Linux-libre 3.18.98-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / i915_debugfs.c
1 /*
2  * Copyright © 2008 Intel Corporation
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice (including the next
12  * paragraph) shall be included in all copies or substantial portions of the
13  * Software.
14  *
15  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
18  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING
20  * FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS
21  * IN THE SOFTWARE.
22  *
23  * Authors:
24  *    Eric Anholt <eric@anholt.net>
25  *    Keith Packard <keithp@keithp.com>
26  *
27  */
28
29 #include <linux/seq_file.h>
30 #include <linux/circ_buf.h>
31 #include <linux/ctype.h>
32 #include <linux/debugfs.h>
33 #include <linux/slab.h>
34 #include <linux/export.h>
35 #include <linux/list_sort.h>
36 #include <asm/msr-index.h>
37 #include <drm/drmP.h>
38 #include "intel_drv.h"
39 #include "intel_ringbuffer.h"
40 #include <drm/i915_drm.h>
41 #include "i915_drv.h"
42
43 enum {
44         ACTIVE_LIST,
45         INACTIVE_LIST,
46         PINNED_LIST,
47 };
48
49 static const char *yesno(int v)
50 {
51         return v ? "yes" : "no";
52 }
53
54 /* As the drm_debugfs_init() routines are called before dev->dev_private is
55  * allocated we need to hook into the minor for release. */
56 static int
57 drm_add_fake_info_node(struct drm_minor *minor,
58                        struct dentry *ent,
59                        const void *key)
60 {
61         struct drm_info_node *node;
62
63         node = kmalloc(sizeof(*node), GFP_KERNEL);
64         if (node == NULL) {
65                 debugfs_remove(ent);
66                 return -ENOMEM;
67         }
68
69         node->minor = minor;
70         node->dent = ent;
71         node->info_ent = (void *) key;
72
73         mutex_lock(&minor->debugfs_lock);
74         list_add(&node->list, &minor->debugfs_list);
75         mutex_unlock(&minor->debugfs_lock);
76
77         return 0;
78 }
79
80 static int i915_capabilities(struct seq_file *m, void *data)
81 {
82         struct drm_info_node *node = m->private;
83         struct drm_device *dev = node->minor->dev;
84         const struct intel_device_info *info = INTEL_INFO(dev);
85
86         seq_printf(m, "gen: %d\n", info->gen);
87         seq_printf(m, "pch: %d\n", INTEL_PCH_TYPE(dev));
88 #define PRINT_FLAG(x)  seq_printf(m, #x ": %s\n", yesno(info->x))
89 #define SEP_SEMICOLON ;
90         DEV_INFO_FOR_EACH_FLAG(PRINT_FLAG, SEP_SEMICOLON);
91 #undef PRINT_FLAG
92 #undef SEP_SEMICOLON
93
94         return 0;
95 }
96
97 static const char *get_pin_flag(struct drm_i915_gem_object *obj)
98 {
99         if (obj->user_pin_count > 0)
100                 return "P";
101         else if (i915_gem_obj_is_pinned(obj))
102                 return "p";
103         else
104                 return " ";
105 }
106
107 static const char *get_tiling_flag(struct drm_i915_gem_object *obj)
108 {
109         switch (obj->tiling_mode) {
110         default:
111         case I915_TILING_NONE: return " ";
112         case I915_TILING_X: return "X";
113         case I915_TILING_Y: return "Y";
114         }
115 }
116
117 static inline const char *get_global_flag(struct drm_i915_gem_object *obj)
118 {
119         return obj->has_global_gtt_mapping ? "g" : " ";
120 }
121
122 static void
123 describe_obj(struct seq_file *m, struct drm_i915_gem_object *obj)
124 {
125         struct i915_vma *vma;
126         int pin_count = 0;
127
128         seq_printf(m, "%pK: %s%s%s %8zdKiB %02x %02x %u %u %u%s%s%s",
129                    &obj->base,
130                    get_pin_flag(obj),
131                    get_tiling_flag(obj),
132                    get_global_flag(obj),
133                    obj->base.size / 1024,
134                    obj->base.read_domains,
135                    obj->base.write_domain,
136                    obj->last_read_seqno,
137                    obj->last_write_seqno,
138                    obj->last_fenced_seqno,
139                    i915_cache_level_str(to_i915(obj->base.dev), obj->cache_level),
140                    obj->dirty ? " dirty" : "",
141                    obj->madv == I915_MADV_DONTNEED ? " purgeable" : "");
142         if (obj->base.name)
143                 seq_printf(m, " (name: %d)", obj->base.name);
144         list_for_each_entry(vma, &obj->vma_list, vma_link) {
145                 if (vma->pin_count > 0)
146                         pin_count++;
147         }
148         seq_printf(m, " (pinned x %d)", pin_count);
149         if (obj->pin_display)
150                 seq_printf(m, " (display)");
151         if (obj->fence_reg != I915_FENCE_REG_NONE)
152                 seq_printf(m, " (fence: %d)", obj->fence_reg);
153         list_for_each_entry(vma, &obj->vma_list, vma_link) {
154                 if (!i915_is_ggtt(vma->vm))
155                         seq_puts(m, " (pp");
156                 else
157                         seq_puts(m, " (g");
158                 seq_printf(m, "gtt offset: %08lx, size: %08lx)",
159                            vma->node.start, vma->node.size);
160         }
161         if (obj->stolen)
162                 seq_printf(m, " (stolen: %08lx)", obj->stolen->start);
163         if (obj->pin_mappable || obj->fault_mappable) {
164                 char s[3], *t = s;
165                 if (obj->pin_mappable)
166                         *t++ = 'p';
167                 if (obj->fault_mappable)
168                         *t++ = 'f';
169                 *t = '\0';
170                 seq_printf(m, " (%s mappable)", s);
171         }
172         if (obj->ring != NULL)
173                 seq_printf(m, " (%s)", obj->ring->name);
174         if (obj->frontbuffer_bits)
175                 seq_printf(m, " (frontbuffer: 0x%03x)", obj->frontbuffer_bits);
176 }
177
178 static void describe_ctx(struct seq_file *m, struct intel_context *ctx)
179 {
180         seq_putc(m, ctx->legacy_hw_ctx.initialized ? 'I' : 'i');
181         seq_putc(m, ctx->remap_slice ? 'R' : 'r');
182         seq_putc(m, ' ');
183 }
184
185 static int i915_gem_object_list_info(struct seq_file *m, void *data)
186 {
187         struct drm_info_node *node = m->private;
188         uintptr_t list = (uintptr_t) node->info_ent->data;
189         struct list_head *head;
190         struct drm_device *dev = node->minor->dev;
191         struct drm_i915_private *dev_priv = dev->dev_private;
192         struct i915_address_space *vm = &dev_priv->gtt.base;
193         struct i915_vma *vma;
194         size_t total_obj_size, total_gtt_size;
195         int count, ret;
196
197         ret = mutex_lock_interruptible(&dev->struct_mutex);
198         if (ret)
199                 return ret;
200
201         /* FIXME: the user of this interface might want more than just GGTT */
202         switch (list) {
203         case ACTIVE_LIST:
204                 seq_puts(m, "Active:\n");
205                 head = &vm->active_list;
206                 break;
207         case INACTIVE_LIST:
208                 seq_puts(m, "Inactive:\n");
209                 head = &vm->inactive_list;
210                 break;
211         default:
212                 mutex_unlock(&dev->struct_mutex);
213                 return -EINVAL;
214         }
215
216         total_obj_size = total_gtt_size = count = 0;
217         list_for_each_entry(vma, head, mm_list) {
218                 seq_printf(m, "   ");
219                 describe_obj(m, vma->obj);
220                 seq_printf(m, "\n");
221                 total_obj_size += vma->obj->base.size;
222                 total_gtt_size += vma->node.size;
223                 count++;
224         }
225         mutex_unlock(&dev->struct_mutex);
226
227         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
228                    count, total_obj_size, total_gtt_size);
229         return 0;
230 }
231
232 static int obj_rank_by_stolen(void *priv,
233                               struct list_head *A, struct list_head *B)
234 {
235         struct drm_i915_gem_object *a =
236                 container_of(A, struct drm_i915_gem_object, obj_exec_link);
237         struct drm_i915_gem_object *b =
238                 container_of(B, struct drm_i915_gem_object, obj_exec_link);
239
240         return a->stolen->start - b->stolen->start;
241 }
242
243 static int i915_gem_stolen_list_info(struct seq_file *m, void *data)
244 {
245         struct drm_info_node *node = m->private;
246         struct drm_device *dev = node->minor->dev;
247         struct drm_i915_private *dev_priv = dev->dev_private;
248         struct drm_i915_gem_object *obj;
249         size_t total_obj_size, total_gtt_size;
250         LIST_HEAD(stolen);
251         int count, ret;
252
253         ret = mutex_lock_interruptible(&dev->struct_mutex);
254         if (ret)
255                 return ret;
256
257         total_obj_size = total_gtt_size = count = 0;
258         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
259                 if (obj->stolen == NULL)
260                         continue;
261
262                 list_add(&obj->obj_exec_link, &stolen);
263
264                 total_obj_size += obj->base.size;
265                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
266                 count++;
267         }
268         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
269                 if (obj->stolen == NULL)
270                         continue;
271
272                 list_add(&obj->obj_exec_link, &stolen);
273
274                 total_obj_size += obj->base.size;
275                 count++;
276         }
277         list_sort(NULL, &stolen, obj_rank_by_stolen);
278         seq_puts(m, "Stolen:\n");
279         while (!list_empty(&stolen)) {
280                 obj = list_first_entry(&stolen, typeof(*obj), obj_exec_link);
281                 seq_puts(m, "   ");
282                 describe_obj(m, obj);
283                 seq_putc(m, '\n');
284                 list_del_init(&obj->obj_exec_link);
285         }
286         mutex_unlock(&dev->struct_mutex);
287
288         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
289                    count, total_obj_size, total_gtt_size);
290         return 0;
291 }
292
293 #define count_objects(list, member) do { \
294         list_for_each_entry(obj, list, member) { \
295                 size += i915_gem_obj_ggtt_size(obj); \
296                 ++count; \
297                 if (obj->map_and_fenceable) { \
298                         mappable_size += i915_gem_obj_ggtt_size(obj); \
299                         ++mappable_count; \
300                 } \
301         } \
302 } while (0)
303
304 struct file_stats {
305         struct drm_i915_file_private *file_priv;
306         int count;
307         size_t total, unbound;
308         size_t global, shared;
309         size_t active, inactive;
310 };
311
312 static int per_file_stats(int id, void *ptr, void *data)
313 {
314         struct drm_i915_gem_object *obj = ptr;
315         struct file_stats *stats = data;
316         struct i915_vma *vma;
317
318         stats->count++;
319         stats->total += obj->base.size;
320
321         if (obj->base.name || obj->base.dma_buf)
322                 stats->shared += obj->base.size;
323
324         if (USES_FULL_PPGTT(obj->base.dev)) {
325                 list_for_each_entry(vma, &obj->vma_list, vma_link) {
326                         struct i915_hw_ppgtt *ppgtt;
327
328                         if (!drm_mm_node_allocated(&vma->node))
329                                 continue;
330
331                         if (i915_is_ggtt(vma->vm)) {
332                                 stats->global += obj->base.size;
333                                 continue;
334                         }
335
336                         ppgtt = container_of(vma->vm, struct i915_hw_ppgtt, base);
337                         if (ppgtt->file_priv != stats->file_priv)
338                                 continue;
339
340                         if (obj->ring) /* XXX per-vma statistic */
341                                 stats->active += obj->base.size;
342                         else
343                                 stats->inactive += obj->base.size;
344
345                         return 0;
346                 }
347         } else {
348                 if (i915_gem_obj_ggtt_bound(obj)) {
349                         stats->global += obj->base.size;
350                         if (obj->ring)
351                                 stats->active += obj->base.size;
352                         else
353                                 stats->inactive += obj->base.size;
354                         return 0;
355                 }
356         }
357
358         if (!list_empty(&obj->global_list))
359                 stats->unbound += obj->base.size;
360
361         return 0;
362 }
363
364 #define count_vmas(list, member) do { \
365         list_for_each_entry(vma, list, member) { \
366                 size += i915_gem_obj_ggtt_size(vma->obj); \
367                 ++count; \
368                 if (vma->obj->map_and_fenceable) { \
369                         mappable_size += i915_gem_obj_ggtt_size(vma->obj); \
370                         ++mappable_count; \
371                 } \
372         } \
373 } while (0)
374
375 static int i915_gem_object_info(struct seq_file *m, void* data)
376 {
377         struct drm_info_node *node = m->private;
378         struct drm_device *dev = node->minor->dev;
379         struct drm_i915_private *dev_priv = dev->dev_private;
380         u32 count, mappable_count, purgeable_count;
381         size_t size, mappable_size, purgeable_size;
382         struct drm_i915_gem_object *obj;
383         struct i915_address_space *vm = &dev_priv->gtt.base;
384         struct drm_file *file;
385         struct i915_vma *vma;
386         int ret;
387
388         ret = mutex_lock_interruptible(&dev->struct_mutex);
389         if (ret)
390                 return ret;
391
392         seq_printf(m, "%u objects, %zu bytes\n",
393                    dev_priv->mm.object_count,
394                    dev_priv->mm.object_memory);
395
396         size = count = mappable_size = mappable_count = 0;
397         count_objects(&dev_priv->mm.bound_list, global_list);
398         seq_printf(m, "%u [%u] objects, %zu [%zu] bytes in gtt\n",
399                    count, mappable_count, size, mappable_size);
400
401         size = count = mappable_size = mappable_count = 0;
402         count_vmas(&vm->active_list, mm_list);
403         seq_printf(m, "  %u [%u] active objects, %zu [%zu] bytes\n",
404                    count, mappable_count, size, mappable_size);
405
406         size = count = mappable_size = mappable_count = 0;
407         count_vmas(&vm->inactive_list, mm_list);
408         seq_printf(m, "  %u [%u] inactive objects, %zu [%zu] bytes\n",
409                    count, mappable_count, size, mappable_size);
410
411         size = count = purgeable_size = purgeable_count = 0;
412         list_for_each_entry(obj, &dev_priv->mm.unbound_list, global_list) {
413                 size += obj->base.size, ++count;
414                 if (obj->madv == I915_MADV_DONTNEED)
415                         purgeable_size += obj->base.size, ++purgeable_count;
416         }
417         seq_printf(m, "%u unbound objects, %zu bytes\n", count, size);
418
419         size = count = mappable_size = mappable_count = 0;
420         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
421                 if (obj->fault_mappable) {
422                         size += i915_gem_obj_ggtt_size(obj);
423                         ++count;
424                 }
425                 if (obj->pin_mappable) {
426                         mappable_size += i915_gem_obj_ggtt_size(obj);
427                         ++mappable_count;
428                 }
429                 if (obj->madv == I915_MADV_DONTNEED) {
430                         purgeable_size += obj->base.size;
431                         ++purgeable_count;
432                 }
433         }
434         seq_printf(m, "%u purgeable objects, %zu bytes\n",
435                    purgeable_count, purgeable_size);
436         seq_printf(m, "%u pinned mappable objects, %zu bytes\n",
437                    mappable_count, mappable_size);
438         seq_printf(m, "%u fault mappable objects, %zu bytes\n",
439                    count, size);
440
441         seq_printf(m, "%zu [%lu] gtt total\n",
442                    dev_priv->gtt.base.total,
443                    dev_priv->gtt.mappable_end - dev_priv->gtt.base.start);
444
445         seq_putc(m, '\n');
446         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
447                 struct file_stats stats;
448                 struct task_struct *task;
449
450                 memset(&stats, 0, sizeof(stats));
451                 stats.file_priv = file->driver_priv;
452                 spin_lock(&file->table_lock);
453                 idr_for_each(&file->object_idr, per_file_stats, &stats);
454                 spin_unlock(&file->table_lock);
455                 /*
456                  * Although we have a valid reference on file->pid, that does
457                  * not guarantee that the task_struct who called get_pid() is
458                  * still alive (e.g. get_pid(current) => fork() => exit()).
459                  * Therefore, we need to protect this ->comm access using RCU.
