Linux-libre 4.14.68-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / i915_gem_request.c
1 /*
2  * Copyright © 2008-2015 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  */
24
25 #include <linux/prefetch.h>
26 #include <linux/dma-fence-array.h>
27 #include <linux/sched.h>
28 #include <linux/sched/clock.h>
29 #include <linux/sched/signal.h>
30
31 #include "i915_drv.h"
32
33 static const char *i915_fence_get_driver_name(struct dma_fence *fence)
34 {
35         return "i915";
36 }
37
38 static const char *i915_fence_get_timeline_name(struct dma_fence *fence)
39 {
40         /* The timeline struct (as part of the ppgtt underneath a context)
41          * may be freed when the request is no longer in use by the GPU.
42          * We could extend the life of a context to beyond that of all
43          * fences, possibly keeping the hw resource around indefinitely,
44          * or we just give them a false name. Since
45          * dma_fence_ops.get_timeline_name is a debug feature, the occasional
46          * lie seems justifiable.
47          */
48         if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
49                 return "signaled";
50
51         return to_request(fence)->timeline->common->name;
52 }
53
54 static bool i915_fence_signaled(struct dma_fence *fence)
55 {
56         return i915_gem_request_completed(to_request(fence));
57 }
58
59 static bool i915_fence_enable_signaling(struct dma_fence *fence)
60 {
61         if (i915_fence_signaled(fence))
62                 return false;
63
64         intel_engine_enable_signaling(to_request(fence), true);
65         return !i915_fence_signaled(fence);
66 }
67
68 static signed long i915_fence_wait(struct dma_fence *fence,
69                                    bool interruptible,
70                                    signed long timeout)
71 {
72         return i915_wait_request(to_request(fence), interruptible, timeout);
73 }
74
75 static void i915_fence_release(struct dma_fence *fence)
76 {
77         struct drm_i915_gem_request *req = to_request(fence);
78
79         /* The request is put onto a RCU freelist (i.e. the address
80          * is immediately reused), mark the fences as being freed now.
81          * Otherwise the debugobjects for the fences are only marked as
82          * freed when the slab cache itself is freed, and so we would get
83          * caught trying to reuse dead objects.
84          */
85         i915_sw_fence_fini(&req->submit);
86
87         kmem_cache_free(req->i915->requests, req);
88 }
89
90 const struct dma_fence_ops i915_fence_ops = {
91         .get_driver_name = i915_fence_get_driver_name,
92         .get_timeline_name = i915_fence_get_timeline_name,
93         .enable_signaling = i915_fence_enable_signaling,
94         .signaled = i915_fence_signaled,
95         .wait = i915_fence_wait,
96         .release = i915_fence_release,
97 };
98
99 static inline void
100 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
101 {
102         struct drm_i915_file_private *file_priv;
103
104         file_priv = request->file_priv;
105         if (!file_priv)
106                 return;
107
108         spin_lock(&file_priv->mm.lock);
109         if (request->file_priv) {
110                 list_del(&request->client_link);
111                 request->file_priv = NULL;
112         }
113         spin_unlock(&file_priv->mm.lock);
114 }
115
116 static struct i915_dependency *
117 i915_dependency_alloc(struct drm_i915_private *i915)
118 {
119         return kmem_cache_alloc(i915->dependencies, GFP_KERNEL);
120 }
121
122 static void
123 i915_dependency_free(struct drm_i915_private *i915,
124                      struct i915_dependency *dep)
125 {
126         kmem_cache_free(i915->dependencies, dep);
127 }
128
129 static void
130 __i915_priotree_add_dependency(struct i915_priotree *pt,
131                                struct i915_priotree *signal,
132                                struct i915_dependency *dep,
133                                unsigned long flags)
134 {
135         INIT_LIST_HEAD(&dep->dfs_link);
136         list_add(&dep->wait_link, &signal->waiters_list);
137         list_add(&dep->signal_link, &pt->signalers_list);
138         dep->signaler = signal;
139         dep->flags = flags;
140 }
141
142 static int
143 i915_priotree_add_dependency(struct drm_i915_private *i915,
144                              struct i915_priotree *pt,
145                              struct i915_priotree *signal)
146 {
147         struct i915_dependency *dep;
148
149         dep = i915_dependency_alloc(i915);
150         if (!dep)
151                 return -ENOMEM;
152
153         __i915_priotree_add_dependency(pt, signal, dep, I915_DEPENDENCY_ALLOC);
154         return 0;
155 }
156
157 static void
158 i915_priotree_fini(struct drm_i915_private *i915, struct i915_priotree *pt)
159 {
160         struct i915_dependency *dep, *next;
161
162         GEM_BUG_ON(!list_empty(&pt->link));
163
164         /* Everyone we depended upon (the fences we wait to be signaled)
165          * should retire before us and remove themselves from our list.
166          * However, retirement is run independently on each timeline and
167          * so we may be called out-of-order.
