Linux-libre 3.16.78-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / i915_gem.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *
26  */
27
28 #include <drm/drmP.h>
29 #include <drm/drm_vma_manager.h>
30 #include <drm/i915_drm.h>
31 #include "i915_drv.h"
32 #include "i915_trace.h"
33 #include "intel_drv.h"
34 #include <linux/oom.h>
35 #include <linux/shmem_fs.h>
36 #include <linux/slab.h>
37 #include <linux/swap.h>
38 #include <linux/pci.h>
39 #include <linux/dma-buf.h>
40
41 static void i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj);
42 static void i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
43                                                    bool force);
44 static __must_check int
45 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
46                                bool readonly);
47 static void
48 i915_gem_object_retire(struct drm_i915_gem_object *obj);
49
50 static void i915_gem_write_fence(struct drm_device *dev, int reg,
51                                  struct drm_i915_gem_object *obj);
52 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
53                                          struct drm_i915_fence_reg *fence,
54                                          bool enable);
55
56 static unsigned long i915_gem_shrinker_count(struct shrinker *shrinker,
57                                              struct shrink_control *sc);
58 static unsigned long i915_gem_shrinker_scan(struct shrinker *shrinker,
59                                             struct shrink_control *sc);
60 static int i915_gem_shrinker_oom(struct notifier_block *nb,
61                                  unsigned long event,
62                                  void *ptr);
63 static unsigned long i915_gem_purge(struct drm_i915_private *dev_priv, long target);
64 static unsigned long i915_gem_shrink_all(struct drm_i915_private *dev_priv);
65
66 static bool cpu_cache_is_coherent(struct drm_device *dev,
67                                   enum i915_cache_level level)
68 {
69         return HAS_LLC(dev) || level != I915_CACHE_NONE;
70 }
71
72 static bool cpu_write_needs_clflush(struct drm_i915_gem_object *obj)
73 {
74         if (!cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
75                 return true;
76
77         return obj->pin_display;
78 }
79
80 static inline void i915_gem_object_fence_lost(struct drm_i915_gem_object *obj)
81 {
82         if (obj->tiling_mode)
83                 i915_gem_release_mmap(obj);
84
85         /* As we do not have an associated fence register, we will force
86          * a tiling change if we ever need to acquire one.
87          */
88         obj->fence_dirty = false;
89         obj->fence_reg = I915_FENCE_REG_NONE;
90 }
91
92 /* some bookkeeping */
93 static void i915_gem_info_add_obj(struct drm_i915_private *dev_priv,
94                                   size_t size)
95 {
96         spin_lock(&dev_priv->mm.object_stat_lock);
97         dev_priv->mm.object_count++;
98         dev_priv->mm.object_memory += size;
99         spin_unlock(&dev_priv->mm.object_stat_lock);
100 }
101
102 static void i915_gem_info_remove_obj(struct drm_i915_private *dev_priv,
103                                      size_t size)
104 {
105         spin_lock(&dev_priv->mm.object_stat_lock);
106         dev_priv->mm.object_count--;
107         dev_priv->mm.object_memory -= size;
108         spin_unlock(&dev_priv->mm.object_stat_lock);
109 }
110
111 static int
112 i915_gem_wait_for_error(struct i915_gpu_error *error)
113 {
114         int ret;
115
116 #define EXIT_COND (!i915_reset_in_progress(error) || \
117                    i915_terminally_wedged(error))
118         if (EXIT_COND)
119                 return 0;
120
121         /*
122          * Only wait 10 seconds for the gpu reset to complete to avoid hanging
123          * userspace. If it takes that long something really bad is going on and
124          * we should simply try to bail out and fail as gracefully as possible.
125          */
126         ret = wait_event_interruptible_timeout(error->reset_queue,
127                                                EXIT_COND,
128                                                10*HZ);
129         if (ret == 0) {
130                 DRM_ERROR("Timed out waiting for the gpu reset to complete\n");
131                 return -EIO;
132         } else if (ret < 0) {
133                 return ret;
134         }
135 #undef EXIT_COND
136
137         return 0;
138 }
139
140 int i915_mutex_lock_interruptible(struct drm_device *dev)
141 {
142         struct drm_i915_private *dev_priv = dev->dev_private;
143         int ret;
144
145         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
146         if (ret)
147                 return ret;
148
149         ret = mutex_lock_interruptible(&dev->struct_mutex);
150         if (ret)
151                 return ret;
152
153         WARN_ON(i915_verify_lists(dev));
154         return 0;
155 }
156
157 static inline bool
158 i915_gem_object_is_inactive(struct drm_i915_gem_object *obj)
159 {
160         return i915_gem_obj_bound_any(obj) && !obj->active;
161 }
162
163 int
164 i915_gem_init_ioctl(struct drm_device *dev, void *data,
165                     struct drm_file *file)
166 {
167         struct drm_i915_private *dev_priv = dev->dev_private;
168         struct drm_i915_gem_init *args = data;
169
170         if (drm_core_check_feature(dev, DRIVER_MODESET))
171                 return -ENODEV;
172
173         if (args->gtt_start >= args->gtt_end ||
174             (args->gtt_end | args->gtt_start) & (PAGE_SIZE - 1))
175                 return -EINVAL;
176
177         /* GEM with user mode setting was never supported on ilk and later. */
178         if (INTEL_INFO(dev)->gen >= 5)
179                 return -ENODEV;
180
181         mutex_lock(&dev->struct_mutex);
182         i915_gem_setup_global_gtt(dev, args->gtt_start, args->gtt_end,
183                                   args->gtt_end);
184         dev_priv->gtt.mappable_end = args->gtt_end;
185         mutex_unlock(&dev->struct_mutex);
186
187         return 0;
188 }
189
190 int
191 i915_gem_get_aperture_ioctl(struct drm_device *dev, void *data,
192                             struct drm_file *file)
193 {
194         struct drm_i915_private *dev_priv = dev->dev_private;
195         struct drm_i915_gem_get_aperture *args = data;
196         struct drm_i915_gem_object *obj;
197         size_t pinned;
198
199         pinned = 0;
200         mutex_lock(&dev->struct_mutex);
201         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
202                 if (i915_gem_obj_is_pinned(obj))
203                         pinned += i915_gem_obj_ggtt_size(obj);
204         mutex_unlock(&dev->struct_mutex);
205
206         args->aper_size = dev_priv->gtt.base.total;
207         args->aper_available_size = args->aper_size - pinned;
208
209         return 0;
210 }
211
212 static void i915_gem_object_detach_phys(struct drm_i915_gem_object *obj)
213 {
214         drm_dma_handle_t *phys = obj->phys_handle;
215
216         if (!phys)
217                 return;
218
219         if (obj->madv == I915_MADV_WILLNEED) {
220                 struct address_space *mapping = file_inode(obj->base.filp)->i_mapping;
221                 char *vaddr = phys->vaddr;
222                 int i;
223
224                 for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
225                         struct page *page = shmem_read_mapping_page(mapping, i);
226                         if (!IS_ERR(page)) {
227                                 char *dst = kmap_atomic(page);
228                                 memcpy(dst, vaddr, PAGE_SIZE);
229                                 drm_clflush_virt_range(dst, PAGE_SIZE);
230                                 kunmap_atomic(dst);
231
232                                 set_page_dirty(page);
233                                 mark_page_accessed(page);
234                                 page_cache_release(page);
235                         }
236                         vaddr += PAGE_SIZE;
237                 }
238                 i915_gem_chipset_flush(obj->base.dev);
239         }
240
241 #ifdef CONFIG_X86
242         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
243 #endif
244         drm_pci_free(obj->base.dev, phys);
245         obj->phys_handle = NULL;
246 }
247
248 int
249 i915_gem_object_attach_phys(struct drm_i915_gem_object *obj,
250                             int align)
251 {
252         drm_dma_handle_t *phys;
253         struct address_space *mapping;
254         char *vaddr;
255         int i;
256
257         if (obj->phys_handle) {
258                 if ((unsigned long)obj->phys_handle->vaddr & (align -1))
259                         return -EBUSY;
260
261                 return 0;
262         }
263
264         if (obj->madv != I915_MADV_WILLNEED)
265                 return -EFAULT;
266
267         if (obj->base.filp == NULL)
268                 return -EINVAL;
269
270         /* create a new object */
271         phys = drm_pci_alloc(obj->base.dev, obj->base.size, align);
272         if (!phys)
273                 return -ENOMEM;
274
275         vaddr = phys->vaddr;
276 #ifdef CONFIG_X86
277         set_memory_wc((unsigned long)vaddr, phys->size / PAGE_SIZE);
278 #endif
279         mapping = file_inode(obj->base.filp)->i_mapping;
280         for (i = 0; i < obj->base.size / PAGE_SIZE; i++) {
281                 struct page *page;
282                 char *src;
283
284                 page = shmem_read_mapping_page(mapping, i);
285                 if (IS_ERR(page)) {
286 #ifdef CONFIG_X86
287                         set_memory_wb((unsigned long)phys->vaddr, phys->size / PAGE_SIZE);
288 #endif
289                         drm_pci_free(obj->base.dev, phys);
290                         return PTR_ERR(page);
291                 }
292
293                 src = kmap_atomic(page);
294                 memcpy(vaddr, src, PAGE_SIZE);
295                 kunmap_atomic(src);
296
297                 mark_page_accessed(page);
298                 page_cache_release(page);
299
300                 vaddr += PAGE_SIZE;
301         }
302
303         obj->phys_handle = phys;
304         return 0;
305 }
306
307 static int
308 i915_gem_phys_pwrite(struct drm_i915_gem_object *obj,
309                      struct drm_i915_gem_pwrite *args,
310                      struct drm_file *file_priv)
311 {
312         struct drm_device *dev = obj->base.dev;
313         void *vaddr = obj->phys_handle->vaddr + args->offset;
314         char __user *user_data = to_user_ptr(args->data_ptr);
315
316         if (__copy_from_user_inatomic_nocache(vaddr, user_data, args->size)) {
317                 unsigned long unwritten;
318
319                 /* The physical object once assigned is fixed for the lifetime
320                  * of the obj, so we can safely drop the lock and continue
321                  * to access vaddr.
322                  */
323                 mutex_unlock(&dev->struct_mutex);
324                 unwritten = copy_from_user(vaddr, user_data, args->size);
325                 mutex_lock(&dev->struct_mutex);
326                 if (unwritten)
327                         return -EFAULT;
328         }
329
330         i915_gem_chipset_flush(dev);
331         return 0;
332 }
333
334 void *i915_gem_object_alloc(struct drm_device *dev)
335 {
336         struct drm_i915_private *dev_priv = dev->dev_private;
337         return kmem_cache_zalloc(dev_priv->slab, GFP_KERNEL);
338 }
339
340 void i915_gem_object_free(struct drm_i915_gem_object *obj)
341 {
342         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
343         kmem_cache_free(dev_priv->slab, obj);
344 }
345
346 static int
347 i915_gem_create(struct drm_file *file,
348                 struct drm_device *dev,
349                 uint64_t size,
350                 uint32_t *handle_p)
351 {
352         struct drm_i915_gem_object *obj;
353         int ret;
354         u32 handle;
355
356         size = roundup(size, PAGE_SIZE);
357         if (size == 0)
358                 return -EINVAL;
359
360         /* Allocate the new object */
361         obj = i915_gem_alloc_object(dev, size);
362         if (obj == NULL)
363                 return -ENOMEM;
364
365         ret = drm_gem_handle_create(file, &obj->base, &handle);
366         /* drop reference from allocate - handle holds it now */
367         drm_gem_object_unreference_unlocked(&obj->base);
368         if (ret)
369                 return ret;
370
371         *handle_p = handle;
372         return 0;
373 }
374
375 int
376 i915_gem_dumb_create(struct drm_file *file,
377                      struct drm_device *dev,
378                      struct drm_mode_create_dumb *args)
379 {
380         /* have to work out size/pitch and return them */
381         args->pitch = ALIGN(args->width * DIV_ROUND_UP(args->bpp, 8), 64);
382         args->size = args->pitch * args->height;
383         return i915_gem_create(file, dev,
384                                args->size, &args->handle);
385 }
386
387 /**
388  * Creates a new mm object and returns a handle to it.
389  */
390 int
391 i915_gem_create_ioctl(struct drm_device *dev, void *data,
392                       struct drm_file *file)
393 {
394         struct drm_i915_gem_create *args = data;
395
396         return i915_gem_create(file, dev,
397                                args->size, &args->handle);
398 }
399
400 static inline int
401 __copy_to_user_swizzled(char __user *cpu_vaddr,
402                         const char *gpu_vaddr, int gpu_offset,
403                         int length)
404 {
405         int ret, cpu_offset = 0;
406
407         while (length > 0) {
408                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
409                 int this_length = min(cacheline_end - gpu_offset, length);
410                 int swizzled_gpu_offset = gpu_offset ^ 64;
411
412                 ret = __copy_to_user(cpu_vaddr + cpu_offset,
413                                      gpu_vaddr + swizzled_gpu_offset,
414                                      this_length);
415                 if (ret)
416                         return ret + length;
417
418                 cpu_offset += this_length;
419                 gpu_offset += this_length;
420                 length -= this_length;
421         }
422
423         return 0;
424 }
425
426 static inline int
427 __copy_from_user_swizzled(char *gpu_vaddr, int gpu_offset,
428                           const char __user *cpu_vaddr,
429                           int length)
430 {
431         int ret, cpu_offset = 0;
432
433         while (length > 0) {
434                 int cacheline_end = ALIGN(gpu_offset + 1, 64);
435                 int this_length = min(cacheline_end - gpu_offset, length);
436                 int swizzled_gpu_offset = gpu_offset ^ 64;
437
438                 ret = __copy_from_user(gpu_vaddr + swizzled_gpu_offset,
439                                        cpu_vaddr + cpu_offset,
440                                        this_length);
441                 if (ret)
442                         return ret + length;
443
444                 cpu_offset += this_length;
445                 gpu_offset += this_length;
446                 length -= this_length;
447         }
448
449         return 0;
450 }
451
452 /*
453  * Pins the specified object's pages and synchronizes the object with
454  * GPU accesses. Sets needs_clflush to non-zero if the caller should
455  * flush the object from the CPU cache.
456  */
457 int i915_gem_obj_prepare_shmem_read(struct drm_i915_gem_object *obj,
458                                     int *needs_clflush)
459 {
460         int ret;
461
462         *needs_clflush = 0;
463
464         if (!obj->base.filp)
465                 return -EINVAL;
466
467         if (!(obj->base.read_domains & I915_GEM_DOMAIN_CPU)) {
468                 /* If we're not in the cpu read domain, set ourself into the gtt
469                  * read domain and manually flush cachelines (if required). This
470                  * optimizes for the case when the gpu will dirty the data
471                  * anyway again before the next pread happens. */
472                 *needs_clflush = !cpu_cache_is_coherent(obj->base.dev,
473                                                         obj->cache_level);
474                 ret = i915_gem_object_wait_rendering(obj, true);
475                 if (ret)
476                         return ret;
477
478                 i915_gem_object_retire(obj);
479         }
480
481         ret = i915_gem_object_get_pages(obj);
482         if (ret)
483                 return ret;
484
485         i915_gem_object_pin_pages(obj);
486
487         return ret;
488 }
489
490 /* Per-page copy function for the shmem pread fastpath.
491  * Flushes invalid cachelines before reading the target if
492  * needs_clflush is set. */
493 static int
494 shmem_pread_fast(struct page *page, int shmem_page_offset, int page_length,
495                  char __user *user_data,
496                  bool page_do_bit17_swizzling, bool needs_clflush)
497 {
498         char *vaddr;
499         int ret;
500
501         if (unlikely(page_do_bit17_swizzling))
502                 return -EINVAL;
503
504         vaddr = kmap_atomic(page);
505         if (needs_clflush)
506                 drm_clflush_virt_range(vaddr + shmem_page_offset,
507                                        page_length);
508         ret = __copy_to_user_inatomic(user_data,
509                                       vaddr + shmem_page_offset,
510                                       page_length);
511         kunmap_atomic(vaddr);
512
513         return ret ? -EFAULT : 0;
514 }
515
516 static void
517 shmem_clflush_swizzled_range(char *addr, unsigned long length,
518                              bool swizzled)
519 {
520         if (unlikely(swizzled)) {
521                 unsigned long start = (unsigned long) addr;
522                 unsigned long end = (unsigned long) addr + length;
523
524                 /* For swizzling simply ensure that we always flush both
525                  * channels. Lame, but simple and it works. Swizzled
526                  * pwrite/pread is far from a hotpath - current userspace
527                  * doesn't use it at all. */
528                 start = round_down(start, 128);
529                 end = round_up(end, 128);
530
531                 drm_clflush_virt_range((void *)start, end - start);
532         } else {
533                 drm_clflush_virt_range(addr, length);
534         }
535
536 }
537
538 /* Only difference to the fast-path function is that this can handle bit17
539  * and uses non-atomic copy and kmap functions. */
540 static int
541 shmem_pread_slow(struct page *page, int shmem_page_offset, int page_length,
542                  char __user *user_data,
543                  bool page_do_bit17_swizzling, bool needs_clflush)
544 {
545         char *vaddr;
546         int ret;
547
548         vaddr = kmap(page);
549         if (needs_clflush)
550                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
551                                              page_length,
552                                              page_do_bit17_swizzling);
553
554         if (page_do_bit17_swizzling)
555                 ret = __copy_to_user_swizzled(user_data,
556                                               vaddr, shmem_page_offset,
557                                               page_length);
558         else
559                 ret = __copy_to_user(user_data,
560                                      vaddr + shmem_page_offset,
561                                      page_length);
562         kunmap(page);
563
564         return ret ? - EFAULT : 0;
565 }
566
567 static int
568 i915_gem_shmem_pread(struct drm_device *dev,
569                      struct drm_i915_gem_object *obj,
570                      struct drm_i915_gem_pread *args,
571                      struct drm_file *file)
572 {
573         char __user *user_data;
574         ssize_t remain;
575         loff_t offset;
576         int shmem_page_offset, ret = 0;
577         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
578         int prefaulted = 0;
579         int needs_clflush = 0;
580         struct sg_page_iter sg_iter;
581
582         user_data = to_user_ptr(args->data_ptr);
583         remain = args->size;
584
585         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
586
587         ret = i915_gem_obj_prepare_shmem_read(obj, &needs_clflush);
588         if (ret)
589                 return ret;
590
591         offset = args->offset;
592
593         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
594                          offset >> PAGE_SHIFT) {
595                 struct page *page = sg_page_iter_page(&sg_iter);
596                 unsigned int page_length;
597
598                 if (remain <= 0)
599                         break;
600
601                 /* Operation in this page
602                  *
603                  * shmem_page_offset = offset within page in shmem file
604                  * page_length = bytes to copy for this page
605                  */
606                 shmem_page_offset = offset_in_page(offset);
607                 page_length = min_t(u64, remain, PAGE_SIZE - shmem_page_offset);
608
609                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
610                         (page_to_phys(page) & (1 << 17)) != 0;
611
612                 ret = shmem_pread_fast(page, shmem_page_offset, page_length,
613                                        user_data, page_do_bit17_swizzling,
614                                        needs_clflush);
615                 if (ret == 0)
616                         goto next_page;
617
618                 mutex_unlock(&dev->struct_mutex);
619
620                 if (likely(!i915.prefault_disable) && !prefaulted) {
621                         ret = fault_in_multipages_writeable(user_data, remain);
622                         /* Userspace is tricking us, but we've already clobbered
623                          * its pages with the prefault and promised to write the
624                          * data up to the first fault. Hence ignore any errors
625                          * and just continue. */
626                         (void)ret;
627                         prefaulted = 1;
628                 }
629
630                 ret = shmem_pread_slow(page, shmem_page_offset, page_length,
631                                        user_data, page_do_bit17_swizzling,
632                                        needs_clflush);
633
634                 mutex_lock(&dev->struct_mutex);
635
636                 if (ret)
637                         goto out;
638
639 next_page:
640                 remain -= page_length;
641                 user_data += page_length;
642                 offset += page_length;
643         }
644
645 out:
646         i915_gem_object_unpin_pages(obj);
647
648         return ret;
649 }
650
651 /**
652  * Reads data from the object referenced by handle.
653  *
654  * On error, the contents of *data are undefined.
655  */
656 int
657 i915_gem_pread_ioctl(struct drm_device *dev, void *data,
658                      struct drm_file *file)
659 {
660         struct drm_i915_gem_pread *args = data;
661         struct drm_i915_gem_object *obj;
662         int ret = 0;
663
664         if (args->size == 0)
665                 return 0;
666
667         if (!access_ok(VERIFY_WRITE,
668                        to_user_ptr(args->data_ptr),
669                        args->size))
670                 return -EFAULT;
671
672         ret = i915_mutex_lock_interruptible(dev);
673         if (ret)
674                 return ret;
675
676         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
677         if (&obj->base == NULL) {
678                 ret = -ENOENT;
679                 goto unlock;
680         }
681
682         /* Bounds check source.  */
683         if (args->offset > obj->base.size ||
684             args->size > obj->base.size - args->offset) {
685                 ret = -EINVAL;
686                 goto out;
687         }
688
689         /* prime objects have no backing filp to GEM pread/pwrite
690          * pages from.
691          */
692         if (!obj->base.filp) {
693                 ret = -EINVAL;
694                 goto out;
695         }
696
697         trace_i915_gem_object_pread(obj, args->offset, args->size);
698
699         ret = i915_gem_shmem_pread(dev, obj, args, file);
700
701 out:
702         drm_gem_object_unreference(&obj->base);
703 unlock:
704         mutex_unlock(&dev->struct_mutex);
705         return ret;
706 }
707
708 /* This is the fast write path which cannot handle
709  * page faults in the source data
710  */
711
712 static inline int
713 fast_user_write(struct io_mapping *mapping,
714                 loff_t page_base, int page_offset,
715                 char __user *user_data,
716                 int length)
717 {
718         void __iomem *vaddr_atomic;
719         void *vaddr;
720         unsigned long unwritten;
721
722         vaddr_atomic = io_mapping_map_atomic_wc(mapping, page_base);
723         /* We can use the cpu mem copy function because this is X86. */
724         vaddr = (void __force*)vaddr_atomic + page_offset;
725         unwritten = __copy_from_user_inatomic_nocache(vaddr,
726                                                       user_data, length);
727         io_mapping_unmap_atomic(vaddr_atomic);
728         return unwritten;
729 }
730
731 /**
732  * This is the fast pwrite path, where we copy the data directly from the
733  * user into the GTT, uncached.
