * @enabled_irq_mask: mask of interrupt bits to enable
248  */
249 static void ilk_update_gt_irq(struct drm_i915_private *dev_priv,
250                               uint32_t interrupt_mask,
251                               uint32_t enabled_irq_mask)
252 {
253         assert_spin_locked(&dev_priv->irq_lock);
254
255         WARN_ON(enabled_irq_mask & ~interrupt_mask);
256
257         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
258                 return;
259
260         dev_priv->gt_irq_mask &= ~interrupt_mask;
261         dev_priv->gt_irq_mask |= (~enabled_irq_mask & interrupt_mask);
262         I915_WRITE(GTIMR, dev_priv->gt_irq_mask);
263 }
264
265 void gen5_enable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
266 {
267         ilk_update_gt_irq(dev_priv, mask, mask);
268         POSTING_READ_FW(GTIMR);
269 }
270
271 void gen5_disable_gt_irq(struct drm_i915_private *dev_priv, uint32_t mask)
272 {
273         ilk_update_gt_irq(dev_priv, mask, 0);
274 }
275
276 static i915_reg_t gen6_pm_iir(struct drm_i915_private *dev_priv)
277 {
278         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IIR(2) : GEN6_PMIIR;
279 }
280
281 static i915_reg_t gen6_pm_imr(struct drm_i915_private *dev_priv)
282 {
283         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IMR(2) : GEN6_PMIMR;
284 }
285
286 static i915_reg_t gen6_pm_ier(struct drm_i915_private *dev_priv)
287 {
288         return INTEL_INFO(dev_priv)->gen >= 8 ? GEN8_GT_IER(2) : GEN6_PMIER;
289 }
290
291 /**
292  * snb_update_pm_irq - update GEN6_PMIMR
293  * @dev_priv: driver private
294  * @interrupt_mask: mask of interrupt bits to update
295  * @enabled_irq_mask: mask of interrupt bits to enable
296  */
297 static void snb_update_pm_irq(struct drm_i915_private *dev_priv,
298                               uint32_t interrupt_mask,
299                               uint32_t enabled_irq_mask)
300 {
301         uint32_t new_val;
302
303         WARN_ON(enabled_irq_mask & ~interrupt_mask);
304
305         assert_spin_locked(&dev_priv->irq_lock);
306
307         new_val = dev_priv->pm_imr;
308         new_val &= ~interrupt_mask;
309         new_val |= (~enabled_irq_mask & interrupt_mask);
310
311         if (new_val != dev_priv->pm_imr) {
312                 dev_priv->pm_imr = new_val;
313                 I915_WRITE(gen6_pm_imr(dev_priv), dev_priv->pm_imr);
314                 POSTING_READ(gen6_pm_imr(dev_priv));
315         }
316 }
317
318 void gen6_unmask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
319 {
320         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
321                 return;
322
323         snb_update_pm_irq(dev_priv, mask, mask);
324 }
325
326 static void __gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
327 {
328         snb_update_pm_irq(dev_priv, mask, 0);
329 }
330
331 void gen6_mask_pm_irq(struct drm_i915_private *dev_priv, u32 mask)
332 {
333         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
334                 return;
335
336         __gen6_mask_pm_irq(dev_priv, mask);
337 }
338
339 void gen6_reset_pm_iir(struct drm_i915_private *dev_priv, u32 reset_mask)
340 {
341         i915_reg_t reg = gen6_pm_iir(dev_priv);
342
343         assert_spin_locked(&dev_priv->irq_lock);
344
345         I915_WRITE(reg, reset_mask);
346         I915_WRITE(reg, reset_mask);
347         POSTING_READ(reg);
348 }
349
350 void gen6_enable_pm_irq(struct drm_i915_private *dev_priv, u32 enable_mask)
351 {
352         assert_spin_locked(&dev_priv->irq_lock);
353
354         dev_priv->pm_ier |= enable_mask;
355         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
356         gen6_unmask_pm_irq(dev_priv, enable_mask);
357         /* unmask_pm_irq provides an implicit barrier (POSTING_READ) */
358 }
359
360 void gen6_disable_pm_irq(struct drm_i915_private *dev_priv, u32 disable_mask)
361 {
362         assert_spin_locked(&dev_priv->irq_lock);
363
364         dev_priv->pm_ier &= ~disable_mask;
365         __gen6_mask_pm_irq(dev_priv, disable_mask);
366         I915_WRITE(gen6_pm_ier(dev_priv), dev_priv->pm_ier);
367         /* though a barrier is missing here, but don't really need a one */
368 }
369
370 void gen6_reset_rps_interrupts(struct drm_i915_private *dev_priv)
371 {
372         spin_lock_irq(&dev_priv->irq_lock);
373         gen6_reset_pm_iir(dev_priv, dev_priv->pm_rps_events);
374         dev_priv->rps.pm_iir = 0;
375         spin_unlock_irq(&dev_priv->irq_lock);
376 }
377
378 void gen6_enable_rps_interrupts(struct drm_i915_private *dev_priv)
379 {
380         if (READ_ONCE(dev_priv->rps.interrupts_enabled))
381                 return;
382
383         spin_lock_irq(&dev_priv->irq_lock);
384         WARN_ON_ONCE(dev_priv->rps.pm_iir);
385         WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) & dev_priv->pm_rps_events);
386         dev_priv->rps.interrupts_enabled = true;
387         gen6_enable_pm_irq(dev_priv, dev_priv->pm_rps_events);
388
389         spin_unlock_irq(&dev_priv->irq_lock);
390 }
391
392 u32 gen6_sanitize_rps_pm_mask(struct drm_i915_private *dev_priv, u32 mask)
393 {
394         return (mask & ~dev_priv->rps.pm_intr_keep);
395 }
396
397 void gen6_disable_rps_interrupts(struct drm_i915_private *dev_priv)
398 {
399         if (!READ_ONCE(dev_priv->rps.interrupts_enabled))
400                 return;
401
402         spin_lock_irq(&dev_priv->irq_lock);
403         dev_priv->rps.interrupts_enabled = false;
404
405         I915_WRITE(GEN6_PMINTRMSK, gen6_sanitize_rps_pm_mask(dev_priv, ~0u));
406
407         gen6_disable_pm_irq(dev_priv, dev_priv->pm_rps_events);
408
409         spin_unlock_irq(&dev_priv->irq_lock);
410         synchronize_irq(dev_priv->drm.irq);
411
412         /* Now that we will not be generating any more work, flush any
413          * outsanding tasks. As we are called on the RPS idle path,
414          * we will reset the GPU to minimum frequencies, so the current
415          * state of the worker can be discarded.
416          */
417         cancel_work_sync(&dev_priv->rps.work);
418         gen6_reset_rps_interrupts(dev_priv);
419 }
420
421 void gen9_reset_guc_interrupts(struct drm_i915_private *dev_priv)
422 {
423         spin_lock_irq(&dev_priv->irq_lock);
424         gen6_reset_pm_iir(dev_priv, dev_priv->pm_guc_events);
425         spin_unlock_irq(&dev_priv->irq_lock);
426 }
427
428 void gen9_enable_guc_interrupts(struct drm_i915_private *dev_priv)
429 {
430         spin_lock_irq(&dev_priv->irq_lock);
431         if (!dev_priv->guc.interrupts_enabled) {
432                 WARN_ON_ONCE(I915_READ(gen6_pm_iir(dev_priv)) &
433                                        dev_priv->pm_guc_events);
434                 dev_priv->guc.interrupts_enabled = true;
435                 gen6_enable_pm_irq(dev_priv, dev_priv->pm_guc_events);
436         }
437         spin_unlock_irq(&dev_priv->irq_lock);
438 }
439
440 void gen9_disable_guc_interrupts(struct drm_i915_private *dev_priv)
441 {
442         spin_lock_irq(&dev_priv->irq_lock);
443         dev_priv->guc.interrupts_enabled = false;
444
445         gen6_disable_pm_irq(dev_priv, dev_priv->pm_guc_events);
446
447         spin_unlock_irq(&dev_priv->irq_lock);
448         synchronize_irq(dev_priv->drm.irq);
449
450         gen9_reset_guc_interrupts(dev_priv);
451 }
452
453 /**
454  * bdw_update_port_irq - update DE port interrupt
455  * @dev_priv: driver private
456  * @interrupt_mask: mask of interrupt bits to update
457  * @enabled_irq_mask: mask of interrupt bits to enable
458  */
459 static void bdw_update_port_irq(struct drm_i915_private *dev_priv,
460                                 uint32_t interrupt_mask,
461                                 uint32_t enabled_irq_mask)
462 {
463         uint32_t new_val;
464         uint32_t old_val;
465
466         assert_spin_locked(&dev_priv->irq_lock);
467
468         WARN_ON(enabled_irq_mask & ~interrupt_mask);
469
470         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
471                 return;
472
473         old_val = I915_READ(GEN8_DE_PORT_IMR);
474
475         new_val = old_val;
476         new_val &= ~interrupt_mask;
477         new_val |= (~enabled_irq_mask & interrupt_mask);
478
479         if (new_val != old_val) {
480                 I915_WRITE(GEN8_DE_PORT_IMR, new_val);
481                 POSTING_READ(GEN8_DE_PORT_IMR);
482         }
483 }
484
485 /**
486  * bdw_update_pipe_irq - update DE pipe interrupt
487  * @dev_priv: driver private
488  * @pipe: pipe whose interrupt to update
489  * @interrupt_mask: mask of interrupt bits to update
490  * @enabled_irq_mask: mask of interrupt bits to enable
491  */
492 void bdw_update_pipe_irq(struct drm_i915_private *dev_priv,
493                          enum pipe pipe,
494                          uint32_t interrupt_mask,
495                          uint32_t enabled_irq_mask)
496 {
497         uint32_t new_val;
498
499         assert_spin_locked(&dev_priv->irq_lock);
500
501         WARN_ON(enabled_irq_mask & ~interrupt_mask);
502
503         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
504                 return;
505
506         new_val = dev_priv->de_irq_mask[pipe];
507         new_val &= ~interrupt_mask;
508         new_val |= (~enabled_irq_mask & interrupt_mask);
509
510         if (new_val != dev_priv->de_irq_mask[pipe]) {
511                 dev_priv->de_irq_mask[pipe] = new_val;
512                 I915_WRITE(GEN8_DE_PIPE_IMR(pipe), dev_priv->de_irq_mask[pipe]);
513                 POSTING_READ(GEN8_DE_PIPE_IMR(pipe));
514         }
515 }
516
517 /**
518  * ibx_display_interrupt_update - update SDEIMR
519  * @dev_priv: driver private
520  * @interrupt_mask: mask of interrupt bits to update
521  * @enabled_irq_mask: mask of interrupt bits to enable
522  */
523 void ibx_display_interrupt_update(struct drm_i915_private *dev_priv,
524                                   uint32_t interrupt_mask,
525                                   uint32_t enabled_irq_mask)
526 {
527         uint32_t sdeimr = I915_READ(SDEIMR);
528         sdeimr &= ~interrupt_mask;
529         sdeimr |= (~enabled_irq_mask & interrupt_mask);
530
531         WARN_ON(enabled_irq_mask & ~interrupt_mask);
532
533         assert_spin_locked(&dev_priv->irq_lock);
534
535         if (WARN_ON(!intel_irqs_enabled(dev_priv)))
536                 return;
537
538         I915_WRITE(SDEIMR, sdeimr);
539         POSTING_READ(SDEIMR);
540 }
541
542 static void
543 __i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
544                        u32 enable_mask, u32 status_mask)
545 {
546         i915_reg_t reg = PIPESTAT(pipe);
547         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
548
549         assert_spin_locked(&dev_priv->irq_lock);
550         WARN_ON(!intel_irqs_enabled(dev_priv));
551
552         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
553                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
554                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
555                       pipe_name(pipe), enable_mask, status_mask))
556                 return;
557
558         if ((pipestat & enable_mask) == enable_mask)
559                 return;
560
561         dev_priv->pipestat_irq_mask[pipe] |= status_mask;
562
563         /* Enable the interrupt, clear any pending status */
564         pipestat |= enable_mask | status_mask;
565         I915_WRITE(reg, pipestat);
566         POSTING_READ(reg);
567 }
568
569 static void
570 __i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
571                         u32 enable_mask, u32 status_mask)
572 {
573         i915_reg_t reg = PIPESTAT(pipe);
574         u32 pipestat = I915_READ(reg) & PIPESTAT_INT_ENABLE_MASK;
575
576         assert_spin_locked(&dev_priv->irq_lock);
577         WARN_ON(!intel_irqs_enabled(dev_priv));
578
579         if (WARN_ONCE(enable_mask & ~PIPESTAT_INT_ENABLE_MASK ||
580                       status_mask & ~PIPESTAT_INT_STATUS_MASK,
581                       "pipe %c: enable_mask=0x%x, status_mask=0x%x\n",
582                       pipe_name(pipe), enable_mask, status_mask))
583                 return;
584
585         if ((pipestat & enable_mask) == 0)
586                 return;
587
588         dev_priv->pipestat_irq_mask[pipe] &= ~status_mask;
589
590         pipestat &= ~enable_mask;
591         I915_WRITE(reg, pipestat);
592         POSTING_READ(reg);
593 }
594
595 static u32 vlv_get_pipestat_enable_mask(struct drm_device *dev, u32 status_mask)
596 {
597         u32 enable_mask = status_mask << 16;
598
599         /*
600          * On pipe A we don't support the PSR interrupt yet,
601          * on pipe B and C the same bit MBZ.
602          */
603         if (WARN_ON_ONCE(status_mask & PIPE_A_PSR_STATUS_VLV))
604                 return 0;
605         /*
606          * On pipe B and C we don't support the PSR interrupt yet, on pipe
607          * A the same bit is for perf counters which we don't use either.
608          */
609         if (WARN_ON_ONCE(status_mask & PIPE_B_PSR_STATUS_VLV))
610                 return 0;
611
612         enable_mask &= ~(PIPE_FIFO_UNDERRUN_STATUS |
613                          SPRITE0_FLIP_DONE_INT_EN_VLV |
614                          SPRITE1_FLIP_DONE_INT_EN_VLV);
615         if (status_mask & SPRITE0_FLIP_DONE_INT_STATUS_VLV)
616                 enable_mask |= SPRITE0_FLIP_DONE_INT_EN_VLV;
617         if (status_mask & SPRITE1_FLIP_DONE_INT_STATUS_VLV)
618                 enable_mask |= SPRITE1_FLIP_DONE_INT_EN_VLV;
619
620         return enable_mask;
621 }
622
623 void
624 i915_enable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
625                      u32 status_mask)
626 {
627         u32 enable_mask;
628
629         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
630                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
631                                                            status_mask);
632         else
633                 enable_mask = status_mask << 16;
634         __i915_enable_pipestat(dev_priv, pipe, enable_mask, status_mask);
635 }
636
637 void
638 i915_disable_pipestat(struct drm_i915_private *dev_priv, enum pipe pipe,
639                       u32 status_mask)
640 {
641         u32 enable_mask;
642
643         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
644                 enable_mask = vlv_get_pipestat_enable_mask(&dev_priv->drm,
645                                                            status_mask);
646         else
647                 enable_mask = status_mask << 16;
648         __i915_disable_pipestat(dev_priv, pipe, enable_mask, status_mask);
649 }
650
651 /**
652  * i915_enable_asle_pipestat - enable ASLE pipestat for OpRegion
653  * @dev_priv: i915 device private
654  */
655 static void i915_enable_asle_pipestat(struct drm_i915_private *dev_priv)
656 {
657         if (!dev_priv->opregion.asle || !IS_MOBILE(dev_priv))
658                 return;
659
660         spin_lock_irq(&dev_priv->irq_lock);
661
662         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_LEGACY_BLC_EVENT_STATUS);
663         if (INTEL_GEN(dev_priv) >= 4)
664                 i915_enable_pipestat(dev_priv, PIPE_A,
665                                      PIPE_LEGACY_BLC_EVENT_STATUS);
666
667         spin_unlock_irq(&dev_priv->irq_lock);
668 }
669
670 /*
671  * This timing diagram depicts the video signal in and
672  * around the vertical blanking period.
673  *
674  * Assumptions about the fictitious mode used in this example:
675  *  vblank_start >= 3
676  *  vsync_start = vblank_start + 1
677  *  vsync_end = vblank_start + 2
678  *  vtotal = vblank_start + 3
679  *
680  *           start of vblank:
681  *           latch double buffered registers
682  *           increment frame counter (ctg+)
683  *           generate start of vblank interrupt (gen4+)
684  *           |
685  *           |          frame start:
686  *           |          generate frame start interrupt (aka. vblank interrupt) (gmch)
687  *           |          may be shifted forward 1-3 extra lines via PIPECONF
688  *           |          |
689  *           |          |  start of vsync:
690  *           |          |  generate vsync interrupt
691  *           |          |  |
692  * ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx___    ___xxxx
693  *       .   \hs/   .      \hs/          \hs/          \hs/   .      \hs/
694  * ----va---> <-----------------vb--------------------> <--------va-------------
695  *       |          |       <----vs----->                     |
696  * -vbs-----> <---vbs+1---> <---vbs+2---> <-----0-----> <-----1-----> <-----2--- (scanline counter gen2)
697  * -vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2---> <-----0--- (scanline counter gen3+)
698  * -vbs-2---> <---vbs-2---> <---vbs-1---> <---vbs-----> <---vbs+1---> <---vbs+2- (scanline counter hsw+ hdmi)
699  *       |          |                                         |
700  *       last visible pixel                                   first visible pixel
701  *                  |                                         increment frame counter (gen3/4)
702  *                  pixel counter = vblank_start * htotal     pixel counter = 0 (gen3/4)
703  *
704  * x  = horizontal active
705  * _  = horizontal blanking
706  * hs = horizontal sync
707  * va = vertical active
708  * vb = vertical blanking
709  * vs = vertical sync
710  * vbs = vblank_start (number)
711  *
712  * Summary:
713  * - most events happen at the start of horizontal sync
714  * - frame start happens at the start of horizontal blank, 1-4 lines
715  *   (depending on PIPECONF settings) after the start of vblank
716  * - gen3/4 pixel and frame counter are synchronized with the start
717  *   of horizontal active on the first line of vertical active
718  */
719
720 /* Called from drm generic code, passed a 'crtc', which
721  * we use as a pipe index
722  */
723 static u32 i915_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
724 {
725         struct drm_i915_private *dev_priv = to_i915(dev);
726         i915_reg_t high_frame, low_frame;
727         u32 high1, high2, low, pixel, vbl_start, hsync_start, htotal;
728         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
729                                                                 pipe);
730         const struct drm_display_mode *mode = &intel_crtc->base.hwmode;
731
732         htotal = mode->crtc_htotal;
733         hsync_start = mode->crtc_hsync_start;
734         vbl_start = mode->crtc_vblank_start;
735         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
736                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
737
738         /* Convert to pixel count */
739         vbl_start *= htotal;
740
741         /* Start of vblank event occurs at start of hsync */
742         vbl_start -= htotal - hsync_start;
743
744         high_frame = PIPEFRAME(pipe);
745         low_frame = PIPEFRAMEPIXEL(pipe);
746
747         /*
748          * High & low register fields aren't synchronized, so make sure
749          * we get a low value that's stable across two reads of the high
750          * register.
751          */
752         do {
753                 high1 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
754                 low   = I915_READ(low_frame);
755                 high2 = I915_READ(high_frame) & PIPE_FRAME_HIGH_MASK;
756         } while (high1 != high2);
757
758         high1 >>= PIPE_FRAME_HIGH_SHIFT;
759         pixel = low & PIPE_PIXEL_MASK;
760         low >>= PIPE_FRAME_LOW_SHIFT;
761
762         /*
763          * The frame counter increments at beginning of active.
764          * Cook up a vblank counter by also checking the pixel
765          * counter against vblank start.
766          */
767         return (((high1 << 8) | low) + (pixel >= vbl_start)) & 0xffffff;
768 }
769
770 static u32 g4x_get_vblank_counter(struct drm_device *dev, unsigned int pipe)
771 {
772         struct drm_i915_private *dev_priv = to_i915(dev);
773
774         return I915_READ(PIPE_FRMCOUNT_G4X(pipe));
775 }
776
777 /* I915_READ_FW, only for fast reads of display block, no need for forcewake etc. */
778 static int __intel_get_crtc_scanline(struct intel_crtc *crtc)
779 {
780         struct drm_device *dev = crtc->base.dev;
781         struct drm_i915_private *dev_priv = to_i915(dev);
782         const struct drm_display_mode *mode = &crtc->base.hwmode;
783         enum pipe pipe = crtc->pipe;
784         int position, vtotal;
785
786         vtotal = mode->crtc_vtotal;
787         if (mode->flags & DRM_MODE_FLAG_INTERLACE)
788                 vtotal /= 2;
789
790         if (IS_GEN2(dev_priv))
791                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN2;
792         else
793                 position = I915_READ_FW(PIPEDSL(pipe)) & DSL_LINEMASK_GEN3;
794
795         /*
796          * On HSW, the DSL reg (0x70000) appears to return 0 if we
797          * read it just before the start of vblank.  So try it again
798          * so we don't accidentally end up spanning a vblank frame
799          * increment, causing the pipe_update_end() code to squak at us.