460                  */
461                 rcu_read_lock();
462                 task = pid_task(file->pid, PIDTYPE_PID);
463                 seq_printf(m, "%s: %u objects, %zu bytes (%zu active, %zu inactive, %zu global, %zu shared, %zu unbound)\n",
464                            task ? task->comm : "<unknown>",
465                            stats.count,
466                            stats.total,
467                            stats.active,
468                            stats.inactive,
469                            stats.global,
470                            stats.shared,
471                            stats.unbound);
472                 rcu_read_unlock();
473         }
474
475         mutex_unlock(&dev->struct_mutex);
476
477         return 0;
478 }
479
480 static int i915_gem_gtt_info(struct seq_file *m, void *data)
481 {
482         struct drm_info_node *node = m->private;
483         struct drm_device *dev = node->minor->dev;
484         uintptr_t list = (uintptr_t) node->info_ent->data;
485         struct drm_i915_private *dev_priv = dev->dev_private;
486         struct drm_i915_gem_object *obj;
487         size_t total_obj_size, total_gtt_size;
488         int count, ret;
489
490         ret = mutex_lock_interruptible(&dev->struct_mutex);
491         if (ret)
492                 return ret;
493
494         total_obj_size = total_gtt_size = count = 0;
495         list_for_each_entry(obj, &dev_priv->mm.bound_list, global_list) {
496                 if (list == PINNED_LIST && !i915_gem_obj_is_pinned(obj))
497                         continue;
498
499                 seq_puts(m, "   ");
500                 describe_obj(m, obj);
501                 seq_putc(m, '\n');
502                 total_obj_size += obj->base.size;
503                 total_gtt_size += i915_gem_obj_ggtt_size(obj);
504                 count++;
505         }
506
507         mutex_unlock(&dev->struct_mutex);
508
509         seq_printf(m, "Total %d objects, %zu bytes, %zu GTT size\n",
510                    count, total_obj_size, total_gtt_size);
511
512         return 0;
513 }
514
515 static int i915_gem_pageflip_info(struct seq_file *m, void *data)
516 {
517         struct drm_info_node *node = m->private;
518         struct drm_device *dev = node->minor->dev;
519         struct drm_i915_private *dev_priv = dev->dev_private;
520         unsigned long flags;
521         struct intel_crtc *crtc;
522         int ret;
523
524         ret = mutex_lock_interruptible(&dev->struct_mutex);
525         if (ret)
526                 return ret;
527
528         for_each_intel_crtc(dev, crtc) {
529                 const char pipe = pipe_name(crtc->pipe);
530                 const char plane = plane_name(crtc->plane);
531                 struct intel_unpin_work *work;
532
533                 spin_lock_irqsave(&dev->event_lock, flags);
534                 work = crtc->unpin_work;
535                 if (work == NULL) {
536                         seq_printf(m, "No flip due on pipe %c (plane %c)\n",
537                                    pipe, plane);
538                 } else {
539                         u32 addr;
540
541                         if (atomic_read(&work->pending) < INTEL_FLIP_COMPLETE) {
542                                 seq_printf(m, "Flip queued on pipe %c (plane %c)\n",
543                                            pipe, plane);
544                         } else {
545                                 seq_printf(m, "Flip pending (waiting for vsync) on pipe %c (plane %c)\n",
546                                            pipe, plane);
547                         }
548                         if (work->flip_queued_ring) {
549                                 seq_printf(m, "Flip queued on %s at seqno %u, next seqno %u [current breadcrumb %u], completed? %d\n",
550                                            work->flip_queued_ring->name,
551                                            work->flip_queued_seqno,
552                                            dev_priv->next_seqno,
553                                            work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
554                                            i915_seqno_passed(work->flip_queued_ring->get_seqno(work->flip_queued_ring, true),
555                                                              work->flip_queued_seqno));
556                         } else
557                                 seq_printf(m, "Flip not associated with any ring\n");
558                         seq_printf(m, "Flip queued on frame %d, (was ready on frame %d), now %d\n",
559                                    work->flip_queued_vblank,
560                                    work->flip_ready_vblank,
561                                    drm_vblank_count(dev, crtc->pipe));
562                         if (work->enable_stall_check)
563                                 seq_puts(m, "Stall check enabled, ");
564                         else
565                                 seq_puts(m, "Stall check waiting for page flip ioctl, ");
566                         seq_printf(m, "%d prepares\n", atomic_read(&work->pending));
567
568                         if (INTEL_INFO(dev)->gen >= 4)
569                                 addr = I915_HI_DISPBASE(I915_READ(DSPSURF(crtc->plane)));
570                         else
571                                 addr = I915_READ(DSPADDR(crtc->plane));
572                         seq_printf(m, "Current scanout address 0x%08x\n", addr);
573
574                         if (work->pending_flip_obj) {
575                                 seq_printf(m, "New framebuffer address 0x%08lx\n", (long)work->gtt_offset);
576                                 seq_printf(m, "MMIO update completed? %d\n",  addr == work->gtt_offset);
577                         }
578                 }
579                 spin_unlock_irqrestore(&dev->event_lock, flags);
580         }
581
582         mutex_unlock(&dev->struct_mutex);
583
584         return 0;
585 }
586
587 static int i915_gem_request_info(struct seq_file *m, void *data)
588 {
589         struct drm_info_node *node = m->private;
590         struct drm_device *dev = node->minor->dev;
591         struct drm_i915_private *dev_priv = dev->dev_private;
592         struct intel_engine_cs *ring;
593         struct drm_i915_gem_request *gem_request;
594         int ret, count, i;
595
596         ret = mutex_lock_interruptible(&dev->struct_mutex);
597         if (ret)
598                 return ret;
599
600         count = 0;
601         for_each_ring(ring, dev_priv, i) {
602                 if (list_empty(&ring->request_list))
603                         continue;
604
605                 seq_printf(m, "%s requests:\n", ring->name);
606                 list_for_each_entry(gem_request,
607                                     &ring->request_list,
608                                     list) {
609                         seq_printf(m, "    %d @ %d\n",
610                                    gem_request->seqno,
611                                    (int) (jiffies - gem_request->emitted_jiffies));
612                 }
613                 count++;
614         }
615         mutex_unlock(&dev->struct_mutex);
616
617         if (count == 0)
618                 seq_puts(m, "No requests\n");
619
620         return 0;
621 }
622
623 static void i915_ring_seqno_info(struct seq_file *m,
624                                  struct intel_engine_cs *ring)
625 {
626         if (ring->get_seqno) {
627                 seq_printf(m, "Current sequence (%s): %u\n",
628                            ring->name, ring->get_seqno(ring, false));
629         }
630 }
631
632 static int i915_gem_seqno_info(struct seq_file *m, void *data)
633 {
634         struct drm_info_node *node = m->private;
635         struct drm_device *dev = node->minor->dev;
636         struct drm_i915_private *dev_priv = dev->dev_private;
637         struct intel_engine_cs *ring;
638         int ret, i;
639
640         ret = mutex_lock_interruptible(&dev->struct_mutex);
641         if (ret)
642                 return ret;
643         intel_runtime_pm_get(dev_priv);
644
645         for_each_ring(ring, dev_priv, i)
646                 i915_ring_seqno_info(m, ring);
647
648         intel_runtime_pm_put(dev_priv);
649         mutex_unlock(&dev->struct_mutex);
650
651         return 0;
652 }
653
654
655 static int i915_interrupt_info(struct seq_file *m, void *data)
656 {
657         struct drm_info_node *node = m->private;
658         struct drm_device *dev = node->minor->dev;
659         struct drm_i915_private *dev_priv = dev->dev_private;
660         struct intel_engine_cs *ring;
661         int ret, i, pipe;
662
663         ret = mutex_lock_interruptible(&dev->struct_mutex);
664         if (ret)
665                 return ret;
666         intel_runtime_pm_get(dev_priv);
667
668         if (IS_CHERRYVIEW(dev)) {
669                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
670                            I915_READ(GEN8_MASTER_IRQ));
671
672                 seq_printf(m, "Display IER:\t%08x\n",
673                            I915_READ(VLV_IER));
674                 seq_printf(m, "Display IIR:\t%08x\n",
675                            I915_READ(VLV_IIR));
676                 seq_printf(m, "Display IIR_RW:\t%08x\n",
677                            I915_READ(VLV_IIR_RW));
678                 seq_printf(m, "Display IMR:\t%08x\n",
679                            I915_READ(VLV_IMR));
680                 for_each_pipe(dev_priv, pipe)
681                         seq_printf(m, "Pipe %c stat:\t%08x\n",
682                                    pipe_name(pipe),
683                                    I915_READ(PIPESTAT(pipe)));
684
685                 seq_printf(m, "Port hotplug:\t%08x\n",
686                            I915_READ(PORT_HOTPLUG_EN));
687                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
688                            I915_READ(VLV_DPFLIPSTAT));
689                 seq_printf(m, "DPINVGTT:\t%08x\n",
690                            I915_READ(DPINVGTT));
691
692                 for (i = 0; i < 4; i++) {
693                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
694                                    i, I915_READ(GEN8_GT_IMR(i)));
695                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
696                                    i, I915_READ(GEN8_GT_IIR(i)));
697                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
698                                    i, I915_READ(GEN8_GT_IER(i)));
699                 }
700
701                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
702                            I915_READ(GEN8_PCU_IMR));
703                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
704                            I915_READ(GEN8_PCU_IIR));
705                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
706                            I915_READ(GEN8_PCU_IER));
707         } else if (INTEL_INFO(dev)->gen >= 8) {
708                 seq_printf(m, "Master Interrupt Control:\t%08x\n",
709                            I915_READ(GEN8_MASTER_IRQ));
710
711                 for (i = 0; i < 4; i++) {
712                         seq_printf(m, "GT Interrupt IMR %d:\t%08x\n",
713                                    i, I915_READ(GEN8_GT_IMR(i)));
714                         seq_printf(m, "GT Interrupt IIR %d:\t%08x\n",
715                                    i, I915_READ(GEN8_GT_IIR(i)));
716                         seq_printf(m, "GT Interrupt IER %d:\t%08x\n",
717                                    i, I915_READ(GEN8_GT_IER(i)));
718                 }
719
720                 for_each_pipe(dev_priv, pipe) {
721                         if (!intel_display_power_enabled(dev_priv,
722                                                 POWER_DOMAIN_PIPE(pipe))) {
723                                 seq_printf(m, "Pipe %c power disabled\n",
724                                            pipe_name(pipe));
725                                 continue;
726                         }
727                         seq_printf(m, "Pipe %c IMR:\t%08x\n",
728                                    pipe_name(pipe),
729                                    I915_READ(GEN8_DE_PIPE_IMR(pipe)));
730                         seq_printf(m, "Pipe %c IIR:\t%08x\n",
731                                    pipe_name(pipe),
732                                    I915_READ(GEN8_DE_PIPE_IIR(pipe)));
733                         seq_printf(m, "Pipe %c IER:\t%08x\n",
734                                    pipe_name(pipe),
735                                    I915_READ(GEN8_DE_PIPE_IER(pipe)));
736                 }
737
738                 seq_printf(m, "Display Engine port interrupt mask:\t%08x\n",
739                            I915_READ(GEN8_DE_PORT_IMR));
740                 seq_printf(m, "Display Engine port interrupt identity:\t%08x\n",
741                            I915_READ(GEN8_DE_PORT_IIR));
742                 seq_printf(m, "Display Engine port interrupt enable:\t%08x\n",
743                            I915_READ(GEN8_DE_PORT_IER));
744
745                 seq_printf(m, "Display Engine misc interrupt mask:\t%08x\n",
746                            I915_READ(GEN8_DE_MISC_IMR));
747                 seq_printf(m, "Display Engine misc interrupt identity:\t%08x\n",
748                            I915_READ(GEN8_DE_MISC_IIR));
749                 seq_printf(m, "Display Engine misc interrupt enable:\t%08x\n",
750                            I915_READ(GEN8_DE_MISC_IER));
751
752                 seq_printf(m, "PCU interrupt mask:\t%08x\n",
753                            I915_READ(GEN8_PCU_IMR));
754                 seq_printf(m, "PCU interrupt identity:\t%08x\n",
755                            I915_READ(GEN8_PCU_IIR));
756                 seq_printf(m, "PCU interrupt enable:\t%08x\n",
757                            I915_READ(GEN8_PCU_IER));
758         } else if (IS_VALLEYVIEW(dev)) {
759                 seq_printf(m, "Display IER:\t%08x\n",
760                            I915_READ(VLV_IER));
761                 seq_printf(m, "Display IIR:\t%08x\n",
762                            I915_READ(VLV_IIR));
763                 seq_printf(m, "Display IIR_RW:\t%08x\n",
764                            I915_READ(VLV_IIR_RW));
765                 seq_printf(m, "Display IMR:\t%08x\n",
766                            I915_READ(VLV_IMR));
767                 for_each_pipe(dev_priv, pipe)
768                         seq_printf(m, "Pipe %c stat:\t%08x\n",
769                                    pipe_name(pipe),
770                                    I915_READ(PIPESTAT(pipe)));
771
772                 seq_printf(m, "Master IER:\t%08x\n",
773                            I915_READ(VLV_MASTER_IER));
774
775                 seq_printf(m, "Render IER:\t%08x\n",
776                            I915_READ(GTIER));
777                 seq_printf(m, "Render IIR:\t%08x\n",
778                            I915_READ(GTIIR));
779                 seq_printf(m, "Render IMR:\t%08x\n",
780                            I915_READ(GTIMR));
781
782                 seq_printf(m, "PM IER:\t\t%08x\n",
783                            I915_READ(GEN6_PMIER));
784                 seq_printf(m, "PM IIR:\t\t%08x\n",
785                            I915_READ(GEN6_PMIIR));
786                 seq_printf(m, "PM IMR:\t\t%08x\n",
787                            I915_READ(GEN6_PMIMR));
788
789                 seq_printf(m, "Port hotplug:\t%08x\n",
790                            I915_READ(PORT_HOTPLUG_EN));
791                 seq_printf(m, "DPFLIPSTAT:\t%08x\n",
792                            I915_READ(VLV_DPFLIPSTAT));
793                 seq_printf(m, "DPINVGTT:\t%08x\n",
794                            I915_READ(DPINVGTT));
795
796         } else if (!HAS_PCH_SPLIT(dev)) {
797                 seq_printf(m, "Interrupt enable:    %08x\n",
798                            I915_READ(IER));
799                 seq_printf(m, "Interrupt identity:  %08x\n",
800                            I915_READ(IIR));
801                 seq_printf(m, "Interrupt mask:      %08x\n",
802                            I915_READ(IMR));
803                 for_each_pipe(dev_priv, pipe)
804                         seq_printf(m, "Pipe %c stat:         %08x\n",
805                                    pipe_name(pipe),
806                                    I915_READ(PIPESTAT(pipe)));