734  */
735 static int
736 i915_gem_gtt_pwrite_fast(struct drm_device *dev,
737                          struct drm_i915_gem_object *obj,
738                          struct drm_i915_gem_pwrite *args,
739                          struct drm_file *file)
740 {
741         struct drm_i915_private *dev_priv = dev->dev_private;
742         ssize_t remain;
743         loff_t offset, page_base;
744         char __user *user_data;
745         int page_offset, page_length, ret;
746
747         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE | PIN_NONBLOCK);
748         if (ret)
749                 goto out;
750
751         ret = i915_gem_object_set_to_gtt_domain(obj, true);
752         if (ret)
753                 goto out_unpin;
754
755         ret = i915_gem_object_put_fence(obj);
756         if (ret)
757                 goto out_unpin;
758
759         user_data = to_user_ptr(args->data_ptr);
760         remain = args->size;
761
762         offset = i915_gem_obj_ggtt_offset(obj) + args->offset;
763
764         while (remain > 0) {
765                 /* Operation in this page
766                  *
767                  * page_base = page offset within aperture
768                  * page_offset = offset within page
769                  * page_length = bytes to copy for this page
770                  */
771                 page_base = offset & PAGE_MASK;
772                 page_offset = offset_in_page(offset);
773                 page_length = remain;
774                 if ((page_offset + remain) > PAGE_SIZE)
775                         page_length = PAGE_SIZE - page_offset;
776
777                 /* If we get a fault while copying data, then (presumably) our
778                  * source page isn't available.  Return the error and we'll
779                  * retry in the slow path.
780                  */
781                 if (fast_user_write(dev_priv->gtt.mappable, page_base,
782                                     page_offset, user_data, page_length)) {
783                         ret = -EFAULT;
784                         goto out_unpin;
785                 }
786
787                 remain -= page_length;
788                 user_data += page_length;
789                 offset += page_length;
790         }
791
792 out_unpin:
793         i915_gem_object_ggtt_unpin(obj);
794 out:
795         return ret;
796 }
797
798 /* Per-page copy function for the shmem pwrite fastpath.
799  * Flushes invalid cachelines before writing to the target if
800  * needs_clflush_before is set and flushes out any written cachelines after
801  * writing if needs_clflush is set. */
802 static int
803 shmem_pwrite_fast(struct page *page, int shmem_page_offset, int page_length,
804                   char __user *user_data,
805                   bool page_do_bit17_swizzling,
806                   bool needs_clflush_before,
807                   bool needs_clflush_after)
808 {
809         char *vaddr;
810         int ret;
811
812         if (unlikely(page_do_bit17_swizzling))
813                 return -EINVAL;
814
815         vaddr = kmap_atomic(page);
816         if (needs_clflush_before)
817                 drm_clflush_virt_range(vaddr + shmem_page_offset,
818                                        page_length);
819         ret = __copy_from_user_inatomic(vaddr + shmem_page_offset,
820                                         user_data, page_length);
821         if (needs_clflush_after)
822                 drm_clflush_virt_range(vaddr + shmem_page_offset,
823                                        page_length);
824         kunmap_atomic(vaddr);
825
826         return ret ? -EFAULT : 0;
827 }
828
829 /* Only difference to the fast-path function is that this can handle bit17
830  * and uses non-atomic copy and kmap functions. */
831 static int
832 shmem_pwrite_slow(struct page *page, int shmem_page_offset, int page_length,
833                   char __user *user_data,
834                   bool page_do_bit17_swizzling,
835                   bool needs_clflush_before,
836                   bool needs_clflush_after)
837 {
838         char *vaddr;
839         int ret;
840
841         vaddr = kmap(page);
842         if (unlikely(needs_clflush_before || page_do_bit17_swizzling))
843                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
844                                              page_length,
845                                              page_do_bit17_swizzling);
846         if (page_do_bit17_swizzling)
847                 ret = __copy_from_user_swizzled(vaddr, shmem_page_offset,
848                                                 user_data,
849                                                 page_length);
850         else
851                 ret = __copy_from_user(vaddr + shmem_page_offset,
852                                        user_data,
853                                        page_length);
854         if (needs_clflush_after)
855                 shmem_clflush_swizzled_range(vaddr + shmem_page_offset,
856                                              page_length,
857                                              page_do_bit17_swizzling);
858         kunmap(page);
859
860         return ret ? -EFAULT : 0;
861 }
862
863 static int
864 i915_gem_shmem_pwrite(struct drm_device *dev,
865                       struct drm_i915_gem_object *obj,
866                       struct drm_i915_gem_pwrite *args,
867                       struct drm_file *file)
868 {
869         ssize_t remain;
870         loff_t offset;
871         char __user *user_data;
872         int shmem_page_offset, ret = 0;
873         int obj_do_bit17_swizzling, page_do_bit17_swizzling;
874         int hit_slowpath = 0;
875         int needs_clflush_after = 0;
876         int needs_clflush_before = 0;
877         struct sg_page_iter sg_iter;
878
879         user_data = to_user_ptr(args->data_ptr);
880         remain = args->size;
881
882         obj_do_bit17_swizzling = i915_gem_object_needs_bit17_swizzle(obj);
883
884         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
885                 /* If we're not in the cpu write domain, set ourself into the gtt
886                  * write domain and manually flush cachelines (if required). This
887                  * optimizes for the case when the gpu will use the data
888                  * right away and we therefore have to clflush anyway. */
889                 needs_clflush_after = cpu_write_needs_clflush(obj);
890                 ret = i915_gem_object_wait_rendering(obj, false);
891                 if (ret)
892                         return ret;
893
894                 i915_gem_object_retire(obj);
895         }
896         /* Same trick applies to invalidate partially written cachelines read
897          * before writing. */
898         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0)
899                 needs_clflush_before =
900                         !cpu_cache_is_coherent(dev, obj->cache_level);
901
902         ret = i915_gem_object_get_pages(obj);
903         if (ret)
904                 return ret;
905
906         i915_gem_object_pin_pages(obj);
907
908         offset = args->offset;
909         obj->dirty = 1;
910
911         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents,
912                          offset >> PAGE_SHIFT) {
913                 struct page *page = sg_page_iter_page(&sg_iter);
914                 int partial_cacheline_write;
915                 unsigned int page_length;
916
917                 if (remain <= 0)
918                         break;
919
920                 /* Operation in this page
921                  *
922                  * shmem_page_offset = offset within page in shmem file
923                  * page_length = bytes to copy for this page
924                  */
925                 shmem_page_offset = offset_in_page(offset);
926                 page_length = min_t(u64, remain, PAGE_SIZE - shmem_page_offset);
927
928                 /* If we don't overwrite a cacheline completely we need to be
929                  * careful to have up-to-date data by first clflushing. Don't
930                  * overcomplicate things and flush the entire patch. */
931                 partial_cacheline_write = needs_clflush_before &&
932                         ((shmem_page_offset | page_length)
933                                 & (boot_cpu_data.x86_clflush_size - 1));
934
935                 page_do_bit17_swizzling = obj_do_bit17_swizzling &&
936                         (page_to_phys(page) & (1 << 17)) != 0;
937
938                 ret = shmem_pwrite_fast(page, shmem_page_offset, page_length,
939                                         user_data, page_do_bit17_swizzling,
940                                         partial_cacheline_write,
941                                         needs_clflush_after);
942                 if (ret == 0)
943                         goto next_page;
944
945                 hit_slowpath = 1;
946                 mutex_unlock(&dev->struct_mutex);
947                 ret = shmem_pwrite_slow(page, shmem_page_offset, page_length,
948                                         user_data, page_do_bit17_swizzling,
949                                         partial_cacheline_write,
950                                         needs_clflush_after);
951
952                 mutex_lock(&dev->struct_mutex);
953
954                 if (ret)
955                         goto out;
956
957 next_page:
958                 remain -= page_length;
959                 user_data += page_length;
960                 offset += page_length;
961         }
962
963 out:
964         i915_gem_object_unpin_pages(obj);
965
966         if (hit_slowpath) {
967                 /*
968                  * Fixup: Flush cpu caches in case we didn't flush the dirty
969                  * cachelines in-line while writing and the object moved
970                  * out of the cpu write domain while we've dropped the lock.
971                  */
972                 if (!needs_clflush_after &&
973                     obj->base.write_domain != I915_GEM_DOMAIN_CPU) {
974                         if (i915_gem_clflush_object(obj, obj->pin_display))
975                                 i915_gem_chipset_flush(dev);
976                 }
977         }
978
979         if (needs_clflush_after)
980                 i915_gem_chipset_flush(dev);
981
982         return ret;
983 }
984
985 /**
986  * Writes data to the object referenced by handle.
987  *
988  * On error, the contents of the buffer that were to be modified are undefined.
989  */
990 int
991 i915_gem_pwrite_ioctl(struct drm_device *dev, void *data,
992                       struct drm_file *file)
993 {
994         struct drm_i915_gem_pwrite *args = data;
995         struct drm_i915_gem_object *obj;
996         int ret;
997
998         if (args->size == 0)
999                 return 0;
1000
1001         if (!access_ok(VERIFY_READ,
1002                        to_user_ptr(args->data_ptr),
1003                        args->size))
1004                 return -EFAULT;
1005
1006         if (likely(!i915.prefault_disable)) {
1007                 ret = fault_in_multipages_readable(to_user_ptr(args->data_ptr),
1008                                                    args->size);
1009                 if (ret)
1010                         return -EFAULT;
1011         }
1012
1013         ret = i915_mutex_lock_interruptible(dev);
1014         if (ret)
1015                 return ret;
1016
1017         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1018         if (&obj->base == NULL) {
1019                 ret = -ENOENT;
1020                 goto unlock;
1021         }
1022
1023         /* Bounds check destination. */
1024         if (args->offset > obj->base.size ||
1025             args->size > obj->base.size - args->offset) {
1026                 ret = -EINVAL;
1027                 goto out;
1028         }
1029
1030         /* prime objects have no backing filp to GEM pread/pwrite
1031          * pages from.
1032          */
1033         if (!obj->base.filp) {
1034                 ret = -EINVAL;
1035                 goto out;
1036         }
1037
1038         trace_i915_gem_object_pwrite(obj, args->offset, args->size);
1039
1040         ret = -EFAULT;
1041         /* We can only do the GTT pwrite on untiled buffers, as otherwise
1042          * it would end up going through the fenced access, and we'll get
1043          * different detiling behavior between reading and writing.
1044          * pread/pwrite currently are reading and writing from the CPU
1045          * perspective, requiring manual detiling by the client.
1046          */
1047         if (obj->phys_handle) {
1048                 ret = i915_gem_phys_pwrite(obj, args, file);
1049                 goto out;
1050         }
1051
1052         if (obj->tiling_mode == I915_TILING_NONE &&
1053             obj->base.write_domain != I915_GEM_DOMAIN_CPU &&
1054             cpu_write_needs_clflush(obj)) {
1055                 ret = i915_gem_gtt_pwrite_fast(dev, obj, args, file);
1056                 /* Note that the gtt paths might fail with non-page-backed user
1057                  * pointers (e.g. gtt mappings when moving data between
1058                  * textures). Fallback to the shmem path in that case. */
1059         }
1060
1061         if (ret == -EFAULT || ret == -ENOSPC)
1062                 ret = i915_gem_shmem_pwrite(dev, obj, args, file);
1063
1064 out:
1065         drm_gem_object_unreference(&obj->base);
1066 unlock:
1067         mutex_unlock(&dev->struct_mutex);
1068         return ret;
1069 }
1070
1071 int
1072 i915_gem_check_wedge(struct i915_gpu_error *error,
1073                      bool interruptible)
1074 {
1075         if (i915_reset_in_progress(error)) {
1076                 /* Non-interruptible callers can't handle -EAGAIN, hence return
1077                  * -EIO unconditionally for these. */
1078                 if (!interruptible)
1079                         return -EIO;
1080
1081                 /* Recovery complete, but the reset failed ... */
1082                 if (i915_terminally_wedged(error))
1083                         return -EIO;
1084
1085                 return -EAGAIN;
1086         }
1087
1088         return 0;
1089 }
1090
1091 /*
1092  * Compare seqno against outstanding lazy request. Emit a request if they are
1093  * equal.
1094  */
1095 static int
1096 i915_gem_check_olr(struct intel_engine_cs *ring, u32 seqno)
1097 {
1098         int ret;
1099
1100         BUG_ON(!mutex_is_locked(&ring->dev->struct_mutex));
1101
1102         ret = 0;
1103         if (seqno == ring->outstanding_lazy_seqno)
1104                 ret = i915_add_request(ring, NULL);
1105
1106         return ret;
1107 }
1108
1109 static void fake_irq(unsigned long data)
1110 {
1111         wake_up_process((struct task_struct *)data);
1112 }
1113
1114 static bool missed_irq(struct drm_i915_private *dev_priv,
1115                        struct intel_engine_cs *ring)
1116 {
1117         return test_bit(ring->id, &dev_priv->gpu_error.missed_irq_rings);
1118 }
1119
1120 static bool can_wait_boost(struct drm_i915_file_private *file_priv)
1121 {
1122         if (file_priv == NULL)
1123                 return true;
1124
1125         return !atomic_xchg(&file_priv->rps_wait_boost, true);
1126 }
1127
1128 /**
1129  * __wait_seqno - wait until execution of seqno has finished
1130  * @ring: the ring expected to report seqno
1131  * @seqno: duh!
1132  * @reset_counter: reset sequence associated with the given seqno
1133  * @interruptible: do an interruptible wait (normally yes)
1134  * @timeout: in - how long to wait (NULL forever); out - how much time remaining
1135  *
1136  * Note: It is of utmost importance that the passed in seqno and reset_counter
1137  * values have been read by the caller in an smp safe manner. Where read-side
1138  * locks are involved, it is sufficient to read the reset_counter before
1139  * unlocking the lock that protects the seqno. For lockless tricks, the
1140  * reset_counter _must_ be read before, and an appropriate smp_rmb must be
1141  * inserted.
1142  *
1143  * Returns 0 if the seqno was found within the alloted time. Else returns the
1144  * errno with remaining time filled in timeout argument.
1145  */
1146 static int __wait_seqno(struct intel_engine_cs *ring, u32 seqno,
1147                         unsigned reset_counter,
1148                         bool interruptible,
1149                         struct timespec *timeout,
1150                         struct drm_i915_file_private *file_priv)
1151 {
1152         struct drm_device *dev = ring->dev;
1153         struct drm_i915_private *dev_priv = dev->dev_private;
1154         const bool irq_test_in_progress =
1155                 ACCESS_ONCE(dev_priv->gpu_error.test_irq_rings) & intel_ring_flag(ring);
1156         struct timespec before, now;
1157         DEFINE_WAIT(wait);
1158         unsigned long timeout_expire;
1159         int ret;
1160
1161         WARN(dev_priv->pm.irqs_disabled, "IRQs disabled\n");
1162
1163         if (i915_seqno_passed(ring->get_seqno(ring, true), seqno))
1164                 return 0;
1165
1166         timeout_expire = timeout ? jiffies + timespec_to_jiffies_timeout(timeout) : 0;
1167
1168         if (INTEL_INFO(dev)->gen >= 6 && can_wait_boost(file_priv)) {
1169                 gen6_rps_boost(dev_priv);
1170                 if (file_priv)
1171                         mod_delayed_work(dev_priv->wq,
1172                                          &file_priv->mm.idle_work,
1173                                          msecs_to_jiffies(100));
1174         }
1175
1176         if (!irq_test_in_progress && WARN_ON(!ring->irq_get(ring)))
1177                 return -ENODEV;
1178
1179         /* Record current time in case interrupted by signal, or wedged */
1180         trace_i915_gem_request_wait_begin(ring, seqno);
1181         getrawmonotonic(&before);
1182         for (;;) {
1183                 struct timer_list timer;
1184
1185                 prepare_to_wait(&ring->irq_queue, &wait,
1186                                 interruptible ? TASK_INTERRUPTIBLE : TASK_UNINTERRUPTIBLE);
1187
1188                 /* We need to check whether any gpu reset happened in between
1189                  * the caller grabbing the seqno and now ... */
1190                 if (reset_counter != atomic_read(&dev_priv->gpu_error.reset_counter)) {
1191                         /* ... but upgrade the -EAGAIN to an -EIO if the gpu
1192                          * is truely gone. */
1193                         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1194                         if (ret == 0)
1195                                 ret = -EAGAIN;
1196                         break;
1197                 }
1198
1199                 if (i915_seqno_passed(ring->get_seqno(ring, false), seqno)) {
1200                         ret = 0;
1201                         break;
1202                 }
1203
1204                 if (interruptible && signal_pending(current)) {
1205                         ret = -ERESTARTSYS;
1206                         break;
1207                 }
1208
1209                 if (timeout && time_after_eq(jiffies, timeout_expire)) {
1210                         ret = -ETIME;
1211                         break;
1212                 }
1213
1214                 timer.function = NULL;
1215                 if (timeout || missed_irq(dev_priv, ring)) {
1216                         unsigned long expire;
1217
1218                         setup_timer_on_stack(&timer, fake_irq, (unsigned long)current);
1219                         expire = missed_irq(dev_priv, ring) ? jiffies + 1 : timeout_expire;
1220                         mod_timer(&timer, expire);
1221                 }
1222
1223                 io_schedule();
1224
1225                 if (timer.function) {
1226                         del_singleshot_timer_sync(&timer);
1227                         destroy_timer_on_stack(&timer);
1228                 }
1229         }
1230         getrawmonotonic(&now);
1231         trace_i915_gem_request_wait_end(ring, seqno);
1232
1233         if (!irq_test_in_progress)
1234                 ring->irq_put(ring);
1235
1236         finish_wait(&ring->irq_queue, &wait);
1237
1238         if (timeout) {
1239                 struct timespec sleep_time = timespec_sub(now, before);
1240                 *timeout = timespec_sub(*timeout, sleep_time);
1241                 if (!timespec_valid(timeout)) /* i.e. negative time remains */
1242                         set_normalized_timespec(timeout, 0, 0);
1243         }
1244
1245         return ret;
1246 }
1247
1248 /**
1249  * Waits for a sequence number to be signaled, and cleans up the
1250  * request and object lists appropriately for that event.
1251  */
1252 int
1253 i915_wait_seqno(struct intel_engine_cs *ring, uint32_t seqno)
1254 {
1255         struct drm_device *dev = ring->dev;
1256         struct drm_i915_private *dev_priv = dev->dev_private;
1257         bool interruptible = dev_priv->mm.interruptible;
1258         int ret;
1259
1260         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1261         BUG_ON(seqno == 0);
1262
1263         ret = i915_gem_check_wedge(&dev_priv->gpu_error, interruptible);
1264         if (ret)
1265                 return ret;
1266
1267         ret = i915_gem_check_olr(ring, seqno);
1268         if (ret)
1269                 return ret;
1270
1271         return __wait_seqno(ring, seqno,
1272                             atomic_read(&dev_priv->gpu_error.reset_counter),
1273                             interruptible, NULL, NULL);
1274 }
1275
1276 static int
1277 i915_gem_object_wait_rendering__tail(struct drm_i915_gem_object *obj,
1278                                      struct intel_engine_cs *ring)
1279 {
1280         if (!obj->active)
1281                 return 0;
1282
1283         /* Manually manage the write flush as we may have not yet
1284          * retired the buffer.
1285          *
1286          * Note that the last_write_seqno is always the earlier of
1287          * the two (read/write) seqno, so if we haved successfully waited,
1288          * we know we have passed the last write.
1289          */
1290         obj->last_write_seqno = 0;
1291
1292         return 0;
1293 }
1294
1295 /**
1296  * Ensures that all rendering to the object has completed and the object is
1297  * safe to unbind from the GTT or access from the CPU.
1298  */
1299 static __must_check int
1300 i915_gem_object_wait_rendering(struct drm_i915_gem_object *obj,
1301                                bool readonly)
1302 {
1303         struct intel_engine_cs *ring = obj->ring;
1304         u32 seqno;
1305         int ret;
1306
1307         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1308         if (seqno == 0)
1309                 return 0;
1310
1311         ret = i915_wait_seqno(ring, seqno);
1312         if (ret)
1313                 return ret;
1314
1315         return i915_gem_object_wait_rendering__tail(obj, ring);
1316 }
1317
1318 /* A nonblocking variant of the above wait. This is a highly dangerous routine
1319  * as the object state may change during this call.
1320  */
1321 static __must_check int
1322 i915_gem_object_wait_rendering__nonblocking(struct drm_i915_gem_object *obj,
1323                                             struct drm_i915_file_private *file_priv,
1324                                             bool readonly)
1325 {
1326         struct drm_device *dev = obj->base.dev;
1327         struct drm_i915_private *dev_priv = dev->dev_private;
1328         struct intel_engine_cs *ring = obj->ring;
1329         unsigned reset_counter;
1330         u32 seqno;
1331         int ret;
1332
1333         BUG_ON(!mutex_is_locked(&dev->struct_mutex));
1334         BUG_ON(!dev_priv->mm.interruptible);
1335
1336         seqno = readonly ? obj->last_write_seqno : obj->last_read_seqno;
1337         if (seqno == 0)
1338                 return 0;
1339
1340         ret = i915_gem_check_wedge(&dev_priv->gpu_error, true);
1341         if (ret)
1342                 return ret;
1343
1344         ret = i915_gem_check_olr(ring, seqno);
1345         if (ret)
1346                 return ret;
1347
1348         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
1349         mutex_unlock(&dev->struct_mutex);
1350         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, file_priv);
1351         mutex_lock(&dev->struct_mutex);
1352         if (ret)
1353                 return ret;
1354
1355         return i915_gem_object_wait_rendering__tail(obj, ring);
1356 }
1357
1358 /**
1359  * Called when user space prepares to use an object with the CPU, either
1360  * through the mmap ioctl's mapping or a GTT mapping.
1361  */
1362 int
1363 i915_gem_set_domain_ioctl(struct drm_device *dev, void *data,
1364                           struct drm_file *file)
1365 {
1366         struct drm_i915_gem_set_domain *args = data;
1367         struct drm_i915_gem_object *obj;
1368         uint32_t read_domains = args->read_domains;
1369         uint32_t write_domain = args->write_domain;
1370         int ret;
1371
1372         /* Only handle setting domains to types used by the CPU. */
1373         if (write_domain & I915_GEM_GPU_DOMAINS)
1374                 return -EINVAL;
1375
1376         if (read_domains & I915_GEM_GPU_DOMAINS)
1377                 return -EINVAL;
1378
1379         /* Having something in the write domain implies it's in the read
1380          * domain, and only that read domain.  Enforce that in the request.
1381          */
1382         if (write_domain != 0 && read_domains != write_domain)
1383                 return -EINVAL;
1384
1385         ret = i915_mutex_lock_interruptible(dev);
1386         if (ret)
1387                 return ret;
1388
1389         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1390         if (&obj->base == NULL) {
1391                 ret = -ENOENT;
1392                 goto unlock;
1393         }
1394
1395         /* Try to flush the object off the GPU without holding the lock.
1396          * We will repeat the flush holding the lock in the normal manner
1397          * to catch cases where we are gazumped.
1398          */
1399         ret = i915_gem_object_wait_rendering__nonblocking(obj,
1400                                                           file->driver_priv,
1401                                                           !write_domain);
1402         if (ret)
1403                 goto unref;
1404
1405         if (read_domains & I915_GEM_DOMAIN_GTT) {
1406                 ret = i915_gem_object_set_to_gtt_domain(obj, write_domain != 0);
1407
1408                 /* Silently promote "you're not bound, there was nothing to do"
1409                  * to success, since the client was just asking us to
1410                  * make sure everything was done.