800          *
801          * The nature of this problem means we can't simply check the ISR
802          * bit and return the vblank start value; nor can we use the scanline
803          * debug register in the transcoder as it appears to have the same
804          * problem.  We may need to extend this to include other platforms,
805          * but so far testing only shows the problem on HSW.
806          */
807         if (HAS_DDI(dev_priv) && !position) {
808                 int i, temp;
809
810                 for (i = 0; i < 100; i++) {
811                         udelay(1);
812                         temp = __raw_i915_read32(dev_priv, PIPEDSL(pipe)) &
813                                 DSL_LINEMASK_GEN3;
814                         if (temp != position) {
815                                 position = temp;
816                                 break;
817                         }
818                 }
819         }
820
821         /*
822          * See update_scanline_offset() for the details on the
823          * scanline_offset adjustment.
824          */
825         return (position + crtc->scanline_offset) % vtotal;
826 }
827
828 static int i915_get_crtc_scanoutpos(struct drm_device *dev, unsigned int pipe,
829                                     unsigned int flags, int *vpos, int *hpos,
830                                     ktime_t *stime, ktime_t *etime,
831                                     const struct drm_display_mode *mode)
832 {
833         struct drm_i915_private *dev_priv = to_i915(dev);
834         struct intel_crtc *intel_crtc = intel_get_crtc_for_pipe(dev_priv,
835                                                                 pipe);
836         int position;
837         int vbl_start, vbl_end, hsync_start, htotal, vtotal;
838         bool in_vbl = true;
839         int ret = 0;
840         unsigned long irqflags;
841
842         if (WARN_ON(!mode->crtc_clock)) {
843                 DRM_DEBUG_DRIVER("trying to get scanoutpos for disabled "
844                                  "pipe %c\n", pipe_name(pipe));
845                 return 0;
846         }
847
848         htotal = mode->crtc_htotal;
849         hsync_start = mode->crtc_hsync_start;
850         vtotal = mode->crtc_vtotal;
851         vbl_start = mode->crtc_vblank_start;
852         vbl_end = mode->crtc_vblank_end;
853
854         if (mode->flags & DRM_MODE_FLAG_INTERLACE) {
855                 vbl_start = DIV_ROUND_UP(vbl_start, 2);
856                 vbl_end /= 2;
857                 vtotal /= 2;
858         }
859
860         ret |= DRM_SCANOUTPOS_VALID | DRM_SCANOUTPOS_ACCURATE;
861
862         /*
863          * Lock uncore.lock, as we will do multiple timing critical raw
864          * register reads, potentially with preemption disabled, so the
865          * following code must not block on uncore.lock.
866          */
867         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
868
869         /* preempt_disable_rt() should go right here in PREEMPT_RT patchset. */
870
871         /* Get optional system timestamp before query. */
872         if (stime)
873                 *stime = ktime_get();
874
875         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
876                 /* No obvious pixelcount register. Only query vertical
877                  * scanout position from Display scan line register.
878                  */
879                 position = __intel_get_crtc_scanline(intel_crtc);
880         } else {
881                 /* Have access to pixelcount since start of frame.
882                  * We can split this into vertical and horizontal
883                  * scanout position.
884                  */
885                 position = (I915_READ_FW(PIPEFRAMEPIXEL(pipe)) & PIPE_PIXEL_MASK) >> PIPE_PIXEL_SHIFT;
886
887                 /* convert to pixel counts */
888                 vbl_start *= htotal;
889                 vbl_end *= htotal;
890                 vtotal *= htotal;
891
892                 /*
893                  * In interlaced modes, the pixel counter counts all pixels,
894                  * so one field will have htotal more pixels. In order to avoid
895                  * the reported position from jumping backwards when the pixel
896                  * counter is beyond the length of the shorter field, just
897                  * clamp the position the length of the shorter field. This
898                  * matches how the scanline counter based position works since
899                  * the scanline counter doesn't count the two half lines.
900                  */
901                 if (position >= vtotal)
902                         position = vtotal - 1;
903
904                 /*
905                  * Start of vblank interrupt is triggered at start of hsync,
906                  * just prior to the first active line of vblank. However we
907                  * consider lines to start at the leading edge of horizontal
908                  * active. So, should we get here before we've crossed into
909                  * the horizontal active of the first line in vblank, we would
910                  * not set the DRM_SCANOUTPOS_INVBL flag. In order to fix that,
911                  * always add htotal-hsync_start to the current pixel position.
912                  */
913                 position = (position + htotal - hsync_start) % vtotal;
914         }
915
916         /* Get optional system timestamp after query. */
917         if (etime)
918                 *etime = ktime_get();
919
920         /* preempt_enable_rt() should go right here in PREEMPT_RT patchset. */
921
922         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
923
924         in_vbl = position >= vbl_start && position < vbl_end;
925
926         /*
927          * While in vblank, position will be negative
928          * counting up towards 0 at vbl_end. And outside
929          * vblank, position will be positive counting
930          * up since vbl_end.
931          */
932         if (position >= vbl_start)
933                 position -= vbl_end;
934         else
935                 position += vtotal - vbl_end;
936
937         if (IS_GEN2(dev_priv) || IS_G4X(dev_priv) || INTEL_GEN(dev_priv) >= 5) {
938                 *vpos = position;
939                 *hpos = 0;
940         } else {
941                 *vpos = position / htotal;
942                 *hpos = position - (*vpos * htotal);
943         }
944
945         /* In vblank? */
946         if (in_vbl)
947                 ret |= DRM_SCANOUTPOS_IN_VBLANK;
948
949         return ret;
950 }
951
952 int intel_get_crtc_scanline(struct intel_crtc *crtc)
953 {
954         struct drm_i915_private *dev_priv = to_i915(crtc->base.dev);
955         unsigned long irqflags;
956         int position;
957
958         spin_lock_irqsave(&dev_priv->uncore.lock, irqflags);
959         position = __intel_get_crtc_scanline(crtc);
960         spin_unlock_irqrestore(&dev_priv->uncore.lock, irqflags);
961
962         return position;
963 }
964
965 static int i915_get_vblank_timestamp(struct drm_device *dev, unsigned int pipe,
966                               int *max_error,
967                               struct timeval *vblank_time,
968                               unsigned flags)
969 {
970         struct drm_i915_private *dev_priv = to_i915(dev);
971         struct intel_crtc *crtc;
972
973         if (pipe >= INTEL_INFO(dev_priv)->num_pipes) {
974                 DRM_ERROR("Invalid crtc %u\n", pipe);
975                 return -EINVAL;
976         }
977
978         /* Get drm_crtc to timestamp: */
979         crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
980         if (crtc == NULL) {
981                 DRM_ERROR("Invalid crtc %u\n", pipe);
982                 return -EINVAL;
983         }
984
985         if (!crtc->base.hwmode.crtc_clock) {
986                 DRM_DEBUG_KMS("crtc %u is disabled\n", pipe);
987                 return -EBUSY;
988         }
989
990         /* Helper routine in DRM core does all the work: */
991         return drm_calc_vbltimestamp_from_scanoutpos(dev, pipe, max_error,
992                                                      vblank_time, flags,
993                                                      &crtc->base.hwmode);
994 }
995
996 static void ironlake_rps_change_irq_handler(struct drm_i915_private *dev_priv)
997 {
998         u32 busy_up, busy_down, max_avg, min_avg;
999         u8 new_delay;
1000
1001         spin_lock(&mchdev_lock);
1002
1003         I915_WRITE16(MEMINTRSTS, I915_READ(MEMINTRSTS));
1004
1005         new_delay = dev_priv->ips.cur_delay;
1006
1007         I915_WRITE16(MEMINTRSTS, MEMINT_EVAL_CHG);
1008         busy_up = I915_READ(RCPREVBSYTUPAVG);
1009         busy_down = I915_READ(RCPREVBSYTDNAVG);
1010         max_avg = I915_READ(RCBMAXAVG);
1011         min_avg = I915_READ(RCBMINAVG);
1012
1013         /* Handle RCS change request from hw */
1014         if (busy_up > max_avg) {
1015                 if (dev_priv->ips.cur_delay != dev_priv->ips.max_delay)
1016                         new_delay = dev_priv->ips.cur_delay - 1;
1017                 if (new_delay < dev_priv->ips.max_delay)
1018                         new_delay = dev_priv->ips.max_delay;
1019         } else if (busy_down < min_avg) {
1020                 if (dev_priv->ips.cur_delay != dev_priv->ips.min_delay)
1021                         new_delay = dev_priv->ips.cur_delay + 1;
1022                 if (new_delay > dev_priv->ips.min_delay)
1023                         new_delay = dev_priv->ips.min_delay;
1024         }
1025
1026         if (ironlake_set_drps(dev_priv, new_delay))
1027                 dev_priv->ips.cur_delay = new_delay;
1028
1029         spin_unlock(&mchdev_lock);
1030
1031         return;
1032 }
1033
1034 static void notify_ring(struct intel_engine_cs *engine)
1035 {
1036         smp_store_mb(engine->breadcrumbs.irq_posted, true);
1037         if (intel_engine_wakeup(engine))
1038                 trace_i915_gem_request_notify(engine);
1039 }
1040
1041 static void vlv_c0_read(struct drm_i915_private *dev_priv,
1042                         struct intel_rps_ei *ei)
1043 {
1044         ei->cz_clock = vlv_punit_read(dev_priv, PUNIT_REG_CZ_TIMESTAMP);
1045         ei->render_c0 = I915_READ(VLV_RENDER_C0_COUNT);
1046         ei->media_c0 = I915_READ(VLV_MEDIA_C0_COUNT);
1047 }
1048
1049 void gen6_rps_reset_ei(struct drm_i915_private *dev_priv)
1050 {
1051         memset(&dev_priv->rps.ei, 0, sizeof(dev_priv->rps.ei));
1052 }
1053
1054 static u32 vlv_wa_c0_ei(struct drm_i915_private *dev_priv, u32 pm_iir)
1055 {
1056         const struct intel_rps_ei *prev = &dev_priv->rps.ei;
1057         struct intel_rps_ei now;
1058         u32 events = 0;
1059
1060         if ((pm_iir & GEN6_PM_RP_UP_EI_EXPIRED) == 0)
1061                 return 0;
1062
1063         vlv_c0_read(dev_priv, &now);
1064         if (now.cz_clock == 0)
1065                 return 0;
1066
1067         if (prev->cz_clock) {
1068                 u64 time, c0;
1069                 unsigned int mul;
1070
1071                 mul = VLV_CZ_CLOCK_TO_MILLI_SEC * 100; /* scale to threshold% */
1072                 if (I915_READ(VLV_COUNTER_CONTROL) & VLV_COUNT_RANGE_HIGH)
1073                         mul <<= 8;
1074
1075                 time = now.cz_clock - prev->cz_clock;
1076                 time *= dev_priv->czclk_freq;
1077
1078                 /* Workload can be split between render + media,
1079                  * e.g. SwapBuffers being blitted in X after being rendered in
1080                  * mesa. To account for this we need to combine both engines
1081                  * into our activity counter.
1082                  */
1083                 c0 = now.render_c0 - prev->render_c0;
1084                 c0 += now.media_c0 - prev->media_c0;
1085                 c0 *= mul;
1086
1087                 if (c0 > time * dev_priv->rps.up_threshold)
1088                         events = GEN6_PM_RP_UP_THRESHOLD;
1089                 else if (c0 < time * dev_priv->rps.down_threshold)
1090                         events = GEN6_PM_RP_DOWN_THRESHOLD;
1091         }
1092
1093         dev_priv->rps.ei = now;
1094         return events;
1095 }
1096
1097 static bool any_waiters(struct drm_i915_private *dev_priv)
1098 {
1099         struct intel_engine_cs *engine;
1100         enum intel_engine_id id;
1101
1102         for_each_engine(engine, dev_priv, id)
1103                 if (intel_engine_has_waiter(engine))
1104                         return true;
1105
1106         return false;
1107 }
1108
1109 static void gen6_pm_rps_work(struct work_struct *work)
1110 {
1111         struct drm_i915_private *dev_priv =
1112                 container_of(work, struct drm_i915_private, rps.work);
1113         bool client_boost;
1114         int new_delay, adj, min, max;
1115         u32 pm_iir;
1116
1117         spin_lock_irq(&dev_priv->irq_lock);
1118         /* Speed up work cancelation during disabling rps interrupts. */
1119         if (!dev_priv->rps.interrupts_enabled) {
1120                 spin_unlock_irq(&dev_priv->irq_lock);
1121                 return;
1122         }
1123
1124         pm_iir = dev_priv->rps.pm_iir;
1125         dev_priv->rps.pm_iir = 0;
1126         /* Make sure not to corrupt PMIMR state used by ringbuffer on GEN6 */
1127         gen6_unmask_pm_irq(dev_priv, dev_priv->pm_rps_events);
1128         client_boost = dev_priv->rps.client_boost;
1129         dev_priv->rps.client_boost = false;
1130         spin_unlock_irq(&dev_priv->irq_lock);
1131
1132         /* Make sure we didn't queue anything we're not going to process. */
1133         WARN_ON(pm_iir & ~dev_priv->pm_rps_events);
1134
1135         if ((pm_iir & dev_priv->pm_rps_events) == 0 && !client_boost)
1136                 return;
1137
1138         mutex_lock(&dev_priv->rps.hw_lock);
1139
1140         pm_iir |= vlv_wa_c0_ei(dev_priv, pm_iir);
1141
1142         adj = dev_priv->rps.last_adj;
1143         new_delay = dev_priv->rps.cur_freq;
1144         min = dev_priv->rps.min_freq_softlimit;
1145         max = dev_priv->rps.max_freq_softlimit;
1146         if (client_boost || any_waiters(dev_priv))
1147                 max = dev_priv->rps.max_freq;
1148         if (client_boost && new_delay < dev_priv->rps.boost_freq) {
1149                 new_delay = dev_priv->rps.boost_freq;
1150                 adj = 0;
1151         } else if (pm_iir & GEN6_PM_RP_UP_THRESHOLD) {
1152                 if (adj > 0)
1153                         adj *= 2;
1154                 else /* CHV needs even encode values */
1155                         adj = IS_CHERRYVIEW(dev_priv) ? 2 : 1;
1156
1157                 if (new_delay >= dev_priv->rps.max_freq_softlimit)
1158                         adj = 0;
1159                 /*
1160                  * For better performance, jump directly
1161                  * to RPe if we're below it.
1162                  */
1163                 if (new_delay < dev_priv->rps.efficient_freq - adj) {
1164                         new_delay = dev_priv->rps.efficient_freq;
1165                         adj = 0;
1166                 }
1167         } else if (client_boost || any_waiters(dev_priv)) {
1168                 adj = 0;
1169         } else if (pm_iir & GEN6_PM_RP_DOWN_TIMEOUT) {
1170                 if (dev_priv->rps.cur_freq > dev_priv->rps.efficient_freq)
1171                         new_delay = dev_priv->rps.efficient_freq;
1172                 else
1173                         new_delay = dev_priv->rps.min_freq_softlimit;
1174                 adj = 0;
1175         } else if (pm_iir & GEN6_PM_RP_DOWN_THRESHOLD) {
1176                 if (adj < 0)
1177                         adj *= 2;
1178                 else /* CHV needs even encode values */
1179                         adj = IS_CHERRYVIEW(dev_priv) ? -2 : -1;
1180
1181                 if (new_delay <= dev_priv->rps.min_freq_softlimit)
1182                         adj = 0;
1183         } else { /* unknown event */
1184                 adj = 0;
1185         }
1186
1187         dev_priv->rps.last_adj = adj;
1188
1189         /* sysfs frequency interfaces may have snuck in while servicing the
1190          * interrupt
1191          */
1192         new_delay += adj;
1193         new_delay = clamp_t(int, new_delay, min, max);
1194
1195         intel_set_rps(dev_priv, new_delay);
1196
1197         mutex_unlock(&dev_priv->rps.hw_lock);
1198 }
1199
1200
1201 /**
1202  * ivybridge_parity_work - Workqueue called when a parity error interrupt
1203  * occurred.
1204  * @work: workqueue struct
1205  *
1206  * Doesn't actually do anything except notify userspace. As a consequence of
1207  * this event, userspace should try to remap the bad rows since statistically
1208  * it is likely the same row is more likely to go bad again.
1209  */
1210 static void ivybridge_parity_work(struct work_struct *work)
1211 {
1212         struct drm_i915_private *dev_priv =
1213                 container_of(work, struct drm_i915_private, l3_parity.error_work);
1214         u32 error_status, row, bank, subbank;
1215         char *parity_event[6];
1216         uint32_t misccpctl;
1217         uint8_t slice = 0;
1218
1219         /* We must turn off DOP level clock gating to access the L3 registers.
1220          * In order to prevent a get/put style interface, acquire struct mutex
1221          * any time we access those registers.