168          */
169         list_for_each_entry_safe(dep, next, &pt->signalers_list, signal_link) {
170                 list_del(&dep->wait_link);
171                 if (dep->flags & I915_DEPENDENCY_ALLOC)
172                         i915_dependency_free(i915, dep);
173         }
174
175         /* Remove ourselves from everyone who depends upon us */
176         list_for_each_entry_safe(dep, next, &pt->waiters_list, wait_link) {
177                 list_del(&dep->signal_link);
178                 if (dep->flags & I915_DEPENDENCY_ALLOC)
179                         i915_dependency_free(i915, dep);
180         }
181 }
182
183 static void
184 i915_priotree_init(struct i915_priotree *pt)
185 {
186         INIT_LIST_HEAD(&pt->signalers_list);
187         INIT_LIST_HEAD(&pt->waiters_list);
188         INIT_LIST_HEAD(&pt->link);
189         pt->priority = INT_MIN;
190 }
191
192 static int reset_all_global_seqno(struct drm_i915_private *i915, u32 seqno)
193 {
194         struct intel_engine_cs *engine;
195         enum intel_engine_id id;
196         int ret;
197
198         /* Carefully retire all requests without writing to the rings */
199         ret = i915_gem_wait_for_idle(i915,
200                                      I915_WAIT_INTERRUPTIBLE |
201                                      I915_WAIT_LOCKED);
202         if (ret)
203                 return ret;
204
205         /* If the seqno wraps around, we need to clear the breadcrumb rbtree */
206         for_each_engine(engine, i915, id) {
207                 struct i915_gem_timeline *timeline;
208                 struct intel_timeline *tl = engine->timeline;
209
210                 if (!i915_seqno_passed(seqno, tl->seqno)) {
211                         /* spin until threads are complete */
212                         while (intel_breadcrumbs_busy(engine))
213                                 cond_resched();
214                 }
215
216                 /* Check we are idle before we fiddle with hw state! */
217                 GEM_BUG_ON(!intel_engine_is_idle(engine));
218                 GEM_BUG_ON(i915_gem_active_isset(&engine->timeline->last_request));
219
220                 /* Finally reset hw state */
221                 intel_engine_init_global_seqno(engine, seqno);
222                 tl->seqno = seqno;
223
224                 list_for_each_entry(timeline, &i915->gt.timelines, link)
225                         memset(timeline->engine[id].global_sync, 0,
226                                sizeof(timeline->engine[id].global_sync));
227         }
228
229         return 0;
230 }
231
232 int i915_gem_set_global_seqno(struct drm_device *dev, u32 seqno)
233 {
234         struct drm_i915_private *dev_priv = to_i915(dev);
235
236         lockdep_assert_held(&dev_priv->drm.struct_mutex);
237
238         if (seqno == 0)
239                 return -EINVAL;
240
241         /* HWS page needs to be set less than what we
242          * will inject to ring
243          */
244         return reset_all_global_seqno(dev_priv, seqno - 1);
245 }
246
247 static void mark_busy(struct drm_i915_private *i915)
248 {
249         if (i915->gt.awake)
250                 return;
251
252         GEM_BUG_ON(!i915->gt.active_requests);
253
254         intel_runtime_pm_get_noresume(i915);
255         i915->gt.awake = true;
256
257         intel_enable_gt_powersave(i915);
258         i915_update_gfx_val(i915);
259         if (INTEL_GEN(i915) >= 6)
260                 gen6_rps_busy(i915);
261
262         queue_delayed_work(i915->wq,
263                            &i915->gt.retire_work,
264                            round_jiffies_up_relative(HZ));
265 }
266
267 static int reserve_engine(struct intel_engine_cs *engine)
268 {
269         struct drm_i915_private *i915 = engine->i915;
270         u32 active = ++engine->timeline->inflight_seqnos;
271         u32 seqno = engine->timeline->seqno;
272         int ret;
273
274         /* Reservation is fine until we need to wrap around */
275         if (unlikely(add_overflows(seqno, active))) {
276                 ret = reset_all_global_seqno(i915, 0);
277                 if (ret) {
278                         engine->timeline->inflight_seqnos--;
279                         return ret;
280                 }
281         }
282
283         if (!i915->gt.active_requests++)
284                 mark_busy(i915);
285
286         return 0;
287 }
288
289 static void unreserve_engine(struct intel_engine_cs *engine)
290 {
291         struct drm_i915_private *i915 = engine->i915;
292
293         if (!--i915->gt.active_requests) {
294                 /* Cancel the mark_busy() from our reserve_engine() */
295                 GEM_BUG_ON(!i915->gt.awake);
296                 mod_delayed_work(i915->wq,
297                                  &i915->gt.idle_work,
298                                  msecs_to_jiffies(100));
299         }
300
301         GEM_BUG_ON(!engine->timeline->inflight_seqnos);
302         engine->timeline->inflight_seqnos--;
303 }
304
305 void i915_gem_retire_noop(struct i915_gem_active *active,
306                           struct drm_i915_gem_request *request)
307 {
308         /* Space left intentionally blank */
309 }
310
311 static void advance_ring(struct drm_i915_gem_request *request)
312 {
313         unsigned int tail;
314
315         /* We know the GPU must have read the request to have
316          * sent us the seqno + interrupt, so use the position
317          * of tail of the request to update the last known position
318          * of the GPU head.
319          *
320          * Note this requires that we are always called in request
321          * completion order.
322          */
323         if (list_is_last(&request->ring_link, &request->ring->request_list)) {
324                 /* We may race here with execlists resubmitting this request
325                  * as we retire it. The resubmission will move the ring->tail
326                  * forwards (to request->wa_tail). We either read the
327                  * current value that was written to hw, or the value that
328                  * is just about to be. Either works, if we miss the last two
329                  * noops - they are safe to be replayed on a reset.