1411                  */
1412                 if (ret == -EINVAL)
1413                         ret = 0;
1414         } else {
1415                 ret = i915_gem_object_set_to_cpu_domain(obj, write_domain != 0);
1416         }
1417
1418 unref:
1419         drm_gem_object_unreference(&obj->base);
1420 unlock:
1421         mutex_unlock(&dev->struct_mutex);
1422         return ret;
1423 }
1424
1425 /**
1426  * Called when user space has done writes to this buffer
1427  */
1428 int
1429 i915_gem_sw_finish_ioctl(struct drm_device *dev, void *data,
1430                          struct drm_file *file)
1431 {
1432         struct drm_i915_gem_sw_finish *args = data;
1433         struct drm_i915_gem_object *obj;
1434         int ret = 0;
1435
1436         ret = i915_mutex_lock_interruptible(dev);
1437         if (ret)
1438                 return ret;
1439
1440         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
1441         if (&obj->base == NULL) {
1442                 ret = -ENOENT;
1443                 goto unlock;
1444         }
1445
1446         /* Pinned buffers may be scanout, so flush the cache */
1447         if (obj->pin_display)
1448                 i915_gem_object_flush_cpu_write_domain(obj, true);
1449
1450         drm_gem_object_unreference(&obj->base);
1451 unlock:
1452         mutex_unlock(&dev->struct_mutex);
1453         return ret;
1454 }
1455
1456 /**
1457  * Maps the contents of an object, returning the address it is mapped
1458  * into.
1459  *
1460  * While the mapping holds a reference on the contents of the object, it doesn't
1461  * imply a ref on the object itself.
1462  */
1463 int
1464 i915_gem_mmap_ioctl(struct drm_device *dev, void *data,
1465                     struct drm_file *file)
1466 {
1467         struct drm_i915_gem_mmap *args = data;
1468         struct drm_gem_object *obj;
1469         unsigned long addr;
1470
1471         obj = drm_gem_object_lookup(dev, file, args->handle);
1472         if (obj == NULL)
1473                 return -ENOENT;
1474
1475         /* prime objects have no backing filp to GEM mmap
1476          * pages from.
1477          */
1478         if (!obj->filp) {
1479                 drm_gem_object_unreference_unlocked(obj);
1480                 return -EINVAL;
1481         }
1482
1483         addr = vm_mmap(obj->filp, 0, args->size,
1484                        PROT_READ | PROT_WRITE, MAP_SHARED,
1485                        args->offset);
1486         drm_gem_object_unreference_unlocked(obj);
1487         if (IS_ERR((void *)addr))
1488                 return addr;
1489
1490         args->addr_ptr = (uint64_t) addr;
1491
1492         return 0;
1493 }
1494
1495 /**
1496  * i915_gem_fault - fault a page into the GTT
1497  * vma: VMA in question
1498  * vmf: fault info
1499  *
1500  * The fault handler is set up by drm_gem_mmap() when a object is GTT mapped
1501  * from userspace.  The fault handler takes care of binding the object to
1502  * the GTT (if needed), allocating and programming a fence register (again,
1503  * only if needed based on whether the old reg is still valid or the object
1504  * is tiled) and inserting a new PTE into the faulting process.
1505  *
1506  * Note that the faulting process may involve evicting existing objects
1507  * from the GTT and/or fence registers to make room.  So performance may
1508  * suffer if the GTT working set is large or there are few fence registers
1509  * left.
1510  */
1511 int i915_gem_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1512 {
1513         struct drm_i915_gem_object *obj = to_intel_bo(vma->vm_private_data);
1514         struct drm_device *dev = obj->base.dev;
1515         struct drm_i915_private *dev_priv = dev->dev_private;
1516         pgoff_t page_offset;
1517         unsigned long pfn;
1518         int ret = 0;
1519         bool write = !!(vmf->flags & FAULT_FLAG_WRITE);
1520
1521         intel_runtime_pm_get(dev_priv);
1522
1523         /* We don't use vmf->pgoff since that has the fake offset */
1524         page_offset = ((unsigned long)vmf->virtual_address - vma->vm_start) >>
1525                 PAGE_SHIFT;
1526
1527         ret = i915_mutex_lock_interruptible(dev);
1528         if (ret)
1529                 goto out;
1530
1531         trace_i915_gem_object_fault(obj, page_offset, true, write);
1532
1533         /* Try to flush the object off the GPU first without holding the lock.
1534          * Upon reacquiring the lock, we will perform our sanity checks and then
1535          * repeat the flush holding the lock in the normal manner to catch cases
1536          * where we are gazumped.
1537          */
1538         ret = i915_gem_object_wait_rendering__nonblocking(obj, NULL, !write);
1539         if (ret)
1540                 goto unlock;
1541
1542         /* Access to snoopable pages through the GTT is incoherent. */
1543         if (obj->cache_level != I915_CACHE_NONE && !HAS_LLC(dev)) {
1544                 ret = -EFAULT;
1545                 goto unlock;
1546         }
1547
1548         /* Now bind it into the GTT if needed */
1549         ret = i915_gem_obj_ggtt_pin(obj, 0, PIN_MAPPABLE);
1550         if (ret)
1551                 goto unlock;
1552
1553         ret = i915_gem_object_set_to_gtt_domain(obj, write);
1554         if (ret)
1555                 goto unpin;
1556
1557         ret = i915_gem_object_get_fence(obj);
1558         if (ret)
1559                 goto unpin;
1560
1561         obj->fault_mappable = true;
1562
1563         pfn = dev_priv->gtt.mappable_base + i915_gem_obj_ggtt_offset(obj);
1564         pfn >>= PAGE_SHIFT;
1565         pfn += page_offset;
1566
1567         /* Finally, remap it using the new GTT offset */
1568         ret = vm_insert_pfn(vma, (unsigned long)vmf->virtual_address, pfn);
1569 unpin:
1570         i915_gem_object_ggtt_unpin(obj);
1571 unlock:
1572         mutex_unlock(&dev->struct_mutex);
1573 out:
1574         switch (ret) {
1575         case -EIO:
1576                 /*
1577                  * We eat errors when the gpu is terminally wedged to avoid
1578                  * userspace unduly crashing (gl has no provisions for mmaps to
1579                  * fail). But any other -EIO isn't ours (e.g. swap in failure)
1580                  * and so needs to be reported.
1581                  */
1582                 if (!i915_terminally_wedged(&dev_priv->gpu_error)) {
1583                         ret = VM_FAULT_SIGBUS;
1584                         break;
1585                 }
1586         case -EAGAIN:
1587                 /*
1588                  * EAGAIN means the gpu is hung and we'll wait for the error
1589                  * handler to reset everything when re-faulting in
1590                  * i915_mutex_lock_interruptible.
1591                  */
1592         case 0:
1593         case -ERESTARTSYS:
1594         case -EINTR:
1595         case -EBUSY:
1596                 /*
1597                  * EBUSY is ok: this just means that another thread
1598                  * already did the job.
1599                  */
1600                 ret = VM_FAULT_NOPAGE;
1601                 break;
1602         case -ENOMEM:
1603                 ret = VM_FAULT_OOM;
1604                 break;
1605         case -ENOSPC:
1606         case -EFAULT:
1607                 ret = VM_FAULT_SIGBUS;
1608                 break;
1609         default:
1610                 WARN_ONCE(ret, "unhandled error in i915_gem_fault: %i\n", ret);
1611                 ret = VM_FAULT_SIGBUS;
1612                 break;
1613         }
1614
1615         intel_runtime_pm_put(dev_priv);
1616         return ret;
1617 }
1618
1619 /**
1620  * i915_gem_release_mmap - remove physical page mappings
1621  * @obj: obj in question
1622  *
1623  * Preserve the reservation of the mmapping with the DRM core code, but
1624  * relinquish ownership of the pages back to the system.
1625  *
1626  * It is vital that we remove the page mapping if we have mapped a tiled
1627  * object through the GTT and then lose the fence register due to
1628  * resource pressure. Similarly if the object has been moved out of the
1629  * aperture, than pages mapped into userspace must be revoked. Removing the
1630  * mapping will then trigger a page fault on the next user access, allowing
1631  * fixup by i915_gem_fault().
1632  */
1633 void
1634 i915_gem_release_mmap(struct drm_i915_gem_object *obj)
1635 {
1636         if (!obj->fault_mappable)
1637                 return;
1638
1639         drm_vma_node_unmap(&obj->base.vma_node,
1640                            obj->base.dev->anon_inode->i_mapping);
1641         obj->fault_mappable = false;
1642 }
1643
1644 void
1645 i915_gem_release_all_mmaps(struct drm_i915_private *dev_priv)
1646 {
1647         struct drm_i915_gem_object *obj;
1648
1649         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list)
1650                 i915_gem_release_mmap(obj);
1651 }
1652
1653 uint32_t
1654 i915_gem_get_gtt_size(struct drm_device *dev, uint32_t size, int tiling_mode)
1655 {
1656         uint32_t gtt_size;
1657
1658         if (INTEL_INFO(dev)->gen >= 4 ||
1659             tiling_mode == I915_TILING_NONE)
1660                 return size;
1661
1662         /* Previous chips need a power-of-two fence region when tiling */
1663         if (INTEL_INFO(dev)->gen == 3)
1664                 gtt_size = 1024*1024;
1665         else
1666                 gtt_size = 512*1024;
1667
1668         while (gtt_size < size)
1669                 gtt_size <<= 1;
1670
1671         return gtt_size;
1672 }
1673
1674 /**
1675  * i915_gem_get_gtt_alignment - return required GTT alignment for an object
1676  * @obj: object to check
1677  *
1678  * Return the required GTT alignment for an object, taking into account
1679  * potential fence register mapping.
1680  */
1681 uint32_t
1682 i915_gem_get_gtt_alignment(struct drm_device *dev, uint32_t size,
1683                            int tiling_mode, bool fenced)
1684 {
1685         /*
1686          * Minimum alignment is 4k (GTT page size), but might be greater
1687          * if a fence register is needed for the object.
1688          */
1689         if (INTEL_INFO(dev)->gen >= 4 || (!fenced && IS_G33(dev)) ||
1690             tiling_mode == I915_TILING_NONE)
1691                 return 4096;
1692
1693         /*
1694          * Previous chips need to be aligned to the size of the smallest
1695          * fence register that can contain the object.
1696          */
1697         return i915_gem_get_gtt_size(dev, size, tiling_mode);
1698 }
1699
1700 static int i915_gem_object_create_mmap_offset(struct drm_i915_gem_object *obj)
1701 {
1702         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
1703         int ret;
1704
1705         if (drm_vma_node_has_offset(&obj->base.vma_node))
1706                 return 0;
1707
1708         dev_priv->mm.shrinker_no_lock_stealing = true;
1709
1710         ret = drm_gem_create_mmap_offset(&obj->base);
1711         if (ret != -ENOSPC)
1712                 goto out;
1713
1714         /* Badly fragmented mmap space? The only way we can recover
1715          * space is by destroying unwanted objects. We can't randomly release
1716          * mmap_offsets as userspace expects them to be persistent for the
1717          * lifetime of the objects. The closest we can is to release the
1718          * offsets on purgeable objects by truncating it and marking it purged,
1719          * which prevents userspace from ever using that object again.
1720          */
1721         i915_gem_purge(dev_priv, obj->base.size >> PAGE_SHIFT);
1722         ret = drm_gem_create_mmap_offset(&obj->base);
1723         if (ret != -ENOSPC)
1724                 goto out;
1725
1726         i915_gem_shrink_all(dev_priv);
1727         ret = drm_gem_create_mmap_offset(&obj->base);
1728 out:
1729         dev_priv->mm.shrinker_no_lock_stealing = false;
1730
1731         return ret;
1732 }
1733
1734 static void i915_gem_object_free_mmap_offset(struct drm_i915_gem_object *obj)
1735 {
1736         drm_gem_free_mmap_offset(&obj->base);
1737 }
1738
1739 int
1740 i915_gem_mmap_gtt(struct drm_file *file,
1741                   struct drm_device *dev,
1742                   uint32_t handle,
1743                   uint64_t *offset)
1744 {
1745         struct drm_i915_private *dev_priv = dev->dev_private;
1746         struct drm_i915_gem_object *obj;
1747         int ret;
1748
1749         ret = i915_mutex_lock_interruptible(dev);
1750         if (ret)
1751                 return ret;
1752
1753         obj = to_intel_bo(drm_gem_object_lookup(dev, file, handle));
1754         if (&obj->base == NULL) {
1755                 ret = -ENOENT;
1756                 goto unlock;
1757         }
1758
1759         if (obj->base.size > dev_priv->gtt.mappable_end) {
1760                 ret = -E2BIG;
1761                 goto out;
1762         }
1763
1764         if (obj->madv != I915_MADV_WILLNEED) {
1765                 DRM_DEBUG("Attempting to mmap a purgeable buffer\n");
1766                 ret = -EFAULT;
1767                 goto out;
1768         }
1769
1770         ret = i915_gem_object_create_mmap_offset(obj);
1771         if (ret)
1772                 goto out;
1773
1774         *offset = drm_vma_node_offset_addr(&obj->base.vma_node);
1775
1776 out:
1777         drm_gem_object_unreference(&obj->base);
1778 unlock:
1779         mutex_unlock(&dev->struct_mutex);
1780         return ret;
1781 }
1782
1783 /**
1784  * i915_gem_mmap_gtt_ioctl - prepare an object for GTT mmap'ing
1785  * @dev: DRM device
1786  * @data: GTT mapping ioctl data
1787  * @file: GEM object info
1788  *
1789  * Simply returns the fake offset to userspace so it can mmap it.
1790  * The mmap call will end up in drm_gem_mmap(), which will set things
1791  * up so we can get faults in the handler above.
1792  *
1793  * The fault handler will take care of binding the object into the GTT
1794  * (since it may have been evicted to make room for something), allocating
1795  * a fence register, and mapping the appropriate aperture address into
1796  * userspace.
1797  */
1798 int
1799 i915_gem_mmap_gtt_ioctl(struct drm_device *dev, void *data,
1800                         struct drm_file *file)
1801 {
1802         struct drm_i915_gem_mmap_gtt *args = data;
1803
1804         return i915_gem_mmap_gtt(file, dev, args->handle, &args->offset);
1805 }
1806
1807 static inline int
1808 i915_gem_object_is_purgeable(struct drm_i915_gem_object *obj)
1809 {
1810         return obj->madv == I915_MADV_DONTNEED;
1811 }
1812
1813 /* Immediately discard the backing storage */
1814 static void
1815 i915_gem_object_truncate(struct drm_i915_gem_object *obj)
1816 {
1817         i915_gem_object_free_mmap_offset(obj);
1818
1819         if (obj->base.filp == NULL)
1820                 return;
1821
1822         /* Our goal here is to return as much of the memory as
1823          * is possible back to the system as we are called from OOM.
1824          * To do this we must instruct the shmfs to drop all of its
1825          * backing pages, *now*.
1826          */
1827         shmem_truncate_range(file_inode(obj->base.filp), 0, (loff_t)-1);
1828         obj->madv = __I915_MADV_PURGED;
1829 }
1830
1831 /* Try to discard unwanted pages */
1832 static void
1833 i915_gem_object_invalidate(struct drm_i915_gem_object *obj)
1834 {
1835         struct address_space *mapping;
1836
1837         switch (obj->madv) {
1838         case I915_MADV_DONTNEED:
1839                 i915_gem_object_truncate(obj);
1840         case __I915_MADV_PURGED:
1841                 return;
1842         }
1843
1844         if (obj->base.filp == NULL)
1845                 return;
1846
1847         mapping = file_inode(obj->base.filp)->i_mapping,
1848         invalidate_mapping_pages(mapping, 0, (loff_t)-1);
1849 }
1850
1851 static void
1852 i915_gem_object_put_pages_gtt(struct drm_i915_gem_object *obj)
1853 {
1854         struct sg_page_iter sg_iter;
1855         int ret;
1856
1857         BUG_ON(obj->madv == __I915_MADV_PURGED);
1858
1859         ret = i915_gem_object_set_to_cpu_domain(obj, true);
1860         if (ret) {
1861                 /* In the event of a disaster, abandon all caches and
1862                  * hope for the best.
1863                  */
1864                 WARN_ON(ret != -EIO);
1865                 i915_gem_clflush_object(obj, true);
1866                 obj->base.read_domains = obj->base.write_domain = I915_GEM_DOMAIN_CPU;
1867         }
1868
1869         if (i915_gem_object_needs_bit17_swizzle(obj))
1870                 i915_gem_object_save_bit_17_swizzle(obj);
1871
1872         if (obj->madv == I915_MADV_DONTNEED)
1873                 obj->dirty = 0;
1874
1875         for_each_sg_page(obj->pages->sgl, &sg_iter, obj->pages->nents, 0) {
1876                 struct page *page = sg_page_iter_page(&sg_iter);
1877
1878                 if (obj->dirty)
1879                         set_page_dirty(page);
1880
1881                 if (obj->madv == I915_MADV_WILLNEED)
1882                         mark_page_accessed(page);
1883
1884                 page_cache_release(page);
1885         }
1886         obj->dirty = 0;
1887
1888         sg_free_table(obj->pages);
1889         kfree(obj->pages);
1890 }
1891
1892 int
1893 i915_gem_object_put_pages(struct drm_i915_gem_object *obj)
1894 {
1895         const struct drm_i915_gem_object_ops *ops = obj->ops;
1896
1897         if (obj->pages == NULL)
1898                 return 0;
1899
1900         if (obj->pages_pin_count)
1901                 return -EBUSY;
1902
1903         BUG_ON(i915_gem_obj_bound_any(obj));
1904
1905         /* ->put_pages might need to allocate memory for the bit17 swizzle
1906          * array, hence protect them from being reaped by removing them from gtt
1907          * lists early. */
1908         list_del(&obj->global_list);
1909
1910         ops->put_pages(obj);
1911         obj->pages = NULL;
1912
1913         i915_gem_object_invalidate(obj);
1914
1915         return 0;
1916 }
1917
1918 static unsigned long
1919 __i915_gem_shrink(struct drm_i915_private *dev_priv, long target,
1920                   bool purgeable_only)
1921 {
1922         struct list_head still_in_list;
1923         struct drm_i915_gem_object *obj;
1924         unsigned long count = 0;
1925
1926         /*
1927          * As we may completely rewrite the (un)bound list whilst unbinding
1928          * (due to retiring requests) we have to strictly process only
1929          * one element of the list at the time, and recheck the list
1930          * on every iteration.
1931          *
1932          * In particular, we must hold a reference whilst removing the
1933          * object as we may end up waiting for and/or retiring the objects.
1934          * This might release the final reference (held by the active list)
1935          * and result in the object being freed from under us. This is
1936          * similar to the precautions the eviction code must take whilst
1937          * removing objects.
1938          *
1939          * Also note that although these lists do not hold a reference to
1940          * the object we can safely grab one here: The final object
1941          * unreferencing and the bound_list are both protected by the
1942          * dev->struct_mutex and so we won't ever be able to observe an
1943          * object on the bound_list with a reference count equals 0.
1944          */
1945         INIT_LIST_HEAD(&still_in_list);
1946         while (count < target && !list_empty(&dev_priv->mm.unbound_list)) {
1947                 obj = list_first_entry(&dev_priv->mm.unbound_list,
1948                                        typeof(*obj), global_list);
1949                 list_move_tail(&obj->global_list, &still_in_list);
1950
1951                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1952                         continue;
1953
1954                 drm_gem_object_reference(&obj->base);
1955
1956                 if (i915_gem_object_put_pages(obj) == 0)
1957                         count += obj->base.size >> PAGE_SHIFT;
1958
1959                 drm_gem_object_unreference(&obj->base);
1960         }
1961         list_splice(&still_in_list, &dev_priv->mm.unbound_list);
1962
1963         INIT_LIST_HEAD(&still_in_list);
1964         while (count < target && !list_empty(&dev_priv->mm.bound_list)) {
1965                 struct i915_vma *vma, *v;
1966
1967                 obj = list_first_entry(&dev_priv->mm.bound_list,
1968                                        typeof(*obj), global_list);
1969                 list_move_tail(&obj->global_list, &still_in_list);
1970
1971                 if (!i915_gem_object_is_purgeable(obj) && purgeable_only)
1972                         continue;
1973
1974                 drm_gem_object_reference(&obj->base);
1975
1976                 list_for_each_entry_safe(vma, v, &obj->vma_list, vma_link)
1977                         if (i915_vma_unbind(vma))
1978                                 break;
1979
1980                 if (i915_gem_object_put_pages(obj) == 0)
1981                         count += obj->base.size >> PAGE_SHIFT;
1982
1983                 drm_gem_object_unreference(&obj->base);
1984         }
1985         list_splice(&still_in_list, &dev_priv->mm.bound_list);
1986
1987         return count;
1988 }
1989
1990 static unsigned long
1991 i915_gem_purge(struct drm_i915_private *dev_priv, long target)
1992 {
1993         return __i915_gem_shrink(dev_priv, target, true);
1994 }
1995
1996 static unsigned long
1997 i915_gem_shrink_all(struct drm_i915_private *dev_priv)
1998 {
1999         i915_gem_evict_everything(dev_priv->dev);
2000         return __i915_gem_shrink(dev_priv, LONG_MAX, false);
2001 }
2002
2003 static int
2004 i915_gem_object_get_pages_gtt(struct drm_i915_gem_object *obj)
2005 {
2006         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2007         int page_count, i;
2008         struct address_space *mapping;
2009         struct sg_table *st;
2010         struct scatterlist *sg;
2011         struct sg_page_iter sg_iter;
2012         struct page *page;
2013         unsigned long last_pfn = 0;     /* suppress gcc warning */
2014         gfp_t gfp;
2015
2016         /* Assert that the object is not currently in any GPU domain. As it
2017          * wasn't in the GTT, there shouldn't be any way it could have been in
2018          * a GPU cache
2019          */
2020         BUG_ON(obj->base.read_domains & I915_GEM_GPU_DOMAINS);
2021         BUG_ON(obj->base.write_domain & I915_GEM_GPU_DOMAINS);
2022
2023         st = kmalloc(sizeof(*st), GFP_KERNEL);
2024         if (st == NULL)
2025                 return -ENOMEM;
2026
2027         page_count = obj->base.size / PAGE_SIZE;
2028         if (sg_alloc_table(st, page_count, GFP_KERNEL)) {
2029                 kfree(st);
2030                 return -ENOMEM;
2031         }
2032
2033         /* Get the list of pages out of our struct file.  They'll be pinned
2034          * at this point until we release them.
2035          *
2036          * Fail silently without starting the shrinker
2037          */
2038         mapping = file_inode(obj->base.filp)->i_mapping;
2039         gfp = mapping_gfp_mask(mapping);
2040         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2041         gfp &= ~(__GFP_IO | __GFP_WAIT);
2042         sg = st->sgl;
2043         st->nents = 0;
2044         for (i = 0; i < page_count; i++) {
2045                 page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2046                 if (IS_ERR(page)) {
2047                         i915_gem_purge(dev_priv, page_count);
2048                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2049                 }
2050                 if (IS_ERR(page)) {
2051                         /* We've tried hard to allocate the memory by reaping
2052                          * our own buffer, now let the real VM do its job and
2053                          * go down in flames if truly OOM.