1222          */
1223         mutex_lock(&dev_priv->drm.struct_mutex);
1224
1225         /* If we've screwed up tracking, just let the interrupt fire again */
1226         if (WARN_ON(!dev_priv->l3_parity.which_slice))
1227                 goto out;
1228
1229         misccpctl = I915_READ(GEN7_MISCCPCTL);
1230         I915_WRITE(GEN7_MISCCPCTL, misccpctl & ~GEN7_DOP_CLOCK_GATE_ENABLE);
1231         POSTING_READ(GEN7_MISCCPCTL);
1232
1233         while ((slice = ffs(dev_priv->l3_parity.which_slice)) != 0) {
1234                 i915_reg_t reg;
1235
1236                 slice--;
1237                 if (WARN_ON_ONCE(slice >= NUM_L3_SLICES(dev_priv)))
1238                         break;
1239
1240                 dev_priv->l3_parity.which_slice &= ~(1<<slice);
1241
1242                 reg = GEN7_L3CDERRST1(slice);
1243
1244                 error_status = I915_READ(reg);
1245                 row = GEN7_PARITY_ERROR_ROW(error_status);
1246                 bank = GEN7_PARITY_ERROR_BANK(error_status);
1247                 subbank = GEN7_PARITY_ERROR_SUBBANK(error_status);
1248
1249                 I915_WRITE(reg, GEN7_PARITY_ERROR_VALID | GEN7_L3CDERRST1_ENABLE);
1250                 POSTING_READ(reg);
1251
1252                 parity_event[0] = I915_L3_PARITY_UEVENT "=1";
1253                 parity_event[1] = kasprintf(GFP_KERNEL, "ROW=%d", row);
1254                 parity_event[2] = kasprintf(GFP_KERNEL, "BANK=%d", bank);
1255                 parity_event[3] = kasprintf(GFP_KERNEL, "SUBBANK=%d", subbank);
1256                 parity_event[4] = kasprintf(GFP_KERNEL, "SLICE=%d", slice);
1257                 parity_event[5] = NULL;
1258
1259                 kobject_uevent_env(&dev_priv->drm.primary->kdev->kobj,
1260                                    KOBJ_CHANGE, parity_event);
1261
1262                 DRM_DEBUG("Parity error: Slice = %d, Row = %d, Bank = %d, Sub bank = %d.\n",
1263                           slice, row, bank, subbank);
1264
1265                 kfree(parity_event[4]);
1266                 kfree(parity_event[3]);
1267                 kfree(parity_event[2]);
1268                 kfree(parity_event[1]);
1269         }
1270
1271         I915_WRITE(GEN7_MISCCPCTL, misccpctl);
1272
1273 out:
1274         WARN_ON(dev_priv->l3_parity.which_slice);
1275         spin_lock_irq(&dev_priv->irq_lock);
1276         gen5_enable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1277         spin_unlock_irq(&dev_priv->irq_lock);
1278
1279         mutex_unlock(&dev_priv->drm.struct_mutex);
1280 }
1281
1282 static void ivybridge_parity_error_irq_handler(struct drm_i915_private *dev_priv,
1283                                                u32 iir)
1284 {
1285         if (!HAS_L3_DPF(dev_priv))
1286                 return;
1287
1288         spin_lock(&dev_priv->irq_lock);
1289         gen5_disable_gt_irq(dev_priv, GT_PARITY_ERROR(dev_priv));
1290         spin_unlock(&dev_priv->irq_lock);
1291
1292         iir &= GT_PARITY_ERROR(dev_priv);
1293         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT_S1)
1294                 dev_priv->l3_parity.which_slice |= 1 << 1;
1295
1296         if (iir & GT_RENDER_L3_PARITY_ERROR_INTERRUPT)
1297                 dev_priv->l3_parity.which_slice |= 1 << 0;
1298
1299         queue_work(dev_priv->wq, &dev_priv->l3_parity.error_work);
1300 }
1301
1302 static void ilk_gt_irq_handler(struct drm_i915_private *dev_priv,
1303                                u32 gt_iir)
1304 {
1305         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1306                 notify_ring(dev_priv->engine[RCS]);
1307         if (gt_iir & ILK_BSD_USER_INTERRUPT)
1308                 notify_ring(dev_priv->engine[VCS]);
1309 }
1310
1311 static void snb_gt_irq_handler(struct drm_i915_private *dev_priv,
1312                                u32 gt_iir)
1313 {
1314         if (gt_iir & GT_RENDER_USER_INTERRUPT)
1315                 notify_ring(dev_priv->engine[RCS]);
1316         if (gt_iir & GT_BSD_USER_INTERRUPT)
1317                 notify_ring(dev_priv->engine[VCS]);
1318         if (gt_iir & GT_BLT_USER_INTERRUPT)
1319                 notify_ring(dev_priv->engine[BCS]);
1320
1321         if (gt_iir & (GT_BLT_CS_ERROR_INTERRUPT |
1322                       GT_BSD_CS_ERROR_INTERRUPT |
1323                       GT_RENDER_CS_MASTER_ERROR_INTERRUPT))
1324                 DRM_DEBUG("Command parser error, gt_iir 0x%08x\n", gt_iir);
1325
1326         if (gt_iir & GT_PARITY_ERROR(dev_priv))
1327                 ivybridge_parity_error_irq_handler(dev_priv, gt_iir);
1328 }
1329
1330 static __always_inline void
1331 gen8_cs_irq_handler(struct intel_engine_cs *engine, u32 iir, int test_shift)
1332 {
1333         if (iir & (GT_RENDER_USER_INTERRUPT << test_shift))
1334                 notify_ring(engine);
1335         if (iir & (GT_CONTEXT_SWITCH_INTERRUPT << test_shift))
1336                 tasklet_schedule(&engine->irq_tasklet);
1337 }
1338
1339 static irqreturn_t gen8_gt_irq_ack(struct drm_i915_private *dev_priv,
1340                                    u32 master_ctl,
1341                                    u32 gt_iir[4])
1342 {
1343         irqreturn_t ret = IRQ_NONE;
1344
1345         if (master_ctl & (GEN8_GT_RCS_IRQ | GEN8_GT_BCS_IRQ)) {
1346                 gt_iir[0] = I915_READ_FW(GEN8_GT_IIR(0));
1347                 if (gt_iir[0]) {
1348                         I915_WRITE_FW(GEN8_GT_IIR(0), gt_iir[0]);
1349                         ret = IRQ_HANDLED;
1350                 } else
1351                         DRM_ERROR("The master control interrupt lied (GT0)!\n");
1352         }
1353
1354         if (master_ctl & (GEN8_GT_VCS1_IRQ | GEN8_GT_VCS2_IRQ)) {
1355                 gt_iir[1] = I915_READ_FW(GEN8_GT_IIR(1));
1356                 if (gt_iir[1]) {
1357                         I915_WRITE_FW(GEN8_GT_IIR(1), gt_iir[1]);
1358                         ret = IRQ_HANDLED;
1359                 } else
1360                         DRM_ERROR("The master control interrupt lied (GT1)!\n");
1361         }
1362
1363         if (master_ctl & GEN8_GT_VECS_IRQ) {
1364                 gt_iir[3] = I915_READ_FW(GEN8_GT_IIR(3));
1365                 if (gt_iir[3]) {
1366                         I915_WRITE_FW(GEN8_GT_IIR(3), gt_iir[3]);
1367                         ret = IRQ_HANDLED;
1368                 } else
1369                         DRM_ERROR("The master control interrupt lied (GT3)!\n");
1370         }
1371
1372         if (master_ctl & (GEN8_GT_PM_IRQ | GEN8_GT_GUC_IRQ)) {
1373                 gt_iir[2] = I915_READ_FW(GEN8_GT_IIR(2));
1374                 if (gt_iir[2] & (dev_priv->pm_rps_events |
1375                                  dev_priv->pm_guc_events)) {
1376                         I915_WRITE_FW(GEN8_GT_IIR(2),
1377                                       gt_iir[2] & (dev_priv->pm_rps_events |
1378                                                    dev_priv->pm_guc_events));
1379                         ret = IRQ_HANDLED;
1380                 } else
1381                         DRM_ERROR("The master control interrupt lied (PM)!\n");
1382         }
1383
1384         return ret;
1385 }
1386
1387 static void gen8_gt_irq_handler(struct drm_i915_private *dev_priv,
1388                                 u32 gt_iir[4])
1389 {
1390         if (gt_iir[0]) {
1391                 gen8_cs_irq_handler(dev_priv->engine[RCS],
1392                                     gt_iir[0], GEN8_RCS_IRQ_SHIFT);
1393                 gen8_cs_irq_handler(dev_priv->engine[BCS],
1394                                     gt_iir[0], GEN8_BCS_IRQ_SHIFT);
1395         }
1396
1397         if (gt_iir[1]) {
1398                 gen8_cs_irq_handler(dev_priv->engine[VCS],
1399                                     gt_iir[1], GEN8_VCS1_IRQ_SHIFT);
1400                 gen8_cs_irq_handler(dev_priv->engine[VCS2],
1401                                     gt_iir[1], GEN8_VCS2_IRQ_SHIFT);
1402         }
1403
1404         if (gt_iir[3])
1405                 gen8_cs_irq_handler(dev_priv->engine[VECS],
1406                                     gt_iir[3], GEN8_VECS_IRQ_SHIFT);
1407
1408         if (gt_iir[2] & dev_priv->pm_rps_events)
1409                 gen6_rps_irq_handler(dev_priv, gt_iir[2]);
1410
1411         if (gt_iir[2] & dev_priv->pm_guc_events)
1412                 gen9_guc_irq_handler(dev_priv, gt_iir[2]);
1413 }
1414
1415 static bool bxt_port_hotplug_long_detect(enum port port, u32 val)
1416 {
1417         switch (port) {
1418         case PORT_A:
1419                 return val & PORTA_HOTPLUG_LONG_DETECT;
1420         case PORT_B:
1421                 return val & PORTB_HOTPLUG_LONG_DETECT;
1422         case PORT_C:
1423                 return val & PORTC_HOTPLUG_LONG_DETECT;
1424         default:
1425                 return false;
1426         }
1427 }
1428
1429 static bool spt_port_hotplug2_long_detect(enum port port, u32 val)
1430 {
1431         switch (port) {
1432         case PORT_E:
1433                 return val & PORTE_HOTPLUG_LONG_DETECT;
1434         default:
1435                 return false;
1436         }
1437 }
1438
1439 static bool spt_port_hotplug_long_detect(enum port port, u32 val)
1440 {
1441         switch (port) {
1442         case PORT_A:
1443                 return val & PORTA_HOTPLUG_LONG_DETECT;
1444         case PORT_B:
1445                 return val & PORTB_HOTPLUG_LONG_DETECT;
1446         case PORT_C:
1447                 return val & PORTC_HOTPLUG_LONG_DETECT;
1448         case PORT_D:
1449                 return val & PORTD_HOTPLUG_LONG_DETECT;
1450         default:
1451                 return false;
1452         }
1453 }
1454
1455 static bool ilk_port_hotplug_long_detect(enum port port, u32 val)
1456 {
1457         switch (port) {
1458         case PORT_A:
1459                 return val & DIGITAL_PORTA_HOTPLUG_LONG_DETECT;
1460         default:
1461                 return false;
1462         }
1463 }
1464
1465 static bool pch_port_hotplug_long_detect(enum port port, u32 val)
1466 {
1467         switch (port) {
1468         case PORT_B:
1469                 return val & PORTB_HOTPLUG_LONG_DETECT;
1470         case PORT_C:
1471                 return val & PORTC_HOTPLUG_LONG_DETECT;
1472         case PORT_D:
1473                 return val & PORTD_HOTPLUG_LONG_DETECT;
1474         default:
1475                 return false;
1476         }
1477 }
1478
1479 static bool i9xx_port_hotplug_long_detect(enum port port, u32 val)
1480 {
1481         switch (port) {
1482         case PORT_B:
1483                 return val & PORTB_HOTPLUG_INT_LONG_PULSE;
1484         case PORT_C:
1485                 return val & PORTC_HOTPLUG_INT_LONG_PULSE;
1486         case PORT_D:
1487                 return val & PORTD_HOTPLUG_INT_LONG_PULSE;
1488         default:
1489                 return false;
1490         }
1491 }
1492
1493 /*
1494  * Get a bit mask of pins that have triggered, and which ones may be long.
1495  * This can be called multiple times with the same masks to accumulate
1496  * hotplug detection results from several registers.
1497  *
1498  * Note that the caller is expected to zero out the masks initially.
1499  */
1500 static void intel_get_hpd_pins(u32 *pin_mask, u32 *long_mask,
1501                              u32 hotplug_trigger, u32 dig_hotplug_reg,
1502                              const u32 hpd[HPD_NUM_PINS],
1503                              bool long_pulse_detect(enum port port, u32 val))
1504 {
1505         enum port port;
1506         int i;
1507
1508         for_each_hpd_pin(i) {
1509                 if ((hpd[i] & hotplug_trigger) == 0)
1510                         continue;
1511
1512                 *pin_mask |= BIT(i);
1513
1514                 if (!intel_hpd_pin_to_port(i, &port))
1515                         continue;
1516
1517                 if (long_pulse_detect(port, dig_hotplug_reg))
1518                         *long_mask |= BIT(i);
1519         }
1520
1521         DRM_DEBUG_DRIVER("hotplug event received, stat 0x%08x, dig 0x%08x, pins 0x%08x\n",
1522                          hotplug_trigger, dig_hotplug_reg, *pin_mask);
1523
1524 }
1525
1526 static void gmbus_irq_handler(struct drm_i915_private *dev_priv)
1527 {
1528         wake_up_all(&dev_priv->gmbus_wait_queue);
1529 }
1530
1531 static void dp_aux_irq_handler(struct drm_i915_private *dev_priv)
1532 {
1533         wake_up_all(&dev_priv->gmbus_wait_queue);
1534 }
1535
1536 #if defined(CONFIG_DEBUG_FS)
1537 static void display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1538                                          enum pipe pipe,
1539                                          uint32_t crc0, uint32_t crc1,
1540                                          uint32_t crc2, uint32_t crc3,
1541                                          uint32_t crc4)
1542 {
1543         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
1544         struct intel_pipe_crc_entry *entry;
1545         struct intel_crtc *crtc = intel_get_crtc_for_pipe(dev_priv, pipe);
1546         struct drm_driver *driver = dev_priv->drm.driver;
1547         uint32_t crcs[5];
1548         int head, tail;
1549
1550         spin_lock(&pipe_crc->lock);
1551         if (pipe_crc->source) {
1552                 if (!pipe_crc->entries) {
1553                         spin_unlock(&pipe_crc->lock);
1554                         DRM_DEBUG_KMS("spurious interrupt\n");
1555                         return;
1556                 }
1557
1558                 head = pipe_crc->head;
1559                 tail = pipe_crc->tail;
1560
1561                 if (CIRC_SPACE(head, tail, INTEL_PIPE_CRC_ENTRIES_NR) < 1) {
1562                         spin_unlock(&pipe_crc->lock);
1563                         DRM_ERROR("CRC buffer overflowing\n");
1564                         return;
1565                 }
1566
1567                 entry = &pipe_crc->entries[head];
1568
1569                 entry->frame = driver->get_vblank_counter(&dev_priv->drm, pipe);
1570                 entry->crc[0] = crc0;
1571                 entry->crc[1] = crc1;
1572                 entry->crc[2] = crc2;
1573                 entry->crc[3] = crc3;
1574                 entry->crc[4] = crc4;
1575
1576                 head = (head + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
1577                 pipe_crc->head = head;
1578
1579                 spin_unlock(&pipe_crc->lock);
1580
1581                 wake_up_interruptible(&pipe_crc->wq);
1582         } else {
1583                 /*
1584                  * For some not yet identified reason, the first CRC is
1585                  * bonkers. So let's just wait for the next vblank and read
1586                  * out the buggy result.
1587                  *
1588                  * On CHV sometimes the second CRC is bonkers as well, so
1589                  * don't trust that one either.
1590                  */
1591                 if (pipe_crc->skipped == 0 ||
1592                     (IS_CHERRYVIEW(dev_priv) && pipe_crc->skipped == 1)) {
1593                         pipe_crc->skipped++;
1594                         spin_unlock(&pipe_crc->lock);
1595                         return;
1596                 }
1597                 spin_unlock(&pipe_crc->lock);
1598                 crcs[0] = crc0;
1599                 crcs[1] = crc1;
1600                 crcs[2] = crc2;
1601                 crcs[3] = crc3;
1602                 crcs[4] = crc4;
1603                 drm_crtc_add_crc_entry(&crtc->base, true,
1604                                        drm_accurate_vblank_count(&crtc->base),
1605                                        crcs);
1606         }
1607 }
1608 #else
1609 static inline void
1610 display_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1611                              enum pipe pipe,
1612                              uint32_t crc0, uint32_t crc1,
1613                              uint32_t crc2, uint32_t crc3,
1614                              uint32_t crc4) {}
1615 #endif
1616
1617
1618 static void hsw_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1619                                      enum pipe pipe)
1620 {
1621         display_pipe_crc_irq_handler(dev_priv, pipe,
1622                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1623                                      0, 0, 0, 0);
1624 }
1625
1626 static void ivb_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1627                                      enum pipe pipe)
1628 {
1629         display_pipe_crc_irq_handler(dev_priv, pipe,
1630                                      I915_READ(PIPE_CRC_RES_1_IVB(pipe)),
1631                                      I915_READ(PIPE_CRC_RES_2_IVB(pipe)),
1632                                      I915_READ(PIPE_CRC_RES_3_IVB(pipe)),
1633                                      I915_READ(PIPE_CRC_RES_4_IVB(pipe)),
1634                                      I915_READ(PIPE_CRC_RES_5_IVB(pipe)));
1635 }
1636
1637 static void i9xx_pipe_crc_irq_handler(struct drm_i915_private *dev_priv,
1638                                       enum pipe pipe)
1639 {
1640         uint32_t res1, res2;
1641
1642         if (INTEL_GEN(dev_priv) >= 3)
1643                 res1 = I915_READ(PIPE_CRC_RES_RES1_I915(pipe));
1644         else
1645                 res1 = 0;
1646
1647         if (INTEL_GEN(dev_priv) >= 5 || IS_G4X(dev_priv))
1648                 res2 = I915_READ(PIPE_CRC_RES_RES2_G4X(pipe));
1649         else
1650                 res2 = 0;
1651
1652         display_pipe_crc_irq_handler(dev_priv, pipe,
1653                                      I915_READ(PIPE_CRC_RES_RED(pipe)),
1654                                      I915_READ(PIPE_CRC_RES_GREEN(pipe)),
1655                                      I915_READ(PIPE_CRC_RES_BLUE(pipe)),
1656                                      res1, res2);
1657 }
1658
1659 /* The RPS events need forcewake, so we add them to a work queue and mask their
1660  * IMR bits until the work is done. Other interrupts can be processed without
1661  * the work queue. */
1662 static void gen6_rps_irq_handler(struct drm_i915_private *dev_priv, u32 pm_iir)
1663 {
1664         if (pm_iir & dev_priv->pm_rps_events) {
1665                 spin_lock(&dev_priv->irq_lock);
1666                 gen6_mask_pm_irq(dev_priv, pm_iir & dev_priv->pm_rps_events);
1667                 if (dev_priv->rps.interrupts_enabled) {
1668                         dev_priv->rps.pm_iir |= pm_iir & dev_priv->pm_rps_events;
1669                         schedule_work(&dev_priv->rps.work);
1670                 }
1671                 spin_unlock(&dev_priv->irq_lock);
1672         }
1673
1674         if (INTEL_INFO(dev_priv)->gen >= 8)
1675                 return;
1676
1677         if (HAS_VEBOX(dev_priv)) {
1678                 if (pm_iir & PM_VEBOX_USER_INTERRUPT)
1679                         notify_ring(dev_priv->engine[VECS]);
1680
1681                 if (pm_iir & PM_VEBOX_CS_ERROR_INTERRUPT)
1682                         DRM_DEBUG("Command parser error, pm_iir 0x%08x\n", pm_iir);
1683         }
1684 }
1685
1686 static void gen9_guc_irq_handler(struct drm_i915_private *dev_priv, u32 gt_iir)
1687 {
1688         if (gt_iir & GEN9_GUC_TO_HOST_INT_EVENT) {
1689                 /* Sample the log buffer flush related bits & clear them out now
1690                  * itself from the message identity register to minimize the
1691                  * probability of losing a flush interrupt, when there are back
1692                  * to back flush interrupts.
1693                  * There can be a new flush interrupt, for different log buffer
1694                  * type (like for ISR), whilst Host is handling one (for DPC).
1695                  * Since same bit is used in message register for ISR & DPC, it
1696                  * could happen that GuC sets the bit for 2nd interrupt but Host
1697                  * clears out the bit on handling the 1st interrupt.
1698                  */
1699                 u32 msg, flush;
1700
1701                 msg = I915_READ(SOFT_SCRATCH(15));
1702                 flush = msg & (INTEL_GUC_RECV_MSG_CRASH_DUMP_POSTED |
1703                                INTEL_GUC_RECV_MSG_FLUSH_LOG_BUFFER);
1704                 if (flush) {
1705                         /* Clear the message bits that are handled */
1706                         I915_WRITE(SOFT_SCRATCH(15), msg & ~flush);
1707
1708                         /* Handle flush interrupt in bottom half */
1709                         queue_work(dev_priv->guc.log.flush_wq,
1710                                    &dev_priv->guc.log.flush_work);
1711
1712                         dev_priv->guc.log.flush_interrupt_count++;
1713                 } else {
1714                         /* Not clearing of unhandled event bits won't result in
1715                          * re-triggering of the interrupt.
1716                          */
1717                 }
1718         }
1719 }
1720
1721 static bool intel_pipe_handle_vblank(struct drm_i915_private *dev_priv,
1722                                      enum pipe pipe)
1723 {
1724         bool ret;
1725
1726         ret = drm_handle_vblank(&dev_priv->drm, pipe);
1727         if (ret)
1728                 intel_finish_page_flip_mmio(dev_priv, pipe);
1729
1730         return ret;
1731 }
1732
1733 static void valleyview_pipestat_irq_ack(struct drm_i915_private *dev_priv,
1734                                         u32 iir, u32 pipe_stats[I915_MAX_PIPES])
1735 {
1736         int pipe;
1737
1738         spin_lock(&dev_priv->irq_lock);
1739
1740         if (!dev_priv->display_irqs_enabled) {
1741                 spin_unlock(&dev_priv->irq_lock);
1742                 return;
1743         }
1744
1745         for_each_pipe(dev_priv, pipe) {
1746                 i915_reg_t reg;
1747                 u32 mask, iir_bit = 0;
1748
1749                 /*
1750                  * PIPESTAT bits get signalled even when the interrupt is
1751                  * disabled with the mask bits, and some of the status bits do
1752                  * not generate interrupts at all (like the underrun bit). Hence
1753                  * we need to be careful that we only handle what we want to
1754                  * handle.
1755                  */
1756
1757                 /* fifo underruns are filterered in the underrun handler. */
1758                 mask = PIPE_FIFO_UNDERRUN_STATUS;
1759
1760                 switch (pipe) {
1761                 case PIPE_A:
1762                         iir_bit = I915_DISPLAY_PIPE_A_EVENT_INTERRUPT;
1763                         break;
1764                 case PIPE_B:
1765                         iir_bit = I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
1766                         break;
1767                 case PIPE_C:
1768                         iir_bit = I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
1769                         break;
1770                 }
1771                 if (iir & iir_bit)
1772                         mask |= dev_priv->pipestat_irq_mask[pipe];
1773
1774                 if (!mask)
1775                         continue;
1776
1777                 reg = PIPESTAT(pipe);
1778                 mask |= PIPESTAT_INT_ENABLE_MASK;
1779                 pipe_stats[pipe] = I915_READ(reg) & mask;
1780
1781                 /*
1782                  * Clear the PIPE*STAT regs before the IIR
1783                  */
1784                 if (pipe_stats[pipe] & (PIPE_FIFO_UNDERRUN_STATUS |
1785                                         PIPESTAT_INT_STATUS_MASK))
1786                         I915_WRITE(reg, pipe_stats[pipe]);
1787         }
1788         spin_unlock(&dev_priv->irq_lock);
1789 }
1790
1791 static void valleyview_pipestat_irq_handler(struct drm_i915_private *dev_priv,
1792                                             u32 pipe_stats[I915_MAX_PIPES])
1793 {
1794         enum pipe pipe;
1795
1796         for_each_pipe(dev_priv, pipe) {
1797                 if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
1798                     intel_pipe_handle_vblank(dev_priv, pipe))
1799                         intel_check_page_flip(dev_priv, pipe);
1800
1801                 if (pipe_stats[pipe] & PLANE_FLIP_DONE_INT_STATUS_VLV)
1802                         intel_finish_page_flip_cs(dev_priv, pipe);
1803
1804                 if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
1805                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
1806
1807                 if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
1808                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
1809         }
1810
1811         if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
1812                 gmbus_irq_handler(dev_priv);
1813 }
1814
1815 static u32 i9xx_hpd_irq_ack(struct drm_i915_private *dev_priv)
1816 {
1817         u32 hotplug_status = I915_READ(PORT_HOTPLUG_STAT);
1818
1819         if (hotplug_status)
1820                 I915_WRITE(PORT_HOTPLUG_STAT, hotplug_status);
1821
1822         return hotplug_status;
1823 }
1824
1825 static void i9xx_hpd_irq_handler(struct drm_i915_private *dev_priv,
1826                                  u32 hotplug_status)
1827 {
1828         u32 pin_mask = 0, long_mask = 0;
1829
1830         if (IS_G4X(dev_priv) || IS_VALLEYVIEW(dev_priv) ||
1831             IS_CHERRYVIEW(dev_priv)) {
1832                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_G4X;
1833
1834                 if (hotplug_trigger) {
1835                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1836                                            hotplug_trigger, hpd_status_g4x,
1837                                            i9xx_port_hotplug_long_detect);
1838
1839                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1840                 }
1841
1842                 if (hotplug_status & DP_AUX_CHANNEL_MASK_INT_STATUS_G4X)
1843                         dp_aux_irq_handler(dev_priv);
1844         } else {
1845                 u32 hotplug_trigger = hotplug_status & HOTPLUG_INT_STATUS_I915;
1846
1847                 if (hotplug_trigger) {
1848                         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
1849                                            hotplug_trigger, hpd_status_i915,
1850                                            i9xx_port_hotplug_long_detect);
1851                         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
1852                 }
1853         }
1854 }
1855
1856 static irqreturn_t valleyview_irq_handler(int irq, void *arg)
1857 {
1858         struct drm_device *dev = arg;
1859         struct drm_i915_private *dev_priv = to_i915(dev);
1860         irqreturn_t ret = IRQ_NONE;
1861
1862         if (!intel_irqs_enabled(dev_priv))
1863                 return IRQ_NONE;
1864
1865         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1866         disable_rpm_wakeref_asserts(dev_priv);
1867
1868         do {
1869                 u32 iir, gt_iir, pm_iir;
1870                 u32 pipe_stats[I915_MAX_PIPES] = {};
1871                 u32 hotplug_status = 0;
1872                 u32 ier = 0;
1873
1874                 gt_iir = I915_READ(GTIIR);
1875                 pm_iir = I915_READ(GEN6_PMIIR);
1876                 iir = I915_READ(VLV_IIR);
1877
1878                 if (gt_iir == 0 && pm_iir == 0 && iir == 0)
1879                         break;
1880
1881                 ret = IRQ_HANDLED;
1882
1883                 /*
1884                  * Theory on interrupt generation, based on empirical evidence:
1885                  *
1886                  * x = ((VLV_IIR & VLV_IER) ||
1887                  *      (((GT_IIR & GT_IER) || (GEN6_PMIIR & GEN6_PMIER)) &&
1888                  *       (VLV_MASTER_IER & MASTER_INTERRUPT_ENABLE)));
1889                  *
1890                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1891                  * Hence we clear MASTER_INTERRUPT_ENABLE and VLV_IER to
1892                  * guarantee the CPU interrupt will be raised again even if we
1893                  * don't end up clearing all the VLV_IIR, GT_IIR, GEN6_PMIIR
1894                  * bits this time around.