807         } else {
808                 seq_printf(m, "North Display Interrupt enable:          %08x\n",
809                            I915_READ(DEIER));
810                 seq_printf(m, "North Display Interrupt identity:        %08x\n",
811                            I915_READ(DEIIR));
812                 seq_printf(m, "North Display Interrupt mask:            %08x\n",
813                            I915_READ(DEIMR));
814                 seq_printf(m, "South Display Interrupt enable:          %08x\n",
815                            I915_READ(SDEIER));
816                 seq_printf(m, "South Display Interrupt identity:        %08x\n",
817                            I915_READ(SDEIIR));
818                 seq_printf(m, "South Display Interrupt mask:            %08x\n",
819                            I915_READ(SDEIMR));
820                 seq_printf(m, "Graphics Interrupt enable:               %08x\n",
821                            I915_READ(GTIER));
822                 seq_printf(m, "Graphics Interrupt identity:             %08x\n",
823                            I915_READ(GTIIR));
824                 seq_printf(m, "Graphics Interrupt mask:         %08x\n",
825                            I915_READ(GTIMR));
826         }
827         for_each_ring(ring, dev_priv, i) {
828                 if (INTEL_INFO(dev)->gen >= 6) {
829                         seq_printf(m,
830                                    "Graphics Interrupt mask (%s):       %08x\n",
831                                    ring->name, I915_READ_IMR(ring));
832                 }
833                 i915_ring_seqno_info(m, ring);
834         }
835         intel_runtime_pm_put(dev_priv);
836         mutex_unlock(&dev->struct_mutex);
837
838         return 0;
839 }
840
841 static int i915_gem_fence_regs_info(struct seq_file *m, void *data)
842 {
843         struct drm_info_node *node = m->private;
844         struct drm_device *dev = node->minor->dev;
845         struct drm_i915_private *dev_priv = dev->dev_private;
846         int i, ret;
847
848         ret = mutex_lock_interruptible(&dev->struct_mutex);
849         if (ret)
850                 return ret;
851
852         seq_printf(m, "Reserved fences = %d\n", dev_priv->fence_reg_start);
853         seq_printf(m, "Total fences = %d\n", dev_priv->num_fence_regs);
854         for (i = 0; i < dev_priv->num_fence_regs; i++) {
855                 struct drm_i915_gem_object *obj = dev_priv->fence_regs[i].obj;
856
857                 seq_printf(m, "Fence %d, pin count = %d, object = ",
858                            i, dev_priv->fence_regs[i].pin_count);
859                 if (obj == NULL)
860                         seq_puts(m, "unused");
861                 else
862                         describe_obj(m, obj);
863                 seq_putc(m, '\n');
864         }
865
866         mutex_unlock(&dev->struct_mutex);
867         return 0;
868 }
869
870 static int i915_hws_info(struct seq_file *m, void *data)
871 {
872         struct drm_info_node *node = m->private;
873         struct drm_device *dev = node->minor->dev;
874         struct drm_i915_private *dev_priv = dev->dev_private;
875         struct intel_engine_cs *ring;
876         const u32 *hws;
877         int i;
878
879         ring = &dev_priv->ring[(uintptr_t)node->info_ent->data];
880         hws = ring->status_page.page_addr;
881         if (hws == NULL)
882                 return 0;
883
884         for (i = 0; i < 4096 / sizeof(u32) / 4; i += 4) {
885                 seq_printf(m, "0x%08x: 0x%08x 0x%08x 0x%08x 0x%08x\n",
886                            i * 4,
887                            hws[i], hws[i + 1], hws[i + 2], hws[i + 3]);
888         }
889         return 0;
890 }
891
892 static ssize_t
893 i915_error_state_write(struct file *filp,
894                        const char __user *ubuf,
895                        size_t cnt,
896                        loff_t *ppos)
897 {
898         struct i915_error_state_file_priv *error_priv = filp->private_data;
899         struct drm_device *dev = error_priv->dev;
900         int ret;
901
902         DRM_DEBUG_DRIVER("Resetting error state\n");
903
904         ret = mutex_lock_interruptible(&dev->struct_mutex);
905         if (ret)
906                 return ret;
907
908         i915_destroy_error_state(dev);
909         mutex_unlock(&dev->struct_mutex);
910
911         return cnt;
912 }
913
914 static int i915_error_state_open(struct inode *inode, struct file *file)
915 {
916         struct drm_device *dev = inode->i_private;
917         struct i915_error_state_file_priv *error_priv;
918
919         error_priv = kzalloc(sizeof(*error_priv), GFP_KERNEL);
920         if (!error_priv)
921                 return -ENOMEM;
922
923         error_priv->dev = dev;
924
925         i915_error_state_get(dev, error_priv);
926
927         file->private_data = error_priv;
928
929         return 0;
930 }
931
932 static int i915_error_state_release(struct inode *inode, struct file *file)
933 {
934         struct i915_error_state_file_priv *error_priv = file->private_data;
935
936         i915_error_state_put(error_priv);
937         kfree(error_priv);
938
939         return 0;
940 }
941
942 static ssize_t i915_error_state_read(struct file *file, char __user *userbuf,
943                                      size_t count, loff_t *pos)
944 {
945         struct i915_error_state_file_priv *error_priv = file->private_data;
946         struct drm_i915_error_state_buf error_str;
947         loff_t tmp_pos = 0;
948         ssize_t ret_count = 0;
949         int ret;
950
951         ret = i915_error_state_buf_init(&error_str, to_i915(error_priv->dev), count, *pos);
952         if (ret)
953                 return ret;
954
955         ret = i915_error_state_to_str(&error_str, error_priv);
956         if (ret)
957                 goto out;
958
959         ret_count = simple_read_from_buffer(userbuf, count, &tmp_pos,
960                                             error_str.buf,
961                                             error_str.bytes);
962
963         if (ret_count < 0)
964                 ret = ret_count;
965         else
966                 *pos = error_str.start + ret_count;
967 out:
968         i915_error_state_buf_release(&error_str);
969         return ret ?: ret_count;
970 }
971
972 static const struct file_operations i915_error_state_fops = {
973         .owner = THIS_MODULE,
974         .open = i915_error_state_open,
975         .read = i915_error_state_read,
976         .write = i915_error_state_write,
977         .llseek = default_llseek,
978         .release = i915_error_state_release,
979 };
980
981 static int
982 i915_next_seqno_get(void *data, u64 *val)
983 {
984         struct drm_device *dev = data;
985         struct drm_i915_private *dev_priv = dev->dev_private;
986         int ret;
987
988         ret = mutex_lock_interruptible(&dev->struct_mutex);
989         if (ret)
990                 return ret;
991
992         *val = dev_priv->next_seqno;
993         mutex_unlock(&dev->struct_mutex);
994
995         return 0;
996 }
997
998 static int
999 i915_next_seqno_set(void *data, u64 val)
1000 {
1001         struct drm_device *dev = data;
1002         int ret;
1003
1004         ret = mutex_lock_interruptible(&dev->struct_mutex);
1005         if (ret)
1006                 return ret;
1007
1008         ret = i915_gem_set_seqno(dev, val);
1009         mutex_unlock(&dev->struct_mutex);
1010
1011         return ret;
1012 }
1013
1014 DEFINE_SIMPLE_ATTRIBUTE(i915_next_seqno_fops,
1015                         i915_next_seqno_get, i915_next_seqno_set,
1016                         "0x%llx\n");
1017
1018 static int i915_frequency_info(struct seq_file *m, void *unused)
1019 {
1020         struct drm_info_node *node = m->private;
1021         struct drm_device *dev = node->minor->dev;
1022         struct drm_i915_private *dev_priv = dev->dev_private;
1023         int ret = 0;
1024
1025         intel_runtime_pm_get(dev_priv);
1026
1027         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1028
1029         if (IS_GEN5(dev)) {
1030                 u16 rgvswctl = I915_READ16(MEMSWCTL);
1031                 u16 rgvstat = I915_READ16(MEMSTAT_ILK);
1032
1033                 seq_printf(m, "Requested P-state: %d\n", (rgvswctl >> 8) & 0xf);
1034                 seq_printf(m, "Requested VID: %d\n", rgvswctl & 0x3f);
1035                 seq_printf(m, "Current VID: %d\n", (rgvstat & MEMSTAT_VID_MASK) >>
1036                            MEMSTAT_VID_SHIFT);
1037                 seq_printf(m, "Current P-state: %d\n",
1038                            (rgvstat & MEMSTAT_PSTATE_MASK) >> MEMSTAT_PSTATE_SHIFT);
1039         } else if (IS_GEN6(dev) || (IS_GEN7(dev) && !IS_VALLEYVIEW(dev)) ||
1040                    IS_BROADWELL(dev)) {
1041                 u32 gt_perf_status = I915_READ(GEN6_GT_PERF_STATUS);
1042                 u32 rp_state_limits = I915_READ(GEN6_RP_STATE_LIMITS);
1043                 u32 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
1044                 u32 rpmodectl, rpinclimit, rpdeclimit;
1045                 u32 rpstat, cagf, reqf;
1046                 u32 rpupei, rpcurup, rpprevup;
1047                 u32 rpdownei, rpcurdown, rpprevdown;
1048                 u32 pm_ier, pm_imr, pm_isr, pm_iir, pm_mask;
1049                 int max_freq;
1050
1051                 /* RPSTAT1 is in the GT power well */
1052                 ret = mutex_lock_interruptible(&dev->struct_mutex);
1053                 if (ret)
1054                         goto out;
1055
1056                 gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
1057
1058                 reqf = I915_READ(GEN6_RPNSWREQ);
1059                 reqf &= ~GEN6_TURBO_DISABLE;
1060                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1061                         reqf >>= 24;
1062                 else
1063                         reqf >>= 25;
1064                 reqf *= GT_FREQUENCY_MULTIPLIER;
1065
1066                 rpmodectl = I915_READ(GEN6_RP_CONTROL);
1067                 rpinclimit = I915_READ(GEN6_RP_UP_THRESHOLD);
1068                 rpdeclimit = I915_READ(GEN6_RP_DOWN_THRESHOLD);
1069
1070                 rpstat = I915_READ(GEN6_RPSTAT1);
1071                 rpupei = I915_READ(GEN6_RP_CUR_UP_EI);
1072                 rpcurup = I915_READ(GEN6_RP_CUR_UP);
1073                 rpprevup = I915_READ(GEN6_RP_PREV_UP);
1074                 rpdownei = I915_READ(GEN6_RP_CUR_DOWN_EI);
1075                 rpcurdown = I915_READ(GEN6_RP_CUR_DOWN);
1076                 rpprevdown = I915_READ(GEN6_RP_PREV_DOWN);
1077                 if (IS_HASWELL(dev) || IS_BROADWELL(dev))
1078                         cagf = (rpstat & HSW_CAGF_MASK) >> HSW_CAGF_SHIFT;
1079                 else
1080                         cagf = (rpstat & GEN6_CAGF_MASK) >> GEN6_CAGF_SHIFT;
1081                 cagf *= GT_FREQUENCY_MULTIPLIER;
1082
1083                 gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
1084                 mutex_unlock(&dev->struct_mutex);
1085
1086                 if (IS_GEN6(dev) || IS_GEN7(dev)) {
1087                         pm_ier = I915_READ(GEN6_PMIER);
1088                         pm_imr = I915_READ(GEN6_PMIMR);
1089                         pm_isr = I915_READ(GEN6_PMISR);
1090                         pm_iir = I915_READ(GEN6_PMIIR);
1091                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1092                 } else {
1093                         pm_ier = I915_READ(GEN8_GT_IER(2));
1094                         pm_imr = I915_READ(GEN8_GT_IMR(2));
1095                         pm_isr = I915_READ(GEN8_GT_ISR(2));
1096                         pm_iir = I915_READ(GEN8_GT_IIR(2));
1097                         pm_mask = I915_READ(GEN6_PMINTRMSK);
1098                 }
1099                 seq_printf(m, "PM IER=0x%08x IMR=0x%08x ISR=0x%08x IIR=0x%08x, MASK=0x%08x\n",
1100                            pm_ier, pm_imr, pm_isr, pm_iir, pm_mask);
1101                 seq_printf(m, "GT_PERF_STATUS: 0x%08x\n", gt_perf_status);
1102                 seq_printf(m, "Render p-state ratio: %d\n",
1103                            (gt_perf_status & 0xff00) >> 8);
1104                 seq_printf(m, "Render p-state VID: %d\n",
1105                            gt_perf_status & 0xff);
1106                 seq_printf(m, "Render p-state limit: %d\n",
1107                            rp_state_limits & 0xff);
1108                 seq_printf(m, "RPSTAT1: 0x%08x\n", rpstat);
1109                 seq_printf(m, "RPMODECTL: 0x%08x\n", rpmodectl);
1110                 seq_printf(m, "RPINCLIMIT: 0x%08x\n", rpinclimit);
1111                 seq_printf(m, "RPDECLIMIT: 0x%08x\n", rpdeclimit);
1112                 seq_printf(m, "RPNSWREQ: %dMHz\n", reqf);
1113                 seq_printf(m, "CAGF: %dMHz\n", cagf);
1114                 seq_printf(m, "RP CUR UP EI: %dus\n", rpupei &
1115                            GEN6_CURICONT_MASK);
1116                 seq_printf(m, "RP CUR UP: %dus\n", rpcurup &
1117                            GEN6_CURBSYTAVG_MASK);
1118                 seq_printf(m, "RP PREV UP: %dus\n", rpprevup &
1119                            GEN6_CURBSYTAVG_MASK);
1120                 seq_printf(m, "RP CUR DOWN EI: %dus\n", rpdownei &
1121                            GEN6_CURIAVG_MASK);
1122                 seq_printf(m, "RP CUR DOWN: %dus\n", rpcurdown &
1123                            GEN6_CURBSYTAVG_MASK);
1124                 seq_printf(m, "RP PREV DOWN: %dus\n", rpprevdown &
1125                            GEN6_CURBSYTAVG_MASK);
1126
1127                 max_freq = (rp_state_cap & 0xff0000) >> 16;
1128                 seq_printf(m, "Lowest (RPN) frequency: %dMHz\n",
1129                            max_freq * GT_FREQUENCY_MULTIPLIER);
1130
1131                 max_freq = (rp_state_cap & 0xff00) >> 8;
1132                 seq_printf(m, "Nominal (RP1) frequency: %dMHz\n",
1133                            max_freq * GT_FREQUENCY_MULTIPLIER);
1134
1135                 max_freq = rp_state_cap & 0xff;
1136                 seq_printf(m, "Max non-overclocked (RP0) frequency: %dMHz\n",
1137                            max_freq * GT_FREQUENCY_MULTIPLIER);
1138
1139                 seq_printf(m, "Max overclocked frequency: %dMHz\n",
1140                            dev_priv->rps.max_freq * GT_FREQUENCY_MULTIPLIER);
1141         } else if (IS_VALLEYVIEW(dev)) {
1142                 u32 freq_sts;
1143
1144                 mutex_lock(&dev_priv->rps.hw_lock);
1145                 freq_sts = vlv_punit_read(dev_priv, PUNIT_REG_GPU_FREQ_STS);
1146                 seq_printf(m, "PUNIT_REG_GPU_FREQ_STS: 0x%08x\n", freq_sts);
1147                 seq_printf(m, "DDR freq: %d MHz\n", dev_priv->mem_freq);
1148
1149                 seq_printf(m, "max GPU freq: %d MHz\n",
1150                            vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq));
1151
1152                 seq_printf(m, "min GPU freq: %d MHz\n",
1153                            vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq));
1154
1155                 seq_printf(m, "efficient (RPe) frequency: %d MHz\n",
1156                            vlv_gpu_freq(dev_priv, dev_priv->rps.efficient_freq));
1157
1158                 seq_printf(m, "current GPU freq: %d MHz\n",
1159                            vlv_gpu_freq(dev_priv, (freq_sts >> 8) & 0xff));
1160                 mutex_unlock(&dev_priv->rps.hw_lock);
1161         } else {
1162                 seq_puts(m, "no P-state info available\n");
1163         }
1164
1165 out:
1166         intel_runtime_pm_put(dev_priv);
1167         return ret;
1168 }
1169
1170 static int ironlake_drpc_info(struct seq_file *m)
1171 {
1172         struct drm_info_node *node = m->private;
1173         struct drm_device *dev = node->minor->dev;
1174         struct drm_i915_private *dev_priv = dev->dev_private;
1175         u32 rgvmodectl, rstdbyctl;
1176         u16 crstandvid;
1177         int ret;
1178
1179         ret = mutex_lock_interruptible(&dev->struct_mutex);
1180         if (ret)
1181                 return ret;
1182         intel_runtime_pm_get(dev_priv);
1183
1184         rgvmodectl = I915_READ(MEMMODECTL);
1185         rstdbyctl = I915_READ(RSTDBYCTL);
1186         crstandvid = I915_READ16(CRSTANDVID);
1187
1188         intel_runtime_pm_put(dev_priv);
1189         mutex_unlock(&dev->struct_mutex);
1190
1191         seq_printf(m, "HD boost: %s\n", (rgvmodectl & MEMMODE_BOOST_EN) ?