2054                          */
2055                         gfp &= ~(__GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD);
2056                         gfp |= __GFP_IO | __GFP_WAIT;
2057
2058                         i915_gem_shrink_all(dev_priv);
2059                         page = shmem_read_mapping_page_gfp(mapping, i, gfp);
2060                         if (IS_ERR(page))
2061                                 goto err_pages;
2062
2063                         gfp |= __GFP_NORETRY | __GFP_NOWARN | __GFP_NO_KSWAPD;
2064                         gfp &= ~(__GFP_IO | __GFP_WAIT);
2065                 }
2066 #ifdef CONFIG_SWIOTLB
2067                 if (swiotlb_nr_tbl()) {
2068                         st->nents++;
2069                         sg_set_page(sg, page, PAGE_SIZE, 0);
2070                         sg = sg_next(sg);
2071                         continue;
2072                 }
2073 #endif
2074                 if (!i || page_to_pfn(page) != last_pfn + 1) {
2075                         if (i)
2076                                 sg = sg_next(sg);
2077                         st->nents++;
2078                         sg_set_page(sg, page, PAGE_SIZE, 0);
2079                 } else {
2080                         sg->length += PAGE_SIZE;
2081                 }
2082                 last_pfn = page_to_pfn(page);
2083
2084                 /* Check that the i965g/gm workaround works. */
2085                 WARN_ON((gfp & __GFP_DMA32) && (last_pfn >= 0x00100000UL));
2086         }
2087 #ifdef CONFIG_SWIOTLB
2088         if (!swiotlb_nr_tbl())
2089 #endif
2090                 sg_mark_end(sg);
2091         obj->pages = st;
2092
2093         if (i915_gem_object_needs_bit17_swizzle(obj))
2094                 i915_gem_object_do_bit_17_swizzle(obj);
2095
2096         return 0;
2097
2098 err_pages:
2099         sg_mark_end(sg);
2100         for_each_sg_page(st->sgl, &sg_iter, st->nents, 0)
2101                 page_cache_release(sg_page_iter_page(&sg_iter));
2102         sg_free_table(st);
2103         kfree(st);
2104
2105         /* shmemfs first checks if there is enough memory to allocate the page
2106          * and reports ENOSPC should there be insufficient, along with the usual
2107          * ENOMEM for a genuine allocation failure.
2108          *
2109          * We use ENOSPC in our driver to mean that we have run out of aperture
2110          * space and so want to translate the error from shmemfs back to our
2111          * usual understanding of ENOMEM.
2112          */
2113         if (PTR_ERR(page) == -ENOSPC)
2114                 return -ENOMEM;
2115         else
2116                 return PTR_ERR(page);
2117 }
2118
2119 /* Ensure that the associated pages are gathered from the backing storage
2120  * and pinned into our object. i915_gem_object_get_pages() may be called
2121  * multiple times before they are released by a single call to
2122  * i915_gem_object_put_pages() - once the pages are no longer referenced
2123  * either as a result of memory pressure (reaping pages under the shrinker)
2124  * or as the object is itself released.
2125  */
2126 int
2127 i915_gem_object_get_pages(struct drm_i915_gem_object *obj)
2128 {
2129         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2130         const struct drm_i915_gem_object_ops *ops = obj->ops;
2131         int ret;
2132
2133         if (obj->pages)
2134                 return 0;
2135
2136         if (obj->madv != I915_MADV_WILLNEED) {
2137                 DRM_DEBUG("Attempting to obtain a purgeable object\n");
2138                 return -EFAULT;
2139         }
2140
2141         BUG_ON(obj->pages_pin_count);
2142
2143         ret = ops->get_pages(obj);
2144         if (ret)
2145                 return ret;
2146
2147         list_add_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2148         return 0;
2149 }
2150
2151 static void
2152 i915_gem_object_move_to_active(struct drm_i915_gem_object *obj,
2153                                struct intel_engine_cs *ring)
2154 {
2155         struct drm_device *dev = obj->base.dev;
2156         struct drm_i915_private *dev_priv = dev->dev_private;
2157         u32 seqno = intel_ring_get_seqno(ring);
2158
2159         BUG_ON(ring == NULL);
2160         if (obj->ring != ring && obj->last_write_seqno) {
2161                 /* Keep the seqno relative to the current ring */
2162                 obj->last_write_seqno = seqno;
2163         }
2164         obj->ring = ring;
2165
2166         /* Add a reference if we're newly entering the active list. */
2167         if (!obj->active) {
2168                 drm_gem_object_reference(&obj->base);
2169                 obj->active = 1;
2170         }
2171
2172         list_move_tail(&obj->ring_list, &ring->active_list);
2173
2174         obj->last_read_seqno = seqno;
2175
2176         if (obj->fenced_gpu_access) {
2177                 obj->last_fenced_seqno = seqno;
2178
2179                 /* Bump MRU to take account of the delayed flush */
2180                 if (obj->fence_reg != I915_FENCE_REG_NONE) {
2181                         struct drm_i915_fence_reg *reg;
2182
2183                         reg = &dev_priv->fence_regs[obj->fence_reg];
2184                         list_move_tail(&reg->lru_list,
2185                                        &dev_priv->mm.fence_list);
2186                 }
2187         }
2188 }
2189
2190 void i915_vma_move_to_active(struct i915_vma *vma,
2191                              struct intel_engine_cs *ring)
2192 {
2193         list_move_tail(&vma->mm_list, &vma->vm->active_list);
2194         return i915_gem_object_move_to_active(vma->obj, ring);
2195 }
2196
2197 static void
2198 i915_gem_object_move_to_inactive(struct drm_i915_gem_object *obj)
2199 {
2200         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2201         struct i915_address_space *vm;
2202         struct i915_vma *vma;
2203
2204         BUG_ON(obj->base.write_domain & ~I915_GEM_GPU_DOMAINS);
2205         BUG_ON(!obj->active);
2206
2207         list_for_each_entry(vm, &dev_priv->vm_list, global_link) {
2208                 vma = i915_gem_obj_to_vma(obj, vm);
2209                 if (vma && !list_empty(&vma->mm_list))
2210                         list_move_tail(&vma->mm_list, &vm->inactive_list);
2211         }
2212
2213         list_del_init(&obj->ring_list);
2214         obj->ring = NULL;
2215
2216         obj->last_read_seqno = 0;
2217         obj->last_write_seqno = 0;
2218         obj->base.write_domain = 0;
2219
2220         obj->last_fenced_seqno = 0;
2221         obj->fenced_gpu_access = false;
2222
2223         obj->active = 0;
2224         drm_gem_object_unreference(&obj->base);
2225
2226         WARN_ON(i915_verify_lists(dev));
2227 }
2228
2229 static void
2230 i915_gem_object_retire(struct drm_i915_gem_object *obj)
2231 {
2232         struct intel_engine_cs *ring = obj->ring;
2233
2234         if (ring == NULL)
2235                 return;
2236
2237         if (i915_seqno_passed(ring->get_seqno(ring, true),
2238                               obj->last_read_seqno))
2239                 i915_gem_object_move_to_inactive(obj);
2240 }
2241
2242 static int
2243 i915_gem_init_seqno(struct drm_device *dev, u32 seqno)
2244 {
2245         struct drm_i915_private *dev_priv = dev->dev_private;
2246         struct intel_engine_cs *ring;
2247         int ret, i, j;
2248
2249         /* Carefully retire all requests without writing to the rings */
2250         for_each_ring(ring, dev_priv, i) {
2251                 ret = intel_ring_idle(ring);
2252                 if (ret)
2253                         return ret;
2254         }
2255         i915_gem_retire_requests(dev);
2256
2257         /* Finally reset hw state */
2258         for_each_ring(ring, dev_priv, i) {
2259                 intel_ring_init_seqno(ring, seqno);
2260
2261                 for (j = 0; j < ARRAY_SIZE(ring->semaphore.sync_seqno); j++)
2262                         ring->semaphore.sync_seqno[j] = 0;
2263         }
2264
2265         return 0;
2266 }
2267
2268 int i915_gem_set_seqno(struct drm_device *dev, u32 seqno)
2269 {
2270         struct drm_i915_private *dev_priv = dev->dev_private;
2271         int ret;
2272
2273         if (seqno == 0)
2274                 return -EINVAL;
2275
2276         /* HWS page needs to be set less than what we
2277          * will inject to ring
2278          */
2279         ret = i915_gem_init_seqno(dev, seqno - 1);
2280         if (ret)
2281                 return ret;
2282
2283         /* Carefully set the last_seqno value so that wrap
2284          * detection still works
2285          */
2286         dev_priv->next_seqno = seqno;
2287         dev_priv->last_seqno = seqno - 1;
2288         if (dev_priv->last_seqno == 0)
2289                 dev_priv->last_seqno--;
2290
2291         return 0;
2292 }
2293
2294 int
2295 i915_gem_get_seqno(struct drm_device *dev, u32 *seqno)
2296 {
2297         struct drm_i915_private *dev_priv = dev->dev_private;
2298
2299         /* reserve 0 for non-seqno */
2300         if (dev_priv->next_seqno == 0) {
2301                 int ret = i915_gem_init_seqno(dev, 0);
2302                 if (ret)
2303                         return ret;
2304
2305                 dev_priv->next_seqno = 1;
2306         }
2307
2308         *seqno = dev_priv->last_seqno = dev_priv->next_seqno++;
2309         return 0;
2310 }
2311
2312 int __i915_add_request(struct intel_engine_cs *ring,
2313                        struct drm_file *file,
2314                        struct drm_i915_gem_object *obj,
2315                        u32 *out_seqno)
2316 {
2317         struct drm_i915_private *dev_priv = ring->dev->dev_private;
2318         struct drm_i915_gem_request *request;
2319         u32 request_ring_position, request_start;
2320         int ret;
2321
2322         request_start = intel_ring_get_tail(ring);
2323         /*
2324          * Emit any outstanding flushes - execbuf can fail to emit the flush
2325          * after having emitted the batchbuffer command. Hence we need to fix
2326          * things up similar to emitting the lazy request. The difference here
2327          * is that the flush _must_ happen before the next request, no matter
2328          * what.
2329          */
2330         ret = intel_ring_flush_all_caches(ring);
2331         if (ret)
2332                 return ret;
2333
2334         request = ring->preallocated_lazy_request;
2335         if (WARN_ON(request == NULL))
2336                 return -ENOMEM;
2337
2338         /* Record the position of the start of the request so that
2339          * should we detect the updated seqno part-way through the
2340          * GPU processing the request, we never over-estimate the
2341          * position of the head.
2342          */
2343         request_ring_position = intel_ring_get_tail(ring);
2344
2345         ret = ring->add_request(ring);
2346         if (ret)
2347                 return ret;
2348
2349         request->seqno = intel_ring_get_seqno(ring);
2350         request->ring = ring;
2351         request->head = request_start;
2352         request->tail = request_ring_position;
2353
2354         /* Whilst this request exists, batch_obj will be on the
2355          * active_list, and so will hold the active reference. Only when this
2356          * request is retired will the the batch_obj be moved onto the
2357          * inactive_list and lose its active reference. Hence we do not need
2358          * to explicitly hold another reference here.
2359          */
2360         request->batch_obj = obj;
2361
2362         /* Hold a reference to the current context so that we can inspect
2363          * it later in case a hangcheck error event fires.
2364          */
2365         request->ctx = ring->last_context;
2366         if (request->ctx)
2367                 i915_gem_context_reference(request->ctx);
2368
2369         request->emitted_jiffies = jiffies;
2370         list_add_tail(&request->list, &ring->request_list);
2371         request->file_priv = NULL;
2372
2373         if (file) {
2374                 struct drm_i915_file_private *file_priv = file->driver_priv;
2375
2376                 spin_lock(&file_priv->mm.lock);
2377                 request->file_priv = file_priv;
2378                 list_add_tail(&request->client_list,
2379                               &file_priv->mm.request_list);
2380                 spin_unlock(&file_priv->mm.lock);
2381         }
2382
2383         trace_i915_gem_request_add(ring, request->seqno);
2384         ring->outstanding_lazy_seqno = 0;
2385         ring->preallocated_lazy_request = NULL;
2386
2387         if (!dev_priv->ums.mm_suspended) {
2388                 i915_queue_hangcheck(ring->dev);
2389
2390                 cancel_delayed_work_sync(&dev_priv->mm.idle_work);
2391                 queue_delayed_work(dev_priv->wq,
2392                                    &dev_priv->mm.retire_work,
2393                                    round_jiffies_up_relative(HZ));
2394                 intel_mark_busy(dev_priv->dev);
2395         }
2396
2397         if (out_seqno)
2398                 *out_seqno = request->seqno;
2399         return 0;
2400 }
2401
2402 static inline void
2403 i915_gem_request_remove_from_client(struct drm_i915_gem_request *request)
2404 {
2405         struct drm_i915_file_private *file_priv = request->file_priv;
2406
2407         if (!file_priv)
2408                 return;
2409
2410         spin_lock(&file_priv->mm.lock);
2411         list_del(&request->client_list);
2412         request->file_priv = NULL;
2413         spin_unlock(&file_priv->mm.lock);
2414 }
2415
2416 static bool i915_context_is_banned(struct drm_i915_private *dev_priv,
2417                                    const struct intel_context *ctx)
2418 {
2419         unsigned long elapsed;
2420
2421         elapsed = get_seconds() - ctx->hang_stats.guilty_ts;
2422
2423         if (ctx->hang_stats.banned)
2424                 return true;
2425
2426         if (elapsed <= DRM_I915_CTX_BAN_PERIOD) {
2427                 if (!i915_gem_context_is_default(ctx)) {
2428                         DRM_DEBUG("context hanging too fast, banning!\n");
2429                         return true;
2430                 } else if (i915_stop_ring_allow_ban(dev_priv)) {
2431                         if (i915_stop_ring_allow_warn(dev_priv))
2432                                 DRM_ERROR("gpu hanging too fast, banning!\n");
2433                         return true;
2434                 }
2435         }
2436
2437         return false;
2438 }
2439
2440 static void i915_set_reset_status(struct drm_i915_private *dev_priv,
2441                                   struct intel_context *ctx,
2442                                   const bool guilty)
2443 {
2444         struct i915_ctx_hang_stats *hs;
2445
2446         if (WARN_ON(!ctx))
2447                 return;
2448
2449         hs = &ctx->hang_stats;
2450
2451         if (guilty) {
2452                 hs->banned = i915_context_is_banned(dev_priv, ctx);
2453                 hs->batch_active++;
2454                 hs->guilty_ts = get_seconds();
2455         } else {
2456                 hs->batch_pending++;
2457         }
2458 }
2459
2460 static void i915_gem_free_request(struct drm_i915_gem_request *request)
2461 {
2462         list_del(&request->list);
2463         i915_gem_request_remove_from_client(request);
2464
2465         if (request->ctx)
2466                 i915_gem_context_unreference(request->ctx);
2467
2468         kfree(request);
2469 }
2470
2471 struct drm_i915_gem_request *
2472 i915_gem_find_active_request(struct intel_engine_cs *ring)
2473 {
2474         struct drm_i915_gem_request *request;
2475         u32 completed_seqno;
2476
2477         completed_seqno = ring->get_seqno(ring, false);
2478
2479         list_for_each_entry(request, &ring->request_list, list) {
2480                 if (i915_seqno_passed(completed_seqno, request->seqno))
2481                         continue;
2482
2483                 return request;
2484         }
2485
2486         return NULL;
2487 }
2488
2489 static void i915_gem_reset_ring_status(struct drm_i915_private *dev_priv,
2490                                        struct intel_engine_cs *ring)
2491 {
2492         struct drm_i915_gem_request *request;
2493         bool ring_hung;
2494
2495         request = i915_gem_find_active_request(ring);
2496
2497         if (request == NULL)
2498                 return;
2499
2500         ring_hung = ring->hangcheck.score >= HANGCHECK_SCORE_RING_HUNG;
2501
2502         i915_set_reset_status(dev_priv, request->ctx, ring_hung);
2503
2504         list_for_each_entry_continue(request, &ring->request_list, list)
2505                 i915_set_reset_status(dev_priv, request->ctx, false);
2506 }
2507
2508 static void i915_gem_reset_ring_cleanup(struct drm_i915_private *dev_priv,
2509                                         struct intel_engine_cs *ring)
2510 {
2511         while (!list_empty(&ring->active_list)) {
2512                 struct drm_i915_gem_object *obj;
2513
2514                 obj = list_first_entry(&ring->active_list,
2515                                        struct drm_i915_gem_object,
2516                                        ring_list);
2517
2518                 i915_gem_object_move_to_inactive(obj);
2519         }
2520
2521         /*
2522          * We must free the requests after all the corresponding objects have
2523          * been moved off active lists. Which is the same order as the normal
2524          * retire_requests function does. This is important if object hold
2525          * implicit references on things like e.g. ppgtt address spaces through
2526          * the request.
2527          */
2528         while (!list_empty(&ring->request_list)) {
2529                 struct drm_i915_gem_request *request;
2530
2531                 request = list_first_entry(&ring->request_list,
2532                                            struct drm_i915_gem_request,
2533                                            list);
2534
2535                 i915_gem_free_request(request);
2536         }
2537
2538         /* These may not have been flush before the reset, do so now */
2539         kfree(ring->preallocated_lazy_request);
2540         ring->preallocated_lazy_request = NULL;
2541         ring->outstanding_lazy_seqno = 0;
2542 }
2543
2544 void i915_gem_restore_fences(struct drm_device *dev)
2545 {
2546         struct drm_i915_private *dev_priv = dev->dev_private;
2547         int i;
2548
2549         for (i = 0; i < dev_priv->num_fence_regs; i++) {
2550                 struct drm_i915_fence_reg *reg = &dev_priv->fence_regs[i];
2551
2552                 /*
2553                  * Commit delayed tiling changes if we have an object still
2554                  * attached to the fence, otherwise just clear the fence.
2555                  */
2556                 if (reg->obj) {
2557                         i915_gem_object_update_fence(reg->obj, reg,
2558                                                      reg->obj->tiling_mode);
2559                 } else {
2560                         i915_gem_write_fence(dev, i, NULL);
2561                 }
2562         }
2563 }
2564
2565 void i915_gem_reset(struct drm_device *dev)
2566 {
2567         struct drm_i915_private *dev_priv = dev->dev_private;
2568         struct intel_engine_cs *ring;
2569         int i;
2570
2571         /*
2572          * Before we free the objects from the requests, we need to inspect
2573          * them for finding the guilty party. As the requests only borrow
2574          * their reference to the objects, the inspection must be done first.
2575          */
2576         for_each_ring(ring, dev_priv, i)
2577                 i915_gem_reset_ring_status(dev_priv, ring);
2578
2579         for_each_ring(ring, dev_priv, i)
2580                 i915_gem_reset_ring_cleanup(dev_priv, ring);
2581
2582         i915_gem_context_reset(dev);
2583
2584         i915_gem_restore_fences(dev);
2585 }
2586
2587 /**
2588  * This function clears the request list as sequence numbers are passed.
2589  */
2590 void
2591 i915_gem_retire_requests_ring(struct intel_engine_cs *ring)
2592 {
2593         uint32_t seqno;
2594
2595         if (list_empty(&ring->request_list))
2596                 return;
2597
2598         WARN_ON(i915_verify_lists(ring->dev));
2599
2600         seqno = ring->get_seqno(ring, true);
2601
2602         /* Move any buffers on the active list that are no longer referenced
2603          * by the ringbuffer to the flushing/inactive lists as appropriate,
2604          * before we free the context associated with the requests.
2605          */
2606         while (!list_empty(&ring->active_list)) {
2607                 struct drm_i915_gem_object *obj;
2608
2609                 obj = list_first_entry(&ring->active_list,
2610                                       struct drm_i915_gem_object,
2611                                       ring_list);
2612
2613                 if (!i915_seqno_passed(seqno, obj->last_read_seqno))
2614                         break;
2615
2616                 i915_gem_object_move_to_inactive(obj);
2617         }
2618
2619
2620         while (!list_empty(&ring->request_list)) {
2621                 struct drm_i915_gem_request *request;
2622
2623                 request = list_first_entry(&ring->request_list,
2624                                            struct drm_i915_gem_request,
2625                                            list);
2626
2627                 if (!i915_seqno_passed(seqno, request->seqno))
2628                         break;
2629
2630                 trace_i915_gem_request_retire(ring, request->seqno);
2631                 /* We know the GPU must have read the request to have
2632                  * sent us the seqno + interrupt, so use the position
2633                  * of tail of the request to update the last known position
2634                  * of the GPU head.
2635                  */
2636                 ring->buffer->last_retired_head = request->tail;
2637
2638                 i915_gem_free_request(request);
2639         }
2640
2641         if (unlikely(ring->trace_irq_seqno &&
2642                      i915_seqno_passed(seqno, ring->trace_irq_seqno))) {
2643                 ring->irq_put(ring);
2644                 ring->trace_irq_seqno = 0;
2645         }
2646
2647         WARN_ON(i915_verify_lists(ring->dev));
2648 }
2649
2650 bool
2651 i915_gem_retire_requests(struct drm_device *dev)
2652 {
2653         struct drm_i915_private *dev_priv = dev->dev_private;
2654         struct intel_engine_cs *ring;
2655         bool idle = true;
2656         int i;
2657
2658         for_each_ring(ring, dev_priv, i) {
2659                 i915_gem_retire_requests_ring(ring);
2660                 idle &= list_empty(&ring->request_list);
2661         }
2662
2663         if (idle)
2664                 mod_delayed_work(dev_priv->wq,
2665                                    &dev_priv->mm.idle_work,
2666                                    msecs_to_jiffies(100));
2667
2668         return idle;
2669 }
2670
2671 static void
2672 i915_gem_retire_work_handler(struct work_struct *work)
2673 {
2674         struct drm_i915_private *dev_priv =
2675                 container_of(work, typeof(*dev_priv), mm.retire_work.work);
2676         struct drm_device *dev = dev_priv->dev;
2677         bool idle;
2678
2679         /* Come back later if the device is busy... */
2680         idle = false;
2681         if (mutex_trylock(&dev->struct_mutex)) {
2682                 idle = i915_gem_retire_requests(dev);
2683                 mutex_unlock(&dev->struct_mutex);
2684         }
2685         if (!idle)
2686                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work,
2687                                    round_jiffies_up_relative(HZ));
2688 }
2689
2690 static void
2691 i915_gem_idle_work_handler(struct work_struct *work)
2692 {
2693         struct drm_i915_private *dev_priv =
2694                 container_of(work, typeof(*dev_priv), mm.idle_work.work);
2695
2696         intel_mark_idle(dev_priv->dev);
2697 }
2698
2699 /**
2700  * Ensures that an object will eventually get non-busy by flushing any required
2701  * write domains, emitting any outstanding lazy request and retiring and
2702  * completed requests.
2703  */
2704 static int
2705 i915_gem_object_flush_active(struct drm_i915_gem_object *obj)
2706 {
2707         int ret;
2708
2709         if (obj->active) {
2710                 ret = i915_gem_check_olr(obj->ring, obj->last_read_seqno);
2711                 if (ret)
2712                         return ret;
2713
2714                 i915_gem_retire_requests_ring(obj->ring);
2715         }
2716
2717         return 0;
2718 }
2719
2720 /**
2721  * i915_gem_wait_ioctl - implements DRM_IOCTL_I915_GEM_WAIT
2722  * @DRM_IOCTL_ARGS: standard ioctl arguments
2723  *
2724  * Returns 0 if successful, else an error is returned with the remaining time in
2725  * the timeout parameter.