1895                  */
1896                 I915_WRITE(VLV_MASTER_IER, 0);
1897                 ier = I915_READ(VLV_IER);
1898                 I915_WRITE(VLV_IER, 0);
1899
1900                 if (gt_iir)
1901                         I915_WRITE(GTIIR, gt_iir);
1902                 if (pm_iir)
1903                         I915_WRITE(GEN6_PMIIR, pm_iir);
1904
1905                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1906                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1907
1908                 /* Call regardless, as some status bits might not be
1909                  * signalled in iir */
1910                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1911
1912                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1913                            I915_LPE_PIPE_B_INTERRUPT))
1914                         intel_lpe_audio_irq_handler(dev_priv);
1915
1916                 /*
1917                  * VLV_IIR is single buffered, and reflects the level
1918                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
1919                  */
1920                 if (iir)
1921                         I915_WRITE(VLV_IIR, iir);
1922
1923                 I915_WRITE(VLV_IER, ier);
1924                 I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
1925                 POSTING_READ(VLV_MASTER_IER);
1926
1927                 if (gt_iir)
1928                         snb_gt_irq_handler(dev_priv, gt_iir);
1929                 if (pm_iir)
1930                         gen6_rps_irq_handler(dev_priv, pm_iir);
1931
1932                 if (hotplug_status)
1933                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
1934
1935                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
1936         } while (0);
1937
1938         enable_rpm_wakeref_asserts(dev_priv);
1939
1940         return ret;
1941 }
1942
1943 static irqreturn_t cherryview_irq_handler(int irq, void *arg)
1944 {
1945         struct drm_device *dev = arg;
1946         struct drm_i915_private *dev_priv = to_i915(dev);
1947         irqreturn_t ret = IRQ_NONE;
1948
1949         if (!intel_irqs_enabled(dev_priv))
1950                 return IRQ_NONE;
1951
1952         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
1953         disable_rpm_wakeref_asserts(dev_priv);
1954
1955         do {
1956                 u32 master_ctl, iir;
1957                 u32 gt_iir[4] = {};
1958                 u32 pipe_stats[I915_MAX_PIPES] = {};
1959                 u32 hotplug_status = 0;
1960                 u32 ier = 0;
1961
1962                 master_ctl = I915_READ(GEN8_MASTER_IRQ) & ~GEN8_MASTER_IRQ_CONTROL;
1963                 iir = I915_READ(VLV_IIR);
1964
1965                 if (master_ctl == 0 && iir == 0)
1966                         break;
1967
1968                 ret = IRQ_HANDLED;
1969
1970                 /*
1971                  * Theory on interrupt generation, based on empirical evidence:
1972                  *
1973                  * x = ((VLV_IIR & VLV_IER) ||
1974                  *      ((GEN8_MASTER_IRQ & ~GEN8_MASTER_IRQ_CONTROL) &&
1975                  *       (GEN8_MASTER_IRQ & GEN8_MASTER_IRQ_CONTROL)));
1976                  *
1977                  * A CPU interrupt will only be raised when 'x' has a 0->1 edge.
1978                  * Hence we clear GEN8_MASTER_IRQ_CONTROL and VLV_IER to
1979                  * guarantee the CPU interrupt will be raised again even if we
1980                  * don't end up clearing all the VLV_IIR and GEN8_MASTER_IRQ_CONTROL
1981                  * bits this time around.
1982                  */
1983                 I915_WRITE(GEN8_MASTER_IRQ, 0);
1984                 ier = I915_READ(VLV_IER);
1985                 I915_WRITE(VLV_IER, 0);
1986
1987                 gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
1988
1989                 if (iir & I915_DISPLAY_PORT_INTERRUPT)
1990                         hotplug_status = i9xx_hpd_irq_ack(dev_priv);
1991
1992                 /* Call regardless, as some status bits might not be
1993                  * signalled in iir */
1994                 valleyview_pipestat_irq_ack(dev_priv, iir, pipe_stats);
1995
1996                 if (iir & (I915_LPE_PIPE_A_INTERRUPT |
1997                            I915_LPE_PIPE_B_INTERRUPT |
1998                            I915_LPE_PIPE_C_INTERRUPT))
1999                         intel_lpe_audio_irq_handler(dev_priv);
2000
2001                 /*
2002                  * VLV_IIR is single buffered, and reflects the level
2003                  * from PIPESTAT/PORT_HOTPLUG_STAT, hence clear it last.
2004                  */
2005                 if (iir)
2006                         I915_WRITE(VLV_IIR, iir);
2007
2008                 I915_WRITE(VLV_IER, ier);
2009                 I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2010                 POSTING_READ(GEN8_MASTER_IRQ);
2011
2012                 gen8_gt_irq_handler(dev_priv, gt_iir);
2013
2014                 if (hotplug_status)
2015                         i9xx_hpd_irq_handler(dev_priv, hotplug_status);
2016
2017                 valleyview_pipestat_irq_handler(dev_priv, pipe_stats);
2018         } while (0);
2019
2020         enable_rpm_wakeref_asserts(dev_priv);
2021
2022         return ret;
2023 }
2024
2025 static void ibx_hpd_irq_handler(struct drm_i915_private *dev_priv,
2026                                 u32 hotplug_trigger,
2027                                 const u32 hpd[HPD_NUM_PINS])
2028 {
2029         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2030
2031         /*
2032          * Somehow the PCH doesn't seem to really ack the interrupt to the CPU
2033          * unless we touch the hotplug register, even if hotplug_trigger is
2034          * zero. Not acking leads to "The master control interrupt lied (SDE)!"
2035          * errors.
2036          */
2037         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2038         if (!hotplug_trigger) {
2039                 u32 mask = PORTA_HOTPLUG_STATUS_MASK |
2040                         PORTD_HOTPLUG_STATUS_MASK |
2041                         PORTC_HOTPLUG_STATUS_MASK |
2042                         PORTB_HOTPLUG_STATUS_MASK;
2043                 dig_hotplug_reg &= ~mask;
2044         }
2045
2046         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2047         if (!hotplug_trigger)
2048                 return;
2049
2050         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2051                            dig_hotplug_reg, hpd,
2052                            pch_port_hotplug_long_detect);
2053
2054         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2055 }
2056
2057 static void ibx_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2058 {
2059         int pipe;
2060         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK;
2061
2062         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ibx);
2063
2064         if (pch_iir & SDE_AUDIO_POWER_MASK) {
2065                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK) >>
2066                                SDE_AUDIO_POWER_SHIFT);
2067                 DRM_DEBUG_DRIVER("PCH audio power change on port %d\n",
2068                                  port_name(port));
2069         }
2070
2071         if (pch_iir & SDE_AUX_MASK)
2072                 dp_aux_irq_handler(dev_priv);
2073
2074         if (pch_iir & SDE_GMBUS)
2075                 gmbus_irq_handler(dev_priv);
2076
2077         if (pch_iir & SDE_AUDIO_HDCP_MASK)
2078                 DRM_DEBUG_DRIVER("PCH HDCP audio interrupt\n");
2079
2080         if (pch_iir & SDE_AUDIO_TRANS_MASK)
2081                 DRM_DEBUG_DRIVER("PCH transcoder audio interrupt\n");
2082
2083         if (pch_iir & SDE_POISON)
2084                 DRM_ERROR("PCH poison interrupt\n");
2085
2086         if (pch_iir & SDE_FDI_MASK)
2087                 for_each_pipe(dev_priv, pipe)
2088                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2089                                          pipe_name(pipe),
2090                                          I915_READ(FDI_RX_IIR(pipe)));
2091
2092         if (pch_iir & (SDE_TRANSB_CRC_DONE | SDE_TRANSA_CRC_DONE))
2093                 DRM_DEBUG_DRIVER("PCH transcoder CRC done interrupt\n");
2094
2095         if (pch_iir & (SDE_TRANSB_CRC_ERR | SDE_TRANSA_CRC_ERR))
2096                 DRM_DEBUG_DRIVER("PCH transcoder CRC error interrupt\n");
2097
2098         if (pch_iir & SDE_TRANSA_FIFO_UNDER)
2099                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2100
2101         if (pch_iir & SDE_TRANSB_FIFO_UNDER)
2102                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2103 }
2104
2105 static void ivb_err_int_handler(struct drm_i915_private *dev_priv)
2106 {
2107         u32 err_int = I915_READ(GEN7_ERR_INT);
2108         enum pipe pipe;
2109
2110         if (err_int & ERR_INT_POISON)
2111                 DRM_ERROR("Poison interrupt\n");
2112
2113         for_each_pipe(dev_priv, pipe) {
2114                 if (err_int & ERR_INT_FIFO_UNDERRUN(pipe))
2115                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2116
2117                 if (err_int & ERR_INT_PIPE_CRC_DONE(pipe)) {
2118                         if (IS_IVYBRIDGE(dev_priv))
2119                                 ivb_pipe_crc_irq_handler(dev_priv, pipe);
2120                         else
2121                                 hsw_pipe_crc_irq_handler(dev_priv, pipe);
2122                 }
2123         }
2124
2125         I915_WRITE(GEN7_ERR_INT, err_int);
2126 }
2127
2128 static void cpt_serr_int_handler(struct drm_i915_private *dev_priv)
2129 {
2130         u32 serr_int = I915_READ(SERR_INT);
2131
2132         if (serr_int & SERR_INT_POISON)
2133                 DRM_ERROR("PCH poison interrupt\n");
2134
2135         if (serr_int & SERR_INT_TRANS_A_FIFO_UNDERRUN)
2136                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_A);
2137
2138         if (serr_int & SERR_INT_TRANS_B_FIFO_UNDERRUN)
2139                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_B);
2140
2141         if (serr_int & SERR_INT_TRANS_C_FIFO_UNDERRUN)
2142                 intel_pch_fifo_underrun_irq_handler(dev_priv, TRANSCODER_C);
2143
2144         I915_WRITE(SERR_INT, serr_int);
2145 }
2146
2147 static void cpt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2148 {
2149         int pipe;
2150         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_CPT;
2151
2152         ibx_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_cpt);
2153
2154         if (pch_iir & SDE_AUDIO_POWER_MASK_CPT) {
2155                 int port = ffs((pch_iir & SDE_AUDIO_POWER_MASK_CPT) >>
2156                                SDE_AUDIO_POWER_SHIFT_CPT);
2157                 DRM_DEBUG_DRIVER("PCH audio power change on port %c\n",
2158                                  port_name(port));
2159         }
2160
2161         if (pch_iir & SDE_AUX_MASK_CPT)
2162                 dp_aux_irq_handler(dev_priv);
2163
2164         if (pch_iir & SDE_GMBUS_CPT)
2165                 gmbus_irq_handler(dev_priv);
2166
2167         if (pch_iir & SDE_AUDIO_CP_REQ_CPT)
2168                 DRM_DEBUG_DRIVER("Audio CP request interrupt\n");
2169
2170         if (pch_iir & SDE_AUDIO_CP_CHG_CPT)
2171                 DRM_DEBUG_DRIVER("Audio CP change interrupt\n");
2172
2173         if (pch_iir & SDE_FDI_MASK_CPT)
2174                 for_each_pipe(dev_priv, pipe)
2175                         DRM_DEBUG_DRIVER("  pipe %c FDI IIR: 0x%08x\n",
2176                                          pipe_name(pipe),
2177                                          I915_READ(FDI_RX_IIR(pipe)));
2178
2179         if (pch_iir & SDE_ERROR_CPT)
2180                 cpt_serr_int_handler(dev_priv);
2181 }
2182
2183 static void spt_irq_handler(struct drm_i915_private *dev_priv, u32 pch_iir)
2184 {
2185         u32 hotplug_trigger = pch_iir & SDE_HOTPLUG_MASK_SPT &
2186                 ~SDE_PORTE_HOTPLUG_SPT;
2187         u32 hotplug2_trigger = pch_iir & SDE_PORTE_HOTPLUG_SPT;
2188         u32 pin_mask = 0, long_mask = 0;
2189
2190         if (hotplug_trigger) {
2191                 u32 dig_hotplug_reg;
2192
2193                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2194                 I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2195
2196                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2197                                    dig_hotplug_reg, hpd_spt,
2198                                    spt_port_hotplug_long_detect);
2199         }
2200
2201         if (hotplug2_trigger) {
2202                 u32 dig_hotplug_reg;
2203
2204                 dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG2);
2205                 I915_WRITE(PCH_PORT_HOTPLUG2, dig_hotplug_reg);
2206
2207                 intel_get_hpd_pins(&pin_mask, &long_mask, hotplug2_trigger,
2208                                    dig_hotplug_reg, hpd_spt,
2209                                    spt_port_hotplug2_long_detect);
2210         }
2211
2212         if (pin_mask)
2213                 intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2214
2215         if (pch_iir & SDE_GMBUS_CPT)
2216                 gmbus_irq_handler(dev_priv);
2217 }
2218
2219 static void ilk_hpd_irq_handler(struct drm_i915_private *dev_priv,
2220                                 u32 hotplug_trigger,
2221                                 const u32 hpd[HPD_NUM_PINS])
2222 {
2223         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2224
2225         dig_hotplug_reg = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
2226         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, dig_hotplug_reg);
2227
2228         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2229                            dig_hotplug_reg, hpd,
2230                            ilk_port_hotplug_long_detect);
2231
2232         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2233 }
2234
2235 static void ilk_display_irq_handler(struct drm_i915_private *dev_priv,
2236                                     u32 de_iir)
2237 {
2238         enum pipe pipe;
2239         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG;
2240
2241         if (hotplug_trigger)
2242                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ilk);
2243
2244         if (de_iir & DE_AUX_CHANNEL_A)
2245                 dp_aux_irq_handler(dev_priv);
2246
2247         if (de_iir & DE_GSE)
2248                 intel_opregion_asle_intr(dev_priv);
2249
2250         if (de_iir & DE_POISON)
2251                 DRM_ERROR("Poison interrupt\n");
2252
2253         for_each_pipe(dev_priv, pipe) {
2254                 if (de_iir & DE_PIPE_VBLANK(pipe) &&
2255                     intel_pipe_handle_vblank(dev_priv, pipe))
2256                         intel_check_page_flip(dev_priv, pipe);
2257
2258                 if (de_iir & DE_PIPE_FIFO_UNDERRUN(pipe))
2259                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2260
2261                 if (de_iir & DE_PIPE_CRC_DONE(pipe))
2262                         i9xx_pipe_crc_irq_handler(dev_priv, pipe);
2263
2264                 /* plane/pipes map 1:1 on ilk+ */
2265                 if (de_iir & DE_PLANE_FLIP_DONE(pipe))
2266                         intel_finish_page_flip_cs(dev_priv, pipe);
2267         }
2268
2269         /* check event from PCH */
2270         if (de_iir & DE_PCH_EVENT) {
2271                 u32 pch_iir = I915_READ(SDEIIR);
2272
2273                 if (HAS_PCH_CPT(dev_priv))
2274                         cpt_irq_handler(dev_priv, pch_iir);
2275                 else
2276                         ibx_irq_handler(dev_priv, pch_iir);
2277
2278                 /* should clear PCH hotplug event before clear CPU irq */
2279                 I915_WRITE(SDEIIR, pch_iir);
2280         }
2281
2282         if (IS_GEN5(dev_priv) && de_iir & DE_PCU_EVENT)
2283                 ironlake_rps_change_irq_handler(dev_priv);
2284 }
2285
2286 static void ivb_display_irq_handler(struct drm_i915_private *dev_priv,
2287                                     u32 de_iir)
2288 {
2289         enum pipe pipe;
2290         u32 hotplug_trigger = de_iir & DE_DP_A_HOTPLUG_IVB;
2291
2292         if (hotplug_trigger)
2293                 ilk_hpd_irq_handler(dev_priv, hotplug_trigger, hpd_ivb);
2294
2295         if (de_iir & DE_ERR_INT_IVB)
2296                 ivb_err_int_handler(dev_priv);
2297
2298         if (de_iir & DE_AUX_CHANNEL_A_IVB)
2299                 dp_aux_irq_handler(dev_priv);
2300
2301         if (de_iir & DE_GSE_IVB)
2302                 intel_opregion_asle_intr(dev_priv);
2303
2304         for_each_pipe(dev_priv, pipe) {
2305                 if (de_iir & (DE_PIPE_VBLANK_IVB(pipe)) &&
2306                     intel_pipe_handle_vblank(dev_priv, pipe))
2307                         intel_check_page_flip(dev_priv, pipe);
2308
2309                 /* plane/pipes map 1:1 on ilk+ */
2310                 if (de_iir & DE_PLANE_FLIP_DONE_IVB(pipe))
2311                         intel_finish_page_flip_cs(dev_priv, pipe);
2312         }
2313
2314         /* check event from PCH */
2315         if (!HAS_PCH_NOP(dev_priv) && (de_iir & DE_PCH_EVENT_IVB)) {
2316                 u32 pch_iir = I915_READ(SDEIIR);
2317
2318                 cpt_irq_handler(dev_priv, pch_iir);
2319
2320                 /* clear PCH hotplug event before clear CPU irq */
2321                 I915_WRITE(SDEIIR, pch_iir);
2322         }
2323 }
2324
2325 /*
2326  * To handle irqs with the minimum potential races with fresh interrupts, we:
2327  * 1 - Disable Master Interrupt Control.
2328  * 2 - Find the source(s) of the interrupt.
2329  * 3 - Clear the Interrupt Identity bits (IIR).
2330  * 4 - Process the interrupt(s) that had bits set in the IIRs.
2331  * 5 - Re-enable Master Interrupt Control.