1192                    "yes" : "no");
1193         seq_printf(m, "Boost freq: %d\n",
1194                    (rgvmodectl & MEMMODE_BOOST_FREQ_MASK) >>
1195                    MEMMODE_BOOST_FREQ_SHIFT);
1196         seq_printf(m, "HW control enabled: %s\n",
1197                    rgvmodectl & MEMMODE_HWIDLE_EN ? "yes" : "no");
1198         seq_printf(m, "SW control enabled: %s\n",
1199                    rgvmodectl & MEMMODE_SWMODE_EN ? "yes" : "no");
1200         seq_printf(m, "Gated voltage change: %s\n",
1201                    rgvmodectl & MEMMODE_RCLK_GATE ? "yes" : "no");
1202         seq_printf(m, "Starting frequency: P%d\n",
1203                    (rgvmodectl & MEMMODE_FSTART_MASK) >> MEMMODE_FSTART_SHIFT);
1204         seq_printf(m, "Max P-state: P%d\n",
1205                    (rgvmodectl & MEMMODE_FMAX_MASK) >> MEMMODE_FMAX_SHIFT);
1206         seq_printf(m, "Min P-state: P%d\n", (rgvmodectl & MEMMODE_FMIN_MASK));
1207         seq_printf(m, "RS1 VID: %d\n", (crstandvid & 0x3f));
1208         seq_printf(m, "RS2 VID: %d\n", ((crstandvid >> 8) & 0x3f));
1209         seq_printf(m, "Render standby enabled: %s\n",
1210                    (rstdbyctl & RCX_SW_EXIT) ? "no" : "yes");
1211         seq_puts(m, "Current RS state: ");
1212         switch (rstdbyctl & RSX_STATUS_MASK) {
1213         case RSX_STATUS_ON:
1214                 seq_puts(m, "on\n");
1215                 break;
1216         case RSX_STATUS_RC1:
1217                 seq_puts(m, "RC1\n");
1218                 break;
1219         case RSX_STATUS_RC1E:
1220                 seq_puts(m, "RC1E\n");
1221                 break;
1222         case RSX_STATUS_RS1:
1223                 seq_puts(m, "RS1\n");
1224                 break;
1225         case RSX_STATUS_RS2:
1226                 seq_puts(m, "RS2 (RC6)\n");
1227                 break;
1228         case RSX_STATUS_RS3:
1229                 seq_puts(m, "RC3 (RC6+)\n");
1230                 break;
1231         default:
1232                 seq_puts(m, "unknown\n");
1233                 break;
1234         }
1235
1236         return 0;
1237 }
1238
1239 static int vlv_drpc_info(struct seq_file *m)
1240 {
1241
1242         struct drm_info_node *node = m->private;
1243         struct drm_device *dev = node->minor->dev;
1244         struct drm_i915_private *dev_priv = dev->dev_private;
1245         u32 rpmodectl1, rcctl1;
1246         unsigned fw_rendercount = 0, fw_mediacount = 0;
1247
1248         intel_runtime_pm_get(dev_priv);
1249
1250         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1251         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1252
1253         intel_runtime_pm_put(dev_priv);
1254
1255         seq_printf(m, "Video Turbo Mode: %s\n",
1256                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1257         seq_printf(m, "Turbo enabled: %s\n",
1258                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1259         seq_printf(m, "HW control enabled: %s\n",
1260                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1261         seq_printf(m, "SW control enabled: %s\n",
1262                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1263                           GEN6_RP_MEDIA_SW_MODE));
1264         seq_printf(m, "RC6 Enabled: %s\n",
1265                    yesno(rcctl1 & (GEN7_RC_CTL_TO_MODE |
1266                                         GEN6_RC_CTL_EI_MODE(1))));
1267         seq_printf(m, "Render Power Well: %s\n",
1268                         (I915_READ(VLV_GTLC_PW_STATUS) &
1269                                 VLV_GTLC_PW_RENDER_STATUS_MASK) ? "Up" : "Down");
1270         seq_printf(m, "Media Power Well: %s\n",
1271                         (I915_READ(VLV_GTLC_PW_STATUS) &
1272                                 VLV_GTLC_PW_MEDIA_STATUS_MASK) ? "Up" : "Down");
1273
1274         seq_printf(m, "Render RC6 residency since boot: %u\n",
1275                    I915_READ(VLV_GT_RENDER_RC6));
1276         seq_printf(m, "Media RC6 residency since boot: %u\n",
1277                    I915_READ(VLV_GT_MEDIA_RC6));
1278
1279         spin_lock_irq(&dev_priv->uncore.lock);
1280         fw_rendercount = dev_priv->uncore.fw_rendercount;
1281         fw_mediacount = dev_priv->uncore.fw_mediacount;
1282         spin_unlock_irq(&dev_priv->uncore.lock);
1283
1284         seq_printf(m, "Forcewake Render Count = %u\n", fw_rendercount);
1285         seq_printf(m, "Forcewake Media Count = %u\n", fw_mediacount);
1286
1287
1288         return 0;
1289 }
1290
1291
1292 static int gen6_drpc_info(struct seq_file *m)
1293 {
1294
1295         struct drm_info_node *node = m->private;
1296         struct drm_device *dev = node->minor->dev;
1297         struct drm_i915_private *dev_priv = dev->dev_private;
1298         u32 rpmodectl1, gt_core_status, rcctl1, rc6vids = 0;
1299         unsigned forcewake_count;
1300         int count = 0, ret;
1301
1302         ret = mutex_lock_interruptible(&dev->struct_mutex);
1303         if (ret)
1304                 return ret;
1305         intel_runtime_pm_get(dev_priv);
1306
1307         spin_lock_irq(&dev_priv->uncore.lock);
1308         forcewake_count = dev_priv->uncore.forcewake_count;
1309         spin_unlock_irq(&dev_priv->uncore.lock);
1310
1311         if (forcewake_count) {
1312                 seq_puts(m, "RC information inaccurate because somebody "
1313                             "holds a forcewake reference \n");
1314         } else {
1315                 /* NB: we cannot use forcewake, else we read the wrong values */
1316                 while (count++ < 50 && (I915_READ_NOTRACE(FORCEWAKE_ACK) & 1))
1317                         udelay(10);
1318                 seq_printf(m, "RC information accurate: %s\n", yesno(count < 51));
1319         }
1320
1321         gt_core_status = readl(dev_priv->regs + GEN6_GT_CORE_STATUS);
1322         trace_i915_reg_rw(false, GEN6_GT_CORE_STATUS, gt_core_status, 4, true);
1323
1324         rpmodectl1 = I915_READ(GEN6_RP_CONTROL);
1325         rcctl1 = I915_READ(GEN6_RC_CONTROL);
1326         mutex_unlock(&dev->struct_mutex);
1327         mutex_lock(&dev_priv->rps.hw_lock);
1328         sandybridge_pcode_read(dev_priv, GEN6_PCODE_READ_RC6VIDS, &rc6vids);
1329         mutex_unlock(&dev_priv->rps.hw_lock);
1330
1331         intel_runtime_pm_put(dev_priv);
1332
1333         seq_printf(m, "Video Turbo Mode: %s\n",
1334                    yesno(rpmodectl1 & GEN6_RP_MEDIA_TURBO));
1335         seq_printf(m, "HW control enabled: %s\n",
1336                    yesno(rpmodectl1 & GEN6_RP_ENABLE));
1337         seq_printf(m, "SW control enabled: %s\n",
1338                    yesno((rpmodectl1 & GEN6_RP_MEDIA_MODE_MASK) ==
1339                           GEN6_RP_MEDIA_SW_MODE));
1340         seq_printf(m, "RC1e Enabled: %s\n",
1341                    yesno(rcctl1 & GEN6_RC_CTL_RC1e_ENABLE));
1342         seq_printf(m, "RC6 Enabled: %s\n",
1343                    yesno(rcctl1 & GEN6_RC_CTL_RC6_ENABLE));
1344         seq_printf(m, "Deep RC6 Enabled: %s\n",
1345                    yesno(rcctl1 & GEN6_RC_CTL_RC6p_ENABLE));
1346         seq_printf(m, "Deepest RC6 Enabled: %s\n",
1347                    yesno(rcctl1 & GEN6_RC_CTL_RC6pp_ENABLE));
1348         seq_puts(m, "Current RC state: ");
1349         switch (gt_core_status & GEN6_RCn_MASK) {
1350         case GEN6_RC0:
1351                 if (gt_core_status & GEN6_CORE_CPD_STATE_MASK)
1352                         seq_puts(m, "Core Power Down\n");
1353                 else
1354                         seq_puts(m, "on\n");
1355                 break;
1356         case GEN6_RC3:
1357                 seq_puts(m, "RC3\n");
1358                 break;
1359         case GEN6_RC6:
1360                 seq_puts(m, "RC6\n");
1361                 break;
1362         case GEN6_RC7:
1363                 seq_puts(m, "RC7\n");
1364                 break;
1365         default:
1366                 seq_puts(m, "Unknown\n");
1367                 break;
1368         }
1369
1370         seq_printf(m, "Core Power Down: %s\n",
1371                    yesno(gt_core_status & GEN6_CORE_CPD_STATE_MASK));
1372
1373         /* Not exactly sure what this is */
1374         seq_printf(m, "RC6 \"Locked to RPn\" residency since boot: %u\n",
1375                    I915_READ(GEN6_GT_GFX_RC6_LOCKED));
1376         seq_printf(m, "RC6 residency since boot: %u\n",
1377                    I915_READ(GEN6_GT_GFX_RC6));
1378         seq_printf(m, "RC6+ residency since boot: %u\n",
1379                    I915_READ(GEN6_GT_GFX_RC6p));
1380         seq_printf(m, "RC6++ residency since boot: %u\n",
1381                    I915_READ(GEN6_GT_GFX_RC6pp));
1382
1383         seq_printf(m, "RC6   voltage: %dmV\n",
1384                    GEN6_DECODE_RC6_VID(((rc6vids >> 0) & 0xff)));
1385         seq_printf(m, "RC6+  voltage: %dmV\n",
1386                    GEN6_DECODE_RC6_VID(((rc6vids >> 8) & 0xff)));
1387         seq_printf(m, "RC6++ voltage: %dmV\n",
1388                    GEN6_DECODE_RC6_VID(((rc6vids >> 16) & 0xff)));
1389         return 0;
1390 }
1391
1392 static int i915_drpc_info(struct seq_file *m, void *unused)
1393 {
1394         struct drm_info_node *node = m->private;
1395         struct drm_device *dev = node->minor->dev;
1396
1397         if (IS_VALLEYVIEW(dev))
1398                 return vlv_drpc_info(m);
1399         else if (INTEL_INFO(dev)->gen >= 6)
1400                 return gen6_drpc_info(m);
1401         else
1402                 return ironlake_drpc_info(m);
1403 }
1404
1405 static int i915_fbc_status(struct seq_file *m, void *unused)
1406 {
1407         struct drm_info_node *node = m->private;
1408         struct drm_device *dev = node->minor->dev;
1409         struct drm_i915_private *dev_priv = dev->dev_private;
1410
1411         if (!HAS_FBC(dev)) {
1412                 seq_puts(m, "FBC unsupported on this chipset\n");
1413                 return 0;
1414         }
1415
1416         intel_runtime_pm_get(dev_priv);
1417
1418         if (intel_fbc_enabled(dev)) {
1419                 seq_puts(m, "FBC enabled\n");
1420         } else {
1421                 seq_puts(m, "FBC disabled: ");
1422                 switch (dev_priv->fbc.no_fbc_reason) {
1423                 case FBC_OK:
1424                         seq_puts(m, "FBC actived, but currently disabled in hardware");
1425                         break;
1426                 case FBC_UNSUPPORTED:
1427                         seq_puts(m, "unsupported by this chipset");
1428                         break;
1429                 case FBC_NO_OUTPUT:
1430                         seq_puts(m, "no outputs");
1431                         break;
1432                 case FBC_STOLEN_TOO_SMALL:
1433                         seq_puts(m, "not enough stolen memory");
1434                         break;
1435                 case FBC_UNSUPPORTED_MODE:
1436                         seq_puts(m, "mode not supported");
1437                         break;
1438                 case FBC_MODE_TOO_LARGE:
1439                         seq_puts(m, "mode too large");
1440                         break;
1441                 case FBC_BAD_PLANE:
1442                         seq_puts(m, "FBC unsupported on plane");
1443                         break;
1444                 case FBC_NOT_TILED:
1445                         seq_puts(m, "scanout buffer not tiled");
1446                         break;
1447                 case FBC_MULTIPLE_PIPES:
1448                         seq_puts(m, "multiple pipes are enabled");
1449                         break;
1450                 case FBC_MODULE_PARAM:
1451                         seq_puts(m, "disabled per module param (default off)");
1452                         break;
1453                 case FBC_CHIP_DEFAULT:
1454                         seq_puts(m, "disabled per chip default");
1455                         break;
1456                 default:
1457                         seq_puts(m, "unknown reason");
1458                 }
1459                 seq_putc(m, '\n');
1460         }
1461
1462         intel_runtime_pm_put(dev_priv);
1463
1464         return 0;
1465 }
1466
1467 static int i915_fbc_fc_get(void *data, u64 *val)
1468 {
1469         struct drm_device *dev = data;
1470         struct drm_i915_private *dev_priv = dev->dev_private;
1471
1472         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1473                 return -ENODEV;
1474
1475         drm_modeset_lock_all(dev);
1476         *val = dev_priv->fbc.false_color;
1477         drm_modeset_unlock_all(dev);
1478
1479         return 0;
1480 }
1481
1482 static int i915_fbc_fc_set(void *data, u64 val)
1483 {
1484         struct drm_device *dev = data;
1485         struct drm_i915_private *dev_priv = dev->dev_private;
1486         u32 reg;
1487
1488         if (INTEL_INFO(dev)->gen < 7 || !HAS_FBC(dev))
1489                 return -ENODEV;
1490
1491         drm_modeset_lock_all(dev);
1492
1493         reg = I915_READ(ILK_DPFC_CONTROL);
1494         dev_priv->fbc.false_color = val;
1495
1496         I915_WRITE(ILK_DPFC_CONTROL, val ?
1497                    (reg | FBC_CTL_FALSE_COLOR) :
1498                    (reg & ~FBC_CTL_FALSE_COLOR));
1499
1500         drm_modeset_unlock_all(dev);
1501         return 0;
1502 }
1503
1504 DEFINE_SIMPLE_ATTRIBUTE(i915_fbc_fc_fops,
1505                         i915_fbc_fc_get, i915_fbc_fc_set,
1506                         "%llu\n");
1507
1508 static int i915_ips_status(struct seq_file *m, void *unused)
1509 {
1510         struct drm_info_node *node = m->private;
1511         struct drm_device *dev = node->minor->dev;
1512         struct drm_i915_private *dev_priv = dev->dev_private;
1513
1514         if (!HAS_IPS(dev)) {
1515                 seq_puts(m, "not supported\n");
1516                 return 0;
1517         }
1518
1519         intel_runtime_pm_get(dev_priv);
1520
1521         seq_printf(m, "Enabled by kernel parameter: %s\n",
1522                    yesno(i915.enable_ips));
1523
1524         if (INTEL_INFO(dev)->gen >= 8) {
1525                 seq_puts(m, "Currently: unknown\n");
1526         } else {
1527                 if (I915_READ(IPS_CTL) & IPS_ENABLE)
1528                         seq_puts(m, "Currently: enabled\n");
1529                 else
1530                         seq_puts(m, "Currently: disabled\n");
1531         }
1532
1533         intel_runtime_pm_put(dev_priv);
1534
1535         return 0;
1536 }
1537
1538 static int i915_sr_status(struct seq_file *m, void *unused)
1539 {
1540         struct drm_info_node *node = m->private;
1541         struct drm_device *dev = node->minor->dev;
1542         struct drm_i915_private *dev_priv = dev->dev_private;
1543         bool sr_enabled = false;
1544
1545         intel_runtime_pm_get(dev_priv);
1546
1547         if (HAS_PCH_SPLIT(dev))
1548                 sr_enabled = I915_READ(WM1_LP_ILK) & WM1_LP_SR_EN;
1549         else if (IS_CRESTLINE(dev) || IS_I945G(dev) || IS_I945GM(dev))
1550                 sr_enabled = I915_READ(FW_BLC_SELF) & FW_BLC_SELF_EN;
1551         else if (IS_I915GM(dev))
1552                 sr_enabled = I915_READ(INSTPM) & INSTPM_SELF_EN;
1553         else if (IS_PINEVIEW(dev))
1554                 sr_enabled = I915_READ(DSPFW3) & PINEVIEW_SELF_REFRESH_EN;
1555
1556         intel_runtime_pm_put(dev_priv);
1557
1558         seq_printf(m, "self-refresh: %s\n",
1559                    sr_enabled ? "enabled" : "disabled");
1560
1561         return 0;
1562 }
1563
1564 static int i915_emon_status(struct seq_file *m, void *unused)
1565 {
1566         struct drm_info_node *node = m->private;
1567         struct drm_device *dev = node->minor->dev;
1568         struct drm_i915_private *dev_priv = dev->dev_private;
1569         unsigned long temp, chipset, gfx;
1570         int ret;
1571
1572         if (!IS_GEN5(dev))
1573                 return -ENODEV;
1574
1575         ret = mutex_lock_interruptible(&dev->struct_mutex);
1576         if (ret)
1577                 return ret;
1578
1579         temp = i915_mch_val(dev_priv);
1580         chipset = i915_chipset_val(dev_priv);
1581         gfx = i915_gfx_val(dev_priv);
1582         mutex_unlock(&dev->struct_mutex);
1583
1584         seq_printf(m, "GMCH temp: %ld\n", temp);
1585         seq_printf(m, "Chipset power: %ld\n", chipset);
1586         seq_printf(m, "GFX power: %ld\n", gfx);
1587         seq_printf(m, "Total power: %ld\n", chipset + gfx);
1588
1589         return 0;
1590 }
1591
1592 static int i915_ring_freq_table(struct seq_file *m, void *unused)
1593 {
1594         struct drm_info_node *node = m->private;
1595         struct drm_device *dev = node->minor->dev;
1596         struct drm_i915_private *dev_priv = dev->dev_private;
1597         int ret = 0;
1598         int gpu_freq, ia_freq;
1599
1600         if (!(IS_GEN6(dev) || IS_GEN7(dev))) {
1601                 seq_puts(m, "unsupported on this chipset\n");
1602                 return 0;
1603         }
1604
1605         intel_runtime_pm_get(dev_priv);
1606
1607         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
1608
1609         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
1610         if (ret)
1611                 goto out;
1612
1613         seq_puts(m, "GPU freq (MHz)\tEffective CPU freq (MHz)\tEffective Ring freq (MHz)\n");
1614
1615         for (gpu_freq = dev_priv->rps.min_freq_softlimit;
1616              gpu_freq <= dev_priv->rps.max_freq_softlimit;
1617              gpu_freq++) {
1618                 ia_freq = gpu_freq;
1619                 sandybridge_pcode_read(dev_priv,
1620                                        GEN6_PCODE_READ_MIN_FREQ_TABLE,
1621                                        &ia_freq);
1622                 seq_printf(m, "%d\t\t%d\t\t\t\t%d\n",
1623                            gpu_freq * GT_FREQUENCY_MULTIPLIER,
1624                            ((ia_freq >> 0) & 0xff) * 100,
1625                            ((ia_freq >> 8) & 0xff) * 100);
1626         }
1627
1628         mutex_unlock(&dev_priv->rps.hw_lock);
1629
1630 out:
1631         intel_runtime_pm_put(dev_priv);
1632         return ret;
1633 }
1634
1635 static int i915_opregion(struct seq_file *m, void *unused)
1636 {
1637         struct drm_info_node *node = m->private;
1638         struct drm_device *dev = node->minor->dev;