2726  *  -ETIME: object is still busy after timeout
2727  *  -ERESTARTSYS: signal interrupted the wait
2728  *  -ENONENT: object doesn't exist
2729  * Also possible, but rare:
2730  *  -EAGAIN: GPU wedged
2731  *  -ENOMEM: damn
2732  *  -ENODEV: Internal IRQ fail
2733  *  -E?: The add request failed
2734  *
2735  * The wait ioctl with a timeout of 0 reimplements the busy ioctl. With any
2736  * non-zero timeout parameter the wait ioctl will wait for the given number of
2737  * nanoseconds on an object becoming unbusy. Since the wait itself does so
2738  * without holding struct_mutex the object may become re-busied before this
2739  * function completes. A similar but shorter * race condition exists in the busy
2740  * ioctl
2741  */
2742 int
2743 i915_gem_wait_ioctl(struct drm_device *dev, void *data, struct drm_file *file)
2744 {
2745         struct drm_i915_private *dev_priv = dev->dev_private;
2746         struct drm_i915_gem_wait *args = data;
2747         struct drm_i915_gem_object *obj;
2748         struct intel_engine_cs *ring = NULL;
2749         struct timespec timeout_stack, *timeout = NULL;
2750         unsigned reset_counter;
2751         u32 seqno = 0;
2752         int ret = 0;
2753
2754         if (args->timeout_ns >= 0) {
2755                 timeout_stack = ns_to_timespec(args->timeout_ns);
2756                 timeout = &timeout_stack;
2757         }
2758
2759         ret = i915_mutex_lock_interruptible(dev);
2760         if (ret)
2761                 return ret;
2762
2763         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->bo_handle));
2764         if (&obj->base == NULL) {
2765                 mutex_unlock(&dev->struct_mutex);
2766                 return -ENOENT;
2767         }
2768
2769         /* Need to make sure the object gets inactive eventually. */
2770         ret = i915_gem_object_flush_active(obj);
2771         if (ret)
2772                 goto out;
2773
2774         if (obj->active) {
2775                 seqno = obj->last_read_seqno;
2776                 ring = obj->ring;
2777         }
2778
2779         if (seqno == 0)
2780                  goto out;
2781
2782         /* Do this after OLR check to make sure we make forward progress polling
2783          * on this IOCTL with a 0 timeout (like busy ioctl)
2784          */
2785         if (!args->timeout_ns) {
2786                 ret = -ETIME;
2787                 goto out;
2788         }
2789
2790         drm_gem_object_unreference(&obj->base);
2791         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
2792         mutex_unlock(&dev->struct_mutex);
2793
2794         ret = __wait_seqno(ring, seqno, reset_counter, true, timeout, file->driver_priv);
2795         if (timeout)
2796                 args->timeout_ns = timespec_to_ns(timeout);
2797         return ret;
2798
2799 out:
2800         drm_gem_object_unreference(&obj->base);
2801         mutex_unlock(&dev->struct_mutex);
2802         return ret;
2803 }
2804
2805 /**
2806  * i915_gem_object_sync - sync an object to a ring.
2807  *
2808  * @obj: object which may be in use on another ring.
2809  * @to: ring we wish to use the object on. May be NULL.
2810  *
2811  * This code is meant to abstract object synchronization with the GPU.
2812  * Calling with NULL implies synchronizing the object with the CPU
2813  * rather than a particular GPU ring.
2814  *
2815  * Returns 0 if successful, else propagates up the lower layer error.
2816  */
2817 int
2818 i915_gem_object_sync(struct drm_i915_gem_object *obj,
2819                      struct intel_engine_cs *to)
2820 {
2821         struct intel_engine_cs *from = obj->ring;
2822         u32 seqno;
2823         int ret, idx;
2824
2825         if (from == NULL || to == from)
2826                 return 0;
2827
2828         if (to == NULL || !i915_semaphore_is_enabled(obj->base.dev))
2829                 return i915_gem_object_wait_rendering(obj, false);
2830
2831         idx = intel_ring_sync_index(from, to);
2832
2833         seqno = obj->last_read_seqno;
2834         if (seqno <= from->semaphore.sync_seqno[idx])
2835                 return 0;
2836
2837         ret = i915_gem_check_olr(obj->ring, seqno);
2838         if (ret)
2839                 return ret;
2840
2841         trace_i915_gem_ring_sync_to(from, to, seqno);
2842         ret = to->semaphore.sync_to(to, from, seqno);
2843         if (!ret)
2844                 /* We use last_read_seqno because sync_to()
2845                  * might have just caused seqno wrap under
2846                  * the radar.
2847                  */
2848                 from->semaphore.sync_seqno[idx] = obj->last_read_seqno;
2849
2850         return ret;
2851 }
2852
2853 static void i915_gem_object_finish_gtt(struct drm_i915_gem_object *obj)
2854 {
2855         u32 old_write_domain, old_read_domains;
2856
2857         /* Force a pagefault for domain tracking on next user access */
2858         i915_gem_release_mmap(obj);
2859
2860         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
2861                 return;
2862
2863         /* Wait for any direct GTT access to complete */
2864         mb();
2865
2866         old_read_domains = obj->base.read_domains;
2867         old_write_domain = obj->base.write_domain;
2868
2869         obj->base.read_domains &= ~I915_GEM_DOMAIN_GTT;
2870         obj->base.write_domain &= ~I915_GEM_DOMAIN_GTT;
2871
2872         trace_i915_gem_object_change_domain(obj,
2873                                             old_read_domains,
2874                                             old_write_domain);
2875 }
2876
2877 int i915_vma_unbind(struct i915_vma *vma)
2878 {
2879         struct drm_i915_gem_object *obj = vma->obj;
2880         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
2881         int ret;
2882
2883         if (list_empty(&vma->vma_link))
2884                 return 0;
2885
2886         if (!drm_mm_node_allocated(&vma->node)) {
2887                 i915_gem_vma_destroy(vma);
2888                 return 0;
2889         }
2890
2891         if (vma->pin_count)
2892                 return -EBUSY;
2893
2894         BUG_ON(obj->pages == NULL);
2895
2896         ret = i915_gem_object_finish_gpu(obj);
2897         if (ret)
2898                 return ret;
2899         /* Continue on if we fail due to EIO, the GPU is hung so we
2900          * should be safe and we need to cleanup or else we might
2901          * cause memory corruption through use-after-free.
2902          */
2903
2904         if (i915_is_ggtt(vma->vm)) {
2905                 i915_gem_object_finish_gtt(obj);
2906
2907                 /* release the fence reg _after_ flushing */
2908                 ret = i915_gem_object_put_fence(obj);
2909                 if (ret)
2910                         return ret;
2911         }
2912
2913         trace_i915_vma_unbind(vma);
2914
2915         vma->unbind_vma(vma);
2916
2917         i915_gem_gtt_finish_object(obj);
2918
2919         list_del_init(&vma->mm_list);
2920         /* Avoid an unnecessary call to unbind on rebind. */
2921         if (i915_is_ggtt(vma->vm))
2922                 obj->map_and_fenceable = true;
2923
2924         drm_mm_remove_node(&vma->node);
2925         i915_gem_vma_destroy(vma);
2926
2927         /* Since the unbound list is global, only move to that list if
2928          * no more VMAs exist. */
2929         if (list_empty(&obj->vma_list))
2930                 list_move_tail(&obj->global_list, &dev_priv->mm.unbound_list);
2931
2932         /* And finally now the object is completely decoupled from this vma,
2933          * we can drop its hold on the backing storage and allow it to be
2934          * reaped by the shrinker.
2935          */
2936         i915_gem_object_unpin_pages(obj);
2937
2938         return 0;
2939 }
2940
2941 int i915_gpu_idle(struct drm_device *dev)
2942 {
2943         struct drm_i915_private *dev_priv = dev->dev_private;
2944         struct intel_engine_cs *ring;
2945         int ret, i;
2946
2947         /* Flush everything onto the inactive list. */
2948         for_each_ring(ring, dev_priv, i) {
2949                 ret = i915_switch_context(ring, ring->default_context);
2950                 if (ret)
2951                         return ret;
2952
2953                 ret = intel_ring_idle(ring);
2954                 if (ret)
2955                         return ret;
2956         }
2957
2958         return 0;
2959 }
2960
2961 static void i965_write_fence_reg(struct drm_device *dev, int reg,
2962                                  struct drm_i915_gem_object *obj)
2963 {
2964         struct drm_i915_private *dev_priv = dev->dev_private;
2965         int fence_reg;
2966         int fence_pitch_shift;
2967
2968         if (INTEL_INFO(dev)->gen >= 6) {
2969                 fence_reg = FENCE_REG_SANDYBRIDGE_0;
2970                 fence_pitch_shift = SANDYBRIDGE_FENCE_PITCH_SHIFT;
2971         } else {
2972                 fence_reg = FENCE_REG_965_0;
2973                 fence_pitch_shift = I965_FENCE_PITCH_SHIFT;
2974         }
2975
2976         fence_reg += reg * 8;
2977
2978         /* To w/a incoherency with non-atomic 64-bit register updates,
2979          * we split the 64-bit update into two 32-bit writes. In order
2980          * for a partial fence not to be evaluated between writes, we
2981          * precede the update with write to turn off the fence register,
2982          * and only enable the fence as the last step.
2983          *
2984          * For extra levels of paranoia, we make sure each step lands
2985          * before applying the next step.
2986          */
2987         I915_WRITE(fence_reg, 0);
2988         POSTING_READ(fence_reg);
2989
2990         if (obj) {
2991                 u32 size = i915_gem_obj_ggtt_size(obj);
2992                 uint64_t val;
2993
2994                 /* Adjust fence size to match tiled area */
2995                 if (obj->tiling_mode != I915_TILING_NONE) {
2996                         uint32_t row_size = obj->stride *
2997                                 (obj->tiling_mode == I915_TILING_Y ? 32 : 8);
2998                         size = (size / row_size) * row_size;
2999                 }
3000
3001                 val = (uint64_t)((i915_gem_obj_ggtt_offset(obj) + size - 4096) &
3002                                  0xfffff000) << 32;
3003                 val |= i915_gem_obj_ggtt_offset(obj) & 0xfffff000;
3004                 val |= (uint64_t)((obj->stride / 128) - 1) << fence_pitch_shift;
3005                 if (obj->tiling_mode == I915_TILING_Y)
3006                         val |= 1 << I965_FENCE_TILING_Y_SHIFT;
3007                 val |= I965_FENCE_REG_VALID;
3008
3009                 I915_WRITE(fence_reg + 4, val >> 32);
3010                 POSTING_READ(fence_reg + 4);
3011
3012                 I915_WRITE(fence_reg + 0, val);
3013                 POSTING_READ(fence_reg);
3014         } else {
3015                 I915_WRITE(fence_reg + 4, 0);
3016                 POSTING_READ(fence_reg + 4);
3017         }
3018 }
3019
3020 static void i915_write_fence_reg(struct drm_device *dev, int reg,
3021                                  struct drm_i915_gem_object *obj)
3022 {
3023         struct drm_i915_private *dev_priv = dev->dev_private;
3024         u32 val;
3025
3026         if (obj) {
3027                 u32 size = i915_gem_obj_ggtt_size(obj);
3028                 int pitch_val;
3029                 int tile_width;
3030
3031                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I915_FENCE_START_MASK) ||
3032                      (size & -size) != size ||
3033                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3034                      "object 0x%08lx [fenceable? %d] not 1M or pot-size (0x%08x) aligned\n",
3035                      i915_gem_obj_ggtt_offset(obj), obj->map_and_fenceable, size);
3036
3037                 if (obj->tiling_mode == I915_TILING_Y && HAS_128_BYTE_Y_TILING(dev))
3038                         tile_width = 128;
3039                 else
3040                         tile_width = 512;
3041
3042                 /* Note: pitch better be a power of two tile widths */
3043                 pitch_val = obj->stride / tile_width;
3044                 pitch_val = ffs(pitch_val) - 1;
3045
3046                 val = i915_gem_obj_ggtt_offset(obj);
3047                 if (obj->tiling_mode == I915_TILING_Y)
3048                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3049                 val |= I915_FENCE_SIZE_BITS(size);
3050                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3051                 val |= I830_FENCE_REG_VALID;
3052         } else
3053                 val = 0;
3054
3055         if (reg < 8)
3056                 reg = FENCE_REG_830_0 + reg * 4;
3057         else
3058                 reg = FENCE_REG_945_8 + (reg - 8) * 4;
3059
3060         I915_WRITE(reg, val);
3061         POSTING_READ(reg);
3062 }
3063
3064 static void i830_write_fence_reg(struct drm_device *dev, int reg,
3065                                 struct drm_i915_gem_object *obj)
3066 {
3067         struct drm_i915_private *dev_priv = dev->dev_private;
3068         uint32_t val;
3069
3070         if (obj) {
3071                 u32 size = i915_gem_obj_ggtt_size(obj);
3072                 uint32_t pitch_val;
3073
3074                 WARN((i915_gem_obj_ggtt_offset(obj) & ~I830_FENCE_START_MASK) ||
3075                      (size & -size) != size ||
3076                      (i915_gem_obj_ggtt_offset(obj) & (size - 1)),
3077                      "object 0x%08lx not 512K or pot-size 0x%08x aligned\n",
3078                      i915_gem_obj_ggtt_offset(obj), size);
3079
3080                 pitch_val = obj->stride / 128;
3081                 pitch_val = ffs(pitch_val) - 1;
3082
3083                 val = i915_gem_obj_ggtt_offset(obj);
3084                 if (obj->tiling_mode == I915_TILING_Y)
3085                         val |= 1 << I830_FENCE_TILING_Y_SHIFT;
3086                 val |= I830_FENCE_SIZE_BITS(size);
3087                 val |= pitch_val << I830_FENCE_PITCH_SHIFT;
3088                 val |= I830_FENCE_REG_VALID;
3089         } else
3090                 val = 0;
3091
3092         I915_WRITE(FENCE_REG_830_0 + reg * 4, val);
3093         POSTING_READ(FENCE_REG_830_0 + reg * 4);
3094 }
3095
3096 inline static bool i915_gem_object_needs_mb(struct drm_i915_gem_object *obj)
3097 {
3098         return obj && obj->base.read_domains & I915_GEM_DOMAIN_GTT;
3099 }
3100
3101 static void i915_gem_write_fence(struct drm_device *dev, int reg,
3102                                  struct drm_i915_gem_object *obj)
3103 {
3104         struct drm_i915_private *dev_priv = dev->dev_private;
3105
3106         /* Ensure that all CPU reads are completed before installing a fence
3107          * and all writes before removing the fence.
3108          */
3109         if (i915_gem_object_needs_mb(dev_priv->fence_regs[reg].obj))
3110                 mb();
3111
3112         WARN(obj && (!obj->stride || !obj->tiling_mode),
3113              "bogus fence setup with stride: 0x%x, tiling mode: %i\n",
3114              obj->stride, obj->tiling_mode);
3115
3116         switch (INTEL_INFO(dev)->gen) {
3117         case 8:
3118         case 7:
3119         case 6:
3120         case 5:
3121         case 4: i965_write_fence_reg(dev, reg, obj); break;
3122         case 3: i915_write_fence_reg(dev, reg, obj); break;
3123         case 2: i830_write_fence_reg(dev, reg, obj); break;
3124         default: BUG();
3125         }
3126
3127         /* And similarly be paranoid that no direct access to this region
3128          * is reordered to before the fence is installed.
3129          */
3130         if (i915_gem_object_needs_mb(obj))
3131                 mb();
3132 }
3133
3134 static inline int fence_number(struct drm_i915_private *dev_priv,
3135                                struct drm_i915_fence_reg *fence)
3136 {
3137         return fence - dev_priv->fence_regs;
3138 }
3139
3140 static void i915_gem_object_update_fence(struct drm_i915_gem_object *obj,
3141                                          struct drm_i915_fence_reg *fence,
3142                                          bool enable)
3143 {
3144         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3145         int reg = fence_number(dev_priv, fence);
3146
3147         i915_gem_write_fence(obj->base.dev, reg, enable ? obj : NULL);
3148
3149         if (enable) {
3150                 obj->fence_reg = reg;
3151                 fence->obj = obj;
3152                 list_move_tail(&fence->lru_list, &dev_priv->mm.fence_list);
3153         } else {
3154                 obj->fence_reg = I915_FENCE_REG_NONE;
3155                 fence->obj = NULL;
3156                 list_del_init(&fence->lru_list);
3157         }
3158         obj->fence_dirty = false;
3159 }
3160
3161 static int
3162 i915_gem_object_wait_fence(struct drm_i915_gem_object *obj)
3163 {
3164         if (obj->last_fenced_seqno) {
3165                 int ret = i915_wait_seqno(obj->ring, obj->last_fenced_seqno);
3166                 if (ret)
3167                         return ret;
3168
3169                 obj->last_fenced_seqno = 0;
3170         }
3171
3172         obj->fenced_gpu_access = false;
3173         return 0;
3174 }
3175
3176 int
3177 i915_gem_object_put_fence(struct drm_i915_gem_object *obj)
3178 {
3179         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3180         struct drm_i915_fence_reg *fence;
3181         int ret;
3182
3183         ret = i915_gem_object_wait_fence(obj);
3184         if (ret)
3185                 return ret;
3186
3187         if (obj->fence_reg == I915_FENCE_REG_NONE)
3188                 return 0;
3189
3190         fence = &dev_priv->fence_regs[obj->fence_reg];
3191
3192         if (WARN_ON(fence->pin_count))
3193                 return -EBUSY;
3194
3195         i915_gem_object_fence_lost(obj);
3196         i915_gem_object_update_fence(obj, fence, false);
3197
3198         return 0;
3199 }
3200
3201 static struct drm_i915_fence_reg *
3202 i915_find_fence_reg(struct drm_device *dev)
3203 {
3204         struct drm_i915_private *dev_priv = dev->dev_private;
3205         struct drm_i915_fence_reg *reg, *avail;
3206         int i;
3207
3208         /* First try to find a free reg */
3209         avail = NULL;
3210         for (i = dev_priv->fence_reg_start; i < dev_priv->num_fence_regs; i++) {
3211                 reg = &dev_priv->fence_regs[i];
3212                 if (!reg->obj)
3213                         return reg;
3214
3215                 if (!reg->pin_count)
3216                         avail = reg;
3217         }
3218
3219         if (avail == NULL)
3220                 goto deadlock;
3221
3222         /* None available, try to steal one or wait for a user to finish */
3223         list_for_each_entry(reg, &dev_priv->mm.fence_list, lru_list) {
3224                 if (reg->pin_count)
3225                         continue;
3226
3227                 return reg;
3228         }
3229
3230 deadlock:
3231         /* Wait for completion of pending flips which consume fences */
3232         if (intel_has_pending_fb_unpin(dev))
3233                 return ERR_PTR(-EAGAIN);
3234
3235         return ERR_PTR(-EDEADLK);
3236 }
3237
3238 /**
3239  * i915_gem_object_get_fence - set up fencing for an object
3240  * @obj: object to map through a fence reg
3241  *
3242  * When mapping objects through the GTT, userspace wants to be able to write
3243  * to them without having to worry about swizzling if the object is tiled.
3244  * This function walks the fence regs looking for a free one for @obj,
3245  * stealing one if it can't find any.
3246  *
3247  * It then sets up the reg based on the object's properties: address, pitch
3248  * and tiling format.
3249  *
3250  * For an untiled surface, this removes any existing fence.
3251  */
3252 int
3253 i915_gem_object_get_fence(struct drm_i915_gem_object *obj)
3254 {
3255         struct drm_device *dev = obj->base.dev;
3256         struct drm_i915_private *dev_priv = dev->dev_private;
3257         bool enable = obj->tiling_mode != I915_TILING_NONE;
3258         struct drm_i915_fence_reg *reg;
3259         int ret;
3260
3261         /* Have we updated the tiling parameters upon the object and so
3262          * will need to serialise the write to the associated fence register?
3263          */
3264         if (obj->fence_dirty) {
3265                 ret = i915_gem_object_wait_fence(obj);
3266                 if (ret)
3267                         return ret;
3268         }
3269
3270         /* Just update our place in the LRU if our fence is getting reused. */
3271         if (obj->fence_reg != I915_FENCE_REG_NONE) {
3272                 reg = &dev_priv->fence_regs[obj->fence_reg];
3273                 if (!obj->fence_dirty) {
3274                         list_move_tail(&reg->lru_list,
3275                                        &dev_priv->mm.fence_list);
3276                         return 0;
3277                 }
3278         } else if (enable) {
3279                 reg = i915_find_fence_reg(dev);
3280                 if (IS_ERR(reg))
3281                         return PTR_ERR(reg);
3282
3283                 if (reg->obj) {
3284                         struct drm_i915_gem_object *old = reg->obj;
3285
3286                         ret = i915_gem_object_wait_fence(old);
3287                         if (ret)
3288                                 return ret;
3289
3290                         i915_gem_object_fence_lost(old);
3291                 }
3292         } else
3293                 return 0;
3294
3295         i915_gem_object_update_fence(obj, reg, enable);
3296
3297         return 0;
3298 }
3299
3300 static bool i915_gem_valid_gtt_space(struct drm_device *dev,
3301                                      struct drm_mm_node *gtt_space,
3302                                      unsigned long cache_level)
3303 {
3304         struct drm_mm_node *other;
3305
3306         /* On non-LLC machines we have to be careful when putting differing
3307          * types of snoopable memory together to avoid the prefetcher
3308          * crossing memory domains and dying.
3309          */
3310         if (HAS_LLC(dev))
3311                 return true;
3312
3313         if (!drm_mm_node_allocated(gtt_space))
3314                 return true;
3315
3316         if (list_empty(&gtt_space->node_list))
3317                 return true;
3318
3319         other = list_entry(gtt_space->node_list.prev, struct drm_mm_node, node_list);
3320         if (other->allocated && !other->hole_follows && other->color != cache_level)
3321                 return false;
3322
3323         other = list_entry(gtt_space->node_list.next, struct drm_mm_node, node_list);
3324         if (other->allocated && !gtt_space->hole_follows && other->color != cache_level)
3325                 return false;
3326
3327         return true;
3328 }
3329
3330 static void i915_gem_verify_gtt(struct drm_device *dev)
3331 {
3332 #if WATCH_GTT
3333         struct drm_i915_private *dev_priv = dev->dev_private;
3334         struct drm_i915_gem_object *obj;
3335         int err = 0;
3336
3337         list_for_each_entry(obj, &dev_priv->mm.gtt_list, global_list) {
3338                 if (obj->gtt_space == NULL) {
3339                         printk(KERN_ERR "object found on GTT list with no space reserved\n");
3340                         err++;
3341                         continue;
3342                 }
3343
3344                 if (obj->cache_level != obj->gtt_space->color) {
3345                         printk(KERN_ERR "object reserved space [%08lx, %08lx] with wrong color, cache_level=%x, color=%lx\n",
3346                                i915_gem_obj_ggtt_offset(obj),
3347                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3348                                obj->cache_level,
3349                                obj->gtt_space->color);
3350                         err++;
3351                         continue;
3352                 }
3353
3354                 if (!i915_gem_valid_gtt_space(dev,
3355                                               obj->gtt_space,
3356                                               obj->cache_level)) {
3357                         printk(KERN_ERR "invalid GTT space found at [%08lx, %08lx] - color=%x\n",
3358                                i915_gem_obj_ggtt_offset(obj),
3359                                i915_gem_obj_ggtt_offset(obj) + i915_gem_obj_ggtt_size(obj),
3360                                obj->cache_level);
3361                         err++;
3362                         continue;
3363                 }
3364         }
3365
3366         WARN_ON(err);
3367 #endif
3368 }
3369
3370 /**
3371  * Finds free space in the GTT aperture and binds the object there.