2332  */
2333 static irqreturn_t ironlake_irq_handler(int irq, void *arg)
2334 {
2335         struct drm_device *dev = arg;
2336         struct drm_i915_private *dev_priv = to_i915(dev);
2337         u32 de_iir, gt_iir, de_ier, sde_ier = 0;
2338         irqreturn_t ret = IRQ_NONE;
2339
2340         if (!intel_irqs_enabled(dev_priv))
2341                 return IRQ_NONE;
2342
2343         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2344         disable_rpm_wakeref_asserts(dev_priv);
2345
2346         /* disable master interrupt before clearing iir  */
2347         de_ier = I915_READ(DEIER);
2348         I915_WRITE(DEIER, de_ier & ~DE_MASTER_IRQ_CONTROL);
2349         POSTING_READ(DEIER);
2350
2351         /* Disable south interrupts. We'll only write to SDEIIR once, so further
2352          * interrupts will will be stored on its back queue, and then we'll be
2353          * able to process them after we restore SDEIER (as soon as we restore
2354          * it, we'll get an interrupt if SDEIIR still has something to process
2355          * due to its back queue). */
2356         if (!HAS_PCH_NOP(dev_priv)) {
2357                 sde_ier = I915_READ(SDEIER);
2358                 I915_WRITE(SDEIER, 0);
2359                 POSTING_READ(SDEIER);
2360         }
2361
2362         /* Find, clear, then process each source of interrupt */
2363
2364         gt_iir = I915_READ(GTIIR);
2365         if (gt_iir) {
2366                 I915_WRITE(GTIIR, gt_iir);
2367                 ret = IRQ_HANDLED;
2368                 if (INTEL_GEN(dev_priv) >= 6)
2369                         snb_gt_irq_handler(dev_priv, gt_iir);
2370                 else
2371                         ilk_gt_irq_handler(dev_priv, gt_iir);
2372         }
2373
2374         de_iir = I915_READ(DEIIR);
2375         if (de_iir) {
2376                 I915_WRITE(DEIIR, de_iir);
2377                 ret = IRQ_HANDLED;
2378                 if (INTEL_GEN(dev_priv) >= 7)
2379                         ivb_display_irq_handler(dev_priv, de_iir);
2380                 else
2381                         ilk_display_irq_handler(dev_priv, de_iir);
2382         }
2383
2384         if (INTEL_GEN(dev_priv) >= 6) {
2385                 u32 pm_iir = I915_READ(GEN6_PMIIR);
2386                 if (pm_iir) {
2387                         I915_WRITE(GEN6_PMIIR, pm_iir);
2388                         ret = IRQ_HANDLED;
2389                         gen6_rps_irq_handler(dev_priv, pm_iir);
2390                 }
2391         }
2392
2393         I915_WRITE(DEIER, de_ier);
2394         POSTING_READ(DEIER);
2395         if (!HAS_PCH_NOP(dev_priv)) {
2396                 I915_WRITE(SDEIER, sde_ier);
2397                 POSTING_READ(SDEIER);
2398         }
2399
2400         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2401         enable_rpm_wakeref_asserts(dev_priv);
2402
2403         return ret;
2404 }
2405
2406 static void bxt_hpd_irq_handler(struct drm_i915_private *dev_priv,
2407                                 u32 hotplug_trigger,
2408                                 const u32 hpd[HPD_NUM_PINS])
2409 {
2410         u32 dig_hotplug_reg, pin_mask = 0, long_mask = 0;
2411
2412         dig_hotplug_reg = I915_READ(PCH_PORT_HOTPLUG);
2413         I915_WRITE(PCH_PORT_HOTPLUG, dig_hotplug_reg);
2414
2415         intel_get_hpd_pins(&pin_mask, &long_mask, hotplug_trigger,
2416                            dig_hotplug_reg, hpd,
2417                            bxt_port_hotplug_long_detect);
2418
2419         intel_hpd_irq_handler(dev_priv, pin_mask, long_mask);
2420 }
2421
2422 static irqreturn_t
2423 gen8_de_irq_handler(struct drm_i915_private *dev_priv, u32 master_ctl)
2424 {
2425         irqreturn_t ret = IRQ_NONE;
2426         u32 iir;
2427         enum pipe pipe;
2428
2429         if (master_ctl & GEN8_DE_MISC_IRQ) {
2430                 iir = I915_READ(GEN8_DE_MISC_IIR);
2431                 if (iir) {
2432                         I915_WRITE(GEN8_DE_MISC_IIR, iir);
2433                         ret = IRQ_HANDLED;
2434                         if (iir & GEN8_DE_MISC_GSE)
2435                                 intel_opregion_asle_intr(dev_priv);
2436                         else
2437                                 DRM_ERROR("Unexpected DE Misc interrupt\n");
2438                 }
2439                 else
2440                         DRM_ERROR("The master control interrupt lied (DE MISC)!\n");
2441         }
2442
2443         if (master_ctl & GEN8_DE_PORT_IRQ) {
2444                 iir = I915_READ(GEN8_DE_PORT_IIR);
2445                 if (iir) {
2446                         u32 tmp_mask;
2447                         bool found = false;
2448
2449                         I915_WRITE(GEN8_DE_PORT_IIR, iir);
2450                         ret = IRQ_HANDLED;
2451
2452                         tmp_mask = GEN8_AUX_CHANNEL_A;
2453                         if (INTEL_INFO(dev_priv)->gen >= 9)
2454                                 tmp_mask |= GEN9_AUX_CHANNEL_B |
2455                                             GEN9_AUX_CHANNEL_C |
2456                                             GEN9_AUX_CHANNEL_D;
2457
2458                         if (iir & tmp_mask) {
2459                                 dp_aux_irq_handler(dev_priv);
2460                                 found = true;
2461                         }
2462
2463                         if (IS_GEN9_LP(dev_priv)) {
2464                                 tmp_mask = iir & BXT_DE_PORT_HOTPLUG_MASK;
2465                                 if (tmp_mask) {
2466                                         bxt_hpd_irq_handler(dev_priv, tmp_mask,
2467                                                             hpd_bxt);
2468                                         found = true;
2469                                 }
2470                         } else if (IS_BROADWELL(dev_priv)) {
2471                                 tmp_mask = iir & GEN8_PORT_DP_A_HOTPLUG;
2472                                 if (tmp_mask) {
2473                                         ilk_hpd_irq_handler(dev_priv,
2474                                                             tmp_mask, hpd_bdw);
2475                                         found = true;
2476                                 }
2477                         }
2478
2479                         if (IS_GEN9_LP(dev_priv) && (iir & BXT_DE_PORT_GMBUS)) {
2480                                 gmbus_irq_handler(dev_priv);
2481                                 found = true;
2482                         }
2483
2484                         if (!found)
2485                                 DRM_ERROR("Unexpected DE Port interrupt\n");
2486                 }
2487                 else
2488                         DRM_ERROR("The master control interrupt lied (DE PORT)!\n");
2489         }
2490
2491         for_each_pipe(dev_priv, pipe) {
2492                 u32 flip_done, fault_errors;
2493
2494                 if (!(master_ctl & GEN8_DE_PIPE_IRQ(pipe)))
2495                         continue;
2496
2497                 iir = I915_READ(GEN8_DE_PIPE_IIR(pipe));
2498                 if (!iir) {
2499                         DRM_ERROR("The master control interrupt lied (DE PIPE)!\n");
2500                         continue;
2501                 }
2502
2503                 ret = IRQ_HANDLED;
2504                 I915_WRITE(GEN8_DE_PIPE_IIR(pipe), iir);
2505
2506                 if (iir & GEN8_PIPE_VBLANK &&
2507                     intel_pipe_handle_vblank(dev_priv, pipe))
2508                         intel_check_page_flip(dev_priv, pipe);
2509
2510                 flip_done = iir;
2511                 if (INTEL_INFO(dev_priv)->gen >= 9)
2512                         flip_done &= GEN9_PIPE_PLANE1_FLIP_DONE;
2513                 else
2514                         flip_done &= GEN8_PIPE_PRIMARY_FLIP_DONE;
2515
2516                 if (flip_done)
2517                         intel_finish_page_flip_cs(dev_priv, pipe);
2518
2519                 if (iir & GEN8_PIPE_CDCLK_CRC_DONE)
2520                         hsw_pipe_crc_irq_handler(dev_priv, pipe);
2521
2522                 if (iir & GEN8_PIPE_FIFO_UNDERRUN)
2523                         intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
2524
2525                 fault_errors = iir;
2526                 if (INTEL_INFO(dev_priv)->gen >= 9)
2527                         fault_errors &= GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
2528                 else
2529                         fault_errors &= GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
2530
2531                 if (fault_errors)
2532                         DRM_ERROR("Fault errors on pipe %c: 0x%08x\n",
2533                                   pipe_name(pipe),
2534                                   fault_errors);
2535         }
2536
2537         if (HAS_PCH_SPLIT(dev_priv) && !HAS_PCH_NOP(dev_priv) &&
2538             master_ctl & GEN8_DE_PCH_IRQ) {
2539                 /*
2540                  * FIXME(BDW): Assume for now that the new interrupt handling
2541                  * scheme also closed the SDE interrupt handling race we've seen
2542                  * on older pch-split platforms. But this needs testing.
2543                  */
2544                 iir = I915_READ(SDEIIR);
2545                 if (iir) {
2546                         I915_WRITE(SDEIIR, iir);
2547                         ret = IRQ_HANDLED;
2548
2549                         if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
2550                                 spt_irq_handler(dev_priv, iir);
2551                         else
2552                                 cpt_irq_handler(dev_priv, iir);
2553                 } else {
2554                         /*
2555                          * Like on previous PCH there seems to be something
2556                          * fishy going on with forwarding PCH interrupts.
2557                          */
2558                         DRM_DEBUG_DRIVER("The master control interrupt lied (SDE)!\n");
2559                 }
2560         }
2561
2562         return ret;
2563 }
2564
2565 static irqreturn_t gen8_irq_handler(int irq, void *arg)
2566 {
2567         struct drm_device *dev = arg;
2568         struct drm_i915_private *dev_priv = to_i915(dev);
2569         u32 master_ctl;
2570         u32 gt_iir[4] = {};
2571         irqreturn_t ret;
2572
2573         if (!intel_irqs_enabled(dev_priv))
2574                 return IRQ_NONE;
2575
2576         master_ctl = I915_READ_FW(GEN8_MASTER_IRQ);
2577         master_ctl &= ~GEN8_MASTER_IRQ_CONTROL;
2578         if (!master_ctl)
2579                 return IRQ_NONE;
2580
2581         I915_WRITE_FW(GEN8_MASTER_IRQ, 0);
2582
2583         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
2584         disable_rpm_wakeref_asserts(dev_priv);
2585
2586         /* Find, clear, then process each source of interrupt */
2587         ret = gen8_gt_irq_ack(dev_priv, master_ctl, gt_iir);
2588         gen8_gt_irq_handler(dev_priv, gt_iir);
2589         ret |= gen8_de_irq_handler(dev_priv, master_ctl);
2590
2591         I915_WRITE_FW(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
2592         POSTING_READ_FW(GEN8_MASTER_IRQ);
2593
2594         enable_rpm_wakeref_asserts(dev_priv);
2595
2596         return ret;
2597 }
2598
2599 static void i915_error_wake_up(struct drm_i915_private *dev_priv)
2600 {
2601         /*
2602          * Notify all waiters for GPU completion events that reset state has
2603          * been changed, and that they need to restart their wait after
2604          * checking for potential errors (and bail out to drop locks if there is
2605          * a gpu reset pending so that i915_error_work_func can acquire them).
2606          */
2607
2608         /* Wake up __wait_seqno, potentially holding dev->struct_mutex. */
2609         wake_up_all(&dev_priv->gpu_error.wait_queue);
2610
2611         /* Wake up intel_crtc_wait_for_pending_flips, holding crtc->mutex. */
2612         wake_up_all(&dev_priv->pending_flip_queue);
2613 }
2614
2615 /**
2616  * i915_reset_and_wakeup - do process context error handling work
2617  * @dev_priv: i915 device private
2618  *
2619  * Fire an error uevent so userspace can see that a hang or error
2620  * was detected.
2621  */
2622 static void i915_reset_and_wakeup(struct drm_i915_private *dev_priv)
2623 {
2624         struct kobject *kobj = &dev_priv->drm.primary->kdev->kobj;
2625         char *error_event[] = { I915_ERROR_UEVENT "=1", NULL };
2626         char *reset_event[] = { I915_RESET_UEVENT "=1", NULL };
2627         char *reset_done_event[] = { I915_ERROR_UEVENT "=0", NULL };
2628
2629         kobject_uevent_env(kobj, KOBJ_CHANGE, error_event);
2630
2631         DRM_DEBUG_DRIVER("resetting chip\n");
2632         kobject_uevent_env(kobj, KOBJ_CHANGE, reset_event);
2633
2634         /*
2635          * In most cases it's guaranteed that we get here with an RPM
2636          * reference held, for example because there is a pending GPU
2637          * request that won't finish until the reset is done. This
2638          * isn't the case at least when we get here by doing a
2639          * simulated reset via debugs, so get an RPM reference.
2640          */
2641         intel_runtime_pm_get(dev_priv);
2642         intel_prepare_reset(dev_priv);
2643
2644         do {
2645                 /*
2646                  * All state reset _must_ be completed before we update the
2647                  * reset counter, for otherwise waiters might miss the reset
2648                  * pending state and not properly drop locks, resulting in
2649                  * deadlocks with the reset work.
2650                  */
2651                 if (mutex_trylock(&dev_priv->drm.struct_mutex)) {
2652                         i915_reset(dev_priv);
2653                         mutex_unlock(&dev_priv->drm.struct_mutex);
2654                 }
2655
2656                 /* We need to wait for anyone holding the lock to wakeup */
2657         } while (wait_on_bit_timeout(&dev_priv->gpu_error.flags,
2658                                      I915_RESET_IN_PROGRESS,
2659                                      TASK_UNINTERRUPTIBLE,
2660                                      HZ));
2661
2662         intel_finish_reset(dev_priv);
2663         intel_runtime_pm_put(dev_priv);
2664
2665         if (!test_bit(I915_WEDGED, &dev_priv->gpu_error.flags))
2666                 kobject_uevent_env(kobj,
2667                                    KOBJ_CHANGE, reset_done_event);
2668
2669         /*
2670          * Note: The wake_up also serves as a memory barrier so that
2671          * waiters see the updated value of the dev_priv->gpu_error.
2672          */
2673         wake_up_all(&dev_priv->gpu_error.reset_queue);
2674 }
2675
2676 static inline void
2677 i915_err_print_instdone(struct drm_i915_private *dev_priv,
2678                         struct intel_instdone *instdone)
2679 {
2680         int slice;
2681         int subslice;
2682
2683         pr_err("  INSTDONE: 0x%08x\n", instdone->instdone);
2684
2685         if (INTEL_GEN(dev_priv) <= 3)
2686                 return;
2687
2688         pr_err("  SC_INSTDONE: 0x%08x\n", instdone->slice_common);
2689
2690         if (INTEL_GEN(dev_priv) <= 6)
2691                 return;
2692
2693         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2694                 pr_err("  SAMPLER_INSTDONE[%d][%d]: 0x%08x\n",
2695                        slice, subslice, instdone->sampler[slice][subslice]);
2696
2697         for_each_instdone_slice_subslice(dev_priv, slice, subslice)
2698                 pr_err("  ROW_INSTDONE[%d][%d]: 0x%08x\n",
2699                        slice, subslice, instdone->row[slice][subslice]);
2700 }
2701
2702 static void i915_clear_error_registers(struct drm_i915_private *dev_priv)
2703 {
2704         u32 eir;
2705
2706         if (!IS_GEN2(dev_priv))
2707                 I915_WRITE(PGTBL_ER, I915_READ(PGTBL_ER));
2708
2709         if (INTEL_GEN(dev_priv) < 4)
2710                 I915_WRITE(IPEIR, I915_READ(IPEIR));
2711         else
2712                 I915_WRITE(IPEIR_I965, I915_READ(IPEIR_I965));
2713
2714         I915_WRITE(EIR, I915_READ(EIR));
2715         eir = I915_READ(EIR);
2716         if (eir) {
2717                 /*
2718                  * some errors might have become stuck,
2719                  * mask them.
2720                  */
2721                 DRM_DEBUG_DRIVER("EIR stuck: 0x%08x, masking\n", eir);
2722                 I915_WRITE(EMR, I915_READ(EMR) | eir);
2723                 I915_WRITE(IIR, I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
2724         }
2725 }
2726
2727 /**
2728  * i915_handle_error - handle a gpu error
2729  * @dev_priv: i915 device private
2730  * @engine_mask: mask representing engines that are hung
2731  * @fmt: Error message format string
2732  *
2733  * Do some basic checking of register state at error time and
2734  * dump it to the syslog.  Also call i915_capture_error_state() to make
2735  * sure we get a record and make it available in debugfs.  Fire a uevent
2736  * so userspace knows something bad happened (should trigger collection
2737  * of a ring dump etc.).
2738  */
2739 void i915_handle_error(struct drm_i915_private *dev_priv,
2740                        u32 engine_mask,
2741                        const char *fmt, ...)
2742 {
2743         va_list args;
2744         char error_msg[80];
2745
2746         va_start(args, fmt);
2747         vscnprintf(error_msg, sizeof(error_msg), fmt, args);
2748         va_end(args);
2749
2750         i915_capture_error_state(dev_priv, engine_mask, error_msg);
2751         i915_clear_error_registers(dev_priv);
2752
2753         if (!engine_mask)
2754                 return;
2755
2756         if (test_and_set_bit(I915_RESET_IN_PROGRESS,
2757                              &dev_priv->gpu_error.flags))
2758                 return;
2759
2760         /*
2761          * Wakeup waiting processes so that the reset function
2762          * i915_reset_and_wakeup doesn't deadlock trying to grab
2763          * various locks. By bumping the reset counter first, the woken
2764          * processes will see a reset in progress and back off,
2765          * releasing their locks and then wait for the reset completion.
2766          * We must do this for _all_ gpu waiters that might hold locks
2767          * that the reset work needs to acquire.
2768          *
2769          * Note: The wake_up also provides a memory barrier to ensure that the
2770          * waiters see the updated value of the reset flags.
2771          */
2772         i915_error_wake_up(dev_priv);
2773
2774         i915_reset_and_wakeup(dev_priv);
2775 }
2776
2777 /* Called from drm generic code, passed 'crtc' which
2778  * we use as a pipe index
2779  */
2780 static int i8xx_enable_vblank(struct drm_device *dev, unsigned int pipe)
2781 {
2782         struct drm_i915_private *dev_priv = to_i915(dev);
2783         unsigned long irqflags;
2784
2785         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2786         i915_enable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2787         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2788
2789         return 0;
2790 }
2791
2792 static int i965_enable_vblank(struct drm_device *dev, unsigned int pipe)
2793 {
2794         struct drm_i915_private *dev_priv = to_i915(dev);
2795         unsigned long irqflags;
2796
2797         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2798         i915_enable_pipestat(dev_priv, pipe,
2799                              PIPE_START_VBLANK_INTERRUPT_STATUS);
2800         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2801
2802         return 0;
2803 }
2804
2805 static int ironlake_enable_vblank(struct drm_device *dev, unsigned int pipe)
2806 {
2807         struct drm_i915_private *dev_priv = to_i915(dev);
2808         unsigned long irqflags;
2809         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2810                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2811
2812         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2813         ilk_enable_display_irq(dev_priv, bit);
2814         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2815
2816         return 0;
2817 }
2818
2819 static int gen8_enable_vblank(struct drm_device *dev, unsigned int pipe)
2820 {
2821         struct drm_i915_private *dev_priv = to_i915(dev);
2822         unsigned long irqflags;
2823
2824         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2825         bdw_enable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2826         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2827
2828         return 0;
2829 }
2830
2831 /* Called from drm generic code, passed 'crtc' which
2832  * we use as a pipe index
2833  */
2834 static void i8xx_disable_vblank(struct drm_device *dev, unsigned int pipe)
2835 {
2836         struct drm_i915_private *dev_priv = to_i915(dev);
2837         unsigned long irqflags;
2838
2839         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2840         i915_disable_pipestat(dev_priv, pipe, PIPE_VBLANK_INTERRUPT_STATUS);
2841         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2842 }
2843
2844 static void i965_disable_vblank(struct drm_device *dev, unsigned int pipe)
2845 {
2846         struct drm_i915_private *dev_priv = to_i915(dev);
2847         unsigned long irqflags;
2848
2849         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2850         i915_disable_pipestat(dev_priv, pipe,
2851                               PIPE_START_VBLANK_INTERRUPT_STATUS);
2852         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2853 }
2854
2855 static void ironlake_disable_vblank(struct drm_device *dev, unsigned int pipe)
2856 {
2857         struct drm_i915_private *dev_priv = to_i915(dev);
2858         unsigned long irqflags;
2859         uint32_t bit = INTEL_GEN(dev_priv) >= 7 ?
2860                 DE_PIPE_VBLANK_IVB(pipe) : DE_PIPE_VBLANK(pipe);
2861
2862         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2863         ilk_disable_display_irq(dev_priv, bit);
2864         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2865 }
2866
2867 static void gen8_disable_vblank(struct drm_device *dev, unsigned int pipe)
2868 {
2869         struct drm_i915_private *dev_priv = to_i915(dev);
2870         unsigned long irqflags;
2871
2872         spin_lock_irqsave(&dev_priv->irq_lock, irqflags);
2873         bdw_disable_pipe_irq(dev_priv, pipe, GEN8_PIPE_VBLANK);
2874         spin_unlock_irqrestore(&dev_priv->irq_lock, irqflags);
2875 }
2876
2877 static void ibx_irq_reset(struct drm_i915_private *dev_priv)
2878 {
2879         if (HAS_PCH_NOP(dev_priv))
2880                 return;
2881
2882         GEN5_IRQ_RESET(SDE);
2883
2884         if (HAS_PCH_CPT(dev_priv) || HAS_PCH_LPT(dev_priv))
2885                 I915_WRITE(SERR_INT, 0xffffffff);
2886 }
2887
2888 /*
2889  * SDEIER is also touched by the interrupt handler to work around missed PCH
2890  * interrupts. Hence we can't update it after the interrupt handler is enabled -
2891  * instead we unconditionally enable all PCH interrupt sources here, but then
2892  * only unmask them as needed with SDEIMR.
2893  *
2894  * This function needs to be called before interrupts are enabled.