1639         struct drm_i915_private *dev_priv = dev->dev_private;
1640         struct intel_opregion *opregion = &dev_priv->opregion;
1641         void *data = kmalloc(OPREGION_SIZE, GFP_KERNEL);
1642         int ret;
1643
1644         if (data == NULL)
1645                 return -ENOMEM;
1646
1647         ret = mutex_lock_interruptible(&dev->struct_mutex);
1648         if (ret)
1649                 goto out;
1650
1651         if (opregion->header) {
1652                 memcpy_fromio(data, opregion->header, OPREGION_SIZE);
1653                 seq_write(m, data, OPREGION_SIZE);
1654         }
1655
1656         mutex_unlock(&dev->struct_mutex);
1657
1658 out:
1659         kfree(data);
1660         return 0;
1661 }
1662
1663 static int i915_gem_framebuffer_info(struct seq_file *m, void *data)
1664 {
1665         struct drm_info_node *node = m->private;
1666         struct drm_device *dev = node->minor->dev;
1667         struct intel_fbdev *ifbdev = NULL;
1668         struct intel_framebuffer *fb;
1669
1670 #ifdef CONFIG_DRM_I915_FBDEV
1671         struct drm_i915_private *dev_priv = dev->dev_private;
1672
1673         ifbdev = dev_priv->fbdev;
1674         fb = to_intel_framebuffer(ifbdev->helper.fb);
1675
1676         seq_printf(m, "fbcon size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1677                    fb->base.width,
1678                    fb->base.height,
1679                    fb->base.depth,
1680                    fb->base.bits_per_pixel,
1681                    atomic_read(&fb->base.refcount.refcount));
1682         describe_obj(m, fb->obj);
1683         seq_putc(m, '\n');
1684 #endif
1685
1686         mutex_lock(&dev->mode_config.fb_lock);
1687         list_for_each_entry(fb, &dev->mode_config.fb_list, base.head) {
1688                 if (ifbdev && &fb->base == ifbdev->helper.fb)
1689                         continue;
1690
1691                 seq_printf(m, "user size: %d x %d, depth %d, %d bpp, refcount %d, obj ",
1692                            fb->base.width,
1693                            fb->base.height,
1694                            fb->base.depth,
1695                            fb->base.bits_per_pixel,
1696                            atomic_read(&fb->base.refcount.refcount));
1697                 describe_obj(m, fb->obj);
1698                 seq_putc(m, '\n');
1699         }
1700         mutex_unlock(&dev->mode_config.fb_lock);
1701
1702         return 0;
1703 }
1704
1705 static void describe_ctx_ringbuf(struct seq_file *m,
1706                                  struct intel_ringbuffer *ringbuf)
1707 {
1708         seq_printf(m, " (ringbuffer, space: %d, head: %u, tail: %u, last head: %d)",
1709                    ringbuf->space, ringbuf->head, ringbuf->tail,
1710                    ringbuf->last_retired_head);
1711 }
1712
1713 static int i915_context_status(struct seq_file *m, void *unused)
1714 {
1715         struct drm_info_node *node = m->private;
1716         struct drm_device *dev = node->minor->dev;
1717         struct drm_i915_private *dev_priv = dev->dev_private;
1718         struct intel_engine_cs *ring;
1719         struct intel_context *ctx;
1720         int ret, i;
1721
1722         ret = mutex_lock_interruptible(&dev->struct_mutex);
1723         if (ret)
1724                 return ret;
1725
1726         if (dev_priv->ips.pwrctx) {
1727                 seq_puts(m, "power context ");
1728                 describe_obj(m, dev_priv->ips.pwrctx);
1729                 seq_putc(m, '\n');
1730         }
1731
1732         if (dev_priv->ips.renderctx) {
1733                 seq_puts(m, "render context ");
1734                 describe_obj(m, dev_priv->ips.renderctx);
1735                 seq_putc(m, '\n');
1736         }
1737
1738         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1739                 if (!i915.enable_execlists &&
1740                     ctx->legacy_hw_ctx.rcs_state == NULL)
1741                         continue;
1742
1743                 seq_puts(m, "HW context ");
1744                 describe_ctx(m, ctx);
1745                 for_each_ring(ring, dev_priv, i) {
1746                         if (ring->default_context == ctx)
1747                                 seq_printf(m, "(default context %s) ",
1748                                            ring->name);
1749                 }
1750
1751                 if (i915.enable_execlists) {
1752                         seq_putc(m, '\n');
1753                         for_each_ring(ring, dev_priv, i) {
1754                                 struct drm_i915_gem_object *ctx_obj =
1755                                         ctx->engine[i].state;
1756                                 struct intel_ringbuffer *ringbuf =
1757                                         ctx->engine[i].ringbuf;
1758
1759                                 seq_printf(m, "%s: ", ring->name);
1760                                 if (ctx_obj)
1761                                         describe_obj(m, ctx_obj);
1762                                 if (ringbuf)
1763                                         describe_ctx_ringbuf(m, ringbuf);
1764                                 seq_putc(m, '\n');
1765                         }
1766                 } else {
1767                         describe_obj(m, ctx->legacy_hw_ctx.rcs_state);
1768                 }
1769
1770                 seq_putc(m, '\n');
1771         }
1772
1773         mutex_unlock(&dev->struct_mutex);
1774
1775         return 0;
1776 }
1777
1778 static int i915_dump_lrc(struct seq_file *m, void *unused)
1779 {
1780         struct drm_info_node *node = (struct drm_info_node *) m->private;
1781         struct drm_device *dev = node->minor->dev;
1782         struct drm_i915_private *dev_priv = dev->dev_private;
1783         struct intel_engine_cs *ring;
1784         struct intel_context *ctx;
1785         int ret, i;
1786
1787         if (!i915.enable_execlists) {
1788                 seq_printf(m, "Logical Ring Contexts are disabled\n");
1789                 return 0;
1790         }
1791
1792         ret = mutex_lock_interruptible(&dev->struct_mutex);
1793         if (ret)
1794                 return ret;
1795
1796         list_for_each_entry(ctx, &dev_priv->context_list, link) {
1797                 for_each_ring(ring, dev_priv, i) {
1798                         struct drm_i915_gem_object *ctx_obj = ctx->engine[i].state;
1799
1800                         if (ring->default_context == ctx)
1801                                 continue;
1802
1803                         if (ctx_obj) {
1804                                 struct page *page = i915_gem_object_get_page(ctx_obj, 1);
1805                                 uint32_t *reg_state = kmap_atomic(page);
1806                                 int j;
1807
1808                                 seq_printf(m, "CONTEXT: %s %u\n", ring->name,
1809                                                 intel_execlists_ctx_id(ctx_obj));
1810
1811                                 for (j = 0; j < 0x600 / sizeof(u32) / 4; j += 4) {
1812                                         seq_printf(m, "\t[0x%08lx] 0x%08x 0x%08x 0x%08x 0x%08x\n",
1813                                         i915_gem_obj_ggtt_offset(ctx_obj) + 4096 + (j * 4),
1814                                         reg_state[j], reg_state[j + 1],
1815                                         reg_state[j + 2], reg_state[j + 3]);
1816                                 }
1817                                 kunmap_atomic(reg_state);
1818
1819                                 seq_putc(m, '\n');
1820                         }
1821                 }
1822         }
1823
1824         mutex_unlock(&dev->struct_mutex);
1825
1826         return 0;
1827 }
1828
1829 static int i915_execlists(struct seq_file *m, void *data)
1830 {
1831         struct drm_info_node *node = (struct drm_info_node *)m->private;
1832         struct drm_device *dev = node->minor->dev;
1833         struct drm_i915_private *dev_priv = dev->dev_private;
1834         struct intel_engine_cs *ring;
1835         u32 status_pointer;
1836         u8 read_pointer;
1837         u8 write_pointer;
1838         u32 status;
1839         u32 ctx_id;
1840         struct list_head *cursor;
1841         int ring_id, i;
1842         int ret;
1843
1844         if (!i915.enable_execlists) {
1845                 seq_puts(m, "Logical Ring Contexts are disabled\n");
1846                 return 0;
1847         }
1848
1849         ret = mutex_lock_interruptible(&dev->struct_mutex);
1850         if (ret)
1851                 return ret;
1852
1853         for_each_ring(ring, dev_priv, ring_id) {
1854                 struct intel_ctx_submit_request *head_req = NULL;
1855                 int count = 0;
1856                 unsigned long flags;
1857
1858                 seq_printf(m, "%s\n", ring->name);
1859
1860                 status = I915_READ(RING_EXECLIST_STATUS(ring));
1861                 ctx_id = I915_READ(RING_EXECLIST_STATUS(ring) + 4);
1862                 seq_printf(m, "\tExeclist status: 0x%08X, context: %u\n",
1863                            status, ctx_id);
1864
1865                 status_pointer = I915_READ(RING_CONTEXT_STATUS_PTR(ring));
1866                 seq_printf(m, "\tStatus pointer: 0x%08X\n", status_pointer);
1867
1868                 read_pointer = ring->next_context_status_buffer;
1869                 write_pointer = status_pointer & 0x07;
1870                 if (read_pointer > write_pointer)
1871                         write_pointer += 6;
1872                 seq_printf(m, "\tRead pointer: 0x%08X, write pointer 0x%08X\n",
1873                            read_pointer, write_pointer);
1874
1875                 for (i = 0; i < 6; i++) {
1876                         status = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i);
1877                         ctx_id = I915_READ(RING_CONTEXT_STATUS_BUF(ring) + 8*i + 4);
1878
1879                         seq_printf(m, "\tStatus buffer %d: 0x%08X, context: %u\n",
1880                                    i, status, ctx_id);
1881                 }
1882
1883                 spin_lock_irqsave(&ring->execlist_lock, flags);
1884                 list_for_each(cursor, &ring->execlist_queue)
1885                         count++;
1886                 head_req = list_first_entry_or_null(&ring->execlist_queue,
1887                                 struct intel_ctx_submit_request, execlist_link);
1888                 spin_unlock_irqrestore(&ring->execlist_lock, flags);
1889
1890                 seq_printf(m, "\t%d requests in queue\n", count);
1891                 if (head_req) {
1892                         struct drm_i915_gem_object *ctx_obj;
1893
1894                         ctx_obj = head_req->ctx->engine[ring_id].state;
1895                         seq_printf(m, "\tHead request id: %u\n",
1896                                    intel_execlists_ctx_id(ctx_obj));
1897                         seq_printf(m, "\tHead request tail: %u\n",
1898                                    head_req->tail);
1899                 }
1900
1901                 seq_putc(m, '\n');
1902         }
1903
1904         mutex_unlock(&dev->struct_mutex);
1905
1906         return 0;
1907 }
1908
1909 static int i915_gen6_forcewake_count_info(struct seq_file *m, void *data)
1910 {
1911         struct drm_info_node *node = m->private;
1912         struct drm_device *dev = node->minor->dev;
1913         struct drm_i915_private *dev_priv = dev->dev_private;
1914         unsigned forcewake_count = 0, fw_rendercount = 0, fw_mediacount = 0;
1915
1916         spin_lock_irq(&dev_priv->uncore.lock);
1917         if (IS_VALLEYVIEW(dev)) {
1918                 fw_rendercount = dev_priv->uncore.fw_rendercount;
1919                 fw_mediacount = dev_priv->uncore.fw_mediacount;
1920         } else
1921                 forcewake_count = dev_priv->uncore.forcewake_count;
1922         spin_unlock_irq(&dev_priv->uncore.lock);
1923
1924         if (IS_VALLEYVIEW(dev)) {
1925                 seq_printf(m, "fw_rendercount = %u\n", fw_rendercount);
1926                 seq_printf(m, "fw_mediacount = %u\n", fw_mediacount);
1927         } else
1928                 seq_printf(m, "forcewake count = %u\n", forcewake_count);
1929
1930         return 0;
1931 }
1932
1933 static const char *swizzle_string(unsigned swizzle)
1934 {
1935         switch (swizzle) {
1936         case I915_BIT_6_SWIZZLE_NONE:
1937                 return "none";
1938         case I915_BIT_6_SWIZZLE_9:
1939                 return "bit9";
1940         case I915_BIT_6_SWIZZLE_9_10:
1941                 return "bit9/bit10";
1942         case I915_BIT_6_SWIZZLE_9_11:
1943                 return "bit9/bit11";
1944         case I915_BIT_6_SWIZZLE_9_10_11:
1945                 return "bit9/bit10/bit11";
1946         case I915_BIT_6_SWIZZLE_9_17:
1947                 return "bit9/bit17";
1948         case I915_BIT_6_SWIZZLE_9_10_17:
1949                 return "bit9/bit10/bit17";
1950         case I915_BIT_6_SWIZZLE_UNKNOWN:
1951                 return "unknown";
1952         }
1953
1954         return "bug";
1955 }
1956
1957 static int i915_swizzle_info(struct seq_file *m, void *data)
1958 {
1959         struct drm_info_node *node = m->private;
1960         struct drm_device *dev = node->minor->dev;
1961         struct drm_i915_private *dev_priv = dev->dev_private;
1962         int ret;
1963
1964         ret = mutex_lock_interruptible(&dev->struct_mutex);
1965         if (ret)
1966                 return ret;
1967         intel_runtime_pm_get(dev_priv);
1968
1969         seq_printf(m, "bit6 swizzle for X-tiling = %s\n",
1970                    swizzle_string(dev_priv->mm.bit_6_swizzle_x));
1971         seq_printf(m, "bit6 swizzle for Y-tiling = %s\n",
1972                    swizzle_string(dev_priv->mm.bit_6_swizzle_y));
1973
1974         if (IS_GEN3(dev) || IS_GEN4(dev)) {
1975                 seq_printf(m, "DDC = 0x%08x\n",
1976                            I915_READ(DCC));
1977                 seq_printf(m, "C0DRB3 = 0x%04x\n",
1978                            I915_READ16(C0DRB3));
1979                 seq_printf(m, "C1DRB3 = 0x%04x\n",
1980                            I915_READ16(C1DRB3));
1981         } else if (INTEL_INFO(dev)->gen >= 6) {
1982                 seq_printf(m, "MAD_DIMM_C0 = 0x%08x\n",
1983                            I915_READ(MAD_DIMM_C0));
1984                 seq_printf(m, "MAD_DIMM_C1 = 0x%08x\n",
1985                            I915_READ(MAD_DIMM_C1));
1986                 seq_printf(m, "MAD_DIMM_C2 = 0x%08x\n",
1987                            I915_READ(MAD_DIMM_C2));
1988                 seq_printf(m, "TILECTL = 0x%08x\n",
1989                            I915_READ(TILECTL));
1990                 if (IS_GEN8(dev))
1991                         seq_printf(m, "GAMTARBMODE = 0x%08x\n",
1992                                    I915_READ(GAMTARBMODE));
1993                 else
1994                         seq_printf(m, "ARB_MODE = 0x%08x\n",
1995                                    I915_READ(ARB_MODE));
1996                 seq_printf(m, "DISP_ARB_CTL = 0x%08x\n",
1997                            I915_READ(DISP_ARB_CTL));
1998         }
1999         intel_runtime_pm_put(dev_priv);
2000         mutex_unlock(&dev->struct_mutex);
2001
2002         return 0;
2003 }
2004
2005 static int per_file_ctx(int id, void *ptr, void *data)
2006 {
2007         struct intel_context *ctx = ptr;
2008         struct seq_file *m = data;
2009         struct i915_hw_ppgtt *ppgtt = ctx->ppgtt;
2010
2011         if (!ppgtt) {
2012                 seq_printf(m, "  no ppgtt for context %d\n",
2013                            ctx->user_handle);
2014                 return 0;
2015         }
2016
2017         if (i915_gem_context_is_default(ctx))
2018                 seq_puts(m, "  default context:\n");
2019         else
2020                 seq_printf(m, "  context %d:\n", ctx->user_handle);
2021         ppgtt->debug_dump(ppgtt, m);
2022
2023         return 0;
2024 }
2025
2026 static void gen8_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2027 {
2028         struct drm_i915_private *dev_priv = dev->dev_private;
2029         struct intel_engine_cs *ring;
2030         struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2031         int unused, i;
2032
2033         if (!ppgtt)
2034                 return;
2035
2036         seq_printf(m, "Page directories: %d\n", ppgtt->num_pd_pages);
2037         seq_printf(m, "Page tables: %d\n", ppgtt->num_pd_entries);
2038         for_each_ring(ring, dev_priv, unused) {
2039                 seq_printf(m, "%s\n", ring->name);
2040                 for (i = 0; i < 4; i++) {
2041                         u32 offset = 0x270 + i * 8;
2042                         u64 pdp = I915_READ(ring->mmio_base + offset + 4);
2043                         pdp <<= 32;
2044                         pdp |= I915_READ(ring->mmio_base + offset);
2045                         seq_printf(m, "\tPDP%d 0x%016llx\n", i, pdp);
2046                 }
2047         }
2048 }
2049
2050 static void gen6_ppgtt_info(struct seq_file *m, struct drm_device *dev)
2051 {
2052         struct drm_i915_private *dev_priv = dev->dev_private;
2053         struct intel_engine_cs *ring;
2054         struct drm_file *file;
2055         int i;
2056
2057         if (INTEL_INFO(dev)->gen == 6)
2058                 seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(GFX_MODE));
2059
2060         for_each_ring(ring, dev_priv, i) {
2061                 seq_printf(m, "%s\n", ring->name);
2062                 if (INTEL_INFO(dev)->gen == 7)
2063                         seq_printf(m, "GFX_MODE: 0x%08x\n", I915_READ(RING_MODE_GEN7(ring)));
2064                 seq_printf(m, "PP_DIR_BASE: 0x%08x\n", I915_READ(RING_PP_DIR_BASE(ring)));
2065                 seq_printf(m, "PP_DIR_BASE_READ: 0x%08x\n", I915_READ(RING_PP_DIR_BASE_READ(ring)));
2066                 seq_printf(m, "PP_DIR_DCLV: 0x%08x\n", I915_READ(RING_PP_DIR_DCLV(ring)));
2067         }
2068         if (dev_priv->mm.aliasing_ppgtt) {
2069                 struct i915_hw_ppgtt *ppgtt = dev_priv->mm.aliasing_ppgtt;
2070
2071                 seq_puts(m, "aliasing PPGTT:\n");
2072                 seq_printf(m, "pd gtt offset: 0x%08x\n", ppgtt->pd_offset);