3372  */
3373 static struct i915_vma *
3374 i915_gem_object_bind_to_vm(struct drm_i915_gem_object *obj,
3375                            struct i915_address_space *vm,
3376                            unsigned alignment,
3377                            uint64_t flags)
3378 {
3379         struct drm_device *dev = obj->base.dev;
3380         struct drm_i915_private *dev_priv = dev->dev_private;
3381         u32 size, fence_size, fence_alignment, unfenced_alignment;
3382         unsigned long start =
3383                 flags & PIN_OFFSET_BIAS ? flags & PIN_OFFSET_MASK : 0;
3384         unsigned long end =
3385                 flags & PIN_MAPPABLE ? dev_priv->gtt.mappable_end : vm->total;
3386         struct i915_vma *vma;
3387         int ret;
3388
3389         fence_size = i915_gem_get_gtt_size(dev,
3390                                            obj->base.size,
3391                                            obj->tiling_mode);
3392         fence_alignment = i915_gem_get_gtt_alignment(dev,
3393                                                      obj->base.size,
3394                                                      obj->tiling_mode, true);
3395         unfenced_alignment =
3396                 i915_gem_get_gtt_alignment(dev,
3397                                            obj->base.size,
3398                                            obj->tiling_mode, false);
3399
3400         if (alignment == 0)
3401                 alignment = flags & PIN_MAPPABLE ? fence_alignment :
3402                                                 unfenced_alignment;
3403         if (flags & PIN_MAPPABLE && alignment & (fence_alignment - 1)) {
3404                 DRM_DEBUG("Invalid object alignment requested %u\n", alignment);
3405                 return ERR_PTR(-EINVAL);
3406         }
3407
3408         size = flags & PIN_MAPPABLE ? fence_size : obj->base.size;
3409
3410         /* If the object is bigger than the entire aperture, reject it early
3411          * before evicting everything in a vain attempt to find space.
3412          */
3413         if (obj->base.size > end) {
3414                 DRM_DEBUG("Attempting to bind an object larger than the aperture: object=%zd > %s aperture=%lu\n",
3415                           obj->base.size,
3416                           flags & PIN_MAPPABLE ? "mappable" : "total",
3417                           end);
3418                 return ERR_PTR(-E2BIG);
3419         }
3420
3421         ret = i915_gem_object_get_pages(obj);
3422         if (ret)
3423                 return ERR_PTR(ret);
3424
3425         i915_gem_object_pin_pages(obj);
3426
3427         vma = i915_gem_obj_lookup_or_create_vma(obj, vm);
3428         if (IS_ERR(vma))
3429                 goto err_unpin;
3430
3431 search_free:
3432         ret = drm_mm_insert_node_in_range_generic(&vm->mm, &vma->node,
3433                                                   size, alignment,
3434                                                   obj->cache_level,
3435                                                   start, end,
3436                                                   DRM_MM_SEARCH_DEFAULT,
3437                                                   DRM_MM_CREATE_DEFAULT);
3438         if (ret) {
3439                 ret = i915_gem_evict_something(dev, vm, size, alignment,
3440                                                obj->cache_level,
3441                                                start, end,
3442                                                flags);
3443                 if (ret == 0)
3444                         goto search_free;
3445
3446                 goto err_free_vma;
3447         }
3448         if (WARN_ON(!i915_gem_valid_gtt_space(dev, &vma->node,
3449                                               obj->cache_level))) {
3450                 ret = -EINVAL;
3451                 goto err_remove_node;
3452         }
3453
3454         ret = i915_gem_gtt_prepare_object(obj);
3455         if (ret)
3456                 goto err_remove_node;
3457
3458         list_move_tail(&obj->global_list, &dev_priv->mm.bound_list);
3459         list_add_tail(&vma->mm_list, &vm->inactive_list);
3460
3461         if (i915_is_ggtt(vm)) {
3462                 bool mappable, fenceable;
3463
3464                 fenceable = (vma->node.size == fence_size &&
3465                              (vma->node.start & (fence_alignment - 1)) == 0);
3466
3467                 mappable = (vma->node.start + obj->base.size <=
3468                             dev_priv->gtt.mappable_end);
3469
3470                 obj->map_and_fenceable = mappable && fenceable;
3471         }
3472
3473         WARN_ON(flags & PIN_MAPPABLE && !obj->map_and_fenceable);
3474
3475         trace_i915_vma_bind(vma, flags);
3476         vma->bind_vma(vma, obj->cache_level,
3477                       flags & (PIN_MAPPABLE | PIN_GLOBAL) ? GLOBAL_BIND : 0);
3478
3479         i915_gem_verify_gtt(dev);
3480         return vma;
3481
3482 err_remove_node:
3483         drm_mm_remove_node(&vma->node);
3484 err_free_vma:
3485         i915_gem_vma_destroy(vma);
3486         vma = ERR_PTR(ret);
3487 err_unpin:
3488         i915_gem_object_unpin_pages(obj);
3489         return vma;
3490 }
3491
3492 bool
3493 i915_gem_clflush_object(struct drm_i915_gem_object *obj,
3494                         bool force)
3495 {
3496         /* If we don't have a page list set up, then we're not pinned
3497          * to GPU, and we can ignore the cache flush because it'll happen
3498          * again at bind time.
3499          */
3500         if (obj->pages == NULL)
3501                 return false;
3502
3503         /*
3504          * Stolen memory is always coherent with the GPU as it is explicitly
3505          * marked as wc by the system, or the system is cache-coherent.
3506          */
3507         if (obj->stolen)
3508                 return false;
3509
3510         /* If the GPU is snooping the contents of the CPU cache,
3511          * we do not need to manually clear the CPU cache lines.  However,
3512          * the caches are only snooped when the render cache is
3513          * flushed/invalidated.  As we always have to emit invalidations
3514          * and flushes when moving into and out of the RENDER domain, correct
3515          * snooping behaviour occurs naturally as the result of our domain
3516          * tracking.
3517          */
3518         if (!force && cpu_cache_is_coherent(obj->base.dev, obj->cache_level))
3519                 return false;
3520
3521         trace_i915_gem_object_clflush(obj);
3522         drm_clflush_sg(obj->pages);
3523
3524         return true;
3525 }
3526
3527 /** Flushes the GTT write domain for the object if it's dirty. */
3528 static void
3529 i915_gem_object_flush_gtt_write_domain(struct drm_i915_gem_object *obj)
3530 {
3531         uint32_t old_write_domain;
3532
3533         if (obj->base.write_domain != I915_GEM_DOMAIN_GTT)
3534                 return;
3535
3536         /* No actual flushing is required for the GTT write domain.  Writes
3537          * to it immediately go to main memory as far as we know, so there's
3538          * no chipset flush.  It also doesn't land in render cache.
3539          *
3540          * However, we do have to enforce the order so that all writes through
3541          * the GTT land before any writes to the device, such as updates to
3542          * the GATT itself.
3543          */
3544         wmb();
3545
3546         old_write_domain = obj->base.write_domain;
3547         obj->base.write_domain = 0;
3548
3549         trace_i915_gem_object_change_domain(obj,
3550                                             obj->base.read_domains,
3551                                             old_write_domain);
3552 }
3553
3554 /** Flushes the CPU write domain for the object if it's dirty. */
3555 static void
3556 i915_gem_object_flush_cpu_write_domain(struct drm_i915_gem_object *obj,
3557                                        bool force)
3558 {
3559         uint32_t old_write_domain;
3560
3561         if (obj->base.write_domain != I915_GEM_DOMAIN_CPU)
3562                 return;
3563
3564         if (i915_gem_clflush_object(obj, force))
3565                 i915_gem_chipset_flush(obj->base.dev);
3566
3567         old_write_domain = obj->base.write_domain;
3568         obj->base.write_domain = 0;
3569
3570         trace_i915_gem_object_change_domain(obj,
3571                                             obj->base.read_domains,
3572                                             old_write_domain);
3573 }
3574
3575 /**
3576  * Moves a single object to the GTT read, and possibly write domain.
3577  *
3578  * This function returns when the move is complete, including waiting on
3579  * flushes to occur.
3580  */
3581 int
3582 i915_gem_object_set_to_gtt_domain(struct drm_i915_gem_object *obj, bool write)
3583 {
3584         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
3585         uint32_t old_write_domain, old_read_domains;
3586         int ret;
3587
3588         /* Not valid to be called on unbound objects. */
3589         if (!i915_gem_obj_bound_any(obj))
3590                 return -EINVAL;
3591
3592         if (obj->base.write_domain == I915_GEM_DOMAIN_GTT)
3593                 return 0;
3594
3595         ret = i915_gem_object_wait_rendering(obj, !write);
3596         if (ret)
3597                 return ret;
3598
3599         i915_gem_object_retire(obj);
3600         i915_gem_object_flush_cpu_write_domain(obj, false);
3601
3602         /* Serialise direct access to this object with the barriers for
3603          * coherent writes from the GPU, by effectively invalidating the
3604          * GTT domain upon first access.
3605          */
3606         if ((obj->base.read_domains & I915_GEM_DOMAIN_GTT) == 0)
3607                 mb();
3608
3609         old_write_domain = obj->base.write_domain;
3610         old_read_domains = obj->base.read_domains;
3611
3612         /* It should now be out of any other write domains, and we can update
3613          * the domain values for our changes.
3614          */
3615         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_GTT) != 0);
3616         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3617         if (write) {
3618                 obj->base.read_domains = I915_GEM_DOMAIN_GTT;
3619                 obj->base.write_domain = I915_GEM_DOMAIN_GTT;
3620                 obj->dirty = 1;
3621         }
3622
3623         trace_i915_gem_object_change_domain(obj,
3624                                             old_read_domains,
3625                                             old_write_domain);
3626
3627         /* And bump the LRU for this access */
3628         if (i915_gem_object_is_inactive(obj)) {
3629                 struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
3630                 if (vma)
3631                         list_move_tail(&vma->mm_list,
3632                                        &dev_priv->gtt.base.inactive_list);
3633
3634         }
3635
3636         return 0;
3637 }
3638
3639 int i915_gem_object_set_cache_level(struct drm_i915_gem_object *obj,
3640                                     enum i915_cache_level cache_level)
3641 {
3642         struct drm_device *dev = obj->base.dev;
3643         struct i915_vma *vma, *next;
3644         int ret;
3645
3646         if (obj->cache_level == cache_level)
3647                 return 0;
3648
3649         if (i915_gem_obj_is_pinned(obj)) {
3650                 DRM_DEBUG("can not change the cache level of pinned objects\n");
3651                 return -EBUSY;
3652         }
3653
3654         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
3655                 if (!i915_gem_valid_gtt_space(dev, &vma->node, cache_level)) {
3656                         ret = i915_vma_unbind(vma);
3657                         if (ret)
3658                                 return ret;
3659                 }
3660         }
3661
3662         if (i915_gem_obj_bound_any(obj)) {
3663                 ret = i915_gem_object_finish_gpu(obj);
3664                 if (ret)
3665                         return ret;
3666
3667                 i915_gem_object_finish_gtt(obj);
3668
3669                 /* Before SandyBridge, you could not use tiling or fence
3670                  * registers with snooped memory, so relinquish any fences
3671                  * currently pointing to our region in the aperture.
3672                  */
3673                 if (INTEL_INFO(dev)->gen < 6) {
3674                         ret = i915_gem_object_put_fence(obj);
3675                         if (ret)
3676                                 return ret;
3677                 }
3678
3679                 list_for_each_entry(vma, &obj->vma_list, vma_link)
3680                         if (drm_mm_node_allocated(&vma->node))
3681                                 vma->bind_vma(vma, cache_level,
3682                                               obj->has_global_gtt_mapping ? GLOBAL_BIND : 0);
3683         }
3684
3685         list_for_each_entry(vma, &obj->vma_list, vma_link)
3686                 vma->node.color = cache_level;
3687         obj->cache_level = cache_level;
3688
3689         if (cpu_write_needs_clflush(obj)) {
3690                 u32 old_read_domains, old_write_domain;
3691
3692                 /* If we're coming from LLC cached, then we haven't
3693                  * actually been tracking whether the data is in the
3694                  * CPU cache or not, since we only allow one bit set
3695                  * in obj->write_domain and have been skipping the clflushes.
3696                  * Just set it to the CPU cache for now.
3697                  */
3698                 i915_gem_object_retire(obj);
3699                 WARN_ON(obj->base.write_domain & ~I915_GEM_DOMAIN_CPU);
3700
3701                 old_read_domains = obj->base.read_domains;
3702                 old_write_domain = obj->base.write_domain;
3703
3704                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3705                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3706
3707                 trace_i915_gem_object_change_domain(obj,
3708                                                     old_read_domains,
3709                                                     old_write_domain);
3710         }
3711
3712         i915_gem_verify_gtt(dev);
3713         return 0;
3714 }
3715
3716 int i915_gem_get_caching_ioctl(struct drm_device *dev, void *data,
3717                                struct drm_file *file)
3718 {
3719         struct drm_i915_gem_caching *args = data;
3720         struct drm_i915_gem_object *obj;
3721         int ret;
3722
3723         ret = i915_mutex_lock_interruptible(dev);
3724         if (ret)
3725                 return ret;
3726
3727         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3728         if (&obj->base == NULL) {
3729                 ret = -ENOENT;
3730                 goto unlock;
3731         }
3732
3733         switch (obj->cache_level) {
3734         case I915_CACHE_LLC:
3735         case I915_CACHE_L3_LLC:
3736                 args->caching = I915_CACHING_CACHED;
3737                 break;
3738
3739         case I915_CACHE_WT:
3740                 args->caching = I915_CACHING_DISPLAY;
3741                 break;
3742
3743         default:
3744                 args->caching = I915_CACHING_NONE;
3745                 break;
3746         }
3747
3748         drm_gem_object_unreference(&obj->base);
3749 unlock:
3750         mutex_unlock(&dev->struct_mutex);
3751         return ret;
3752 }
3753
3754 int i915_gem_set_caching_ioctl(struct drm_device *dev, void *data,
3755                                struct drm_file *file)
3756 {
3757         struct drm_i915_private *dev_priv = dev->dev_private;
3758         struct drm_i915_gem_caching *args = data;
3759         struct drm_i915_gem_object *obj;
3760         enum i915_cache_level level;
3761         int ret;
3762
3763         switch (args->caching) {
3764         case I915_CACHING_NONE:
3765                 level = I915_CACHE_NONE;
3766                 break;
3767         case I915_CACHING_CACHED:
3768                 level = I915_CACHE_LLC;
3769                 break;
3770         case I915_CACHING_DISPLAY:
3771                 level = HAS_WT(dev) ? I915_CACHE_WT : I915_CACHE_NONE;
3772                 break;
3773         default:
3774                 return -EINVAL;
3775         }
3776
3777         intel_runtime_pm_get(dev_priv);
3778
3779         ret = i915_mutex_lock_interruptible(dev);
3780         if (ret)
3781                 goto rpm_put;
3782
3783         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
3784         if (&obj->base == NULL) {
3785                 ret = -ENOENT;
3786                 goto unlock;
3787         }
3788
3789         ret = i915_gem_object_set_cache_level(obj, level);
3790
3791         drm_gem_object_unreference(&obj->base);
3792 unlock:
3793         mutex_unlock(&dev->struct_mutex);
3794 rpm_put:
3795         intel_runtime_pm_put(dev_priv);
3796
3797         return ret;
3798 }
3799
3800 static bool is_pin_display(struct drm_i915_gem_object *obj)
3801 {
3802         struct i915_vma *vma;
3803
3804         if (list_empty(&obj->vma_list))
3805                 return false;
3806
3807         vma = i915_gem_obj_to_ggtt(obj);
3808         if (!vma)
3809                 return false;
3810
3811         /* There are 3 sources that pin objects:
3812          *   1. The display engine (scanouts, sprites, cursors);
3813          *   2. Reservations for execbuffer;
3814          *   3. The user.
3815          *
3816          * We can ignore reservations as we hold the struct_mutex and
3817          * are only called outside of the reservation path.  The user
3818          * can only increment pin_count once, and so if after
3819          * subtracting the potential reference by the user, any pin_count
3820          * remains, it must be due to another use by the display engine.
3821          */
3822         return vma->pin_count - !!obj->user_pin_count;
3823 }
3824
3825 /*
3826  * Prepare buffer for display plane (scanout, cursors, etc).
3827  * Can be called from an uninterruptible phase (modesetting) and allows
3828  * any flushes to be pipelined (for pageflips).
3829  */
3830 int
3831 i915_gem_object_pin_to_display_plane(struct drm_i915_gem_object *obj,
3832                                      u32 alignment,
3833                                      struct intel_engine_cs *pipelined)
3834 {
3835         u32 old_read_domains, old_write_domain;
3836         bool was_pin_display;
3837         int ret;
3838
3839         if (pipelined != obj->ring) {
3840                 ret = i915_gem_object_sync(obj, pipelined);
3841                 if (ret)
3842                         return ret;
3843         }
3844
3845         /* Mark the pin_display early so that we account for the
3846          * display coherency whilst setting up the cache domains.
3847          */
3848         was_pin_display = obj->pin_display;
3849         obj->pin_display = true;
3850
3851         /* The display engine is not coherent with the LLC cache on gen6.  As
3852          * a result, we make sure that the pinning that is about to occur is
3853          * done with uncached PTEs. This is lowest common denominator for all
3854          * chipsets.
3855          *
3856          * However for gen6+, we could do better by using the GFDT bit instead
3857          * of uncaching, which would allow us to flush all the LLC-cached data
3858          * with that bit in the PTE to main memory with just one PIPE_CONTROL.
3859          */
3860         ret = i915_gem_object_set_cache_level(obj,
3861                                               HAS_WT(obj->base.dev) ? I915_CACHE_WT : I915_CACHE_NONE);
3862         if (ret)
3863                 goto err_unpin_display;
3864
3865         /* As the user may map the buffer once pinned in the display plane
3866          * (e.g. libkms for the bootup splash), we have to ensure that we
3867          * always use map_and_fenceable for all scanout buffers.
3868          */
3869         ret = i915_gem_obj_ggtt_pin(obj, alignment, PIN_MAPPABLE);
3870         if (ret)
3871                 goto err_unpin_display;
3872
3873         i915_gem_object_flush_cpu_write_domain(obj, true);
3874
3875         old_write_domain = obj->base.write_domain;
3876         old_read_domains = obj->base.read_domains;
3877
3878         /* It should now be out of any other write domains, and we can update
3879          * the domain values for our changes.
3880          */
3881         obj->base.write_domain = 0;
3882         obj->base.read_domains |= I915_GEM_DOMAIN_GTT;
3883
3884         trace_i915_gem_object_change_domain(obj,
3885                                             old_read_domains,
3886                                             old_write_domain);
3887
3888         return 0;
3889
3890 err_unpin_display:
3891         WARN_ON(was_pin_display != is_pin_display(obj));
3892         obj->pin_display = was_pin_display;
3893         return ret;
3894 }
3895
3896 void
3897 i915_gem_object_unpin_from_display_plane(struct drm_i915_gem_object *obj)
3898 {
3899         i915_gem_object_ggtt_unpin(obj);
3900         obj->pin_display = is_pin_display(obj);
3901 }
3902
3903 int
3904 i915_gem_object_finish_gpu(struct drm_i915_gem_object *obj)
3905 {
3906         int ret;
3907
3908         if ((obj->base.read_domains & I915_GEM_GPU_DOMAINS) == 0)
3909                 return 0;
3910
3911         ret = i915_gem_object_wait_rendering(obj, false);
3912         if (ret)
3913                 return ret;
3914
3915         /* Ensure that we invalidate the GPU's caches and TLBs. */
3916         obj->base.read_domains &= ~I915_GEM_GPU_DOMAINS;
3917         return 0;
3918 }
3919
3920 /**
3921  * Moves a single object to the CPU read, and possibly write domain.
3922  *
3923  * This function returns when the move is complete, including waiting on
3924  * flushes to occur.
3925  */
3926 int
3927 i915_gem_object_set_to_cpu_domain(struct drm_i915_gem_object *obj, bool write)
3928 {
3929         uint32_t old_write_domain, old_read_domains;
3930         int ret;
3931
3932         if (obj->base.write_domain == I915_GEM_DOMAIN_CPU)
3933                 return 0;
3934
3935         ret = i915_gem_object_wait_rendering(obj, !write);
3936         if (ret)
3937                 return ret;
3938
3939         i915_gem_object_retire(obj);
3940         i915_gem_object_flush_gtt_write_domain(obj);
3941
3942         old_write_domain = obj->base.write_domain;
3943         old_read_domains = obj->base.read_domains;
3944
3945         /* Flush the CPU cache if it's still invalid. */
3946         if ((obj->base.read_domains & I915_GEM_DOMAIN_CPU) == 0) {
3947                 i915_gem_clflush_object(obj, false);
3948
3949                 obj->base.read_domains |= I915_GEM_DOMAIN_CPU;
3950         }
3951
3952         /* It should now be out of any other write domains, and we can update
3953          * the domain values for our changes.
3954          */
3955         BUG_ON((obj->base.write_domain & ~I915_GEM_DOMAIN_CPU) != 0);
3956
3957         /* If we're writing through the CPU, then the GPU read domains will
3958          * need to be invalidated at next use.
3959          */
3960         if (write) {
3961                 obj->base.read_domains = I915_GEM_DOMAIN_CPU;
3962                 obj->base.write_domain = I915_GEM_DOMAIN_CPU;
3963         }
3964
3965         trace_i915_gem_object_change_domain(obj,
3966                                             old_read_domains,
3967                                             old_write_domain);
3968
3969         return 0;
3970 }
3971
3972 /* Throttle our rendering by waiting until the ring has completed our requests
3973  * emitted over 20 msec ago.
3974  *
3975  * Note that if we were to use the current jiffies each time around the loop,
3976  * we wouldn't escape the function with any frames outstanding if the time to
3977  * render a frame was over 20ms.
3978  *
3979  * This should get us reasonable parallelism between CPU and GPU but also
3980  * relatively low latency when blocking on a particular request to finish.