330                  */
331                 tail = READ_ONCE(request->ring->tail);
332         } else {
333                 tail = request->postfix;
334         }
335         list_del(&request->ring_link);
336
337         request->ring->head = tail;
338 }
339
340 static void free_capture_list(struct drm_i915_gem_request *request)
341 {
342         struct i915_gem_capture_list *capture;
343
344         capture = request->capture_list;
345         while (capture) {
346                 struct i915_gem_capture_list *next = capture->next;
347
348                 kfree(capture);
349                 capture = next;
350         }
351 }
352
353 static void i915_gem_request_retire(struct drm_i915_gem_request *request)
354 {
355         struct intel_engine_cs *engine = request->engine;
356         struct i915_gem_active *active, *next;
357
358         lockdep_assert_held(&request->i915->drm.struct_mutex);
359         GEM_BUG_ON(!i915_sw_fence_signaled(&request->submit));
360         GEM_BUG_ON(!i915_gem_request_completed(request));
361         GEM_BUG_ON(!request->i915->gt.active_requests);
362
363         trace_i915_gem_request_retire(request);
364
365         spin_lock_irq(&engine->timeline->lock);
366         list_del_init(&request->link);
367         spin_unlock_irq(&engine->timeline->lock);
368
369         unreserve_engine(request->engine);
370         advance_ring(request);
371
372         free_capture_list(request);
373
374         /* Walk through the active list, calling retire on each. This allows
375          * objects to track their GPU activity and mark themselves as idle
376          * when their *last* active request is completed (updating state
377          * tracking lists for eviction, active references for GEM, etc).
378          *
379          * As the ->retire() may free the node, we decouple it first and
380          * pass along the auxiliary information (to avoid dereferencing
381          * the node after the callback).
382          */
383         list_for_each_entry_safe(active, next, &request->active_list, link) {
384                 /* In microbenchmarks or focusing upon time inside the kernel,
385                  * we may spend an inordinate amount of time simply handling
386                  * the retirement of requests and processing their callbacks.
387                  * Of which, this loop itself is particularly hot due to the
388                  * cache misses when jumping around the list of i915_gem_active.
389                  * So we try to keep this loop as streamlined as possible and
390                  * also prefetch the next i915_gem_active to try and hide
391                  * the likely cache miss.
392                  */
393                 prefetchw(next);
394
395                 INIT_LIST_HEAD(&active->link);
396                 RCU_INIT_POINTER(active->request, NULL);
397
398                 active->retire(active, request);
399         }
400
401         i915_gem_request_remove_from_client(request);
402
403         /* Retirement decays the ban score as it is a sign of ctx progress */
404         atomic_dec_if_positive(&request->ctx->ban_score);
405
406         /* The backing object for the context is done after switching to the
407          * *next* context. Therefore we cannot retire the previous context until
408          * the next context has already started running. However, since we
409          * cannot take the required locks at i915_gem_request_submit() we
410          * defer the unpinning of the active context to now, retirement of
411          * the subsequent request.
412          */
413         if (engine->last_retired_context)
414                 engine->context_unpin(engine, engine->last_retired_context);
415         engine->last_retired_context = request->ctx;
416
417         spin_lock_irq(&request->lock);
418         if (request->waitboost)
419                 atomic_dec(&request->i915->rps.num_waiters);
420         dma_fence_signal_locked(&request->fence);
421         spin_unlock_irq(&request->lock);
422
423         i915_priotree_fini(request->i915, &request->priotree);
424         i915_gem_request_put(request);
425 }
426
427 void i915_gem_request_retire_upto(struct drm_i915_gem_request *req)
428 {
429         struct intel_engine_cs *engine = req->engine;
430         struct drm_i915_gem_request *tmp;
431
432         lockdep_assert_held(&req->i915->drm.struct_mutex);
433         GEM_BUG_ON(!i915_gem_request_completed(req));
434
435         if (list_empty(&req->link))
436                 return;
437
438         do {
439                 tmp = list_first_entry(&engine->timeline->requests,
440                                        typeof(*tmp), link);
441
442                 i915_gem_request_retire(tmp);
443         } while (tmp != req);
444 }
445
446 static u32 timeline_get_seqno(struct intel_timeline *tl)
447 {
448         return ++tl->seqno;
449 }
450
451 void __i915_gem_request_submit(struct drm_i915_gem_request *request)
452 {
453         struct intel_engine_cs *engine = request->engine;
454         struct intel_timeline *timeline;
455         u32 seqno;
456
457         GEM_BUG_ON(!irqs_disabled());
458         lockdep_assert_held(&engine->timeline->lock);
459
460         trace_i915_gem_request_execute(request);
461
462         /* Transfer from per-context onto the global per-engine timeline */
463         timeline = engine->timeline;
464         GEM_BUG_ON(timeline == request->timeline);
465
466         seqno = timeline_get_seqno(timeline);
467         GEM_BUG_ON(!seqno);
468         GEM_BUG_ON(i915_seqno_passed(intel_engine_get_seqno(engine), seqno));
469
470         /* We may be recursing from the signal callback of another i915 fence */
471         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
472         request->global_seqno = seqno;
473         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
474                 intel_engine_enable_signaling(request, false);
475         spin_unlock(&request->lock);
476
477         engine->emit_breadcrumb(request,
478                                 request->ring->vaddr + request->postfix);
479
480         spin_lock(&request->timeline->lock);
481         list_move_tail(&request->link, &timeline->requests);
482         spin_unlock(&request->timeline->lock);
483
484         wake_up_all(&request->execute);
485 }
486
487 void i915_gem_request_submit(struct drm_i915_gem_request *request)
488 {
489         struct intel_engine_cs *engine = request->engine;
490         unsigned long flags;
491
492         /* Will be called from irq-context when using foreign fences. */
493         spin_lock_irqsave(&engine->timeline->lock, flags);
494
495         __i915_gem_request_submit(request);
496
497         spin_unlock_irqrestore(&engine->timeline->lock, flags);
498 }
499
500 void __i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
501 {
502         struct intel_engine_cs *engine = request->engine;
503         struct intel_timeline *timeline;
504
505         GEM_BUG_ON(!irqs_disabled());
506         lockdep_assert_held(&engine->timeline->lock);
507
508         /* Only unwind in reverse order, required so that the per-context list
509          * is kept in seqno/ring order.