2895  */
2896 static void ibx_irq_pre_postinstall(struct drm_device *dev)
2897 {
2898         struct drm_i915_private *dev_priv = to_i915(dev);
2899
2900         if (HAS_PCH_NOP(dev_priv))
2901                 return;
2902
2903         WARN_ON(I915_READ(SDEIER) != 0);
2904         I915_WRITE(SDEIER, 0xffffffff);
2905         POSTING_READ(SDEIER);
2906 }
2907
2908 static void gen5_gt_irq_reset(struct drm_i915_private *dev_priv)
2909 {
2910         GEN5_IRQ_RESET(GT);
2911         if (INTEL_GEN(dev_priv) >= 6)
2912                 GEN5_IRQ_RESET(GEN6_PM);
2913 }
2914
2915 static void vlv_display_irq_reset(struct drm_i915_private *dev_priv)
2916 {
2917         enum pipe pipe;
2918
2919         if (IS_CHERRYVIEW(dev_priv))
2920                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK_CHV);
2921         else
2922                 I915_WRITE(DPINVGTT, DPINVGTT_STATUS_MASK);
2923
2924         i915_hotplug_interrupt_update_locked(dev_priv, 0xffffffff, 0);
2925         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
2926
2927         for_each_pipe(dev_priv, pipe) {
2928                 I915_WRITE(PIPESTAT(pipe),
2929                            PIPE_FIFO_UNDERRUN_STATUS |
2930                            PIPESTAT_INT_STATUS_MASK);
2931                 dev_priv->pipestat_irq_mask[pipe] = 0;
2932         }
2933
2934         GEN5_IRQ_RESET(VLV_);
2935         dev_priv->irq_mask = ~0;
2936 }
2937
2938 static void vlv_display_irq_postinstall(struct drm_i915_private *dev_priv)
2939 {
2940         u32 pipestat_mask;
2941         u32 enable_mask;
2942         enum pipe pipe;
2943         u32 val;
2944
2945         pipestat_mask = PLANE_FLIP_DONE_INT_STATUS_VLV |
2946                         PIPE_CRC_DONE_INTERRUPT_STATUS;
2947
2948         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
2949         for_each_pipe(dev_priv, pipe)
2950                 i915_enable_pipestat(dev_priv, pipe, pipestat_mask);
2951
2952         enable_mask = I915_DISPLAY_PORT_INTERRUPT |
2953                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
2954                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT;
2955         if (IS_CHERRYVIEW(dev_priv))
2956                 enable_mask |= I915_DISPLAY_PIPE_C_EVENT_INTERRUPT;
2957
2958         WARN_ON(dev_priv->irq_mask != ~0);
2959
2960         val = (I915_LPE_PIPE_A_INTERRUPT |
2961                 I915_LPE_PIPE_B_INTERRUPT |
2962                 I915_LPE_PIPE_C_INTERRUPT);
2963
2964         enable_mask |= val;
2965
2966         dev_priv->irq_mask = ~enable_mask;
2967
2968         GEN5_IRQ_INIT(VLV_, dev_priv->irq_mask, enable_mask);
2969 }
2970
2971 /* drm_dma.h hooks
2972 */
2973 static void ironlake_irq_reset(struct drm_device *dev)
2974 {
2975         struct drm_i915_private *dev_priv = to_i915(dev);
2976
2977         I915_WRITE(HWSTAM, 0xffffffff);
2978
2979         GEN5_IRQ_RESET(DE);
2980         if (IS_GEN7(dev_priv))
2981                 I915_WRITE(GEN7_ERR_INT, 0xffffffff);
2982
2983         gen5_gt_irq_reset(dev_priv);
2984
2985         ibx_irq_reset(dev_priv);
2986 }
2987
2988 static void valleyview_irq_preinstall(struct drm_device *dev)
2989 {
2990         struct drm_i915_private *dev_priv = to_i915(dev);
2991
2992         I915_WRITE(VLV_MASTER_IER, 0);
2993         POSTING_READ(VLV_MASTER_IER);
2994
2995         gen5_gt_irq_reset(dev_priv);
2996
2997         spin_lock_irq(&dev_priv->irq_lock);
2998         if (dev_priv->display_irqs_enabled)
2999                 vlv_display_irq_reset(dev_priv);
3000         spin_unlock_irq(&dev_priv->irq_lock);
3001 }
3002
3003 static void gen8_gt_irq_reset(struct drm_i915_private *dev_priv)
3004 {
3005         GEN8_IRQ_RESET_NDX(GT, 0);
3006         GEN8_IRQ_RESET_NDX(GT, 1);
3007         GEN8_IRQ_RESET_NDX(GT, 2);
3008         GEN8_IRQ_RESET_NDX(GT, 3);
3009 }
3010
3011 static void gen8_irq_reset(struct drm_device *dev)
3012 {
3013         struct drm_i915_private *dev_priv = to_i915(dev);
3014         int pipe;
3015
3016         I915_WRITE(GEN8_MASTER_IRQ, 0);
3017         POSTING_READ(GEN8_MASTER_IRQ);
3018
3019         gen8_gt_irq_reset(dev_priv);
3020
3021         for_each_pipe(dev_priv, pipe)
3022                 if (intel_display_power_is_enabled(dev_priv,
3023                                                    POWER_DOMAIN_PIPE(pipe)))
3024                         GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3025
3026         GEN5_IRQ_RESET(GEN8_DE_PORT_);
3027         GEN5_IRQ_RESET(GEN8_DE_MISC_);
3028         GEN5_IRQ_RESET(GEN8_PCU_);
3029
3030         if (HAS_PCH_SPLIT(dev_priv))
3031                 ibx_irq_reset(dev_priv);
3032 }
3033
3034 void gen8_irq_power_well_post_enable(struct drm_i915_private *dev_priv,
3035                                      unsigned int pipe_mask)
3036 {
3037         uint32_t extra_ier = GEN8_PIPE_VBLANK | GEN8_PIPE_FIFO_UNDERRUN;
3038         enum pipe pipe;
3039
3040         spin_lock_irq(&dev_priv->irq_lock);
3041         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3042                 GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3043                                   dev_priv->de_irq_mask[pipe],
3044                                   ~dev_priv->de_irq_mask[pipe] | extra_ier);
3045         spin_unlock_irq(&dev_priv->irq_lock);
3046 }
3047
3048 void gen8_irq_power_well_pre_disable(struct drm_i915_private *dev_priv,
3049                                      unsigned int pipe_mask)
3050 {
3051         enum pipe pipe;
3052
3053         spin_lock_irq(&dev_priv->irq_lock);
3054         for_each_pipe_masked(dev_priv, pipe, pipe_mask)
3055                 GEN8_IRQ_RESET_NDX(DE_PIPE, pipe);
3056         spin_unlock_irq(&dev_priv->irq_lock);
3057
3058         /* make sure we're done processing display irqs */
3059         synchronize_irq(dev_priv->drm.irq);
3060 }
3061
3062 static void cherryview_irq_preinstall(struct drm_device *dev)
3063 {
3064         struct drm_i915_private *dev_priv = to_i915(dev);
3065
3066         I915_WRITE(GEN8_MASTER_IRQ, 0);
3067         POSTING_READ(GEN8_MASTER_IRQ);
3068
3069         gen8_gt_irq_reset(dev_priv);
3070
3071         GEN5_IRQ_RESET(GEN8_PCU_);
3072
3073         spin_lock_irq(&dev_priv->irq_lock);
3074         if (dev_priv->display_irqs_enabled)
3075                 vlv_display_irq_reset(dev_priv);
3076         spin_unlock_irq(&dev_priv->irq_lock);
3077 }
3078
3079 static u32 intel_hpd_enabled_irqs(struct drm_i915_private *dev_priv,
3080                                   const u32 hpd[HPD_NUM_PINS])
3081 {
3082         struct intel_encoder *encoder;
3083         u32 enabled_irqs = 0;
3084
3085         for_each_intel_encoder(&dev_priv->drm, encoder)
3086                 if (dev_priv->hotplug.stats[encoder->hpd_pin].state == HPD_ENABLED)
3087                         enabled_irqs |= hpd[encoder->hpd_pin];
3088
3089         return enabled_irqs;
3090 }
3091
3092 static void ibx_hpd_irq_setup(struct drm_i915_private *dev_priv)
3093 {
3094         u32 hotplug_irqs, hotplug, enabled_irqs;
3095
3096         if (HAS_PCH_IBX(dev_priv)) {
3097                 hotplug_irqs = SDE_HOTPLUG_MASK;
3098                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ibx);
3099         } else {
3100                 hotplug_irqs = SDE_HOTPLUG_MASK_CPT;
3101                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_cpt);
3102         }
3103
3104         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3105
3106         /*
3107          * Enable digital hotplug on the PCH, and configure the DP short pulse
3108          * duration to 2ms (which is the minimum in the Display Port spec).
3109          * The pulse duration bits are reserved on LPT+.
3110          */
3111         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3112         hotplug &= ~(PORTD_PULSE_DURATION_MASK|PORTC_PULSE_DURATION_MASK|PORTB_PULSE_DURATION_MASK);
3113         hotplug |= PORTD_HOTPLUG_ENABLE | PORTD_PULSE_DURATION_2ms;
3114         hotplug |= PORTC_HOTPLUG_ENABLE | PORTC_PULSE_DURATION_2ms;
3115         hotplug |= PORTB_HOTPLUG_ENABLE | PORTB_PULSE_DURATION_2ms;
3116         /*
3117          * When CPU and PCH are on the same package, port A
3118          * HPD must be enabled in both north and south.
3119          */
3120         if (HAS_PCH_LPT_LP(dev_priv))
3121                 hotplug |= PORTA_HOTPLUG_ENABLE;
3122         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3123 }
3124
3125 static void spt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3126 {
3127         u32 hotplug;
3128
3129         /* Enable digital hotplug on the PCH */
3130         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3131         hotplug |= PORTA_HOTPLUG_ENABLE |
3132                    PORTB_HOTPLUG_ENABLE |
3133                    PORTC_HOTPLUG_ENABLE |
3134                    PORTD_HOTPLUG_ENABLE;
3135         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3136
3137         hotplug = I915_READ(PCH_PORT_HOTPLUG2);
3138         hotplug |= PORTE_HOTPLUG_ENABLE;
3139         I915_WRITE(PCH_PORT_HOTPLUG2, hotplug);
3140 }
3141
3142 static void spt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3143 {
3144         u32 hotplug_irqs, enabled_irqs;
3145
3146         hotplug_irqs = SDE_HOTPLUG_MASK_SPT;
3147         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_spt);
3148
3149         ibx_display_interrupt_update(dev_priv, hotplug_irqs, enabled_irqs);
3150
3151         spt_hpd_detection_setup(dev_priv);
3152 }
3153
3154 static void ilk_hpd_irq_setup(struct drm_i915_private *dev_priv)
3155 {
3156         u32 hotplug_irqs, hotplug, enabled_irqs;
3157
3158         if (INTEL_GEN(dev_priv) >= 8) {
3159                 hotplug_irqs = GEN8_PORT_DP_A_HOTPLUG;
3160                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bdw);
3161
3162                 bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3163         } else if (INTEL_GEN(dev_priv) >= 7) {
3164                 hotplug_irqs = DE_DP_A_HOTPLUG_IVB;
3165                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ivb);
3166
3167                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3168         } else {
3169                 hotplug_irqs = DE_DP_A_HOTPLUG;
3170                 enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_ilk);
3171
3172                 ilk_update_display_irq(dev_priv, hotplug_irqs, enabled_irqs);
3173         }
3174
3175         /*
3176          * Enable digital hotplug on the CPU, and configure the DP short pulse
3177          * duration to 2ms (which is the minimum in the Display Port spec)
3178          * The pulse duration bits are reserved on HSW+.
3179          */
3180         hotplug = I915_READ(DIGITAL_PORT_HOTPLUG_CNTRL);
3181         hotplug &= ~DIGITAL_PORTA_PULSE_DURATION_MASK;
3182         hotplug |= DIGITAL_PORTA_HOTPLUG_ENABLE | DIGITAL_PORTA_PULSE_DURATION_2ms;
3183         I915_WRITE(DIGITAL_PORT_HOTPLUG_CNTRL, hotplug);
3184
3185         ibx_hpd_irq_setup(dev_priv);
3186 }
3187
3188 static void __bxt_hpd_detection_setup(struct drm_i915_private *dev_priv,
3189                                       u32 enabled_irqs)
3190 {
3191         u32 hotplug;
3192
3193         hotplug = I915_READ(PCH_PORT_HOTPLUG);
3194         hotplug |= PORTA_HOTPLUG_ENABLE |
3195                    PORTB_HOTPLUG_ENABLE |
3196                    PORTC_HOTPLUG_ENABLE;
3197
3198         DRM_DEBUG_KMS("Invert bit setting: hp_ctl:%x hp_port:%x\n",
3199                       hotplug, enabled_irqs);
3200         hotplug &= ~BXT_DDI_HPD_INVERT_MASK;
3201
3202         /*
3203          * For BXT invert bit has to be set based on AOB design
3204          * for HPD detection logic, update it based on VBT fields.
3205          */
3206         if ((enabled_irqs & BXT_DE_PORT_HP_DDIA) &&
3207             intel_bios_is_port_hpd_inverted(dev_priv, PORT_A))
3208                 hotplug |= BXT_DDIA_HPD_INVERT;
3209         if ((enabled_irqs & BXT_DE_PORT_HP_DDIB) &&
3210             intel_bios_is_port_hpd_inverted(dev_priv, PORT_B))
3211                 hotplug |= BXT_DDIB_HPD_INVERT;
3212         if ((enabled_irqs & BXT_DE_PORT_HP_DDIC) &&
3213             intel_bios_is_port_hpd_inverted(dev_priv, PORT_C))
3214                 hotplug |= BXT_DDIC_HPD_INVERT;
3215
3216         I915_WRITE(PCH_PORT_HOTPLUG, hotplug);
3217 }
3218
3219 static void bxt_hpd_detection_setup(struct drm_i915_private *dev_priv)
3220 {
3221         __bxt_hpd_detection_setup(dev_priv, BXT_DE_PORT_HOTPLUG_MASK);
3222 }
3223
3224 static void bxt_hpd_irq_setup(struct drm_i915_private *dev_priv)
3225 {
3226         u32 hotplug_irqs, enabled_irqs;
3227
3228         enabled_irqs = intel_hpd_enabled_irqs(dev_priv, hpd_bxt);
3229         hotplug_irqs = BXT_DE_PORT_HOTPLUG_MASK;
3230
3231         bdw_update_port_irq(dev_priv, hotplug_irqs, enabled_irqs);
3232
3233         __bxt_hpd_detection_setup(dev_priv, enabled_irqs);
3234 }
3235
3236 static void ibx_irq_postinstall(struct drm_device *dev)
3237 {
3238         struct drm_i915_private *dev_priv = to_i915(dev);
3239         u32 mask;
3240
3241         if (HAS_PCH_NOP(dev_priv))
3242                 return;
3243
3244         if (HAS_PCH_IBX(dev_priv))
3245                 mask = SDE_GMBUS | SDE_AUX_MASK | SDE_POISON;
3246         else
3247                 mask = SDE_GMBUS_CPT | SDE_AUX_MASK_CPT;
3248
3249         gen5_assert_iir_is_zero(dev_priv, SDEIIR);
3250         I915_WRITE(SDEIMR, ~mask);
3251
3252         if (HAS_PCH_IBX(dev_priv) || HAS_PCH_CPT(dev_priv) ||
3253             HAS_PCH_LPT(dev_priv))
3254                 ; /* TODO: Enable HPD detection on older PCH platforms too */
3255         else
3256                 spt_hpd_detection_setup(dev_priv);
3257 }
3258
3259 static void gen5_gt_irq_postinstall(struct drm_device *dev)
3260 {
3261         struct drm_i915_private *dev_priv = to_i915(dev);
3262         u32 pm_irqs, gt_irqs;
3263
3264         pm_irqs = gt_irqs = 0;
3265
3266         dev_priv->gt_irq_mask = ~0;
3267         if (HAS_L3_DPF(dev_priv)) {
3268                 /* L3 parity interrupt is always unmasked. */
3269                 dev_priv->gt_irq_mask = ~GT_PARITY_ERROR(dev_priv);
3270                 gt_irqs |= GT_PARITY_ERROR(dev_priv);
3271         }
3272
3273         gt_irqs |= GT_RENDER_USER_INTERRUPT;
3274         if (IS_GEN5(dev_priv)) {
3275                 gt_irqs |= ILK_BSD_USER_INTERRUPT;
3276         } else {
3277                 gt_irqs |= GT_BLT_USER_INTERRUPT | GT_BSD_USER_INTERRUPT;
3278         }
3279
3280         GEN5_IRQ_INIT(GT, dev_priv->gt_irq_mask, gt_irqs);
3281
3282         if (INTEL_GEN(dev_priv) >= 6) {
3283                 /*
3284                  * RPS interrupts will get enabled/disabled on demand when RPS
3285                  * itself is enabled/disabled.
3286                  */
3287                 if (HAS_VEBOX(dev_priv)) {
3288                         pm_irqs |= PM_VEBOX_USER_INTERRUPT;
3289                         dev_priv->pm_ier |= PM_VEBOX_USER_INTERRUPT;
3290                 }
3291
3292                 dev_priv->pm_imr = 0xffffffff;
3293                 GEN5_IRQ_INIT(GEN6_PM, dev_priv->pm_imr, pm_irqs);
3294         }
3295 }
3296
3297 static int ironlake_irq_postinstall(struct drm_device *dev)
3298 {
3299         struct drm_i915_private *dev_priv = to_i915(dev);
3300         u32 display_mask, extra_mask;
3301
3302         if (INTEL_GEN(dev_priv) >= 7) {
3303                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE_IVB |
3304                                 DE_PCH_EVENT_IVB | DE_PLANEC_FLIP_DONE_IVB |
3305                                 DE_PLANEB_FLIP_DONE_IVB |
3306                                 DE_PLANEA_FLIP_DONE_IVB | DE_AUX_CHANNEL_A_IVB);
3307                 extra_mask = (DE_PIPEC_VBLANK_IVB | DE_PIPEB_VBLANK_IVB |
3308                               DE_PIPEA_VBLANK_IVB | DE_ERR_INT_IVB |
3309                               DE_DP_A_HOTPLUG_IVB);
3310         } else {
3311                 display_mask = (DE_MASTER_IRQ_CONTROL | DE_GSE | DE_PCH_EVENT |
3312                                 DE_PLANEA_FLIP_DONE | DE_PLANEB_FLIP_DONE |
3313                                 DE_AUX_CHANNEL_A |
3314                                 DE_PIPEB_CRC_DONE | DE_PIPEA_CRC_DONE |
3315                                 DE_POISON);
3316                 extra_mask = (DE_PIPEA_VBLANK | DE_PIPEB_VBLANK | DE_PCU_EVENT |
3317                               DE_PIPEB_FIFO_UNDERRUN | DE_PIPEA_FIFO_UNDERRUN |
3318                               DE_DP_A_HOTPLUG);
3319         }
3320
3321         dev_priv->irq_mask = ~display_mask;
3322
3323         I915_WRITE(HWSTAM, 0xeffe);
3324
3325         ibx_irq_pre_postinstall(dev);
3326
3327         GEN5_IRQ_INIT(DE, dev_priv->irq_mask, display_mask | extra_mask);
3328
3329         gen5_gt_irq_postinstall(dev);
3330
3331         ibx_irq_postinstall(dev);
3332
3333         if (IS_IRONLAKE_M(dev_priv)) {
3334                 /* Enable PCU event interrupts
3335                  *
3336                  * spinlocking not required here for correctness since interrupt
3337                  * setup is guaranteed to run in single-threaded context. But we
3338                  * need it to make the assert_spin_locked happy. */
3339                 spin_lock_irq(&dev_priv->irq_lock);
3340                 ilk_enable_display_irq(dev_priv, DE_PCU_EVENT);
3341                 spin_unlock_irq(&dev_priv->irq_lock);
3342         }
3343
3344         return 0;
3345 }
3346
3347 void valleyview_enable_display_irqs(struct drm_i915_private *dev_priv)
3348 {
3349         assert_spin_locked(&dev_priv->irq_lock);
3350
3351         if (dev_priv->display_irqs_enabled)
3352                 return;
3353
3354         dev_priv->display_irqs_enabled = true;
3355
3356         if (intel_irqs_enabled(dev_priv)) {
3357                 vlv_display_irq_reset(dev_priv);
3358                 vlv_display_irq_postinstall(dev_priv);
3359         }
3360 }
3361
3362 void valleyview_disable_display_irqs(struct drm_i915_private *dev_priv)
3363 {
3364         assert_spin_locked(&dev_priv->irq_lock);
3365
3366         if (!dev_priv->display_irqs_enabled)
3367                 return;
3368
3369         dev_priv->display_irqs_enabled = false;
3370
3371         if (intel_irqs_enabled(dev_priv))
3372                 vlv_display_irq_reset(dev_priv);
3373 }
3374
3375
3376 static int valleyview_irq_postinstall(struct drm_device *dev)
3377 {
3378         struct drm_i915_private *dev_priv = to_i915(dev);
3379
3380         gen5_gt_irq_postinstall(dev);
3381
3382         spin_lock_irq(&dev_priv->irq_lock);
3383         if (dev_priv->display_irqs_enabled)
3384                 vlv_display_irq_postinstall(dev_priv);
3385         spin_unlock_irq(&dev_priv->irq_lock);
3386
3387         I915_WRITE(VLV_MASTER_IER, MASTER_INTERRUPT_ENABLE);
3388         POSTING_READ(VLV_MASTER_IER);
3389
3390         return 0;
3391 }
3392
3393 static void gen8_gt_irq_postinstall(struct drm_i915_private *dev_priv)
3394 {
3395         /* These are interrupts we'll toggle with the ring mask register */
3396         uint32_t gt_interrupts[] = {
3397                 GT_RENDER_USER_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3398                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_RCS_IRQ_SHIFT |
3399                         GT_RENDER_USER_INTERRUPT << GEN8_BCS_IRQ_SHIFT |
3400                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_BCS_IRQ_SHIFT,
3401                 GT_RENDER_USER_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3402                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS1_IRQ_SHIFT |
3403                         GT_RENDER_USER_INTERRUPT << GEN8_VCS2_IRQ_SHIFT |
3404                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VCS2_IRQ_SHIFT,
3405                 0,
3406                 GT_RENDER_USER_INTERRUPT << GEN8_VECS_IRQ_SHIFT |
3407                         GT_CONTEXT_SWITCH_INTERRUPT << GEN8_VECS_IRQ_SHIFT
3408                 };
3409
3410         if (HAS_L3_DPF(dev_priv))
3411                 gt_interrupts[0] |= GT_RENDER_L3_PARITY_ERROR_INTERRUPT;
3412
3413         dev_priv->pm_ier = 0x0;
3414         dev_priv->pm_imr = ~dev_priv->pm_ier;
3415         GEN8_IRQ_INIT_NDX(GT, 0, ~gt_interrupts[0], gt_interrupts[0]);
3416         GEN8_IRQ_INIT_NDX(GT, 1, ~gt_interrupts[1], gt_interrupts[1]);
3417         /*
3418          * RPS interrupts will get enabled/disabled on demand when RPS itself
3419          * is enabled/disabled. Same wil be the case for GuC interrupts.