3981  */
3982 static int
3983 i915_gem_ring_throttle(struct drm_device *dev, struct drm_file *file)
3984 {
3985         struct drm_i915_private *dev_priv = dev->dev_private;
3986         struct drm_i915_file_private *file_priv = file->driver_priv;
3987         unsigned long recent_enough = jiffies - msecs_to_jiffies(20);
3988         struct drm_i915_gem_request *request;
3989         struct intel_engine_cs *ring = NULL;
3990         unsigned reset_counter;
3991         u32 seqno = 0;
3992         int ret;
3993
3994         ret = i915_gem_wait_for_error(&dev_priv->gpu_error);
3995         if (ret)
3996                 return ret;
3997
3998         ret = i915_gem_check_wedge(&dev_priv->gpu_error, false);
3999         if (ret)
4000                 return ret;
4001
4002         spin_lock(&file_priv->mm.lock);
4003         list_for_each_entry(request, &file_priv->mm.request_list, client_list) {
4004                 if (time_after_eq(request->emitted_jiffies, recent_enough))
4005                         break;
4006
4007                 ring = request->ring;
4008                 seqno = request->seqno;
4009         }
4010         reset_counter = atomic_read(&dev_priv->gpu_error.reset_counter);
4011         spin_unlock(&file_priv->mm.lock);
4012
4013         if (seqno == 0)
4014                 return 0;
4015
4016         ret = __wait_seqno(ring, seqno, reset_counter, true, NULL, NULL);
4017         if (ret == 0)
4018                 queue_delayed_work(dev_priv->wq, &dev_priv->mm.retire_work, 0);
4019
4020         return ret;
4021 }
4022
4023 static bool
4024 i915_vma_misplaced(struct i915_vma *vma, uint32_t alignment, uint64_t flags)
4025 {
4026         struct drm_i915_gem_object *obj = vma->obj;
4027
4028         if (alignment &&
4029             vma->node.start & (alignment - 1))
4030                 return true;
4031
4032         if (flags & PIN_MAPPABLE && !obj->map_and_fenceable)
4033                 return true;
4034
4035         if (flags & PIN_OFFSET_BIAS &&
4036             vma->node.start < (flags & PIN_OFFSET_MASK))
4037                 return true;
4038
4039         return false;
4040 }
4041
4042 int
4043 i915_gem_object_pin(struct drm_i915_gem_object *obj,
4044                     struct i915_address_space *vm,
4045                     uint32_t alignment,
4046                     uint64_t flags)
4047 {
4048         struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4049         struct i915_vma *vma;
4050         int ret;
4051
4052         if (WARN_ON(vm == &dev_priv->mm.aliasing_ppgtt->base))
4053                 return -ENODEV;
4054
4055         if (WARN_ON(flags & (PIN_GLOBAL | PIN_MAPPABLE) && !i915_is_ggtt(vm)))
4056                 return -EINVAL;
4057
4058         vma = i915_gem_obj_to_vma(obj, vm);
4059         if (vma) {
4060                 if (WARN_ON(vma->pin_count == DRM_I915_GEM_OBJECT_MAX_PIN_COUNT))
4061                         return -EBUSY;
4062
4063                 if (i915_vma_misplaced(vma, alignment, flags)) {
4064                         WARN(vma->pin_count,
4065                              "bo is already pinned with incorrect alignment:"
4066                              " offset=%lx, req.alignment=%x, req.map_and_fenceable=%d,"
4067                              " obj->map_and_fenceable=%d\n",
4068                              i915_gem_obj_offset(obj, vm), alignment,
4069                              !!(flags & PIN_MAPPABLE),
4070                              obj->map_and_fenceable);
4071                         ret = i915_vma_unbind(vma);
4072                         if (ret)
4073                                 return ret;
4074
4075                         vma = NULL;
4076                 }
4077         }
4078
4079         if (vma == NULL || !drm_mm_node_allocated(&vma->node)) {
4080                 vma = i915_gem_object_bind_to_vm(obj, vm, alignment, flags);
4081                 if (IS_ERR(vma))
4082                         return PTR_ERR(vma);
4083         }
4084
4085         if (flags & PIN_GLOBAL && !obj->has_global_gtt_mapping)
4086                 vma->bind_vma(vma, obj->cache_level, GLOBAL_BIND);
4087
4088         vma->pin_count++;
4089         if (flags & PIN_MAPPABLE)
4090                 obj->pin_mappable |= true;
4091
4092         return 0;
4093 }
4094
4095 void
4096 i915_gem_object_ggtt_unpin(struct drm_i915_gem_object *obj)
4097 {
4098         struct i915_vma *vma = i915_gem_obj_to_ggtt(obj);
4099
4100         BUG_ON(!vma);
4101         BUG_ON(vma->pin_count == 0);
4102         BUG_ON(!i915_gem_obj_ggtt_bound(obj));
4103
4104         if (--vma->pin_count == 0)
4105                 obj->pin_mappable = false;
4106 }
4107
4108 bool
4109 i915_gem_object_pin_fence(struct drm_i915_gem_object *obj)
4110 {
4111         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4112                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4113                 struct i915_vma *ggtt_vma = i915_gem_obj_to_ggtt(obj);
4114
4115                 WARN_ON(!ggtt_vma ||
4116                         dev_priv->fence_regs[obj->fence_reg].pin_count >
4117                         ggtt_vma->pin_count);
4118                 dev_priv->fence_regs[obj->fence_reg].pin_count++;
4119                 return true;
4120         } else
4121                 return false;
4122 }
4123
4124 void
4125 i915_gem_object_unpin_fence(struct drm_i915_gem_object *obj)
4126 {
4127         if (obj->fence_reg != I915_FENCE_REG_NONE) {
4128                 struct drm_i915_private *dev_priv = obj->base.dev->dev_private;
4129                 WARN_ON(dev_priv->fence_regs[obj->fence_reg].pin_count <= 0);
4130                 dev_priv->fence_regs[obj->fence_reg].pin_count--;
4131         }
4132 }
4133
4134 int
4135 i915_gem_pin_ioctl(struct drm_device *dev, void *data,
4136                    struct drm_file *file)
4137 {
4138         struct drm_i915_gem_pin *args = data;
4139         struct drm_i915_gem_object *obj;
4140         int ret;
4141
4142         if (INTEL_INFO(dev)->gen >= 6)
4143                 return -ENODEV;
4144
4145         ret = i915_mutex_lock_interruptible(dev);
4146         if (ret)
4147                 return ret;
4148
4149         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4150         if (&obj->base == NULL) {
4151                 ret = -ENOENT;
4152                 goto unlock;
4153         }
4154
4155         if (obj->madv != I915_MADV_WILLNEED) {
4156                 DRM_DEBUG("Attempting to pin a purgeable buffer\n");
4157                 ret = -EFAULT;
4158                 goto out;
4159         }
4160
4161         if (obj->pin_filp != NULL && obj->pin_filp != file) {
4162                 DRM_DEBUG("Already pinned in i915_gem_pin_ioctl(): %d\n",
4163                           args->handle);
4164                 ret = -EINVAL;
4165                 goto out;
4166         }
4167
4168         if (obj->user_pin_count == ULONG_MAX) {
4169                 ret = -EBUSY;
4170                 goto out;
4171         }
4172
4173         if (obj->user_pin_count == 0) {
4174                 ret = i915_gem_obj_ggtt_pin(obj, args->alignment, PIN_MAPPABLE);
4175                 if (ret)
4176                         goto out;
4177         }
4178
4179         obj->user_pin_count++;
4180         obj->pin_filp = file;
4181
4182         args->offset = i915_gem_obj_ggtt_offset(obj);
4183 out:
4184         drm_gem_object_unreference(&obj->base);
4185 unlock:
4186         mutex_unlock(&dev->struct_mutex);
4187         return ret;
4188 }
4189
4190 int
4191 i915_gem_unpin_ioctl(struct drm_device *dev, void *data,
4192                      struct drm_file *file)
4193 {
4194         struct drm_i915_gem_pin *args = data;
4195         struct drm_i915_gem_object *obj;
4196         int ret;
4197
4198         ret = i915_mutex_lock_interruptible(dev);
4199         if (ret)
4200                 return ret;
4201
4202         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4203         if (&obj->base == NULL) {
4204                 ret = -ENOENT;
4205                 goto unlock;
4206         }
4207
4208         if (obj->pin_filp != file) {
4209                 DRM_DEBUG("Not pinned by caller in i915_gem_pin_ioctl(): %d\n",
4210                           args->handle);
4211                 ret = -EINVAL;
4212                 goto out;
4213         }
4214         obj->user_pin_count--;
4215         if (obj->user_pin_count == 0) {
4216                 obj->pin_filp = NULL;
4217                 i915_gem_object_ggtt_unpin(obj);
4218         }
4219
4220 out:
4221         drm_gem_object_unreference(&obj->base);
4222 unlock:
4223         mutex_unlock(&dev->struct_mutex);
4224         return ret;
4225 }
4226
4227 int
4228 i915_gem_busy_ioctl(struct drm_device *dev, void *data,
4229                     struct drm_file *file)
4230 {
4231         struct drm_i915_gem_busy *args = data;
4232         struct drm_i915_gem_object *obj;
4233         int ret;
4234
4235         ret = i915_mutex_lock_interruptible(dev);
4236         if (ret)
4237                 return ret;
4238
4239         obj = to_intel_bo(drm_gem_object_lookup(dev, file, args->handle));
4240         if (&obj->base == NULL) {
4241                 ret = -ENOENT;
4242                 goto unlock;
4243         }
4244
4245         /* Count all active objects as busy, even if they are currently not used
4246          * by the gpu. Users of this interface expect objects to eventually
4247          * become non-busy without any further actions, therefore emit any
4248          * necessary flushes here.
4249          */
4250         ret = i915_gem_object_flush_active(obj);
4251
4252         args->busy = obj->active;
4253         if (obj->ring) {
4254                 BUILD_BUG_ON(I915_NUM_RINGS > 16);
4255                 args->busy |= intel_ring_flag(obj->ring) << 16;
4256         }
4257
4258         drm_gem_object_unreference(&obj->base);
4259 unlock:
4260         mutex_unlock(&dev->struct_mutex);
4261         return ret;
4262 }
4263
4264 int
4265 i915_gem_throttle_ioctl(struct drm_device *dev, void *data,
4266                         struct drm_file *file_priv)
4267 {
4268         return i915_gem_ring_throttle(dev, file_priv);
4269 }
4270
4271 int
4272 i915_gem_madvise_ioctl(struct drm_device *dev, void *data,
4273                        struct drm_file *file_priv)
4274 {
4275         struct drm_i915_gem_madvise *args = data;
4276         struct drm_i915_gem_object *obj;
4277         int ret;
4278
4279         switch (args->madv) {
4280         case I915_MADV_DONTNEED:
4281         case I915_MADV_WILLNEED:
4282             break;
4283         default:
4284             return -EINVAL;
4285         }
4286
4287         ret = i915_mutex_lock_interruptible(dev);
4288         if (ret)
4289                 return ret;
4290
4291         obj = to_intel_bo(drm_gem_object_lookup(dev, file_priv, args->handle));
4292         if (&obj->base == NULL) {
4293                 ret = -ENOENT;
4294                 goto unlock;
4295         }
4296
4297         if (i915_gem_obj_is_pinned(obj)) {
4298                 ret = -EINVAL;
4299                 goto out;
4300         }
4301
4302         if (obj->madv != __I915_MADV_PURGED)
4303                 obj->madv = args->madv;
4304
4305         /* if the object is no longer attached, discard its backing storage */
4306         if (i915_gem_object_is_purgeable(obj) && obj->pages == NULL)
4307                 i915_gem_object_truncate(obj);
4308
4309         args->retained = obj->madv != __I915_MADV_PURGED;
4310
4311 out:
4312         drm_gem_object_unreference(&obj->base);
4313 unlock:
4314         mutex_unlock(&dev->struct_mutex);
4315         return ret;
4316 }
4317
4318 void i915_gem_object_init(struct drm_i915_gem_object *obj,
4319                           const struct drm_i915_gem_object_ops *ops)
4320 {
4321         INIT_LIST_HEAD(&obj->global_list);
4322         INIT_LIST_HEAD(&obj->ring_list);
4323         INIT_LIST_HEAD(&obj->obj_exec_link);
4324         INIT_LIST_HEAD(&obj->vma_list);
4325
4326         obj->ops = ops;
4327
4328         obj->fence_reg = I915_FENCE_REG_NONE;
4329         obj->madv = I915_MADV_WILLNEED;
4330         /* Avoid an unnecessary call to unbind on the first bind. */
4331         obj->map_and_fenceable = true;
4332
4333         i915_gem_info_add_obj(obj->base.dev->dev_private, obj->base.size);
4334 }
4335
4336 static const struct drm_i915_gem_object_ops i915_gem_object_ops = {
4337         .get_pages = i915_gem_object_get_pages_gtt,
4338         .put_pages = i915_gem_object_put_pages_gtt,
4339 };
4340
4341 struct drm_i915_gem_object *i915_gem_alloc_object(struct drm_device *dev,
4342                                                   size_t size)
4343 {
4344         struct drm_i915_gem_object *obj;
4345         struct address_space *mapping;
4346         gfp_t mask;
4347
4348         obj = i915_gem_object_alloc(dev);
4349         if (obj == NULL)
4350                 return NULL;
4351
4352         if (drm_gem_object_init(dev, &obj->base, size) != 0) {
4353                 i915_gem_object_free(obj);
4354                 return NULL;
4355         }
4356
4357         mask = GFP_HIGHUSER | __GFP_RECLAIMABLE;
4358         if (IS_CRESTLINE(dev) || IS_BROADWATER(dev)) {
4359                 /* 965gm cannot relocate objects above 4GiB. */
4360                 mask &= ~__GFP_HIGHMEM;
4361                 mask |= __GFP_DMA32;
4362         }
4363
4364         mapping = file_inode(obj->base.filp)->i_mapping;
4365         mapping_set_gfp_mask(mapping, mask);
4366
4367         i915_gem_object_init(obj, &i915_gem_object_ops);
4368
4369         obj->base.write_domain = I915_GEM_DOMAIN_CPU;
4370         obj->base.read_domains = I915_GEM_DOMAIN_CPU;
4371
4372         if (HAS_LLC(dev)) {
4373                 /* On some devices, we can have the GPU use the LLC (the CPU
4374                  * cache) for about a 10% performance improvement
4375                  * compared to uncached.  Graphics requests other than
4376                  * display scanout are coherent with the CPU in
4377                  * accessing this cache.  This means in this mode we
4378                  * don't need to clflush on the CPU side, and on the
4379                  * GPU side we only need to flush internal caches to
4380                  * get data visible to the CPU.
4381                  *
4382                  * However, we maintain the display planes as UC, and so
4383                  * need to rebind when first used as such.
4384                  */
4385                 obj->cache_level = I915_CACHE_LLC;
4386         } else
4387                 obj->cache_level = I915_CACHE_NONE;
4388
4389         trace_i915_gem_object_create(obj);
4390
4391         return obj;
4392 }
4393
4394 static bool discard_backing_storage(struct drm_i915_gem_object *obj)
4395 {
4396         /* If we are the last user of the backing storage (be it shmemfs
4397          * pages or stolen etc), we know that the pages are going to be
4398          * immediately released. In this case, we can then skip copying
4399          * back the contents from the GPU.
4400          */
4401
4402         if (obj->madv != I915_MADV_WILLNEED)
4403                 return false;
4404
4405         if (obj->base.filp == NULL)
4406                 return true;
4407
4408         /* At first glance, this looks racy, but then again so would be
4409          * userspace racing mmap against close. However, the first external
4410          * reference to the filp can only be obtained through the
4411          * i915_gem_mmap_ioctl() which safeguards us against the user
4412          * acquiring such a reference whilst we are in the middle of
4413          * freeing the object.
4414          */
4415         return atomic_long_read(&obj->base.filp->f_count) == 1;
4416 }
4417
4418 void i915_gem_free_object(struct drm_gem_object *gem_obj)
4419 {
4420         struct drm_i915_gem_object *obj = to_intel_bo(gem_obj);
4421         struct drm_device *dev = obj->base.dev;
4422         struct drm_i915_private *dev_priv = dev->dev_private;
4423         struct i915_vma *vma, *next;
4424
4425         intel_runtime_pm_get(dev_priv);
4426
4427         trace_i915_gem_object_destroy(obj);
4428
4429         list_for_each_entry_safe(vma, next, &obj->vma_list, vma_link) {
4430                 int ret;
4431
4432                 vma->pin_count = 0;
4433                 ret = i915_vma_unbind(vma);
4434                 if (WARN_ON(ret == -ERESTARTSYS)) {
4435                         bool was_interruptible;
4436
4437                         was_interruptible = dev_priv->mm.interruptible;
4438                         dev_priv->mm.interruptible = false;
4439
4440                         WARN_ON(i915_vma_unbind(vma));
4441
4442                         dev_priv->mm.interruptible = was_interruptible;
4443                 }
4444         }
4445
4446         i915_gem_object_detach_phys(obj);
4447
4448         /* Stolen objects don't hold a ref, but do hold pin count. Fix that up
4449          * before progressing. */
4450         if (obj->stolen)
4451                 i915_gem_object_unpin_pages(obj);
4452
4453         if (WARN_ON(obj->pages_pin_count))
4454                 obj->pages_pin_count = 0;
4455         if (discard_backing_storage(obj))
4456                 obj->madv = I915_MADV_DONTNEED;
4457         i915_gem_object_put_pages(obj);
4458         i915_gem_object_free_mmap_offset(obj);
4459         i915_gem_object_release_stolen(obj);
4460
4461         BUG_ON(obj->pages);
4462
4463         if (obj->base.import_attach)
4464                 drm_prime_gem_destroy(&obj->base, NULL);
4465
4466         if (obj->ops->release)
4467                 obj->ops->release(obj);
4468
4469         drm_gem_object_release(&obj->base);
4470         i915_gem_info_remove_obj(dev_priv, obj->base.size);
4471
4472         kfree(obj->bit_17);
4473         i915_gem_object_free(obj);
4474
4475         intel_runtime_pm_put(dev_priv);
4476 }
4477
4478 struct i915_vma *i915_gem_obj_to_vma(struct drm_i915_gem_object *obj,
4479                                      struct i915_address_space *vm)
4480 {
4481         struct i915_vma *vma;
4482         list_for_each_entry(vma, &obj->vma_list, vma_link)
4483                 if (vma->vm == vm)
4484                         return vma;
4485
4486         return NULL;
4487 }
4488
4489 void i915_gem_vma_destroy(struct i915_vma *vma)
4490 {
4491         WARN_ON(vma->node.allocated);
4492
4493         /* Keep the vma as a placeholder in the execbuffer reservation lists */
4494         if (!list_empty(&vma->exec_list))
4495                 return;
4496
4497         list_del(&vma->vma_link);
4498
4499         kfree(vma);
4500 }
4501
4502 static void
4503 i915_gem_stop_ringbuffers(struct drm_device *dev)
4504 {
4505         struct drm_i915_private *dev_priv = dev->dev_private;
4506         struct intel_engine_cs *ring;
4507         int i;
4508
4509         for_each_ring(ring, dev_priv, i)
4510                 intel_stop_ring_buffer(ring);
4511 }
4512
4513 int
4514 i915_gem_suspend(struct drm_device *dev)
4515 {
4516         struct drm_i915_private *dev_priv = dev->dev_private;
4517         int ret = 0;
4518
4519         mutex_lock(&dev->struct_mutex);
4520         if (dev_priv->ums.mm_suspended)
4521                 goto err;
4522
4523         ret = i915_gpu_idle(dev);
4524         if (ret)
4525                 goto err;
4526
4527         i915_gem_retire_requests(dev);
4528
4529         /* Under UMS, be paranoid and evict. */
4530         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4531                 i915_gem_evict_everything(dev);
4532
4533         i915_kernel_lost_context(dev);
4534         i915_gem_stop_ringbuffers(dev);
4535
4536         /* Hack!  Don't let anybody do execbuf while we don't control the chip.
4537          * We need to replace this with a semaphore, or something.
4538          * And not confound ums.mm_suspended!
4539          */
4540         dev_priv->ums.mm_suspended = !drm_core_check_feature(dev,
4541                                                              DRIVER_MODESET);
4542         mutex_unlock(&dev->struct_mutex);
4543
4544         del_timer_sync(&dev_priv->gpu_error.hangcheck_timer);
4545         cancel_delayed_work_sync(&dev_priv->mm.retire_work);
4546         cancel_delayed_work_sync(&dev_priv->mm.idle_work);
4547
4548         return 0;
4549
4550 err:
4551         mutex_unlock(&dev->struct_mutex);
4552         return ret;
4553 }
4554
4555 int i915_gem_l3_remap(struct intel_engine_cs *ring, int slice)
4556 {
4557         struct drm_device *dev = ring->dev;
4558         struct drm_i915_private *dev_priv = dev->dev_private;
4559         u32 reg_base = GEN7_L3LOG_BASE + (slice * 0x200);
4560         u32 *remap_info = dev_priv->l3_parity.remap_info[slice];
4561         int i, ret;
4562
4563         if (!HAS_L3_DPF(dev) || !remap_info)
4564                 return 0;
4565
4566         ret = intel_ring_begin(ring, GEN7_L3LOG_SIZE / 4 * 3);
4567         if (ret)
4568                 return ret;
4569
4570         /*
4571          * Note: We do not worry about the concurrent register cacheline hang
4572          * here because no other code should access these registers other than
4573          * at initialization time.