510          */
511         GEM_BUG_ON(request->global_seqno != engine->timeline->seqno);
512         engine->timeline->seqno--;
513
514         /* We may be recursing from the signal callback of another i915 fence */
515         spin_lock_nested(&request->lock, SINGLE_DEPTH_NESTING);
516         request->global_seqno = 0;
517         if (test_bit(DMA_FENCE_FLAG_ENABLE_SIGNAL_BIT, &request->fence.flags))
518                 intel_engine_cancel_signaling(request);
519         spin_unlock(&request->lock);
520
521         /* Transfer back from the global per-engine timeline to per-context */
522         timeline = request->timeline;
523         GEM_BUG_ON(timeline == engine->timeline);
524
525         spin_lock(&timeline->lock);
526         list_move(&request->link, &timeline->requests);
527         spin_unlock(&timeline->lock);
528
529         /* We don't need to wake_up any waiters on request->execute, they
530          * will get woken by any other event or us re-adding this request
531          * to the engine timeline (__i915_gem_request_submit()). The waiters
532          * should be quite adapt at finding that the request now has a new
533          * global_seqno to the one they went to sleep on.
534          */
535 }
536
537 void i915_gem_request_unsubmit(struct drm_i915_gem_request *request)
538 {
539         struct intel_engine_cs *engine = request->engine;
540         unsigned long flags;
541
542         /* Will be called from irq-context when using foreign fences. */
543         spin_lock_irqsave(&engine->timeline->lock, flags);
544
545         __i915_gem_request_unsubmit(request);
546
547         spin_unlock_irqrestore(&engine->timeline->lock, flags);
548 }
549
550 static int __i915_sw_fence_call
551 submit_notify(struct i915_sw_fence *fence, enum i915_sw_fence_notify state)
552 {
553         struct drm_i915_gem_request *request =
554                 container_of(fence, typeof(*request), submit);
555
556         switch (state) {
557         case FENCE_COMPLETE:
558                 trace_i915_gem_request_submit(request);
559                 request->engine->submit_request(request);
560                 break;
561
562         case FENCE_FREE:
563                 i915_gem_request_put(request);
564                 break;
565         }
566
567         return NOTIFY_DONE;
568 }
569
570 /**
571  * i915_gem_request_alloc - allocate a request structure
572  *
573  * @engine: engine that we wish to issue the request on.
574  * @ctx: context that the request will be associated with.
575  *
576  * Returns a pointer to the allocated request if successful,
577  * or an error code if not.
578  */
579 struct drm_i915_gem_request *
580 i915_gem_request_alloc(struct intel_engine_cs *engine,
581                        struct i915_gem_context *ctx)
582 {
583         struct drm_i915_private *dev_priv = engine->i915;
584         struct drm_i915_gem_request *req;
585         struct intel_ring *ring;
586         int ret;
587
588         lockdep_assert_held(&dev_priv->drm.struct_mutex);
589
590         /* ABI: Before userspace accesses the GPU (e.g. execbuffer), report
591          * EIO if the GPU is already wedged.
592          */
593         if (i915_terminally_wedged(&dev_priv->gpu_error))
594                 return ERR_PTR(-EIO);
595
596         /* Pinning the contexts may generate requests in order to acquire
597          * GGTT space, so do this first before we reserve a seqno for
598          * ourselves.
599          */
600         ring = engine->context_pin(engine, ctx);
601         if (IS_ERR(ring))
602                 return ERR_CAST(ring);
603         GEM_BUG_ON(!ring);
604
605         ret = reserve_engine(engine);
606         if (ret)
607                 goto err_unpin;
608
609         /* Move the oldest request to the slab-cache (if not in use!) */
610         req = list_first_entry_or_null(&engine->timeline->requests,
611                                        typeof(*req), link);
612         if (req && i915_gem_request_completed(req))
613                 i915_gem_request_retire(req);
614
615         /* Beware: Dragons be flying overhead.
616          *
617          * We use RCU to look up requests in flight. The lookups may
618          * race with the request being allocated from the slab freelist.
619          * That is the request we are writing to here, may be in the process
620          * of being read by __i915_gem_active_get_rcu(). As such,
621          * we have to be very careful when overwriting the contents. During
622          * the RCU lookup, we change chase the request->engine pointer,
623          * read the request->global_seqno and increment the reference count.
624          *
625          * The reference count is incremented atomically. If it is zero,
626          * the lookup knows the request is unallocated and complete. Otherwise,
627          * it is either still in use, or has been reallocated and reset
628          * with dma_fence_init(). This increment is safe for release as we
629          * check that the request we have a reference to and matches the active
630          * request.
631          *
632          * Before we increment the refcount, we chase the request->engine
633          * pointer. We must not call kmem_cache_zalloc() or else we set
634          * that pointer to NULL and cause a crash during the lookup. If
635          * we see the request is completed (based on the value of the
636          * old engine and seqno), the lookup is complete and reports NULL.
637          * If we decide the request is not completed (new engine or seqno),
638          * then we grab a reference and double check that it is still the
639          * active request - which it won't be and restart the lookup.
640          *
641          * Do not use kmem_cache_zalloc() here!