2073
2074                 ppgtt->debug_dump(ppgtt, m);
2075         }
2076
2077         list_for_each_entry_reverse(file, &dev->filelist, lhead) {
2078                 struct drm_i915_file_private *file_priv = file->driver_priv;
2079
2080                 seq_printf(m, "proc: %s\n",
2081                            get_pid_task(file->pid, PIDTYPE_PID)->comm);
2082                 idr_for_each(&file_priv->context_idr, per_file_ctx, m);
2083         }
2084         seq_printf(m, "ECOCHK: 0x%08x\n", I915_READ(GAM_ECOCHK));
2085 }
2086
2087 static int i915_ppgtt_info(struct seq_file *m, void *data)
2088 {
2089         struct drm_info_node *node = m->private;
2090         struct drm_device *dev = node->minor->dev;
2091         struct drm_i915_private *dev_priv = dev->dev_private;
2092
2093         int ret = mutex_lock_interruptible(&dev->struct_mutex);
2094         if (ret)
2095                 return ret;
2096         intel_runtime_pm_get(dev_priv);
2097
2098         if (INTEL_INFO(dev)->gen >= 8)
2099                 gen8_ppgtt_info(m, dev);
2100         else if (INTEL_INFO(dev)->gen >= 6)
2101                 gen6_ppgtt_info(m, dev);
2102
2103         intel_runtime_pm_put(dev_priv);
2104         mutex_unlock(&dev->struct_mutex);
2105
2106         return 0;
2107 }
2108
2109 static int i915_llc(struct seq_file *m, void *data)
2110 {
2111         struct drm_info_node *node = m->private;
2112         struct drm_device *dev = node->minor->dev;
2113         struct drm_i915_private *dev_priv = dev->dev_private;
2114
2115         /* Size calculation for LLC is a bit of a pain. Ignore for now. */
2116         seq_printf(m, "LLC: %s\n", yesno(HAS_LLC(dev)));
2117         seq_printf(m, "eLLC: %zuMB\n", dev_priv->ellc_size);
2118
2119         return 0;
2120 }
2121
2122 static int i915_edp_psr_status(struct seq_file *m, void *data)
2123 {
2124         struct drm_info_node *node = m->private;
2125         struct drm_device *dev = node->minor->dev;
2126         struct drm_i915_private *dev_priv = dev->dev_private;
2127         u32 psrperf = 0;
2128         bool enabled = false;
2129
2130         intel_runtime_pm_get(dev_priv);
2131
2132         mutex_lock(&dev_priv->psr.lock);
2133         seq_printf(m, "Sink_Support: %s\n", yesno(dev_priv->psr.sink_support));
2134         seq_printf(m, "Source_OK: %s\n", yesno(dev_priv->psr.source_ok));
2135         seq_printf(m, "Enabled: %s\n", yesno((bool)dev_priv->psr.enabled));
2136         seq_printf(m, "Active: %s\n", yesno(dev_priv->psr.active));
2137         seq_printf(m, "Busy frontbuffer bits: 0x%03x\n",
2138                    dev_priv->psr.busy_frontbuffer_bits);
2139         seq_printf(m, "Re-enable work scheduled: %s\n",
2140                    yesno(work_busy(&dev_priv->psr.work.work)));
2141
2142         enabled = HAS_PSR(dev) &&
2143                 I915_READ(EDP_PSR_CTL(dev)) & EDP_PSR_ENABLE;
2144         seq_printf(m, "HW Enabled & Active bit: %s\n", yesno(enabled));
2145
2146         if (HAS_PSR(dev))
2147                 psrperf = I915_READ(EDP_PSR_PERF_CNT(dev)) &
2148                         EDP_PSR_PERF_CNT_MASK;
2149         seq_printf(m, "Performance_Counter: %u\n", psrperf);
2150         mutex_unlock(&dev_priv->psr.lock);
2151
2152         intel_runtime_pm_put(dev_priv);
2153         return 0;
2154 }
2155
2156 static int i915_sink_crc(struct seq_file *m, void *data)
2157 {
2158         struct drm_info_node *node = m->private;
2159         struct drm_device *dev = node->minor->dev;
2160         struct intel_encoder *encoder;
2161         struct intel_connector *connector;
2162         struct intel_dp *intel_dp = NULL;
2163         int ret;
2164         u8 crc[6];
2165
2166         drm_modeset_lock_all(dev);
2167         list_for_each_entry(connector, &dev->mode_config.connector_list,
2168                             base.head) {
2169
2170                 if (connector->base.dpms != DRM_MODE_DPMS_ON)
2171                         continue;
2172
2173                 if (!connector->base.encoder)
2174                         continue;
2175
2176                 encoder = to_intel_encoder(connector->base.encoder);
2177                 if (encoder->type != INTEL_OUTPUT_EDP)
2178                         continue;
2179
2180                 intel_dp = enc_to_intel_dp(&encoder->base);
2181
2182                 ret = intel_dp_sink_crc(intel_dp, crc);
2183                 if (ret)
2184                         goto out;
2185
2186                 seq_printf(m, "%02x%02x%02x%02x%02x%02x\n",
2187                            crc[0], crc[1], crc[2],
2188                            crc[3], crc[4], crc[5]);
2189                 goto out;
2190         }
2191         ret = -ENODEV;
2192 out:
2193         drm_modeset_unlock_all(dev);
2194         return ret;
2195 }
2196
2197 static int i915_energy_uJ(struct seq_file *m, void *data)
2198 {
2199         struct drm_info_node *node = m->private;
2200         struct drm_device *dev = node->minor->dev;
2201         struct drm_i915_private *dev_priv = dev->dev_private;
2202         u64 power;
2203         u32 units;
2204
2205         if (INTEL_INFO(dev)->gen < 6)
2206                 return -ENODEV;
2207
2208         intel_runtime_pm_get(dev_priv);
2209
2210         rdmsrl(MSR_RAPL_POWER_UNIT, power);
2211         power = (power & 0x1f00) >> 8;
2212         units = 1000000 / (1 << power); /* convert to uJ */
2213         power = I915_READ(MCH_SECP_NRG_STTS);
2214         power *= units;
2215
2216         intel_runtime_pm_put(dev_priv);
2217
2218         seq_printf(m, "%llu", (long long unsigned)power);
2219
2220         return 0;
2221 }
2222
2223 static int i915_pc8_status(struct seq_file *m, void *unused)
2224 {
2225         struct drm_info_node *node = m->private;
2226         struct drm_device *dev = node->minor->dev;
2227         struct drm_i915_private *dev_priv = dev->dev_private;
2228
2229         if (!IS_HASWELL(dev) && !IS_BROADWELL(dev)) {
2230                 seq_puts(m, "not supported\n");
2231                 return 0;
2232         }
2233
2234         seq_printf(m, "GPU idle: %s\n", yesno(!dev_priv->mm.busy));
2235         seq_printf(m, "IRQs disabled: %s\n",
2236                    yesno(!intel_irqs_enabled(dev_priv)));
2237
2238         return 0;
2239 }
2240
2241 static const char *power_domain_str(enum intel_display_power_domain domain)
2242 {
2243         switch (domain) {
2244         case POWER_DOMAIN_PIPE_A:
2245                 return "PIPE_A";
2246         case POWER_DOMAIN_PIPE_B:
2247                 return "PIPE_B";
2248         case POWER_DOMAIN_PIPE_C:
2249                 return "PIPE_C";
2250         case POWER_DOMAIN_PIPE_A_PANEL_FITTER:
2251                 return "PIPE_A_PANEL_FITTER";
2252         case POWER_DOMAIN_PIPE_B_PANEL_FITTER:
2253                 return "PIPE_B_PANEL_FITTER";
2254         case POWER_DOMAIN_PIPE_C_PANEL_FITTER:
2255                 return "PIPE_C_PANEL_FITTER";
2256         case POWER_DOMAIN_TRANSCODER_A:
2257                 return "TRANSCODER_A";
2258         case POWER_DOMAIN_TRANSCODER_B:
2259                 return "TRANSCODER_B";
2260         case POWER_DOMAIN_TRANSCODER_C:
2261                 return "TRANSCODER_C";
2262         case POWER_DOMAIN_TRANSCODER_EDP:
2263                 return "TRANSCODER_EDP";
2264         case POWER_DOMAIN_PORT_DDI_A_2_LANES:
2265                 return "PORT_DDI_A_2_LANES";
2266         case POWER_DOMAIN_PORT_DDI_A_4_LANES:
2267                 return "PORT_DDI_A_4_LANES";
2268         case POWER_DOMAIN_PORT_DDI_B_2_LANES:
2269                 return "PORT_DDI_B_2_LANES";
2270         case POWER_DOMAIN_PORT_DDI_B_4_LANES:
2271                 return "PORT_DDI_B_4_LANES";
2272         case POWER_DOMAIN_PORT_DDI_C_2_LANES:
2273                 return "PORT_DDI_C_2_LANES";
2274         case POWER_DOMAIN_PORT_DDI_C_4_LANES:
2275                 return "PORT_DDI_C_4_LANES";
2276         case POWER_DOMAIN_PORT_DDI_D_2_LANES:
2277                 return "PORT_DDI_D_2_LANES";
2278         case POWER_DOMAIN_PORT_DDI_D_4_LANES:
2279                 return "PORT_DDI_D_4_LANES";
2280         case POWER_DOMAIN_PORT_DSI:
2281                 return "PORT_DSI";
2282         case POWER_DOMAIN_PORT_CRT:
2283                 return "PORT_CRT";
2284         case POWER_DOMAIN_PORT_OTHER:
2285                 return "PORT_OTHER";
2286         case POWER_DOMAIN_VGA:
2287                 return "VGA";
2288         case POWER_DOMAIN_AUDIO:
2289                 return "AUDIO";
2290         case POWER_DOMAIN_PLLS:
2291                 return "PLLS";
2292         case POWER_DOMAIN_INIT:
2293                 return "INIT";
2294         default:
2295                 WARN_ON(1);
2296                 return "?";
2297         }
2298 }
2299
2300 static int i915_power_domain_info(struct seq_file *m, void *unused)
2301 {
2302         struct drm_info_node *node = m->private;
2303         struct drm_device *dev = node->minor->dev;
2304         struct drm_i915_private *dev_priv = dev->dev_private;
2305         struct i915_power_domains *power_domains = &dev_priv->power_domains;
2306         int i;
2307
2308         mutex_lock(&power_domains->lock);
2309
2310         seq_printf(m, "%-25s %s\n", "Power well/domain", "Use count");
2311         for (i = 0; i < power_domains->power_well_count; i++) {
2312                 struct i915_power_well *power_well;
2313                 enum intel_display_power_domain power_domain;
2314
2315                 power_well = &power_domains->power_wells[i];
2316                 seq_printf(m, "%-25s %d\n", power_well->name,
2317                            power_well->count);
2318
2319                 for (power_domain = 0; power_domain < POWER_DOMAIN_NUM;
2320                      power_domain++) {
2321                         if (!(BIT(power_domain) & power_well->domains))
2322                                 continue;
2323
2324                         seq_printf(m, "  %-23s %d\n",
2325                                  power_domain_str(power_domain),
2326                                  power_domains->domain_use_count[power_domain]);
2327                 }
2328         }
2329
2330         mutex_unlock(&power_domains->lock);
2331
2332         return 0;
2333 }
2334
2335 static void intel_seq_print_mode(struct seq_file *m, int tabs,
2336                                  struct drm_display_mode *mode)
2337 {
2338         int i;
2339
2340         for (i = 0; i < tabs; i++)
2341                 seq_putc(m, '\t');
2342
2343         seq_printf(m, "id %d:\"%s\" freq %d clock %d hdisp %d hss %d hse %d htot %d vdisp %d vss %d vse %d vtot %d type 0x%x flags 0x%x\n",
2344                    mode->base.id, mode->name,
2345                    mode->vrefresh, mode->clock,
2346                    mode->hdisplay, mode->hsync_start,
2347                    mode->hsync_end, mode->htotal,
2348                    mode->vdisplay, mode->vsync_start,
2349                    mode->vsync_end, mode->vtotal,
2350                    mode->type, mode->flags);
2351 }
2352
2353 static void intel_encoder_info(struct seq_file *m,
2354                                struct intel_crtc *intel_crtc,
2355                                struct intel_encoder *intel_encoder)
2356 {
2357         struct drm_info_node *node = m->private;
2358         struct drm_device *dev = node->minor->dev;
2359         struct drm_crtc *crtc = &intel_crtc->base;
2360         struct intel_connector *intel_connector;
2361         struct drm_encoder *encoder;
2362
2363         encoder = &intel_encoder->base;
2364         seq_printf(m, "\tencoder %d: type: %s, connectors:\n",
2365                    encoder->base.id, encoder->name);
2366         for_each_connector_on_encoder(dev, encoder, intel_connector) {
2367                 struct drm_connector *connector = &intel_connector->base;
2368                 seq_printf(m, "\t\tconnector %d: type: %s, status: %s",
2369                            connector->base.id,
2370                            connector->name,
2371                            drm_get_connector_status_name(connector->status));
2372                 if (connector->status == connector_status_connected) {
2373                         struct drm_display_mode *mode = &crtc->mode;
2374                         seq_printf(m, ", mode:\n");
2375                         intel_seq_print_mode(m, 2, mode);
2376                 } else {
2377                         seq_putc(m, '\n');
2378                 }
2379         }
2380 }
2381
2382 static void intel_crtc_info(struct seq_file *m, struct intel_crtc *intel_crtc)
2383 {
2384         struct drm_info_node *node = m->private;
2385         struct drm_device *dev = node->minor->dev;
2386         struct drm_crtc *crtc = &intel_crtc->base;
2387         struct intel_encoder *intel_encoder;
2388
2389         if (crtc->primary->fb)
2390                 seq_printf(m, "\tfb: %d, pos: %dx%d, size: %dx%d\n",
2391                            crtc->primary->fb->base.id, crtc->x, crtc->y,
2392                            crtc->primary->fb->width, crtc->primary->fb->height);
2393         else
2394                 seq_puts(m, "\tprimary plane disabled\n");
2395         for_each_encoder_on_crtc(dev, crtc, intel_encoder)
2396                 intel_encoder_info(m, intel_crtc, intel_encoder);
2397 }
2398
2399 static void intel_panel_info(struct seq_file *m, struct intel_panel *panel)
2400 {
2401         struct drm_display_mode *mode = panel->fixed_mode;
2402
2403         seq_printf(m, "\tfixed mode:\n");
2404         intel_seq_print_mode(m, 2, mode);
2405 }
2406
2407 static void intel_dp_info(struct seq_file *m,
2408                           struct intel_connector *intel_connector)
2409 {
2410         struct intel_encoder *intel_encoder = intel_connector->encoder;
2411         struct intel_dp *intel_dp = enc_to_intel_dp(&intel_encoder->base);
2412
2413         seq_printf(m, "\tDPCD rev: %x\n", intel_dp->dpcd[DP_DPCD_REV]);
2414         seq_printf(m, "\taudio support: %s\n", intel_dp->has_audio ? "yes" :
2415                    "no");
2416         if (intel_encoder->type == INTEL_OUTPUT_EDP)
2417                 intel_panel_info(m, &intel_connector->panel);
2418 }
2419
2420 static void intel_hdmi_info(struct seq_file *m,
2421                             struct intel_connector *intel_connector)
2422 {
2423         struct intel_encoder *intel_encoder = intel_connector->encoder;
2424         struct intel_hdmi *intel_hdmi = enc_to_intel_hdmi(&intel_encoder->base);
2425
2426         seq_printf(m, "\taudio support: %s\n", intel_hdmi->has_audio ? "yes" :
2427                    "no");
2428 }
2429
2430 static void intel_lvds_info(struct seq_file *m,
2431                             struct intel_connector *intel_connector)
2432 {
2433         intel_panel_info(m, &intel_connector->panel);
2434 }
2435
2436 static void intel_connector_info(struct seq_file *m,
2437                                  struct drm_connector *connector)
2438 {
2439         struct intel_connector *intel_connector = to_intel_connector(connector);
2440         struct intel_encoder *intel_encoder = intel_connector->encoder;
2441         struct drm_display_mode *mode;
2442
2443         seq_printf(m, "connector %d: type %s, status: %s\n",
2444                    connector->base.id, connector->name,
2445                    drm_get_connector_status_name(connector->status));
2446         if (connector->status == connector_status_connected) {
2447                 seq_printf(m, "\tname: %s\n", connector->display_info.name);
2448                 seq_printf(m, "\tphysical dimensions: %dx%dmm\n",
2449                            connector->display_info.width_mm,
2450                            connector->display_info.height_mm);
2451                 seq_printf(m, "\tsubpixel order: %s\n",
2452                            drm_get_subpixel_order_name(connector->display_info.subpixel_order));
2453                 seq_printf(m, "\tCEA rev: %d\n",
2454                            connector->display_info.cea_rev);
2455         }
2456         if (intel_encoder) {
2457                 if (intel_encoder->type == INTEL_OUTPUT_DISPLAYPORT ||
2458                     intel_encoder->type == INTEL_OUTPUT_EDP)
2459                         intel_dp_info(m, intel_connector);
2460                 else if (intel_encoder->type == INTEL_OUTPUT_HDMI)
2461                         intel_hdmi_info(m, intel_connector);
2462                 else if (intel_encoder->type == INTEL_OUTPUT_LVDS)
2463                         intel_lvds_info(m, intel_connector);
2464         }
2465
2466         seq_printf(m, "\tmodes:\n");
2467         list_for_each_entry(mode, &connector->modes, head)
2468                 intel_seq_print_mode(m, 2, mode);
2469 }
2470
2471 static bool cursor_active(struct drm_device *dev, int pipe)
2472 {
2473         struct drm_i915_private *dev_priv = dev->dev_private;
2474         u32 state;
2475
2476         if (IS_845G(dev) || IS_I865G(dev))
2477                 state = I915_READ(_CURACNTR) & CURSOR_ENABLE;
2478         else
2479                 state = I915_READ(CURCNTR(pipe)) & CURSOR_MODE;
2480
2481         return state;
2482 }
2483
2484 static bool cursor_position(struct drm_device *dev, int pipe, int *x, int *y)
2485 {
2486         struct drm_i915_private *dev_priv = dev->dev_private;
2487         u32 pos;
2488
2489         pos = I915_READ(CURPOS(pipe));
2490
2491         *x = (pos >> CURSOR_X_SHIFT) & CURSOR_POS_MASK;
2492         if (pos & (CURSOR_POS_SIGN << CURSOR_X_SHIFT))
2493                 *x = -*x;
2494
2495         *y = (pos >> CURSOR_Y_SHIFT) & CURSOR_POS_MASK;
2496         if (pos & (CURSOR_POS_SIGN << CURSOR_Y_SHIFT))
2497                 *y = -*y;
2498
2499         return cursor_active(dev, pipe);
2500 }
2501
2502 static int i915_display_info(struct seq_file *m, void *unused)
2503 {
2504         struct drm_info_node *node = m->private;
2505         struct drm_device *dev = node->minor->dev;
2506         struct drm_i915_private *dev_priv = dev->dev_private;
2507         struct intel_crtc *crtc;
2508         struct drm_connector *connector;
2509
2510         intel_runtime_pm_get(dev_priv);
2511         drm_modeset_lock_all(dev);
2512         seq_printf(m, "CRTC info\n");
2513         seq_printf(m, "---------\n");
2514         for_each_intel_crtc(dev, crtc) {