4574          */
4575         for (i = 0; i < GEN7_L3LOG_SIZE; i += 4) {
4576                 intel_ring_emit(ring, MI_LOAD_REGISTER_IMM(1));
4577                 intel_ring_emit(ring, reg_base + i);
4578                 intel_ring_emit(ring, remap_info[i/4]);
4579         }
4580
4581         intel_ring_advance(ring);
4582
4583         return ret;
4584 }
4585
4586 void i915_gem_init_swizzling(struct drm_device *dev)
4587 {
4588         struct drm_i915_private *dev_priv = dev->dev_private;
4589
4590         if (INTEL_INFO(dev)->gen < 5 ||
4591             dev_priv->mm.bit_6_swizzle_x == I915_BIT_6_SWIZZLE_NONE)
4592                 return;
4593
4594         I915_WRITE(DISP_ARB_CTL, I915_READ(DISP_ARB_CTL) |
4595                                  DISP_TILE_SURFACE_SWIZZLING);
4596
4597         if (IS_GEN5(dev))
4598                 return;
4599
4600         I915_WRITE(TILECTL, I915_READ(TILECTL) | TILECTL_SWZCTL);
4601         if (IS_GEN6(dev))
4602                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_SNB));
4603         else if (IS_GEN7(dev))
4604                 I915_WRITE(ARB_MODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_IVB));
4605         else if (IS_GEN8(dev))
4606                 I915_WRITE(GAMTARBMODE, _MASKED_BIT_ENABLE(ARB_MODE_SWIZZLE_BDW));
4607         else
4608                 BUG();
4609 }
4610
4611 static bool
4612 intel_enable_blt(struct drm_device *dev)
4613 {
4614         if (!HAS_BLT(dev))
4615                 return false;
4616
4617         /* The blitter was dysfunctional on early prototypes */
4618         if (IS_GEN6(dev) && dev->pdev->revision < 8) {
4619                 DRM_INFO("BLT not supported on this pre-production hardware;"
4620                          " graphics performance will be degraded.\n");
4621                 return false;
4622         }
4623
4624         return true;
4625 }
4626
4627 static int i915_gem_init_rings(struct drm_device *dev)
4628 {
4629         struct drm_i915_private *dev_priv = dev->dev_private;
4630         int ret;
4631
4632         ret = intel_init_render_ring_buffer(dev);
4633         if (ret)
4634                 return ret;
4635
4636         if (HAS_BSD(dev)) {
4637                 ret = intel_init_bsd_ring_buffer(dev);
4638                 if (ret)
4639                         goto cleanup_render_ring;
4640         }
4641
4642         if (intel_enable_blt(dev)) {
4643                 ret = intel_init_blt_ring_buffer(dev);
4644                 if (ret)
4645                         goto cleanup_bsd_ring;
4646         }
4647
4648         if (HAS_VEBOX(dev)) {
4649                 ret = intel_init_vebox_ring_buffer(dev);
4650                 if (ret)
4651                         goto cleanup_blt_ring;
4652         }
4653
4654         if (HAS_BSD2(dev)) {
4655                 ret = intel_init_bsd2_ring_buffer(dev);
4656                 if (ret)
4657                         goto cleanup_vebox_ring;
4658         }
4659
4660         ret = i915_gem_set_seqno(dev, ((u32)~0 - 0x1000));
4661         if (ret)
4662                 goto cleanup_bsd2_ring;
4663
4664         return 0;
4665
4666 cleanup_bsd2_ring:
4667         intel_cleanup_ring_buffer(&dev_priv->ring[VCS2]);
4668 cleanup_vebox_ring:
4669         intel_cleanup_ring_buffer(&dev_priv->ring[VECS]);
4670 cleanup_blt_ring:
4671         intel_cleanup_ring_buffer(&dev_priv->ring[BCS]);
4672 cleanup_bsd_ring:
4673         intel_cleanup_ring_buffer(&dev_priv->ring[VCS]);
4674 cleanup_render_ring:
4675         intel_cleanup_ring_buffer(&dev_priv->ring[RCS]);
4676
4677         return ret;
4678 }
4679
4680 int
4681 i915_gem_init_hw(struct drm_device *dev)
4682 {
4683         struct drm_i915_private *dev_priv = dev->dev_private;
4684         int ret, i;
4685
4686         if (INTEL_INFO(dev)->gen < 6 && !intel_enable_gtt())
4687                 return -EIO;
4688
4689         if (dev_priv->ellc_size)
4690                 I915_WRITE(HSW_IDICR, I915_READ(HSW_IDICR) | IDIHASHMSK(0xf));
4691
4692         if (IS_HASWELL(dev))
4693                 I915_WRITE(MI_PREDICATE_RESULT_2, IS_HSW_GT3(dev) ?
4694                            LOWER_SLICE_ENABLED : LOWER_SLICE_DISABLED);
4695
4696         if (HAS_PCH_NOP(dev)) {
4697                 if (IS_IVYBRIDGE(dev)) {
4698                         u32 temp = I915_READ(GEN7_MSG_CTL);
4699                         temp &= ~(WAIT_FOR_PCH_FLR_ACK | WAIT_FOR_PCH_RESET_ACK);
4700                         I915_WRITE(GEN7_MSG_CTL, temp);
4701                 } else if (INTEL_INFO(dev)->gen >= 7) {
4702                         u32 temp = I915_READ(HSW_NDE_RSTWRN_OPT);
4703                         temp &= ~RESET_PCH_HANDSHAKE_ENABLE;
4704                         I915_WRITE(HSW_NDE_RSTWRN_OPT, temp);
4705                 }
4706         }
4707
4708         i915_gem_init_swizzling(dev);
4709
4710         ret = i915_gem_init_rings(dev);
4711         if (ret)
4712                 return ret;
4713
4714         for (i = 0; i < NUM_L3_SLICES(dev); i++)
4715                 i915_gem_l3_remap(&dev_priv->ring[RCS], i);
4716
4717         /*
4718          * XXX: Contexts should only be initialized once. Doing a switch to the
4719          * default context switch however is something we'd like to do after
4720          * reset or thaw (the latter may not actually be necessary for HW, but
4721          * goes with our code better). Context switching requires rings (for
4722          * the do_switch), but before enabling PPGTT. So don't move this.
4723          */
4724         ret = i915_gem_context_enable(dev_priv);
4725         if (ret && ret != -EIO) {
4726                 DRM_ERROR("Context enable failed %d\n", ret);
4727                 i915_gem_cleanup_ringbuffer(dev);
4728         }
4729
4730         return ret;
4731 }
4732
4733 int i915_gem_init(struct drm_device *dev)
4734 {
4735         struct drm_i915_private *dev_priv = dev->dev_private;
4736         int ret;
4737
4738         mutex_lock(&dev->struct_mutex);
4739
4740         if (IS_VALLEYVIEW(dev)) {
4741                 /* VLVA0 (potential hack), BIOS isn't actually waking us */
4742                 I915_WRITE(VLV_GTLC_WAKE_CTRL, VLV_GTLC_ALLOWWAKEREQ);
4743                 if (wait_for((I915_READ(VLV_GTLC_PW_STATUS) &
4744                               VLV_GTLC_ALLOWWAKEACK), 10))
4745                         DRM_DEBUG_DRIVER("allow wake ack timed out\n");
4746         }
4747
4748         i915_gem_init_userptr(dev);
4749         i915_gem_init_global_gtt(dev);
4750
4751         ret = i915_gem_context_init(dev);
4752         if (ret) {
4753                 mutex_unlock(&dev->struct_mutex);
4754                 return ret;
4755         }
4756
4757         ret = i915_gem_init_hw(dev);
4758         if (ret == -EIO) {
4759                 /* Allow ring initialisation to fail by marking the GPU as
4760                  * wedged. But we only want to do this where the GPU is angry,
4761                  * for all other failure, such as an allocation failure, bail.
4762                  */
4763                 DRM_ERROR("Failed to initialize GPU, declaring it wedged\n");
4764                 atomic_set_mask(I915_WEDGED, &dev_priv->gpu_error.reset_counter);
4765                 ret = 0;
4766         }
4767         mutex_unlock(&dev->struct_mutex);
4768
4769         /* Allow hardware batchbuffers unless told otherwise, but not for KMS. */
4770         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4771                 dev_priv->dri1.allow_batchbuffer = 1;
4772         return ret;
4773 }
4774
4775 void
4776 i915_gem_cleanup_ringbuffer(struct drm_device *dev)
4777 {
4778         struct drm_i915_private *dev_priv = dev->dev_private;
4779         struct intel_engine_cs *ring;
4780         int i;
4781
4782         for_each_ring(ring, dev_priv, i)
4783                 intel_cleanup_ring_buffer(ring);
4784 }
4785
4786 int
4787 i915_gem_entervt_ioctl(struct drm_device *dev, void *data,
4788                        struct drm_file *file_priv)
4789 {
4790         struct drm_i915_private *dev_priv = dev->dev_private;
4791         int ret;
4792
4793         if (drm_core_check_feature(dev, DRIVER_MODESET))
4794                 return 0;
4795
4796         if (i915_reset_in_progress(&dev_priv->gpu_error)) {
4797                 DRM_ERROR("Reenabling wedged hardware, good luck\n");
4798                 atomic_set(&dev_priv->gpu_error.reset_counter, 0);
4799         }
4800
4801         mutex_lock(&dev->struct_mutex);
4802         dev_priv->ums.mm_suspended = 0;
4803
4804         ret = i915_gem_init_hw(dev);
4805         if (ret != 0) {
4806                 mutex_unlock(&dev->struct_mutex);
4807                 return ret;
4808         }
4809
4810         BUG_ON(!list_empty(&dev_priv->gtt.base.active_list));
4811
4812         ret = drm_irq_install(dev, dev->pdev->irq);
4813         if (ret)
4814                 goto cleanup_ringbuffer;
4815         mutex_unlock(&dev->struct_mutex);
4816
4817         return 0;
4818
4819 cleanup_ringbuffer:
4820         i915_gem_cleanup_ringbuffer(dev);
4821         dev_priv->ums.mm_suspended = 1;
4822         mutex_unlock(&dev->struct_mutex);
4823
4824         return ret;
4825 }
4826
4827 int
4828 i915_gem_leavevt_ioctl(struct drm_device *dev, void *data,
4829                        struct drm_file *file_priv)
4830 {
4831         if (drm_core_check_feature(dev, DRIVER_MODESET))
4832                 return 0;
4833
4834         mutex_lock(&dev->struct_mutex);
4835         drm_irq_uninstall(dev);
4836         mutex_unlock(&dev->struct_mutex);
4837
4838         return i915_gem_suspend(dev);
4839 }
4840
4841 void
4842 i915_gem_lastclose(struct drm_device *dev)
4843 {
4844         int ret;
4845
4846         if (drm_core_check_feature(dev, DRIVER_MODESET))
4847                 return;
4848
4849         ret = i915_gem_suspend(dev);
4850         if (ret)
4851                 DRM_ERROR("failed to idle hardware: %d\n", ret);
4852 }
4853
4854 static void
4855 init_ring_lists(struct intel_engine_cs *ring)
4856 {
4857         INIT_LIST_HEAD(&ring->active_list);
4858         INIT_LIST_HEAD(&ring->request_list);
4859 }
4860
4861 void i915_init_vm(struct drm_i915_private *dev_priv,
4862                   struct i915_address_space *vm)
4863 {
4864         if (!i915_is_ggtt(vm))
4865                 drm_mm_init(&vm->mm, vm->start, vm->total);
4866         vm->dev = dev_priv->dev;
4867         INIT_LIST_HEAD(&vm->active_list);
4868         INIT_LIST_HEAD(&vm->inactive_list);
4869         INIT_LIST_HEAD(&vm->global_link);
4870         list_add_tail(&vm->global_link, &dev_priv->vm_list);
4871 }
4872
4873 void
4874 i915_gem_load(struct drm_device *dev)
4875 {
4876         struct drm_i915_private *dev_priv = dev->dev_private;
4877         int i;
4878
4879         dev_priv->slab =
4880                 kmem_cache_create("i915_gem_object",
4881                                   sizeof(struct drm_i915_gem_object), 0,
4882                                   SLAB_HWCACHE_ALIGN,
4883                                   NULL);
4884
4885         INIT_LIST_HEAD(&dev_priv->vm_list);
4886         i915_init_vm(dev_priv, &dev_priv->gtt.base);
4887
4888         INIT_LIST_HEAD(&dev_priv->context_list);
4889         INIT_LIST_HEAD(&dev_priv->mm.unbound_list);
4890         INIT_LIST_HEAD(&dev_priv->mm.bound_list);
4891         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4892         for (i = 0; i < I915_NUM_RINGS; i++)
4893                 init_ring_lists(&dev_priv->ring[i]);
4894         for (i = 0; i < I915_MAX_NUM_FENCES; i++)
4895                 INIT_LIST_HEAD(&dev_priv->fence_regs[i].lru_list);
4896         INIT_DELAYED_WORK(&dev_priv->mm.retire_work,
4897                           i915_gem_retire_work_handler);
4898         INIT_DELAYED_WORK(&dev_priv->mm.idle_work,
4899                           i915_gem_idle_work_handler);
4900         init_waitqueue_head(&dev_priv->gpu_error.reset_queue);
4901
4902         /* On GEN3 we really need to make sure the ARB C3 LP bit is set */
4903         if (!drm_core_check_feature(dev, DRIVER_MODESET) && IS_GEN3(dev)) {
4904                 I915_WRITE(MI_ARB_STATE,
4905                            _MASKED_BIT_ENABLE(MI_ARB_C3_LP_WRITE_ENABLE));
4906         }
4907
4908         dev_priv->relative_constants_mode = I915_EXEC_CONSTANTS_REL_GENERAL;
4909
4910         /* Old X drivers will take 0-2 for front, back, depth buffers */
4911         if (!drm_core_check_feature(dev, DRIVER_MODESET))
4912                 dev_priv->fence_reg_start = 3;
4913
4914         if (INTEL_INFO(dev)->gen >= 7 && !IS_VALLEYVIEW(dev))
4915                 dev_priv->num_fence_regs = 32;
4916         else if (INTEL_INFO(dev)->gen >= 4 || IS_I945G(dev) || IS_I945GM(dev) || IS_G33(dev))
4917                 dev_priv->num_fence_regs = 16;
4918         else
4919                 dev_priv->num_fence_regs = 8;
4920
4921         /* Initialize fence registers to zero */
4922         INIT_LIST_HEAD(&dev_priv->mm.fence_list);
4923         i915_gem_restore_fences(dev);
4924
4925         i915_gem_detect_bit_6_swizzle(dev);
4926         init_waitqueue_head(&dev_priv->pending_flip_queue);
4927
4928         dev_priv->mm.interruptible = true;
4929
4930         dev_priv->mm.shrinker.scan_objects = i915_gem_shrinker_scan;
4931         dev_priv->mm.shrinker.count_objects = i915_gem_shrinker_count;
4932         dev_priv->mm.shrinker.seeks = DEFAULT_SEEKS;
4933         register_shrinker(&dev_priv->mm.shrinker);
4934
4935         dev_priv->mm.oom_notifier.notifier_call = i915_gem_shrinker_oom;
4936         register_oom_notifier(&dev_priv->mm.oom_notifier);
4937 }
4938
4939 void i915_gem_release(struct drm_device *dev, struct drm_file *file)
4940 {
4941         struct drm_i915_file_private *file_priv = file->driver_priv;
4942
4943         cancel_delayed_work_sync(&file_priv->mm.idle_work);
4944
4945         /* Clean up our request list when the client is going away, so that
4946          * later retire_requests won't dereference our soon-to-be-gone
4947          * file_priv.
4948          */
4949         spin_lock(&file_priv->mm.lock);
4950         while (!list_empty(&file_priv->mm.request_list)) {
4951                 struct drm_i915_gem_request *request;
4952
4953                 request = list_first_entry(&file_priv->mm.request_list,
4954                                            struct drm_i915_gem_request,
4955                                            client_list);
4956                 list_del(&request->client_list);
4957                 request->file_priv = NULL;
4958         }
4959         spin_unlock(&file_priv->mm.lock);
4960 }
4961
4962 static void
4963 i915_gem_file_idle_work_handler(struct work_struct *work)
4964 {
4965         struct drm_i915_file_private *file_priv =
4966                 container_of(work, typeof(*file_priv), mm.idle_work.work);
4967
4968         atomic_set(&file_priv->rps_wait_boost, false);
4969 }
4970
4971 int i915_gem_open(struct drm_device *dev, struct drm_file *file)
4972 {
4973         struct drm_i915_file_private *file_priv;
4974         int ret;
4975
4976         DRM_DEBUG_DRIVER("\n");
4977
4978         file_priv = kzalloc(sizeof(*file_priv), GFP_KERNEL);
4979         if (!file_priv)
4980                 return -ENOMEM;
4981
4982         file->driver_priv = file_priv;
4983         file_priv->dev_priv = dev->dev_private;
4984         file_priv->file = file;
4985
4986         spin_lock_init(&file_priv->mm.lock);
4987         INIT_LIST_HEAD(&file_priv->mm.request_list);
4988         INIT_DELAYED_WORK(&file_priv->mm.idle_work,
4989                           i915_gem_file_idle_work_handler);
4990
4991         ret = i915_gem_context_open(dev, file);
4992         if (ret)
4993                 kfree(file_priv);
4994
4995         return ret;
4996 }
4997
4998 static bool mutex_is_locked_by(struct mutex *mutex, struct task_struct *task)
4999 {
5000         if (!mutex_is_locked(mutex))
5001                 return false;
5002
5003 #if defined(CONFIG_SMP) && !defined(CONFIG_DEBUG_MUTEXES)
5004         return mutex->owner == task;
5005 #else
5006         /* Since UP may be pre-empted, we cannot assume that we own the lock */
5007         return false;
5008 #endif
5009 }
5010
5011 static bool i915_gem_shrinker_lock(struct drm_device *dev, bool *unlock)
5012 {
5013         if (!mutex_trylock(&dev->struct_mutex)) {
5014                 if (!mutex_is_locked_by(&dev->struct_mutex, current))
5015                         return false;
5016
5017                 if (to_i915(dev)->mm.shrinker_no_lock_stealing)
5018                         return false;
5019
5020                 *unlock = false;
5021         } else
5022                 *unlock = true;
5023
5024         return true;
5025 }
5026
5027 static int num_vma_bound(struct drm_i915_gem_object *obj)
5028 {
5029         struct i915_vma *vma;
5030         int count = 0;
5031
5032         list_for_each_entry(vma, &obj->vma_list, vma_link)
5033                 if (drm_mm_node_allocated(&vma->node))
5034                         count++;
5035
5036         return count;
5037 }
5038
5039 static unsigned long
5040 i915_gem_shrinker_count(struct shrinker *shrinker, struct shrink_control *sc)
5041 {
5042         struct drm_i915_private *dev_priv =
5043                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5044         struct drm_device *dev = dev_priv->dev;
5045         struct drm_i915_gem_object *obj;
5046         unsigned long count;
5047         bool unlock;
5048
5049         if (!i915_gem_shrinker_lock(dev, &unlock))
5050                 return 0;
5051
5052         count = 0;
5053         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list)
5054                 if (obj->pages_pin_count == 0)
5055                         count += obj->base.size >> PAGE_SHIFT;
5056
5057         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5058                 if (!i915_gem_obj_is_pinned(obj) &&
5059                     obj->pages_pin_count == num_vma_bound(obj))
5060                         count += obj->base.size >> PAGE_SHIFT;
5061         }
5062
5063         if (unlock)
5064                 mutex_unlock(&dev->struct_mutex);
5065
5066         return count;
5067 }
5068
5069 /* All the new VM stuff */
5070 unsigned long i915_gem_obj_offset(struct drm_i915_gem_object *o,
5071                                   struct i915_address_space *vm)
5072 {
5073         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5074         struct i915_vma *vma;
5075
5076         if (!dev_priv->mm.aliasing_ppgtt ||
5077             vm == &dev_priv->mm.aliasing_ppgtt->base)
5078                 vm = &dev_priv->gtt.base;
5079
5080         BUG_ON(list_empty(&o->vma_list));
5081         list_for_each_entry(vma, &o->vma_list, vma_link) {
5082                 if (vma->vm == vm)
5083                         return vma->node.start;
5084
5085         }
5086         return -1;
5087 }
5088
5089 bool i915_gem_obj_bound(struct drm_i915_gem_object *o,
5090                         struct i915_address_space *vm)
5091 {
5092         struct i915_vma *vma;
5093
5094         list_for_each_entry(vma, &o->vma_list, vma_link)
5095                 if (vma->vm == vm && drm_mm_node_allocated(&vma->node))
5096                         return true;
5097
5098         return false;
5099 }
5100
5101 bool i915_gem_obj_bound_any(struct drm_i915_gem_object *o)
5102 {
5103         struct i915_vma *vma;
5104
5105         list_for_each_entry(vma, &o->vma_list, vma_link)
5106                 if (drm_mm_node_allocated(&vma->node))
5107                         return true;
5108
5109         return false;
5110 }
5111
5112 unsigned long i915_gem_obj_size(struct drm_i915_gem_object *o,
5113                                 struct i915_address_space *vm)
5114 {
5115         struct drm_i915_private *dev_priv = o->base.dev->dev_private;
5116         struct i915_vma *vma;
5117
5118         if (!dev_priv->mm.aliasing_ppgtt ||
5119             vm == &dev_priv->mm.aliasing_ppgtt->base)
5120                 vm = &dev_priv->gtt.base;
5121
5122         BUG_ON(list_empty(&o->vma_list));
5123
5124         list_for_each_entry(vma, &o->vma_list, vma_link)
5125                 if (vma->vm == vm)
5126                         return vma->node.size;
5127
5128         return 0;
5129 }
5130
5131 static unsigned long
5132 i915_gem_shrinker_scan(struct shrinker *shrinker, struct shrink_control *sc)
5133 {
5134         struct drm_i915_private *dev_priv =
5135                 container_of(shrinker, struct drm_i915_private, mm.shrinker);
5136         struct drm_device *dev = dev_priv->dev;
5137         unsigned long freed;
5138         bool unlock;
5139
5140         if (!i915_gem_shrinker_lock(dev, &unlock))
5141                 return SHRINK_STOP;
5142
5143         freed = i915_gem_purge(dev_priv, sc->nr_to_scan);
5144         if (freed < sc->nr_to_scan)
5145                 freed += __i915_gem_shrink(dev_priv,
5146                                            sc->nr_to_scan - freed,
5147                                            false);
5148         if (unlock)
5149                 mutex_unlock(&dev->struct_mutex);
5150
5151         return freed;
5152 }
5153
5154 static int
5155 i915_gem_shrinker_oom(struct notifier_block *nb, unsigned long event, void *ptr)
5156 {
5157         struct drm_i915_private *dev_priv =
5158                 container_of(nb, struct drm_i915_private, mm.oom_notifier);
5159         struct drm_device *dev = dev_priv->dev;
5160         struct drm_i915_gem_object *obj;
5161         unsigned long timeout = msecs_to_jiffies(5000) + 1;
5162         unsigned long pinned, bound, unbound, freed;
5163         bool was_interruptible;
5164         bool unlock;
5165
5166         while (!i915_gem_shrinker_lock(dev, &unlock) && --timeout)
5167                 schedule_timeout_killable(1);
5168         if (timeout == 0) {
5169                 pr_err("Unable to purge GPU memory due lock contention.\n");
5170                 return NOTIFY_DONE;
5171         }
5172
5173         was_interruptible = dev_priv->mm.interruptible;
5174         dev_priv->mm.interruptible = false;
5175
5176         freed = i915_gem_shrink_all(dev_priv);
5177
5178         dev_priv->mm.interruptible = was_interruptible;
5179
5180         /* Because we may be allocating inside our own driver, we cannot
5181          * assert that there are no objects with pinned pages that are not
5182          * being pointed to by hardware.
5183          */
5184         unbound = bound = pinned = 0;
5185         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
5186                 if (!obj->base.filp) /* not backed by a freeable object */
5187                         continue;
5188
5189                 if (obj->pages_pin_count)
5190                         pinned += obj->base.size;
5191                 else
5192                         unbound += obj->base.size;
5193         }
5194         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
5195                 if (!obj->base.filp)
5196                         continue;
5197
5198                 if (obj->pages_pin_count)
5199                         pinned += obj->base.size;
5200                 else
5201                         bound += obj->base.size;
5202         }
5203
5204         if (unlock)
5205                 mutex_unlock(&dev->struct_mutex);
5206
5207         pr_info("Purging GPU memory, %lu bytes freed, %lu bytes still pinned.\n",
5208                 freed, pinned);
5209         if (unbound || bound)
5210                 pr_err("%lu and %lu bytes still available in the "
5211                        "bound and unbound GPU page lists.\n",
5212                        bound, unbound);
5213
5214         *(unsigned long *)ptr += freed;
5215         return NOTIFY_DONE;
5216 }
5217
5218 struct i915_vma *i915_gem_obj_to_ggtt(struct drm_i915_gem_object *obj)
5219 {
5220         struct i915_vma *vma;
5221
5222         /* This WARN has probably outlived its usefulness (callers already
5223          * WARN if they don't find the GGTT vma they expect). When removing,
5224          * remember to remove the pre-check in is_pin_display() as well */
5225         if (WARN_ON(list_empty(&obj->vma_list)))
5226                 return NULL;
5227
5228         vma = list_first_entry(&obj->vma_list, typeof(*vma), vma_link);
5229         if (vma->vm != obj_to_ggtt(obj))
5230                 return NULL;
5231
5232         return vma;
5233 }