642          */
643         req = kmem_cache_alloc(dev_priv->requests, GFP_KERNEL);
644         if (!req) {
645                 ret = -ENOMEM;
646                 goto err_unreserve;
647         }
648
649         req->timeline = i915_gem_context_lookup_timeline(ctx, engine);
650         GEM_BUG_ON(req->timeline == engine->timeline);
651
652         spin_lock_init(&req->lock);
653         dma_fence_init(&req->fence,
654                        &i915_fence_ops,
655                        &req->lock,
656                        req->timeline->fence_context,
657                        timeline_get_seqno(req->timeline));
658
659         /* We bump the ref for the fence chain */
660         i915_sw_fence_init(&i915_gem_request_get(req)->submit, submit_notify);
661         init_waitqueue_head(&req->execute);
662
663         i915_priotree_init(&req->priotree);
664
665         INIT_LIST_HEAD(&req->active_list);
666         req->i915 = dev_priv;
667         req->engine = engine;
668         req->ctx = ctx;
669         req->ring = ring;
670
671         /* No zalloc, must clear what we need by hand */
672         req->global_seqno = 0;
673         req->file_priv = NULL;
674         req->batch = NULL;
675         req->capture_list = NULL;
676         req->waitboost = false;
677
678         /*
679          * Reserve space in the ring buffer for all the commands required to
680          * eventually emit this request. This is to guarantee that the
681          * i915_add_request() call can't fail. Note that the reserve may need
682          * to be redone if the request is not actually submitted straight
683          * away, e.g. because a GPU scheduler has deferred it.
684          */
685         req->reserved_space = MIN_SPACE_FOR_ADD_REQUEST;
686         GEM_BUG_ON(req->reserved_space < engine->emit_breadcrumb_sz);
687
688         ret = engine->request_alloc(req);
689         if (ret)
690                 goto err_ctx;
691
692         /* Record the position of the start of the request so that
693          * should we detect the updated seqno part-way through the
694          * GPU processing the request, we never over-estimate the
695          * position of the head.
696          */
697         req->head = req->ring->emit;
698
699         /* Check that we didn't interrupt ourselves with a new request */
700         GEM_BUG_ON(req->timeline->seqno != req->fence.seqno);
701         return req;
702
703 err_ctx:
704         /* Make sure we didn't add ourselves to external state before freeing */
705         GEM_BUG_ON(!list_empty(&req->active_list));
706         GEM_BUG_ON(!list_empty(&req->priotree.signalers_list));
707         GEM_BUG_ON(!list_empty(&req->priotree.waiters_list));
708
709         kmem_cache_free(dev_priv->requests, req);
710 err_unreserve:
711         unreserve_engine(engine);
712 err_unpin:
713         engine->context_unpin(engine, ctx);
714         return ERR_PTR(ret);
715 }
716
717 static int
718 i915_gem_request_await_request(struct drm_i915_gem_request *to,
719                                struct drm_i915_gem_request *from)
720 {
721         int ret;
722
723         GEM_BUG_ON(to == from);
724         GEM_BUG_ON(to->timeline == from->timeline);
725
726         if (i915_gem_request_completed(from))
727                 return 0;
728
729         if (to->engine->schedule) {
730                 ret = i915_priotree_add_dependency(to->i915,
731                                                    &to->priotree,
732                                                    &from->priotree);
733                 if (ret < 0)
734                         return ret;
735         }
736
737         if (to->engine == from->engine) {
738                 ret = i915_sw_fence_await_sw_fence_gfp(&to->submit,
739                                                        &from->submit,
740                                                        GFP_KERNEL);
741                 return ret < 0 ? ret : 0;
742         }
743
744         if (to->engine->semaphore.sync_to) {
745                 u32 seqno;
746
747                 GEM_BUG_ON(!from->engine->semaphore.signal);
748
749                 seqno = i915_gem_request_global_seqno(from);
750                 if (!seqno)
751                         goto await_dma_fence;
752
753                 if (seqno <= to->timeline->global_sync[from->engine->id])
754                         return 0;
755
756                 trace_i915_gem_ring_sync_to(to, from);
757                 ret = to->engine->semaphore.sync_to(to, from);
758                 if (ret)
759                         return ret;
760
761                 to->timeline->global_sync[from->engine->id] = seqno;
762                 return 0;
763         }
764
765 await_dma_fence:
766         ret = i915_sw_fence_await_dma_fence(&to->submit,
767                                             &from->fence, 0,
768                                             GFP_KERNEL);
769         return ret < 0 ? ret : 0;
770 }
771
772 int
773 i915_gem_request_await_dma_fence(struct drm_i915_gem_request *req,
774                                  struct dma_fence *fence)
775 {
776         struct dma_fence **child = &fence;
777         unsigned int nchild = 1;
778         int ret;
779
780         /* Note that if the fence-array was created in signal-on-any mode,
781          * we should *not* decompose it into its individual fences. However,
782          * we don't currently store which mode the fence-array is operating
783          * in. Fortunately, the only user of signal-on-any is private to
784          * amdgpu and we should not see any incoming fence-array from
785          * sync-file being in signal-on-any mode.
786          */
787         if (dma_fence_is_array(fence)) {
788                 struct dma_fence_array *array = to_dma_fence_array(fence);
789
790                 child = array->fences;
791                 nchild = array->num_fences;
792                 GEM_BUG_ON(!nchild);
793         }
794
795         do {
796                 fence = *child++;
797                 if (test_bit(DMA_FENCE_FLAG_SIGNALED_BIT, &fence->flags))
798                         continue;
799
800                 /*
801                  * Requests on the same timeline are explicitly ordered, along
802                  * with their dependencies, by i915_add_request() which ensures
803                  * that requests are submitted in-order through each ring.