2515                 bool active;
2516                 int x, y;
2517
2518                 seq_printf(m, "CRTC %d: pipe: %c, active=%s (size=%dx%d)\n",
2519                            crtc->base.base.id, pipe_name(crtc->pipe),
2520                            yesno(crtc->active), crtc->config.pipe_src_w, crtc->config.pipe_src_h);
2521                 if (crtc->active) {
2522                         intel_crtc_info(m, crtc);
2523
2524                         active = cursor_position(dev, crtc->pipe, &x, &y);
2525                         seq_printf(m, "\tcursor visible? %s, position (%d, %d), size %dx%d, addr 0x%08x, active? %s\n",
2526                                    yesno(crtc->cursor_base),
2527                                    x, y, crtc->cursor_width, crtc->cursor_height,
2528                                    crtc->cursor_addr, yesno(active));
2529                 }
2530
2531                 seq_printf(m, "\tunderrun reporting: cpu=%s pch=%s \n",
2532                            yesno(!crtc->cpu_fifo_underrun_disabled),
2533                            yesno(!crtc->pch_fifo_underrun_disabled));
2534         }
2535
2536         seq_printf(m, "\n");
2537         seq_printf(m, "Connector info\n");
2538         seq_printf(m, "--------------\n");
2539         list_for_each_entry(connector, &dev->mode_config.connector_list, head) {
2540                 intel_connector_info(m, connector);
2541         }
2542         drm_modeset_unlock_all(dev);
2543         intel_runtime_pm_put(dev_priv);
2544
2545         return 0;
2546 }
2547
2548 static int i915_semaphore_status(struct seq_file *m, void *unused)
2549 {
2550         struct drm_info_node *node = (struct drm_info_node *) m->private;
2551         struct drm_device *dev = node->minor->dev;
2552         struct drm_i915_private *dev_priv = dev->dev_private;
2553         struct intel_engine_cs *ring;
2554         int num_rings = hweight32(INTEL_INFO(dev)->ring_mask);
2555         int i, j, ret;
2556
2557         if (!i915_semaphore_is_enabled(dev)) {
2558                 seq_puts(m, "Semaphores are disabled\n");
2559                 return 0;
2560         }
2561
2562         ret = mutex_lock_interruptible(&dev->struct_mutex);
2563         if (ret)
2564                 return ret;
2565         intel_runtime_pm_get(dev_priv);
2566
2567         if (IS_BROADWELL(dev)) {
2568                 struct page *page;
2569                 uint64_t *seqno;
2570
2571                 page = i915_gem_object_get_page(dev_priv->semaphore_obj, 0);
2572
2573                 seqno = (uint64_t *)kmap_atomic(page);
2574                 for_each_ring(ring, dev_priv, i) {
2575                         uint64_t offset;
2576
2577                         seq_printf(m, "%s\n", ring->name);
2578
2579                         seq_puts(m, "  Last signal:");
2580                         for (j = 0; j < num_rings; j++) {
2581                                 offset = i * I915_NUM_RINGS + j;
2582                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2583                                            seqno[offset], offset * 8);
2584                         }
2585                         seq_putc(m, '\n');
2586
2587                         seq_puts(m, "  Last wait:  ");
2588                         for (j = 0; j < num_rings; j++) {
2589                                 offset = i + (j * I915_NUM_RINGS);
2590                                 seq_printf(m, "0x%08llx (0x%02llx) ",
2591                                            seqno[offset], offset * 8);
2592                         }
2593                         seq_putc(m, '\n');
2594
2595                 }
2596                 kunmap_atomic(seqno);
2597         } else {
2598                 seq_puts(m, "  Last signal:");
2599                 for_each_ring(ring, dev_priv, i)
2600                         for (j = 0; j < num_rings; j++)
2601                                 seq_printf(m, "0x%08x\n",
2602                                            I915_READ(ring->semaphore.mbox.signal[j]));
2603                 seq_putc(m, '\n');
2604         }
2605
2606         seq_puts(m, "\nSync seqno:\n");
2607         for_each_ring(ring, dev_priv, i) {
2608                 for (j = 0; j < num_rings; j++) {
2609                         seq_printf(m, "  0x%08x ", ring->semaphore.sync_seqno[j]);
2610                 }
2611                 seq_putc(m, '\n');
2612         }
2613         seq_putc(m, '\n');
2614
2615         intel_runtime_pm_put(dev_priv);
2616         mutex_unlock(&dev->struct_mutex);
2617         return 0;
2618 }
2619
2620 static int i915_shared_dplls_info(struct seq_file *m, void *unused)
2621 {
2622         struct drm_info_node *node = (struct drm_info_node *) m->private;
2623         struct drm_device *dev = node->minor->dev;
2624         struct drm_i915_private *dev_priv = dev->dev_private;
2625         int i;
2626
2627         drm_modeset_lock_all(dev);
2628         for (i = 0; i < dev_priv->num_shared_dpll; i++) {
2629                 struct intel_shared_dpll *pll = &dev_priv->shared_dplls[i];
2630
2631                 seq_printf(m, "DPLL%i: %s, id: %i\n", i, pll->name, pll->id);
2632                 seq_printf(m, " refcount: %i, active: %i, on: %s\n", pll->refcount,
2633                            pll->active, yesno(pll->on));
2634                 seq_printf(m, " tracked hardware state:\n");
2635                 seq_printf(m, " dpll:    0x%08x\n", pll->hw_state.dpll);
2636                 seq_printf(m, " dpll_md: 0x%08x\n", pll->hw_state.dpll_md);
2637                 seq_printf(m, " fp0:     0x%08x\n", pll->hw_state.fp0);
2638                 seq_printf(m, " fp1:     0x%08x\n", pll->hw_state.fp1);
2639                 seq_printf(m, " wrpll:   0x%08x\n", pll->hw_state.wrpll);
2640         }
2641         drm_modeset_unlock_all(dev);
2642
2643         return 0;
2644 }
2645
2646 static int i915_wa_registers(struct seq_file *m, void *unused)
2647 {
2648         int i;
2649         int ret;
2650         struct drm_info_node *node = (struct drm_info_node *) m->private;
2651         struct drm_device *dev = node->minor->dev;
2652         struct drm_i915_private *dev_priv = dev->dev_private;
2653
2654         ret = mutex_lock_interruptible(&dev->struct_mutex);
2655         if (ret)
2656                 return ret;
2657
2658         intel_runtime_pm_get(dev_priv);
2659
2660         seq_printf(m, "Workarounds applied: %d\n", dev_priv->num_wa_regs);
2661         for (i = 0; i < dev_priv->num_wa_regs; ++i) {
2662                 u32 addr, mask;
2663
2664                 addr = dev_priv->intel_wa_regs[i].addr;
2665                 mask = dev_priv->intel_wa_regs[i].mask;
2666                 dev_priv->intel_wa_regs[i].value = I915_READ(addr) | mask;
2667                 if (dev_priv->intel_wa_regs[i].addr)
2668                         seq_printf(m, "0x%X: 0x%08X, mask: 0x%08X\n",
2669                                    dev_priv->intel_wa_regs[i].addr,
2670                                    dev_priv->intel_wa_regs[i].value,
2671                                    dev_priv->intel_wa_regs[i].mask);
2672         }
2673
2674         intel_runtime_pm_put(dev_priv);
2675         mutex_unlock(&dev->struct_mutex);
2676
2677         return 0;
2678 }
2679
2680 struct pipe_crc_info {
2681         const char *name;
2682         struct drm_device *dev;
2683         enum pipe pipe;
2684 };
2685
2686 static int i915_dp_mst_info(struct seq_file *m, void *unused)
2687 {
2688         struct drm_info_node *node = (struct drm_info_node *) m->private;
2689         struct drm_device *dev = node->minor->dev;
2690         struct drm_encoder *encoder;
2691         struct intel_encoder *intel_encoder;
2692         struct intel_digital_port *intel_dig_port;
2693         drm_modeset_lock_all(dev);
2694         list_for_each_entry(encoder, &dev->mode_config.encoder_list, head) {
2695                 intel_encoder = to_intel_encoder(encoder);
2696                 if (intel_encoder->type != INTEL_OUTPUT_DISPLAYPORT)
2697                         continue;
2698                 intel_dig_port = enc_to_dig_port(encoder);
2699                 if (!intel_dig_port->dp.can_mst)
2700                         continue;
2701
2702                 drm_dp_mst_dump_topology(m, &intel_dig_port->dp.mst_mgr);
2703         }
2704         drm_modeset_unlock_all(dev);
2705         return 0;
2706 }
2707
2708 static int i915_pipe_crc_open(struct inode *inode, struct file *filep)
2709 {
2710         struct pipe_crc_info *info = inode->i_private;
2711         struct drm_i915_private *dev_priv = info->dev->dev_private;
2712         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2713
2714         if (info->pipe >= INTEL_INFO(info->dev)->num_pipes)
2715                 return -ENODEV;
2716
2717         spin_lock_irq(&pipe_crc->lock);
2718
2719         if (pipe_crc->opened) {
2720                 spin_unlock_irq(&pipe_crc->lock);
2721                 return -EBUSY; /* already open */
2722         }
2723
2724         pipe_crc->opened = true;
2725         filep->private_data = inode->i_private;
2726
2727         spin_unlock_irq(&pipe_crc->lock);
2728
2729         return 0;
2730 }
2731
2732 static int i915_pipe_crc_release(struct inode *inode, struct file *filep)
2733 {
2734         struct pipe_crc_info *info = inode->i_private;
2735         struct drm_i915_private *dev_priv = info->dev->dev_private;
2736         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2737
2738         spin_lock_irq(&pipe_crc->lock);
2739         pipe_crc->opened = false;
2740         spin_unlock_irq(&pipe_crc->lock);
2741
2742         return 0;
2743 }
2744
2745 /* (6 fields, 8 chars each, space separated (5) + '\n') */
2746 #define PIPE_CRC_LINE_LEN       (6 * 8 + 5 + 1)
2747 /* account for \'0' */
2748 #define PIPE_CRC_BUFFER_LEN     (PIPE_CRC_LINE_LEN + 1)
2749
2750 static int pipe_crc_data_count(struct intel_pipe_crc *pipe_crc)
2751 {
2752         assert_spin_locked(&pipe_crc->lock);
2753         return CIRC_CNT(pipe_crc->head, pipe_crc->tail,
2754                         INTEL_PIPE_CRC_ENTRIES_NR);
2755 }
2756
2757 static ssize_t
2758 i915_pipe_crc_read(struct file *filep, char __user *user_buf, size_t count,
2759                    loff_t *pos)
2760 {
2761         struct pipe_crc_info *info = filep->private_data;
2762         struct drm_device *dev = info->dev;
2763         struct drm_i915_private *dev_priv = dev->dev_private;
2764         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[info->pipe];
2765         char buf[PIPE_CRC_BUFFER_LEN];
2766         int head, tail, n_entries, n;
2767         ssize_t bytes_read;
2768
2769         /*
2770          * Don't allow user space to provide buffers not big enough to hold
2771          * a line of data.
2772          */
2773         if (count < PIPE_CRC_LINE_LEN)
2774                 return -EINVAL;
2775
2776         if (pipe_crc->source == INTEL_PIPE_CRC_SOURCE_NONE)
2777                 return 0;
2778
2779         /* nothing to read */
2780         spin_lock_irq(&pipe_crc->lock);
2781         while (pipe_crc_data_count(pipe_crc) == 0) {
2782                 int ret;
2783
2784                 if (filep->f_flags & O_NONBLOCK) {
2785                         spin_unlock_irq(&pipe_crc->lock);
2786                         return -EAGAIN;
2787                 }
2788
2789                 ret = wait_event_interruptible_lock_irq(pipe_crc->wq,
2790                                 pipe_crc_data_count(pipe_crc), pipe_crc->lock);
2791                 if (ret) {
2792                         spin_unlock_irq(&pipe_crc->lock);
2793                         return ret;
2794                 }
2795         }
2796
2797         /* We now have one or more entries to read */
2798         head = pipe_crc->head;
2799         tail = pipe_crc->tail;
2800         n_entries = min((size_t)CIRC_CNT(head, tail, INTEL_PIPE_CRC_ENTRIES_NR),
2801                         count / PIPE_CRC_LINE_LEN);
2802         spin_unlock_irq(&pipe_crc->lock);
2803
2804         bytes_read = 0;
2805         n = 0;
2806         do {
2807                 struct intel_pipe_crc_entry *entry = &pipe_crc->entries[tail];
2808                 int ret;
2809
2810                 bytes_read += snprintf(buf, PIPE_CRC_BUFFER_LEN,
2811                                        "%8u %8x %8x %8x %8x %8x\n",
2812                                        entry->frame, entry->crc[0],
2813                                        entry->crc[1], entry->crc[2],
2814                                        entry->crc[3], entry->crc[4]);
2815
2816                 ret = copy_to_user(user_buf + n * PIPE_CRC_LINE_LEN,
2817                                    buf, PIPE_CRC_LINE_LEN);
2818                 if (ret == PIPE_CRC_LINE_LEN)
2819                         return -EFAULT;
2820
2821                 BUILD_BUG_ON_NOT_POWER_OF_2(INTEL_PIPE_CRC_ENTRIES_NR);
2822                 tail = (tail + 1) & (INTEL_PIPE_CRC_ENTRIES_NR - 1);
2823                 n++;
2824         } while (--n_entries);
2825
2826         spin_lock_irq(&pipe_crc->lock);
2827         pipe_crc->tail = tail;
2828         spin_unlock_irq(&pipe_crc->lock);
2829
2830         return bytes_read;
2831 }
2832
2833 static const struct file_operations i915_pipe_crc_fops = {
2834         .owner = THIS_MODULE,
2835         .open = i915_pipe_crc_open,
2836         .read = i915_pipe_crc_read,
2837         .release = i915_pipe_crc_release,
2838 };
2839
2840 static struct pipe_crc_info i915_pipe_crc_data[I915_MAX_PIPES] = {
2841         {
2842                 .name = "i915_pipe_A_crc",
2843                 .pipe = PIPE_A,
2844         },
2845         {
2846                 .name = "i915_pipe_B_crc",
2847                 .pipe = PIPE_B,
2848         },
2849         {
2850                 .name = "i915_pipe_C_crc",
2851                 .pipe = PIPE_C,
2852         },
2853 };
2854
2855 static int i915_pipe_crc_create(struct dentry *root, struct drm_minor *minor,
2856                                 enum pipe pipe)
2857 {
2858         struct drm_device *dev = minor->dev;
2859         struct dentry *ent;
2860         struct pipe_crc_info *info = &i915_pipe_crc_data[pipe];
2861
2862         info->dev = dev;
2863         ent = debugfs_create_file(info->name, S_IRUGO, root, info,
2864                                   &i915_pipe_crc_fops);
2865         if (!ent)
2866                 return -ENOMEM;
2867
2868         return drm_add_fake_info_node(minor, ent, info);
2869 }
2870
2871 static const char * const pipe_crc_sources[] = {
2872         "none",
2873         "plane1",
2874         "plane2",
2875         "pf",
2876         "pipe",
2877         "TV",
2878         "DP-B",
2879         "DP-C",
2880         "DP-D",
2881         "auto",
2882 };
2883
2884 static const char *pipe_crc_source_name(enum intel_pipe_crc_source source)
2885 {
2886         BUILD_BUG_ON(ARRAY_SIZE(pipe_crc_sources) != INTEL_PIPE_CRC_SOURCE_MAX);
2887         return pipe_crc_sources[source];
2888 }
2889
2890 static int display_crc_ctl_show(struct seq_file *m, void *data)
2891 {
2892         struct drm_device *dev = m->private;
2893         struct drm_i915_private *dev_priv = dev->dev_private;
2894         int i;
2895
2896         for (i = 0; i < I915_MAX_PIPES; i++)
2897                 seq_printf(m, "%c %s\n", pipe_name(i),
2898                            pipe_crc_source_name(dev_priv->pipe_crc[i].source));
2899
2900         return 0;
2901 }
2902
2903 static int display_crc_ctl_open(struct inode *inode, struct file *file)
2904 {
2905         struct drm_device *dev = inode->i_private;
2906
2907         return single_open(file, display_crc_ctl_show, dev);
2908 }
2909
2910 static int i8xx_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
2911                                  uint32_t *val)
2912 {
2913         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
2914                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2915
2916         switch (*source) {
2917         case INTEL_PIPE_CRC_SOURCE_PIPE:
2918                 *val = PIPE_CRC_ENABLE | PIPE_CRC_INCLUDE_BORDER_I8XX;
2919                 break;
2920         case INTEL_PIPE_CRC_SOURCE_NONE:
2921                 *val = 0;
2922                 break;
2923         default:
2924                 return -EINVAL;
2925         }
2926
2927         return 0;
2928 }
2929
2930 static int i9xx_pipe_crc_auto_source(struct drm_device *dev, enum pipe pipe,
2931                                      enum intel_pipe_crc_source *source)
2932 {
2933         struct intel_encoder *encoder;
2934         struct intel_crtc *crtc;
2935         struct intel_digital_port *dig_port;
2936         int ret = 0;
2937
2938         *source = INTEL_PIPE_CRC_SOURCE_PIPE;
2939
2940         drm_modeset_lock_all(dev);
2941         for_each_intel_encoder(dev, encoder) {
2942                 if (!encoder->base.crtc)
2943                         continue;
2944
2945                 crtc = to_intel_crtc(encoder->base.crtc);
2946
2947                 if (crtc->pipe != pipe)
2948                         continue;
2949
2950                 switch (encoder->type) {
2951                 case INTEL_OUTPUT_TVOUT:
2952                         *source = INTEL_PIPE_CRC_SOURCE_TV;
2953                         break;
2954                 case INTEL_OUTPUT_DISPLAYPORT:
2955                 case INTEL_OUTPUT_EDP:
2956                         dig_port = enc_to_dig_port(&encoder->base);
2957                         switch (dig_port->port) {
2958                         case PORT_B:
2959                                 *source = INTEL_PIPE_CRC_SOURCE_DP_B;
2960                                 break;
2961                         case PORT_C:
2962                                 *source = INTEL_PIPE_CRC_SOURCE_DP_C;
2963                                 break;
2964                         case PORT_D:
2965                                 *source = INTEL_PIPE_CRC_SOURCE_DP_D;
2966                                 break;
2967                         default:
2968                                 WARN(1, "nonexisting DP port %c\n",
2969                                      port_name(dig_port->port));
2970                                 break;
2971                         }
2972                         break;