3420          */
3421         GEN8_IRQ_INIT_NDX(GT, 2, dev_priv->pm_imr, dev_priv->pm_ier);
3422         GEN8_IRQ_INIT_NDX(GT, 3, ~gt_interrupts[3], gt_interrupts[3]);
3423 }
3424
3425 static void gen8_de_irq_postinstall(struct drm_i915_private *dev_priv)
3426 {
3427         uint32_t de_pipe_masked = GEN8_PIPE_CDCLK_CRC_DONE;
3428         uint32_t de_pipe_enables;
3429         u32 de_port_masked = GEN8_AUX_CHANNEL_A;
3430         u32 de_port_enables;
3431         u32 de_misc_masked = GEN8_DE_MISC_GSE;
3432         enum pipe pipe;
3433
3434         if (INTEL_INFO(dev_priv)->gen >= 9) {
3435                 de_pipe_masked |= GEN9_PIPE_PLANE1_FLIP_DONE |
3436                                   GEN9_DE_PIPE_IRQ_FAULT_ERRORS;
3437                 de_port_masked |= GEN9_AUX_CHANNEL_B | GEN9_AUX_CHANNEL_C |
3438                                   GEN9_AUX_CHANNEL_D;
3439                 if (IS_GEN9_LP(dev_priv))
3440                         de_port_masked |= BXT_DE_PORT_GMBUS;
3441         } else {
3442                 de_pipe_masked |= GEN8_PIPE_PRIMARY_FLIP_DONE |
3443                                   GEN8_DE_PIPE_IRQ_FAULT_ERRORS;
3444         }
3445
3446         de_pipe_enables = de_pipe_masked | GEN8_PIPE_VBLANK |
3447                                            GEN8_PIPE_FIFO_UNDERRUN;
3448
3449         de_port_enables = de_port_masked;
3450         if (IS_GEN9_LP(dev_priv))
3451                 de_port_enables |= BXT_DE_PORT_HOTPLUG_MASK;
3452         else if (IS_BROADWELL(dev_priv))
3453                 de_port_enables |= GEN8_PORT_DP_A_HOTPLUG;
3454
3455         dev_priv->de_irq_mask[PIPE_A] = ~de_pipe_masked;
3456         dev_priv->de_irq_mask[PIPE_B] = ~de_pipe_masked;
3457         dev_priv->de_irq_mask[PIPE_C] = ~de_pipe_masked;
3458
3459         for_each_pipe(dev_priv, pipe)
3460                 if (intel_display_power_is_enabled(dev_priv,
3461                                 POWER_DOMAIN_PIPE(pipe)))
3462                         GEN8_IRQ_INIT_NDX(DE_PIPE, pipe,
3463                                           dev_priv->de_irq_mask[pipe],
3464                                           de_pipe_enables);
3465
3466         GEN5_IRQ_INIT(GEN8_DE_PORT_, ~de_port_masked, de_port_enables);
3467         GEN5_IRQ_INIT(GEN8_DE_MISC_, ~de_misc_masked, de_misc_masked);
3468
3469         if (IS_GEN9_LP(dev_priv))
3470                 bxt_hpd_detection_setup(dev_priv);
3471 }
3472
3473 static int gen8_irq_postinstall(struct drm_device *dev)
3474 {
3475         struct drm_i915_private *dev_priv = to_i915(dev);
3476
3477         if (HAS_PCH_SPLIT(dev_priv))
3478                 ibx_irq_pre_postinstall(dev);
3479
3480         gen8_gt_irq_postinstall(dev_priv);
3481         gen8_de_irq_postinstall(dev_priv);
3482
3483         if (HAS_PCH_SPLIT(dev_priv))
3484                 ibx_irq_postinstall(dev);
3485
3486         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3487         POSTING_READ(GEN8_MASTER_IRQ);
3488
3489         return 0;
3490 }
3491
3492 static int cherryview_irq_postinstall(struct drm_device *dev)
3493 {
3494         struct drm_i915_private *dev_priv = to_i915(dev);
3495
3496         gen8_gt_irq_postinstall(dev_priv);
3497
3498         spin_lock_irq(&dev_priv->irq_lock);
3499         if (dev_priv->display_irqs_enabled)
3500                 vlv_display_irq_postinstall(dev_priv);
3501         spin_unlock_irq(&dev_priv->irq_lock);
3502
3503         I915_WRITE(GEN8_MASTER_IRQ, GEN8_MASTER_IRQ_CONTROL);
3504         POSTING_READ(GEN8_MASTER_IRQ);
3505
3506         return 0;
3507 }
3508
3509 static void gen8_irq_uninstall(struct drm_device *dev)
3510 {
3511         struct drm_i915_private *dev_priv = to_i915(dev);
3512
3513         if (!dev_priv)
3514                 return;
3515
3516         gen8_irq_reset(dev);
3517 }
3518
3519 static void valleyview_irq_uninstall(struct drm_device *dev)
3520 {
3521         struct drm_i915_private *dev_priv = to_i915(dev);
3522
3523         if (!dev_priv)
3524                 return;
3525
3526         I915_WRITE(VLV_MASTER_IER, 0);
3527         POSTING_READ(VLV_MASTER_IER);
3528
3529         gen5_gt_irq_reset(dev_priv);
3530
3531         I915_WRITE(HWSTAM, 0xffffffff);
3532
3533         spin_lock_irq(&dev_priv->irq_lock);
3534         if (dev_priv->display_irqs_enabled)
3535                 vlv_display_irq_reset(dev_priv);
3536         spin_unlock_irq(&dev_priv->irq_lock);
3537 }
3538
3539 static void cherryview_irq_uninstall(struct drm_device *dev)
3540 {
3541         struct drm_i915_private *dev_priv = to_i915(dev);
3542
3543         if (!dev_priv)
3544                 return;
3545
3546         I915_WRITE(GEN8_MASTER_IRQ, 0);
3547         POSTING_READ(GEN8_MASTER_IRQ);
3548
3549         gen8_gt_irq_reset(dev_priv);
3550
3551         GEN5_IRQ_RESET(GEN8_PCU_);
3552
3553         spin_lock_irq(&dev_priv->irq_lock);
3554         if (dev_priv->display_irqs_enabled)
3555                 vlv_display_irq_reset(dev_priv);
3556         spin_unlock_irq(&dev_priv->irq_lock);
3557 }
3558
3559 static void ironlake_irq_uninstall(struct drm_device *dev)
3560 {
3561         struct drm_i915_private *dev_priv = to_i915(dev);
3562
3563         if (!dev_priv)
3564                 return;
3565
3566         ironlake_irq_reset(dev);
3567 }
3568
3569 static void i8xx_irq_preinstall(struct drm_device * dev)
3570 {
3571         struct drm_i915_private *dev_priv = to_i915(dev);
3572         int pipe;
3573
3574         for_each_pipe(dev_priv, pipe)
3575                 I915_WRITE(PIPESTAT(pipe), 0);
3576         I915_WRITE16(IMR, 0xffff);
3577         I915_WRITE16(IER, 0x0);
3578         POSTING_READ16(IER);
3579 }
3580
3581 static int i8xx_irq_postinstall(struct drm_device *dev)
3582 {
3583         struct drm_i915_private *dev_priv = to_i915(dev);
3584
3585         I915_WRITE16(EMR,
3586                      ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3587
3588         /* Unmask the interrupts that we always want on. */
3589         dev_priv->irq_mask =
3590                 ~(I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3591                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3592                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3593                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3594         I915_WRITE16(IMR, dev_priv->irq_mask);
3595
3596         I915_WRITE16(IER,
3597                      I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3598                      I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3599                      I915_USER_INTERRUPT);
3600         POSTING_READ16(IER);
3601
3602         /* Interrupt setup is already guaranteed to be single-threaded, this is
3603          * just to make the assert_spin_locked check happy. */
3604         spin_lock_irq(&dev_priv->irq_lock);
3605         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3606         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3607         spin_unlock_irq(&dev_priv->irq_lock);
3608
3609         return 0;
3610 }
3611
3612 /*
3613  * Returns true when a page flip has completed.
3614  */
3615 static bool i8xx_handle_vblank(struct drm_i915_private *dev_priv,
3616                                int plane, int pipe, u32 iir)
3617 {
3618         u16 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3619
3620         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3621                 return false;
3622
3623         if ((iir & flip_pending) == 0)
3624                 goto check_page_flip;
3625
3626         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3627          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3628          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3629          * the flip is completed (no longer pending). Since this doesn't raise
3630          * an interrupt per se, we watch for the change at vblank.
3631          */
3632         if (I915_READ16(ISR) & flip_pending)
3633                 goto check_page_flip;
3634
3635         intel_finish_page_flip_cs(dev_priv, pipe);
3636         return true;
3637
3638 check_page_flip:
3639         intel_check_page_flip(dev_priv, pipe);
3640         return false;
3641 }
3642
3643 static irqreturn_t i8xx_irq_handler(int irq, void *arg)
3644 {
3645         struct drm_device *dev = arg;
3646         struct drm_i915_private *dev_priv = to_i915(dev);
3647         u16 iir, new_iir;
3648         u32 pipe_stats[2];
3649         int pipe;
3650         u16 flip_mask =
3651                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3652                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3653         irqreturn_t ret;
3654
3655         if (!intel_irqs_enabled(dev_priv))
3656                 return IRQ_NONE;
3657
3658         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3659         disable_rpm_wakeref_asserts(dev_priv);
3660
3661         ret = IRQ_NONE;
3662         iir = I915_READ16(IIR);
3663         if (iir == 0)
3664                 goto out;
3665
3666         while (iir & ~flip_mask) {
3667                 /* Can't rely on pipestat interrupt bit in iir as it might
3668                  * have been cleared after the pipestat interrupt was received.
3669                  * It doesn't set the bit in iir again, but it still produces
3670                  * interrupts (for non-MSI).
3671                  */
3672                 spin_lock(&dev_priv->irq_lock);
3673                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3674                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3675
3676                 for_each_pipe(dev_priv, pipe) {
3677                         i915_reg_t reg = PIPESTAT(pipe);
3678                         pipe_stats[pipe] = I915_READ(reg);
3679
3680                         /*
3681                          * Clear the PIPE*STAT regs before the IIR
3682                          */
3683                         if (pipe_stats[pipe] & 0x8000ffff)
3684                                 I915_WRITE(reg, pipe_stats[pipe]);
3685                 }
3686                 spin_unlock(&dev_priv->irq_lock);
3687
3688                 I915_WRITE16(IIR, iir & ~flip_mask);
3689                 new_iir = I915_READ16(IIR); /* Flush posted writes */
3690
3691                 if (iir & I915_USER_INTERRUPT)
3692                         notify_ring(dev_priv->engine[RCS]);
3693
3694                 for_each_pipe(dev_priv, pipe) {
3695                         int plane = pipe;
3696                         if (HAS_FBC(dev_priv))
3697                                 plane = !plane;
3698
3699                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3700                             i8xx_handle_vblank(dev_priv, plane, pipe, iir))
3701                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3702
3703                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3704                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3705
3706                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3707                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3708                                                                     pipe);
3709                 }
3710
3711                 iir = new_iir;
3712         }
3713         ret = IRQ_HANDLED;
3714
3715 out:
3716         enable_rpm_wakeref_asserts(dev_priv);
3717
3718         return ret;
3719 }
3720
3721 static void i8xx_irq_uninstall(struct drm_device * dev)
3722 {
3723         struct drm_i915_private *dev_priv = to_i915(dev);
3724         int pipe;
3725
3726         for_each_pipe(dev_priv, pipe) {
3727                 /* Clear enable bits; then clear status bits */
3728                 I915_WRITE(PIPESTAT(pipe), 0);
3729                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3730         }
3731         I915_WRITE16(IMR, 0xffff);
3732         I915_WRITE16(IER, 0x0);
3733         I915_WRITE16(IIR, I915_READ16(IIR));
3734 }
3735
3736 static void i915_irq_preinstall(struct drm_device * dev)
3737 {
3738         struct drm_i915_private *dev_priv = to_i915(dev);
3739         int pipe;
3740
3741         if (I915_HAS_HOTPLUG(dev_priv)) {
3742                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3743                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3744         }
3745
3746         I915_WRITE16(HWSTAM, 0xeffe);
3747         for_each_pipe(dev_priv, pipe)
3748                 I915_WRITE(PIPESTAT(pipe), 0);
3749         I915_WRITE(IMR, 0xffffffff);
3750         I915_WRITE(IER, 0x0);
3751         POSTING_READ(IER);
3752 }
3753
3754 static int i915_irq_postinstall(struct drm_device *dev)
3755 {
3756         struct drm_i915_private *dev_priv = to_i915(dev);
3757         u32 enable_mask;
3758
3759         I915_WRITE(EMR, ~(I915_ERROR_PAGE_TABLE | I915_ERROR_MEMORY_REFRESH));
3760
3761         /* Unmask the interrupts that we always want on. */
3762         dev_priv->irq_mask =
3763                 ~(I915_ASLE_INTERRUPT |
3764                   I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3765                   I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3766                   I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3767                   I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3768
3769         enable_mask =
3770                 I915_ASLE_INTERRUPT |
3771                 I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3772                 I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3773                 I915_USER_INTERRUPT;
3774
3775         if (I915_HAS_HOTPLUG(dev_priv)) {
3776                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3777                 POSTING_READ(PORT_HOTPLUG_EN);
3778
3779                 /* Enable in IER... */
3780                 enable_mask |= I915_DISPLAY_PORT_INTERRUPT;
3781                 /* and unmask in IMR */
3782                 dev_priv->irq_mask &= ~I915_DISPLAY_PORT_INTERRUPT;
3783         }
3784
3785         I915_WRITE(IMR, dev_priv->irq_mask);
3786         I915_WRITE(IER, enable_mask);
3787         POSTING_READ(IER);
3788
3789         i915_enable_asle_pipestat(dev_priv);
3790
3791         /* Interrupt setup is already guaranteed to be single-threaded, this is
3792          * just to make the assert_spin_locked check happy. */
3793         spin_lock_irq(&dev_priv->irq_lock);
3794         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
3795         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
3796         spin_unlock_irq(&dev_priv->irq_lock);
3797
3798         return 0;
3799 }
3800
3801 /*
3802  * Returns true when a page flip has completed.
3803  */
3804 static bool i915_handle_vblank(struct drm_i915_private *dev_priv,
3805                                int plane, int pipe, u32 iir)
3806 {
3807         u32 flip_pending = DISPLAY_PLANE_FLIP_PENDING(plane);
3808
3809         if (!intel_pipe_handle_vblank(dev_priv, pipe))
3810                 return false;
3811
3812         if ((iir & flip_pending) == 0)
3813                 goto check_page_flip;
3814
3815         /* We detect FlipDone by looking for the change in PendingFlip from '1'
3816          * to '0' on the following vblank, i.e. IIR has the Pendingflip
3817          * asserted following the MI_DISPLAY_FLIP, but ISR is deasserted, hence
3818          * the flip is completed (no longer pending). Since this doesn't raise
3819          * an interrupt per se, we watch for the change at vblank.
3820          */
3821         if (I915_READ(ISR) & flip_pending)
3822                 goto check_page_flip;
3823
3824         intel_finish_page_flip_cs(dev_priv, pipe);
3825         return true;
3826
3827 check_page_flip:
3828         intel_check_page_flip(dev_priv, pipe);
3829         return false;
3830 }
3831
3832 static irqreturn_t i915_irq_handler(int irq, void *arg)
3833 {
3834         struct drm_device *dev = arg;
3835         struct drm_i915_private *dev_priv = to_i915(dev);
3836         u32 iir, new_iir, pipe_stats[I915_MAX_PIPES];
3837         u32 flip_mask =
3838                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3839                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
3840         int pipe, ret = IRQ_NONE;
3841
3842         if (!intel_irqs_enabled(dev_priv))
3843                 return IRQ_NONE;
3844
3845         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
3846         disable_rpm_wakeref_asserts(dev_priv);
3847
3848         iir = I915_READ(IIR);
3849         do {
3850                 bool irq_received = (iir & ~flip_mask) != 0;
3851                 bool blc_event = false;
3852
3853                 /* Can't rely on pipestat interrupt bit in iir as it might
3854                  * have been cleared after the pipestat interrupt was received.
3855                  * It doesn't set the bit in iir again, but it still produces
3856                  * interrupts (for non-MSI).
3857                  */
3858                 spin_lock(&dev_priv->irq_lock);
3859                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
3860                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
3861
3862                 for_each_pipe(dev_priv, pipe) {
3863                         i915_reg_t reg = PIPESTAT(pipe);
3864                         pipe_stats[pipe] = I915_READ(reg);
3865
3866                         /* Clear the PIPE*STAT regs before the IIR */
3867                         if (pipe_stats[pipe] & 0x8000ffff) {
3868                                 I915_WRITE(reg, pipe_stats[pipe]);
3869                                 irq_received = true;
3870                         }
3871                 }
3872                 spin_unlock(&dev_priv->irq_lock);
3873
3874                 if (!irq_received)
3875                         break;
3876
3877                 /* Consume port.  Then clear IIR or we'll miss events */
3878                 if (I915_HAS_HOTPLUG(dev_priv) &&
3879                     iir & I915_DISPLAY_PORT_INTERRUPT) {
3880                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
3881                         if (hotplug_status)
3882                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
3883                 }
3884
3885                 I915_WRITE(IIR, iir & ~flip_mask);
3886                 new_iir = I915_READ(IIR); /* Flush posted writes */
3887
3888                 if (iir & I915_USER_INTERRUPT)
3889                         notify_ring(dev_priv->engine[RCS]);
3890
3891                 for_each_pipe(dev_priv, pipe) {
3892                         int plane = pipe;
3893                         if (HAS_FBC(dev_priv))
3894                                 plane = !plane;
3895
3896                         if (pipe_stats[pipe] & PIPE_VBLANK_INTERRUPT_STATUS &&
3897                             i915_handle_vblank(dev_priv, plane, pipe, iir))
3898                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(plane);
3899
3900                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
3901                                 blc_event = true;
3902
3903                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
3904                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
3905
3906                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
3907                                 intel_cpu_fifo_underrun_irq_handler(dev_priv,
3908                                                                     pipe);
3909                 }
3910
3911                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
3912                         intel_opregion_asle_intr(dev_priv);
3913
3914                 /* With MSI, interrupts are only generated when iir
3915                  * transitions from zero to nonzero.  If another bit got
3916                  * set while we were handling the existing iir bits, then
3917                  * we would never get another interrupt.
3918                  *
3919                  * This is fine on non-MSI as well, as if we hit this path
3920                  * we avoid exiting the interrupt handler only to generate
3921                  * another one.
3922                  *
3923                  * Note that for MSI this could cause a stray interrupt report
3924                  * if an interrupt landed in the time between writing IIR and
3925                  * the posting read.  This should be rare enough to never
3926                  * trigger the 99% of 100,000 interrupts test for disabling
3927                  * stray interrupts.