804                  */
805                 if (fence->context == req->fence.context)
806                         continue;
807
808                 /* Squash repeated waits to the same timelines */
809                 if (fence->context != req->i915->mm.unordered_timeline &&
810                     intel_timeline_sync_is_later(req->timeline, fence))
811                         continue;
812
813                 if (dma_fence_is_i915(fence))
814                         ret = i915_gem_request_await_request(req,
815                                                              to_request(fence));
816                 else
817                         ret = i915_sw_fence_await_dma_fence(&req->submit, fence,
818                                                             I915_FENCE_TIMEOUT,
819                                                             GFP_KERNEL);
820                 if (ret < 0)
821                         return ret;
822
823                 /* Record the latest fence used against each timeline */
824                 if (fence->context != req->i915->mm.unordered_timeline)
825                         intel_timeline_sync_set(req->timeline, fence);
826         } while (--nchild);
827
828         return 0;
829 }
830
831 /**
832  * i915_gem_request_await_object - set this request to (async) wait upon a bo
833  *
834  * @to: request we are wishing to use
835  * @obj: object which may be in use on another ring.
836  *
837  * This code is meant to abstract object synchronization with the GPU.
838  * Conceptually we serialise writes between engines inside the GPU.
839  * We only allow one engine to write into a buffer at any time, but
840  * multiple readers. To ensure each has a coherent view of memory, we must:
841  *
842  * - If there is an outstanding write request to the object, the new
843  *   request must wait for it to complete (either CPU or in hw, requests
844  *   on the same ring will be naturally ordered).
845  *
846  * - If we are a write request (pending_write_domain is set), the new
847  *   request must wait for outstanding read requests to complete.
848  *
849  * Returns 0 if successful, else propagates up the lower layer error.
850  */
851 int
852 i915_gem_request_await_object(struct drm_i915_gem_request *to,
853                               struct drm_i915_gem_object *obj,
854                               bool write)
855 {
856         struct dma_fence *excl;
857         int ret = 0;
858
859         if (write) {
860                 struct dma_fence **shared;
861                 unsigned int count, i;
862
863                 ret = reservation_object_get_fences_rcu(obj->resv,
864                                                         &excl, &count, &shared);
865                 if (ret)
866                         return ret;
867
868                 for (i = 0; i < count; i++) {
869                         ret = i915_gem_request_await_dma_fence(to, shared[i]);
870                         if (ret)
871                                 break;
872
873                         dma_fence_put(shared[i]);
874                 }
875
876                 for (; i < count; i++)
877                         dma_fence_put(shared[i]);
878                 kfree(shared);
879         } else {
880                 excl = reservation_object_get_excl_rcu(obj->resv);
881         }
882
883         if (excl) {
884                 if (ret == 0)
885                         ret = i915_gem_request_await_dma_fence(to, excl);
886
887                 dma_fence_put(excl);
888         }
889
890         return ret;
891 }
892
893 /*
894  * NB: This function is not allowed to fail. Doing so would mean the the
895  * request is not being tracked for completion but the work itself is
896  * going to happen on the hardware. This would be a Bad Thing(tm).
897  */
898 void __i915_add_request(struct drm_i915_gem_request *request, bool flush_caches)
899 {
900         struct intel_engine_cs *engine = request->engine;
901         struct intel_ring *ring = request->ring;
902         struct intel_timeline *timeline = request->timeline;
903         struct drm_i915_gem_request *prev;
904         u32 *cs;
905         int err;
906
907         lockdep_assert_held(&request->i915->drm.struct_mutex);
908         trace_i915_gem_request_add(request);
909
910         /* Make sure that no request gazumped us - if it was allocated after
911          * our i915_gem_request_alloc() and called __i915_add_request() before
912          * us, the timeline will hold its seqno which is later than ours.
913          */
914         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
915
916         /*
917          * To ensure that this call will not fail, space for its emissions
918          * should already have been reserved in the ring buffer. Let the ring
919          * know that it is time to use that space up.
920          */
921         request->reserved_space = 0;
922
923         /*
924          * Emit any outstanding flushes - execbuf can fail to emit the flush
925          * after having emitted the batchbuffer command. Hence we need to fix
926          * things up similar to emitting the lazy request. The difference here
927          * is that the flush _must_ happen before the next request, no matter
928          * what.
929          */
930         if (flush_caches) {
931                 err = engine->emit_flush(request, EMIT_FLUSH);
932
933                 /* Not allowed to fail! */
934                 WARN(err, "engine->emit_flush() failed: %d!\n", err);
935         }
936
937         /* Record the position of the start of the breadcrumb so that
938          * should we detect the updated seqno part-way through the
939          * GPU processing the request, we never over-estimate the
940          * position of the ring's HEAD.
941          */
942         cs = intel_ring_begin(request, engine->emit_breadcrumb_sz);
943         GEM_BUG_ON(IS_ERR(cs));
944         request->postfix = intel_ring_offset(request, cs);
945
946         /* Seal the request and mark it as pending execution. Note that
947          * we may inspect this state, without holding any locks, during
948          * hangcheck. Hence we apply the barrier to ensure that we do not
949          * see a more recent value in the hws than we are tracking.
950          */
951
952         prev = i915_gem_active_raw(&timeline->last_request,
953                                    &request->i915->drm.struct_mutex);
954         if (prev) {
955                 i915_sw_fence_await_sw_fence(&request->submit, &prev->submit,
956                                              &request->submitq);
957                 if (engine->schedule)
958                         __i915_priotree_add_dependency(&request->priotree,
959                                                        &prev->priotree,
960                                                        &request->dep,
961                                                        0);
962         }
963
964         spin_lock_irq(&timeline->lock);
965         list_add_tail(&request->link, &timeline->requests);
966         spin_unlock_irq(&timeline->lock);
967
968         GEM_BUG_ON(timeline->seqno != request->fence.seqno);
969         i915_gem_active_set(&timeline->last_request, request);
970
971         list_add_tail(&request->ring_link, &ring->request_list);
972         request->emitted_jiffies = jiffies;
973
974         /* Let the backend know a new request has arrived that may need
975          * to adjust the existing execution schedule due to a high priority
976          * request - i.e. we may want to preempt the current request in order
977          * to run a high priority dependency chain *before* we can execute this
978          * request.