3928                  */
3929                 ret = IRQ_HANDLED;
3930                 iir = new_iir;
3931         } while (iir & ~flip_mask);
3932
3933         enable_rpm_wakeref_asserts(dev_priv);
3934
3935         return ret;
3936 }
3937
3938 static void i915_irq_uninstall(struct drm_device * dev)
3939 {
3940         struct drm_i915_private *dev_priv = to_i915(dev);
3941         int pipe;
3942
3943         if (I915_HAS_HOTPLUG(dev_priv)) {
3944                 i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3945                 I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3946         }
3947
3948         I915_WRITE16(HWSTAM, 0xffff);
3949         for_each_pipe(dev_priv, pipe) {
3950                 /* Clear enable bits; then clear status bits */
3951                 I915_WRITE(PIPESTAT(pipe), 0);
3952                 I915_WRITE(PIPESTAT(pipe), I915_READ(PIPESTAT(pipe)));
3953         }
3954         I915_WRITE(IMR, 0xffffffff);
3955         I915_WRITE(IER, 0x0);
3956
3957         I915_WRITE(IIR, I915_READ(IIR));
3958 }
3959
3960 static void i965_irq_preinstall(struct drm_device * dev)
3961 {
3962         struct drm_i915_private *dev_priv = to_i915(dev);
3963         int pipe;
3964
3965         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
3966         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
3967
3968         I915_WRITE(HWSTAM, 0xeffe);
3969         for_each_pipe(dev_priv, pipe)
3970                 I915_WRITE(PIPESTAT(pipe), 0);
3971         I915_WRITE(IMR, 0xffffffff);
3972         I915_WRITE(IER, 0x0);
3973         POSTING_READ(IER);
3974 }
3975
3976 static int i965_irq_postinstall(struct drm_device *dev)
3977 {
3978         struct drm_i915_private *dev_priv = to_i915(dev);
3979         u32 enable_mask;
3980         u32 error_mask;
3981
3982         /* Unmask the interrupts that we always want on. */
3983         dev_priv->irq_mask = ~(I915_ASLE_INTERRUPT |
3984                                I915_DISPLAY_PORT_INTERRUPT |
3985                                I915_DISPLAY_PIPE_A_EVENT_INTERRUPT |
3986                                I915_DISPLAY_PIPE_B_EVENT_INTERRUPT |
3987                                I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3988                                I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT |
3989                                I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT);
3990
3991         enable_mask = ~dev_priv->irq_mask;
3992         enable_mask &= ~(I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
3993                          I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT);
3994         enable_mask |= I915_USER_INTERRUPT;
3995
3996         if (IS_G4X(dev_priv))
3997                 enable_mask |= I915_BSD_USER_INTERRUPT;
3998
3999         /* Interrupt setup is already guaranteed to be single-threaded, this is
4000          * just to make the assert_spin_locked check happy. */
4001         spin_lock_irq(&dev_priv->irq_lock);
4002         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_GMBUS_INTERRUPT_STATUS);
4003         i915_enable_pipestat(dev_priv, PIPE_A, PIPE_CRC_DONE_INTERRUPT_STATUS);
4004         i915_enable_pipestat(dev_priv, PIPE_B, PIPE_CRC_DONE_INTERRUPT_STATUS);
4005         spin_unlock_irq(&dev_priv->irq_lock);
4006
4007         /*
4008          * Enable some error detection, note the instruction error mask
4009          * bit is reserved, so we leave it masked.
4010          */
4011         if (IS_G4X(dev_priv)) {
4012                 error_mask = ~(GM45_ERROR_PAGE_TABLE |
4013                                GM45_ERROR_MEM_PRIV |
4014                                GM45_ERROR_CP_PRIV |
4015                                I915_ERROR_MEMORY_REFRESH);
4016         } else {
4017                 error_mask = ~(I915_ERROR_PAGE_TABLE |
4018                                I915_ERROR_MEMORY_REFRESH);
4019         }
4020         I915_WRITE(EMR, error_mask);
4021
4022         I915_WRITE(IMR, dev_priv->irq_mask);
4023         I915_WRITE(IER, enable_mask);
4024         POSTING_READ(IER);
4025
4026         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4027         POSTING_READ(PORT_HOTPLUG_EN);
4028
4029         i915_enable_asle_pipestat(dev_priv);
4030
4031         return 0;
4032 }
4033
4034 static void i915_hpd_irq_setup(struct drm_i915_private *dev_priv)
4035 {
4036         u32 hotplug_en;
4037
4038         assert_spin_locked(&dev_priv->irq_lock);
4039
4040         /* Note HDMI and DP share hotplug bits */
4041         /* enable bits are the same for all generations */
4042         hotplug_en = intel_hpd_enabled_irqs(dev_priv, hpd_mask_i915);
4043         /* Programming the CRT detection parameters tends
4044            to generate a spurious hotplug event about three
4045            seconds later.  So just do it once.
4046         */
4047         if (IS_G4X(dev_priv))
4048                 hotplug_en |= CRT_HOTPLUG_ACTIVATION_PERIOD_64;
4049         hotplug_en |= CRT_HOTPLUG_VOLTAGE_COMPARE_50;
4050
4051         /* Ignore TV since it's buggy */
4052         i915_hotplug_interrupt_update_locked(dev_priv,
4053                                              HOTPLUG_INT_EN_MASK |
4054                                              CRT_HOTPLUG_VOLTAGE_COMPARE_MASK |
4055                                              CRT_HOTPLUG_ACTIVATION_PERIOD_64,
4056                                              hotplug_en);
4057 }
4058
4059 static irqreturn_t i965_irq_handler(int irq, void *arg)
4060 {
4061         struct drm_device *dev = arg;
4062         struct drm_i915_private *dev_priv = to_i915(dev);
4063         u32 iir, new_iir;
4064         u32 pipe_stats[I915_MAX_PIPES];
4065         int ret = IRQ_NONE, pipe;
4066         u32 flip_mask =
4067                 I915_DISPLAY_PLANE_A_FLIP_PENDING_INTERRUPT |
4068                 I915_DISPLAY_PLANE_B_FLIP_PENDING_INTERRUPT;
4069
4070         if (!intel_irqs_enabled(dev_priv))
4071                 return IRQ_NONE;
4072
4073         /* IRQs are synced during runtime_suspend, we don't require a wakeref */
4074         disable_rpm_wakeref_asserts(dev_priv);
4075
4076         iir = I915_READ(IIR);
4077
4078         for (;;) {
4079                 bool irq_received = (iir & ~flip_mask) != 0;
4080                 bool blc_event = false;
4081
4082                 /* Can't rely on pipestat interrupt bit in iir as it might
4083                  * have been cleared after the pipestat interrupt was received.
4084                  * It doesn't set the bit in iir again, but it still produces
4085                  * interrupts (for non-MSI).
4086                  */
4087                 spin_lock(&dev_priv->irq_lock);
4088                 if (iir & I915_RENDER_COMMAND_PARSER_ERROR_INTERRUPT)
4089                         DRM_DEBUG("Command parser error, iir 0x%08x\n", iir);
4090
4091                 for_each_pipe(dev_priv, pipe) {
4092                         i915_reg_t reg = PIPESTAT(pipe);
4093                         pipe_stats[pipe] = I915_READ(reg);
4094
4095                         /*
4096                          * Clear the PIPE*STAT regs before the IIR
4097                          */
4098                         if (pipe_stats[pipe] & 0x8000ffff) {
4099                                 I915_WRITE(reg, pipe_stats[pipe]);
4100                                 irq_received = true;
4101                         }
4102                 }
4103                 spin_unlock(&dev_priv->irq_lock);
4104
4105                 if (!irq_received)
4106                         break;
4107
4108                 ret = IRQ_HANDLED;
4109
4110                 /* Consume port.  Then clear IIR or we'll miss events */
4111                 if (iir & I915_DISPLAY_PORT_INTERRUPT) {
4112                         u32 hotplug_status = i9xx_hpd_irq_ack(dev_priv);
4113                         if (hotplug_status)
4114                                 i9xx_hpd_irq_handler(dev_priv, hotplug_status);
4115                 }
4116
4117                 I915_WRITE(IIR, iir & ~flip_mask);
4118                 new_iir = I915_READ(IIR); /* Flush posted writes */
4119
4120                 if (iir & I915_USER_INTERRUPT)
4121                         notify_ring(dev_priv->engine[RCS]);
4122                 if (iir & I915_BSD_USER_INTERRUPT)
4123                         notify_ring(dev_priv->engine[VCS]);
4124
4125                 for_each_pipe(dev_priv, pipe) {
4126                         if (pipe_stats[pipe] & PIPE_START_VBLANK_INTERRUPT_STATUS &&
4127                             i915_handle_vblank(dev_priv, pipe, pipe, iir))
4128                                 flip_mask &= ~DISPLAY_PLANE_FLIP_PENDING(pipe);
4129
4130                         if (pipe_stats[pipe] & PIPE_LEGACY_BLC_EVENT_STATUS)
4131                                 blc_event = true;
4132
4133                         if (pipe_stats[pipe] & PIPE_CRC_DONE_INTERRUPT_STATUS)
4134                                 i9xx_pipe_crc_irq_handler(dev_priv, pipe);
4135
4136                         if (pipe_stats[pipe] & PIPE_FIFO_UNDERRUN_STATUS)
4137                                 intel_cpu_fifo_underrun_irq_handler(dev_priv, pipe);
4138                 }
4139
4140                 if (blc_event || (iir & I915_ASLE_INTERRUPT))
4141                         intel_opregion_asle_intr(dev_priv);
4142
4143                 if (pipe_stats[0] & PIPE_GMBUS_INTERRUPT_STATUS)
4144                         gmbus_irq_handler(dev_priv);
4145
4146                 /* With MSI, interrupts are only generated when iir
4147                  * transitions from zero to nonzero.  If another bit got
4148                  * set while we were handling the existing iir bits, then
4149                  * we would never get another interrupt.
4150                  *
4151                  * This is fine on non-MSI as well, as if we hit this path
4152                  * we avoid exiting the interrupt handler only to generate
4153                  * another one.
4154                  *
4155                  * Note that for MSI this could cause a stray interrupt report
4156                  * if an interrupt landed in the time between writing IIR and
4157                  * the posting read.  This should be rare enough to never
4158                  * trigger the 99% of 100,000 interrupts test for disabling
4159                  * stray interrupts.
4160                  */
4161                 iir = new_iir;
4162         }
4163
4164         enable_rpm_wakeref_asserts(dev_priv);
4165
4166         return ret;
4167 }
4168
4169 static void i965_irq_uninstall(struct drm_device * dev)
4170 {
4171         struct drm_i915_private *dev_priv = to_i915(dev);
4172         int pipe;
4173
4174         if (!dev_priv)
4175                 return;
4176
4177         i915_hotplug_interrupt_update(dev_priv, 0xffffffff, 0);
4178         I915_WRITE(PORT_HOTPLUG_STAT, I915_READ(PORT_HOTPLUG_STAT));
4179
4180         I915_WRITE(HWSTAM, 0xffffffff);
4181         for_each_pipe(dev_priv, pipe)
4182                 I915_WRITE(PIPESTAT(pipe), 0);
4183         I915_WRITE(IMR, 0xffffffff);
4184         I915_WRITE(IER, 0x0);
4185
4186         for_each_pipe(dev_priv, pipe)
4187                 I915_WRITE(PIPESTAT(pipe),
4188                            I915_READ(PIPESTAT(pipe)) & 0x8000ffff);
4189         I915_WRITE(IIR, I915_READ(IIR));
4190 }
4191
4192 /**
4193  * intel_irq_init - initializes irq support
4194  * @dev_priv: i915 device instance
4195  *
4196  * This function initializes all the irq support including work items, timers
4197  * and all the vtables. It does not setup the interrupt itself though.
4198  */
4199 void intel_irq_init(struct drm_i915_private *dev_priv)
4200 {
4201         struct drm_device *dev = &dev_priv->drm;
4202
4203         intel_hpd_init_work(dev_priv);
4204
4205         INIT_WORK(&dev_priv->rps.work, gen6_pm_rps_work);
4206         INIT_WORK(&dev_priv->l3_parity.error_work, ivybridge_parity_work);
4207
4208         if (HAS_GUC_SCHED(dev_priv))
4209                 dev_priv->pm_guc_events = GEN9_GUC_TO_HOST_INT_EVENT;
4210
4211         /* Let's track the enabled rps events */
4212         if (IS_VALLEYVIEW(dev_priv))
4213                 /* WaGsvRC0ResidencyMethod:vlv */
4214                 dev_priv->pm_rps_events = GEN6_PM_RP_UP_EI_EXPIRED;
4215         else
4216                 dev_priv->pm_rps_events = GEN6_PM_RPS_EVENTS;
4217
4218         dev_priv->rps.pm_intr_keep = 0;
4219
4220         /*
4221          * SNB,IVB can while VLV,CHV may hard hang on looping batchbuffer
4222          * if GEN6_PM_UP_EI_EXPIRED is masked.
4223          *
4224          * TODO: verify if this can be reproduced on VLV,CHV.
4225          */
4226         if (INTEL_INFO(dev_priv)->gen <= 7 && !IS_HASWELL(dev_priv))
4227                 dev_priv->rps.pm_intr_keep |= GEN6_PM_RP_UP_EI_EXPIRED;
4228
4229         if (INTEL_INFO(dev_priv)->gen >= 8)
4230                 dev_priv->rps.pm_intr_keep |= GEN8_PMINTR_REDIRECT_TO_GUC;
4231
4232         if (IS_GEN2(dev_priv)) {
4233                 /* Gen2 doesn't have a hardware frame counter */
4234                 dev->max_vblank_count = 0;
4235                 dev->driver->get_vblank_counter = drm_vblank_no_hw_counter;
4236         } else if (IS_G4X(dev_priv) || INTEL_INFO(dev_priv)->gen >= 5) {
4237                 dev->max_vblank_count = 0xffffffff; /* full 32 bit counter */
4238                 dev->driver->get_vblank_counter = g4x_get_vblank_counter;
4239         } else {
4240                 dev->driver->get_vblank_counter = i915_get_vblank_counter;
4241                 dev->max_vblank_count = 0xffffff; /* only 24 bits of frame count */
4242         }
4243
4244         /*
4245          * Opt out of the vblank disable timer on everything except gen2.
4246          * Gen2 doesn't have a hardware frame counter and so depends on
4247          * vblank interrupts to produce sane vblank seuquence numbers.
4248          */
4249         if (!IS_GEN2(dev_priv))
4250                 dev->vblank_disable_immediate = true;
4251
4252         /* Most platforms treat the display irq block as an always-on
4253          * power domain. vlv/chv can disable it at runtime and need
4254          * special care to avoid writing any of the display block registers
4255          * outside of the power domain. We defer setting up the display irqs
4256          * in this case to the runtime pm.
4257          */
4258         dev_priv->display_irqs_enabled = true;
4259         if (IS_VALLEYVIEW(dev_priv) || IS_CHERRYVIEW(dev_priv))
4260                 dev_priv->display_irqs_enabled = false;
4261
4262         dev->driver->get_vblank_timestamp = i915_get_vblank_timestamp;
4263         dev->driver->get_scanout_position = i915_get_crtc_scanoutpos;
4264
4265         if (IS_CHERRYVIEW(dev_priv)) {
4266                 dev->driver->irq_handler = cherryview_irq_handler;
4267                 dev->driver->irq_preinstall = cherryview_irq_preinstall;
4268                 dev->driver->irq_postinstall = cherryview_irq_postinstall;
4269                 dev->driver->irq_uninstall = cherryview_irq_uninstall;
4270                 dev->driver->enable_vblank = i965_enable_vblank;
4271                 dev->driver->disable_vblank = i965_disable_vblank;
4272                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4273         } else if (IS_VALLEYVIEW(dev_priv)) {
4274                 dev->driver->irq_handler = valleyview_irq_handler;
4275                 dev->driver->irq_preinstall = valleyview_irq_preinstall;
4276                 dev->driver->irq_postinstall = valleyview_irq_postinstall;
4277                 dev->driver->irq_uninstall = valleyview_irq_uninstall;
4278                 dev->driver->enable_vblank = i965_enable_vblank;
4279                 dev->driver->disable_vblank = i965_disable_vblank;
4280                 dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4281         } else if (INTEL_INFO(dev_priv)->gen >= 8) {
4282                 dev->driver->irq_handler = gen8_irq_handler;
4283                 dev->driver->irq_preinstall = gen8_irq_reset;
4284                 dev->driver->irq_postinstall = gen8_irq_postinstall;
4285                 dev->driver->irq_uninstall = gen8_irq_uninstall;
4286                 dev->driver->enable_vblank = gen8_enable_vblank;
4287                 dev->driver->disable_vblank = gen8_disable_vblank;
4288                 if (IS_GEN9_LP(dev_priv))
4289                         dev_priv->display.hpd_irq_setup = bxt_hpd_irq_setup;
4290                 else if (HAS_PCH_SPT(dev_priv) || HAS_PCH_KBP(dev_priv))
4291                         dev_priv->display.hpd_irq_setup = spt_hpd_irq_setup;
4292                 else
4293                         dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4294         } else if (HAS_PCH_SPLIT(dev_priv)) {
4295                 dev->driver->irq_handler = ironlake_irq_handler;
4296                 dev->driver->irq_preinstall = ironlake_irq_reset;
4297                 dev->driver->irq_postinstall = ironlake_irq_postinstall;
4298                 dev->driver->irq_uninstall = ironlake_irq_uninstall;
4299                 dev->driver->enable_vblank = ironlake_enable_vblank;
4300                 dev->driver->disable_vblank = ironlake_disable_vblank;
4301                 dev_priv->display.hpd_irq_setup = ilk_hpd_irq_setup;
4302         } else {
4303                 if (IS_GEN2(dev_priv)) {
4304                         dev->driver->irq_preinstall = i8xx_irq_preinstall;
4305                         dev->driver->irq_postinstall = i8xx_irq_postinstall;
4306                         dev->driver->irq_handler = i8xx_irq_handler;
4307                         dev->driver->irq_uninstall = i8xx_irq_uninstall;
4308                         dev->driver->enable_vblank = i8xx_enable_vblank;
4309                         dev->driver->disable_vblank = i8xx_disable_vblank;
4310                 } else if (IS_GEN3(dev_priv)) {
4311                         dev->driver->irq_preinstall = i915_irq_preinstall;
4312                         dev->driver->irq_postinstall = i915_irq_postinstall;
4313                         dev->driver->irq_uninstall = i915_irq_uninstall;
4314                         dev->driver->irq_handler = i915_irq_handler;
4315                         dev->driver->enable_vblank = i8xx_enable_vblank;
4316                         dev->driver->disable_vblank = i8xx_disable_vblank;
4317                 } else {
4318                         dev->driver->irq_preinstall = i965_irq_preinstall;
4319                         dev->driver->irq_postinstall = i965_irq_postinstall;
4320                         dev->driver->irq_uninstall = i965_irq_uninstall;
4321                         dev->driver->irq_handler = i965_irq_handler;
4322                         dev->driver->enable_vblank = i965_enable_vblank;
4323                         dev->driver->disable_vblank = i965_disable_vblank;
4324                 }
4325                 if (I915_HAS_HOTPLUG(dev_priv))
4326                         dev_priv->display.hpd_irq_setup = i915_hpd_irq_setup;
4327         }
4328 }
4329
4330 /**
4331  * intel_irq_install - enables the hardware interrupt
4332  * @dev_priv: i915 device instance
4333  *
4334  * This function enables the hardware interrupt handling, but leaves the hotplug
4335  * handling still disabled. It is called after intel_irq_init().
4336  *
4337  * In the driver load and resume code we need working interrupts in a few places
4338  * but don't want to deal with the hassle of concurrent probe and hotplug
4339  * workers. Hence the split into this two-stage approach.
4340  */
4341 int intel_irq_install(struct drm_i915_private *dev_priv)
4342 {
4343         /*
4344          * We enable some interrupt sources in our postinstall hooks, so mark
4345          * interrupts as enabled _before_ actually enabling them to avoid
4346          * special cases in our ordering checks.
4347          */
4348         dev_priv->pm.irqs_enabled = true;
4349
4350         return drm_irq_install(&dev_priv->drm, dev_priv->drm.pdev->irq);
4351 }
4352
4353 /**
4354  * intel_irq_uninstall - finilizes all irq handling
4355  * @dev_priv: i915 device instance
4356  *
4357  * This stops interrupt and hotplug handling and unregisters and frees all
4358  * resources acquired in the init functions.
4359  */
4360 void intel_irq_uninstall(struct drm_i915_private *dev_priv)
4361 {
4362         drm_irq_uninstall(&dev_priv->drm);
4363         intel_hpd_cancel_work(dev_priv);
4364         dev_priv->pm.irqs_enabled = false;
4365 }
4366
4367 /**
4368  * intel_runtime_pm_disable_interrupts - runtime interrupt disabling
4369  * @dev_priv: i915 device instance
4370  *
4371  * This function is used to disable interrupts at runtime, both in the runtime
4372  * pm and the system suspend/resume code.
4373  */
4374 void intel_runtime_pm_disable_interrupts(struct drm_i915_private *dev_priv)
4375 {
4376         dev_priv->drm.driver->irq_uninstall(&dev_priv->drm);
4377         dev_priv->pm.irqs_enabled = false;
4378         synchronize_irq(dev_priv->drm.irq);
4379 }
4380
4381 /**
4382  * intel_runtime_pm_enable_interrupts - runtime interrupt enabling
4383  * @dev_priv: i915 device instance
4384  *
4385  * This function is used to enable interrupts at runtime, both in the runtime
4386  * pm and the system suspend/resume code.
4387  */
4388 void intel_runtime_pm_enable_interrupts(struct drm_i915_private *dev_priv)
4389 {
4390         dev_priv->pm.irqs_enabled = true;
4391         dev_priv->drm.driver->irq_preinstall(&dev_priv->drm);
4392         dev_priv->drm.driver->irq_postinstall(&dev_priv->drm);
4393 }