979          *
980          * This is called before the request is ready to run so that we can
981          * decide whether to preempt the entire chain so that it is ready to
982          * run at the earliest possible convenience.
983          */
984         if (engine->schedule)
985                 engine->schedule(request, request->ctx->priority);
986
987         local_bh_disable();
988         i915_sw_fence_commit(&request->submit);
989         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
990 }
991
992 static unsigned long local_clock_us(unsigned int *cpu)
993 {
994         unsigned long t;
995
996         /* Cheaply and approximately convert from nanoseconds to microseconds.
997          * The result and subsequent calculations are also defined in the same
998          * approximate microseconds units. The principal source of timing
999          * error here is from the simple truncation.
1000          *
1001          * Note that local_clock() is only defined wrt to the current CPU;
1002          * the comparisons are no longer valid if we switch CPUs. Instead of
1003          * blocking preemption for the entire busywait, we can detect the CPU
1004          * switch and use that as indicator of system load and a reason to
1005          * stop busywaiting, see busywait_stop().
1006          */
1007         *cpu = get_cpu();
1008         t = local_clock() >> 10;
1009         put_cpu();
1010
1011         return t;
1012 }
1013
1014 static bool busywait_stop(unsigned long timeout, unsigned int cpu)
1015 {
1016         unsigned int this_cpu;
1017
1018         if (time_after(local_clock_us(&this_cpu), timeout))
1019                 return true;
1020
1021         return this_cpu != cpu;
1022 }
1023
1024 bool __i915_spin_request(const struct drm_i915_gem_request *req,
1025                          u32 seqno, int state, unsigned long timeout_us)
1026 {
1027         struct intel_engine_cs *engine = req->engine;
1028         unsigned int irq, cpu;
1029
1030         /* When waiting for high frequency requests, e.g. during synchronous
1031          * rendering split between the CPU and GPU, the finite amount of time
1032          * required to set up the irq and wait upon it limits the response
1033          * rate. By busywaiting on the request completion for a short while we
1034          * can service the high frequency waits as quick as possible. However,
1035          * if it is a slow request, we want to sleep as quickly as possible.
1036          * The tradeoff between waiting and sleeping is roughly the time it
1037          * takes to sleep on a request, on the order of a microsecond.
1038          */
1039
1040         irq = atomic_read(&engine->irq_count);
1041         timeout_us += local_clock_us(&cpu);
1042         do {
1043                 if (seqno != i915_gem_request_global_seqno(req))
1044                         break;
1045
1046                 if (i915_seqno_passed(intel_engine_get_seqno(req->engine),
1047                                       seqno))
1048                         return true;
1049
1050                 /* Seqno are meant to be ordered *before* the interrupt. If
1051                  * we see an interrupt without a corresponding seqno advance,
1052                  * assume we won't see one in the near future but require
1053                  * the engine->seqno_barrier() to fixup coherency.
1054                  */
1055                 if (atomic_read(&engine->irq_count) != irq)
1056                         break;
1057
1058                 if (signal_pending_state(state, current))
1059                         break;
1060
1061                 if (busywait_stop(timeout_us, cpu))
1062                         break;
1063
1064                 cpu_relax();
1065         } while (!need_resched());
1066
1067         return false;
1068 }
1069
1070 static bool __i915_wait_request_check_and_reset(struct drm_i915_gem_request *request)
1071 {
1072         if (likely(!i915_reset_handoff(&request->i915->gpu_error)))
1073                 return false;
1074
1075         __set_current_state(TASK_RUNNING);
1076         i915_reset(request->i915, 0);
1077         return true;
1078 }
1079
1080 /**
1081  * i915_wait_request - wait until execution of request has finished
1082  * @req: the request to wait upon
1083  * @flags: how to wait
1084  * @timeout: how long to wait in jiffies
1085  *
1086  * i915_wait_request() waits for the request to be completed, for a
1087  * maximum of @timeout jiffies (with MAX_SCHEDULE_TIMEOUT implying an
1088  * unbounded wait).
1089  *
1090  * If the caller holds the struct_mutex, the caller must pass I915_WAIT_LOCKED
1091  * in via the flags, and vice versa if the struct_mutex is not held, the caller
1092  * must not specify that the wait is locked.
1093  *
1094  * Returns the remaining time (in jiffies) if the request completed, which may
1095  * be zero or -ETIME if the request is unfinished after the timeout expires.
1096  * May return -EINTR is called with I915_WAIT_INTERRUPTIBLE and a signal is
1097  * pending before the request completes.
1098  */
1099 long i915_wait_request(struct drm_i915_gem_request *req,
1100                        unsigned int flags,
1101                        long timeout)
1102 {
1103         const int state = flags & I915_WAIT_INTERRUPTIBLE ?
1104                 TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE;
1105         wait_queue_head_t *errq = &req->i915->gpu_error.wait_queue;
1106         DEFINE_WAIT_FUNC(reset, default_wake_function);
1107         DEFINE_WAIT_FUNC(exec, default_wake_function);
1108         struct intel_wait wait;
1109
1110         might_sleep();
1111 #if IS_ENABLED(CONFIG_LOCKDEP)
1112         GEM_BUG_ON(debug_locks &&
1113                    !!lockdep_is_held(&req->i915->drm.struct_mutex) !=
1114                    !!(flags & I915_WAIT_LOCKED));
1115 #endif
1116         GEM_BUG_ON(timeout < 0);
1117
1118         if (i915_gem_request_completed(req))
1119                 return timeout;
1120
1121         if (!timeout)
1122                 return -ETIME;
1123
1124         trace_i915_gem_request_wait_begin(req, flags);
1125
1126         add_wait_queue(&req->execute, &exec);
1127         if (flags & I915_WAIT_LOCKED)
1128                 add_wait_queue(errq, &reset);
1129
1130         intel_wait_init(&wait, req);
1131
1132 restart:
1133         do {
1134                 set_current_state(state);
1135                 if (intel_wait_update_request(&wait, req))
1136                         break;
1137
1138                 if (flags & I915_WAIT_LOCKED &&
1139                     __i915_wait_request_check_and_reset(req))
1140                         continue;
1141
1142                 if (signal_pending_state(state, current)) {
1143                         timeout = -ERESTARTSYS;
1144                         goto complete;
1145                 }
1146
1147                 if (!timeout) {
1148                         timeout = -ETIME;
1149                         goto complete;
1150                 }
1151
1152                 timeout = io_schedule_timeout(timeout);
1153         } while (1);
1154
1155         GEM_BUG_ON(!intel_wait_has_seqno(&wait));
1156         GEM_BUG_ON(!i915_sw_fence_signaled(&req->submit));
1157
1158         /* Optimistic short spin before touching IRQs */
1159         if (i915_spin_request(req, state, 5))
1160                 goto complete;
1161
1162         set_current_state(state);
1163         if (intel_engine_add_wait(req->engine, &wait))
1164                 /* In order to check that we haven't missed the interrupt
1165                  * as we enabled it, we need to kick ourselves to do a
1166                  * coherent check on the seqno before we sleep.
1167                  */
1168                 goto wakeup;
1169
1170         if (flags & I915_WAIT_LOCKED)
1171                 __i915_wait_request_check_and_reset(req);
1172
1173         for (;;) {
1174                 if (signal_pending_state(state, current)) {
1175                         timeout = -ERESTARTSYS;
1176                         break;
1177                 }
1178
1179                 if (!timeout) {
1180                         timeout = -ETIME;
1181                         break;
1182                 }
1183
1184                 timeout = io_schedule_timeout(timeout);
1185
1186                 if (intel_wait_complete(&wait) &&
1187                     intel_wait_check_request(&wait, req))
1188                         break;
1189
1190                 set_current_state(state);
1191
1192 wakeup:
1193                 /* Carefully check if the request is complete, giving time
1194                  * for the seqno to be visible following the interrupt.
1195                  * We also have to check in case we are kicked by the GPU
1196                  * reset in order to drop the struct_mutex.
1197                  */
1198                 if (__i915_request_irq_complete(req))
1199                         break;
1200
1201                 /* If the GPU is hung, and we hold the lock, reset the GPU
1202                  * and then check for completion. On a full reset, the engine's
1203                  * HW seqno will be advanced passed us and we are complete.
1204                  * If we do a partial reset, we have to wait for the GPU to
1205                  * resume and update the breadcrumb.
1206                  *
1207                  * If we don't hold the mutex, we can just wait for the worker
1208                  * to come along and update the breadcrumb (either directly
1209                  * itself, or indirectly by recovering the GPU).
1210                  */
1211                 if (flags & I915_WAIT_LOCKED &&
1212                     __i915_wait_request_check_and_reset(req))
1213                         continue;
1214
1215                 /* Only spin if we know the GPU is processing this request */
1216                 if (i915_spin_request(req, state, 2))
1217                         break;
1218
1219                 if (!intel_wait_check_request(&wait, req)) {
1220                         intel_engine_remove_wait(req->engine, &wait);
1221                         goto restart;
1222                 }
1223         }
1224
1225         intel_engine_remove_wait(req->engine, &wait);
1226 complete:
1227         __set_current_state(TASK_RUNNING);
1228         if (flags & I915_WAIT_LOCKED)
1229                 remove_wait_queue(errq, &reset);
1230         remove_wait_queue(&req->execute, &exec);
1231         trace_i915_gem_request_wait_end(req);
1232
1233         return timeout;
1234 }
1235
1236 static void engine_retire_requests(struct intel_engine_cs *engine)
1237 {
1238         struct drm_i915_gem_request *request, *next;
1239         u32 seqno = intel_engine_get_seqno(engine);
1240         LIST_HEAD(retire);
1241
1242         spin_lock_irq(&engine->timeline->lock);
1243         list_for_each_entry_safe(request, next,
1244                                  &engine->timeline->requests, link) {
1245                 if (!i915_seqno_passed(seqno, request->global_seqno))
1246                         break;
1247
1248                 list_move_tail(&request->link, &retire);
1249         }
1250         spin_unlock_irq(&engine->timeline->lock);
1251
1252         list_for_each_entry_safe(request, next, &retire, link)
1253                 i915_gem_request_retire(request);
1254 }
1255
1256 void i915_gem_retire_requests(struct drm_i915_private *dev_priv)
1257 {
1258         struct intel_engine_cs *engine;
1259         enum intel_engine_id id;
1260
1261         lockdep_assert_held(&dev_priv->drm.struct_mutex);
1262
1263         if (!dev_priv->gt.active_requests)
1264                 return;
1265
1266         for_each_engine(engine, dev_priv, id)
1267                 engine_retire_requests(engine);
1268 }
1269
1270 #if IS_ENABLED(CONFIG_DRM_I915_SELFTEST)
1271 #include "selftests/mock_request.c"
1272 #include "selftests/i915_gem_request.c"
1273 #endif