2973                 }
2974         }
2975         drm_modeset_unlock_all(dev);
2976
2977         return ret;
2978 }
2979
2980 static int vlv_pipe_crc_ctl_reg(struct drm_device *dev,
2981                                 enum pipe pipe,
2982                                 enum intel_pipe_crc_source *source,
2983                                 uint32_t *val)
2984 {
2985         struct drm_i915_private *dev_priv = dev->dev_private;
2986         bool need_stable_symbols = false;
2987
2988         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
2989                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
2990                 if (ret)
2991                         return ret;
2992         }
2993
2994         switch (*source) {
2995         case INTEL_PIPE_CRC_SOURCE_PIPE:
2996                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_VLV;
2997                 break;
2998         case INTEL_PIPE_CRC_SOURCE_DP_B:
2999                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_VLV;
3000                 need_stable_symbols = true;
3001                 break;
3002         case INTEL_PIPE_CRC_SOURCE_DP_C:
3003                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_VLV;
3004                 need_stable_symbols = true;
3005                 break;
3006         case INTEL_PIPE_CRC_SOURCE_NONE:
3007                 *val = 0;
3008                 break;
3009         default:
3010                 return -EINVAL;
3011         }
3012
3013         /*
3014          * When the pipe CRC tap point is after the transcoders we need
3015          * to tweak symbol-level features to produce a deterministic series of
3016          * symbols for a given frame. We need to reset those features only once
3017          * a frame (instead of every nth symbol):
3018          *   - DC-balance: used to ensure a better clock recovery from the data
3019          *     link (SDVO)
3020          *   - DisplayPort scrambling: used for EMI reduction
3021          */
3022         if (need_stable_symbols) {
3023                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3024
3025                 tmp |= DC_BALANCE_RESET_VLV;
3026                 if (pipe == PIPE_A)
3027                         tmp |= PIPE_A_SCRAMBLE_RESET;
3028                 else
3029                         tmp |= PIPE_B_SCRAMBLE_RESET;
3030
3031                 I915_WRITE(PORT_DFT2_G4X, tmp);
3032         }
3033
3034         return 0;
3035 }
3036
3037 static int i9xx_pipe_crc_ctl_reg(struct drm_device *dev,
3038                                  enum pipe pipe,
3039                                  enum intel_pipe_crc_source *source,
3040                                  uint32_t *val)
3041 {
3042         struct drm_i915_private *dev_priv = dev->dev_private;
3043         bool need_stable_symbols = false;
3044
3045         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO) {
3046                 int ret = i9xx_pipe_crc_auto_source(dev, pipe, source);
3047                 if (ret)
3048                         return ret;
3049         }
3050
3051         switch (*source) {
3052         case INTEL_PIPE_CRC_SOURCE_PIPE:
3053                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_I9XX;
3054                 break;
3055         case INTEL_PIPE_CRC_SOURCE_TV:
3056                 if (!SUPPORTS_TV(dev))
3057                         return -EINVAL;
3058                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_TV_PRE;
3059                 break;
3060         case INTEL_PIPE_CRC_SOURCE_DP_B:
3061                 if (!IS_G4X(dev))
3062                         return -EINVAL;
3063                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_B_G4X;
3064                 need_stable_symbols = true;
3065                 break;
3066         case INTEL_PIPE_CRC_SOURCE_DP_C:
3067                 if (!IS_G4X(dev))
3068                         return -EINVAL;
3069                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_C_G4X;
3070                 need_stable_symbols = true;
3071                 break;
3072         case INTEL_PIPE_CRC_SOURCE_DP_D:
3073                 if (!IS_G4X(dev))
3074                         return -EINVAL;
3075                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_DP_D_G4X;
3076                 need_stable_symbols = true;
3077                 break;
3078         case INTEL_PIPE_CRC_SOURCE_NONE:
3079                 *val = 0;
3080                 break;
3081         default:
3082                 return -EINVAL;
3083         }
3084
3085         /*
3086          * When the pipe CRC tap point is after the transcoders we need
3087          * to tweak symbol-level features to produce a deterministic series of
3088          * symbols for a given frame. We need to reset those features only once
3089          * a frame (instead of every nth symbol):
3090          *   - DC-balance: used to ensure a better clock recovery from the data
3091          *     link (SDVO)
3092          *   - DisplayPort scrambling: used for EMI reduction
3093          */
3094         if (need_stable_symbols) {
3095                 uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3096
3097                 WARN_ON(!IS_G4X(dev));
3098
3099                 I915_WRITE(PORT_DFT_I9XX,
3100                            I915_READ(PORT_DFT_I9XX) | DC_BALANCE_RESET);
3101
3102                 if (pipe == PIPE_A)
3103                         tmp |= PIPE_A_SCRAMBLE_RESET;
3104                 else
3105                         tmp |= PIPE_B_SCRAMBLE_RESET;
3106
3107                 I915_WRITE(PORT_DFT2_G4X, tmp);
3108         }
3109
3110         return 0;
3111 }
3112
3113 static void vlv_undo_pipe_scramble_reset(struct drm_device *dev,
3114                                          enum pipe pipe)
3115 {
3116         struct drm_i915_private *dev_priv = dev->dev_private;
3117         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3118
3119         if (pipe == PIPE_A)
3120                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3121         else
3122                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3123         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK))
3124                 tmp &= ~DC_BALANCE_RESET_VLV;
3125         I915_WRITE(PORT_DFT2_G4X, tmp);
3126
3127 }
3128
3129 static void g4x_undo_pipe_scramble_reset(struct drm_device *dev,
3130                                          enum pipe pipe)
3131 {
3132         struct drm_i915_private *dev_priv = dev->dev_private;
3133         uint32_t tmp = I915_READ(PORT_DFT2_G4X);
3134
3135         if (pipe == PIPE_A)
3136                 tmp &= ~PIPE_A_SCRAMBLE_RESET;
3137         else
3138                 tmp &= ~PIPE_B_SCRAMBLE_RESET;
3139         I915_WRITE(PORT_DFT2_G4X, tmp);
3140
3141         if (!(tmp & PIPE_SCRAMBLE_RESET_MASK)) {
3142                 I915_WRITE(PORT_DFT_I9XX,
3143                            I915_READ(PORT_DFT_I9XX) & ~DC_BALANCE_RESET);
3144         }
3145 }
3146
3147 static int ilk_pipe_crc_ctl_reg(enum intel_pipe_crc_source *source,
3148                                 uint32_t *val)
3149 {
3150         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3151                 *source = INTEL_PIPE_CRC_SOURCE_PIPE;
3152
3153         switch (*source) {
3154         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3155                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_ILK;
3156                 break;
3157         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3158                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_ILK;
3159                 break;
3160         case INTEL_PIPE_CRC_SOURCE_PIPE:
3161                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PIPE_ILK;
3162                 break;
3163         case INTEL_PIPE_CRC_SOURCE_NONE:
3164                 *val = 0;
3165                 break;
3166         default:
3167                 return -EINVAL;
3168         }
3169
3170         return 0;
3171 }
3172
3173 static void hsw_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3174 {
3175         struct drm_i915_private *dev_priv = dev->dev_private;
3176         struct intel_crtc *crtc =
3177                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3178
3179         drm_modeset_lock_all(dev);
3180         /*
3181          * If we use the eDP transcoder we need to make sure that we don't
3182          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3183          * relevant on hsw with pipe A when using the always-on power well
3184          * routing.
3185          */
3186         if (crtc->config.cpu_transcoder == TRANSCODER_EDP &&
3187             !crtc->config.pch_pfit.enabled) {
3188                 crtc->config.pch_pfit.force_thru = true;
3189
3190                 intel_display_power_get(dev_priv,
3191                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3192
3193                 dev_priv->display.crtc_disable(&crtc->base);
3194                 dev_priv->display.crtc_enable(&crtc->base);
3195         }
3196         drm_modeset_unlock_all(dev);
3197 }
3198
3199 static void hsw_undo_trans_edp_pipe_A_crc_wa(struct drm_device *dev)
3200 {
3201         struct drm_i915_private *dev_priv = dev->dev_private;
3202         struct intel_crtc *crtc =
3203                 to_intel_crtc(dev_priv->pipe_to_crtc_mapping[PIPE_A]);
3204
3205         drm_modeset_lock_all(dev);
3206         /*
3207          * If we use the eDP transcoder we need to make sure that we don't
3208          * bypass the pfit, since otherwise the pipe CRC source won't work. Only
3209          * relevant on hsw with pipe A when using the always-on power well
3210          * routing.
3211          */
3212         if (crtc->config.pch_pfit.force_thru) {
3213                 crtc->config.pch_pfit.force_thru = false;
3214
3215                 dev_priv->display.crtc_disable(&crtc->base);
3216                 dev_priv->display.crtc_enable(&crtc->base);
3217
3218                 intel_display_power_put(dev_priv,
3219                                         POWER_DOMAIN_PIPE_PANEL_FITTER(PIPE_A));
3220         }
3221         drm_modeset_unlock_all(dev);
3222 }
3223
3224 static int ivb_pipe_crc_ctl_reg(struct drm_device *dev,
3225                                 enum pipe pipe,
3226                                 enum intel_pipe_crc_source *source,
3227                                 uint32_t *val)
3228 {
3229         if (*source == INTEL_PIPE_CRC_SOURCE_AUTO)
3230                 *source = INTEL_PIPE_CRC_SOURCE_PF;
3231
3232         switch (*source) {
3233         case INTEL_PIPE_CRC_SOURCE_PLANE1:
3234                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PRIMARY_IVB;
3235                 break;
3236         case INTEL_PIPE_CRC_SOURCE_PLANE2:
3237                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_SPRITE_IVB;
3238                 break;
3239         case INTEL_PIPE_CRC_SOURCE_PF:
3240                 if (IS_HASWELL(dev) && pipe == PIPE_A)
3241                         hsw_trans_edp_pipe_A_crc_wa(dev);
3242
3243                 *val = PIPE_CRC_ENABLE | PIPE_CRC_SOURCE_PF_IVB;
3244                 break;
3245         case INTEL_PIPE_CRC_SOURCE_NONE:
3246                 *val = 0;
3247                 break;
3248         default:
3249                 return -EINVAL;
3250         }
3251
3252         return 0;
3253 }
3254
3255 static int pipe_crc_set_source(struct drm_device *dev, enum pipe pipe,
3256                                enum intel_pipe_crc_source source)
3257 {
3258         struct drm_i915_private *dev_priv = dev->dev_private;
3259         struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
3260         u32 val = 0; /* shut up gcc */
3261         int ret;
3262
3263         if (pipe_crc->source == source)
3264                 return 0;
3265
3266         /* forbid changing the source without going back to 'none' */
3267         if (pipe_crc->source && source)
3268                 return -EINVAL;
3269
3270         if (IS_GEN2(dev))
3271                 ret = i8xx_pipe_crc_ctl_reg(&source, &val);
3272         else if (INTEL_INFO(dev)->gen < 5)
3273                 ret = i9xx_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3274         else if (IS_VALLEYVIEW(dev))
3275                 ret = vlv_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3276         else if (IS_GEN5(dev) || IS_GEN6(dev))
3277                 ret = ilk_pipe_crc_ctl_reg(&source, &val);
3278         else
3279                 ret = ivb_pipe_crc_ctl_reg(dev, pipe, &source, &val);
3280
3281         if (ret != 0)
3282                 return ret;
3283
3284         /* none -> real source transition */
3285         if (source) {
3286                 DRM_DEBUG_DRIVER("collecting CRCs for pipe %c, %s\n",
3287                                  pipe_name(pipe), pipe_crc_source_name(source));
3288
3289                 pipe_crc->entries = kzalloc(sizeof(*pipe_crc->entries) *
3290                                             INTEL_PIPE_CRC_ENTRIES_NR,
3291                                             GFP_KERNEL);
3292                 if (!pipe_crc->entries)
3293                         return -ENOMEM;
3294
3295                 spin_lock_irq(&pipe_crc->lock);
3296                 pipe_crc->head = 0;
3297                 pipe_crc->tail = 0;
3298                 spin_unlock_irq(&pipe_crc->lock);
3299         }
3300
3301         pipe_crc->source = source;
3302
3303         I915_WRITE(PIPE_CRC_CTL(pipe), val);
3304         POSTING_READ(PIPE_CRC_CTL(pipe));
3305
3306         /* real source -> none transition */
3307         if (source == INTEL_PIPE_CRC_SOURCE_NONE) {
3308                 struct intel_pipe_crc_entry *entries;
3309                 struct intel_crtc *crtc =
3310                         to_intel_crtc(dev_priv->pipe_to_crtc_mapping[pipe]);
3311
3312                 DRM_DEBUG_DRIVER("stopping CRCs for pipe %c\n",
3313                                  pipe_name(pipe));
3314
3315                 drm_modeset_lock(&crtc->base.mutex, NULL);
3316                 if (crtc->active)
3317                         intel_wait_for_vblank(dev, pipe);
3318                 drm_modeset_unlock(&crtc->base.mutex);
3319
3320                 spin_lock_irq(&pipe_crc->lock);
3321                 entries = pipe_crc->entries;
3322                 pipe_crc->entries = NULL;
3323                 spin_unlock_irq(&pipe_crc->lock);
3324
3325                 kfree(entries);
3326
3327                 if (IS_G4X(dev))
3328                         g4x_undo_pipe_scramble_reset(dev, pipe);
3329                 else if (IS_VALLEYVIEW(dev))
3330                         vlv_undo_pipe_scramble_reset(dev, pipe);
3331                 else if (IS_HASWELL(dev) && pipe == PIPE_A)
3332                         hsw_undo_trans_edp_pipe_A_crc_wa(dev);
3333         }
3334
3335         return 0;
3336 }
3337
3338 /*
3339  * Parse pipe CRC command strings:
3340  *   command: wsp* object wsp+ name wsp+ source wsp*
3341  *   object: 'pipe'
3342  *   name: (A | B | C)
3343  *   source: (none | plane1 | plane2 | pf)
3344  *   wsp: (#0x20 | #0x9 | #0xA)+
3345  *
3346  * eg.:
3347  *  "pipe A plane1"  ->  Start CRC computations on plane1 of pipe A
3348  *  "pipe A none"    ->  Stop CRC
3349  */
3350 static int display_crc_ctl_tokenize(char *buf, char *words[], int max_words)
3351 {
3352         int n_words = 0;
3353
3354         while (*buf) {
3355                 char *end;
3356
3357                 /* skip leading white space */
3358                 buf = skip_spaces(buf);
3359                 if (!*buf)
3360                         break;  /* end of buffer */
3361
3362                 /* find end of word */
3363                 for (end = buf; *end && !isspace(*end); end++)
3364                         ;
3365
3366                 if (n_words == max_words) {
3367                         DRM_DEBUG_DRIVER("too many words, allowed <= %d\n",
3368                                          max_words);
3369                         return -EINVAL; /* ran out of words[] before bytes */
3370                 }
3371
3372                 if (*end)
3373                         *end++ = '\0';
3374                 words[n_words++] = buf;
3375                 buf = end;
3376         }
3377
3378         return n_words;
3379 }
3380
3381 enum intel_pipe_crc_object {
3382         PIPE_CRC_OBJECT_PIPE,
3383 };
3384
3385 static const char * const pipe_crc_objects[] = {
3386         "pipe",
3387 };
3388
3389 static int
3390 display_crc_ctl_parse_object(const char *buf, enum intel_pipe_crc_object *o)
3391 {
3392         int i;
3393
3394         for (i = 0; i < ARRAY_SIZE(pipe_crc_objects); i++)
3395                 if (!strcmp(buf, pipe_crc_objects[i])) {
3396                         *o = i;
3397                         return 0;
3398                     }
3399
3400         return -EINVAL;
3401 }
3402
3403 static int display_crc_ctl_parse_pipe(const char *buf, enum pipe *pipe)
3404 {
3405         const char name = buf[0];
3406
3407         if (name < 'A' || name >= pipe_name(I915_MAX_PIPES))
3408                 return -EINVAL;
3409
3410         *pipe = name - 'A';
3411
3412         return 0;
3413 }
3414
3415 static int
3416 display_crc_ctl_parse_source(const char *buf, enum intel_pipe_crc_source *s)
3417 {
3418         int i;
3419
3420         for (i = 0; i < ARRAY_SIZE(pipe_crc_sources); i++)
3421                 if (!strcmp(buf, pipe_crc_sources[i])) {
3422                         *s = i;
3423                         return 0;
3424                     }
3425
3426         return -EINVAL;
3427 }
3428
3429 static int display_crc_ctl_parse(struct drm_device *dev, char *buf, size_t len)
3430 {
3431 #define N_WORDS 3
3432         int n_words;
3433         char *words[N_WORDS];
3434         enum pipe pipe;
3435         enum intel_pipe_crc_object object;
3436         enum intel_pipe_crc_source source;
3437
3438         n_words = display_crc_ctl_tokenize(buf, words, N_WORDS);
3439         if (n_words != N_WORDS) {
3440                 DRM_DEBUG_DRIVER("tokenize failed, a command is %d words\n",
3441                                  N_WORDS);
3442                 return -EINVAL;
3443         }
3444
3445         if (display_crc_ctl_parse_object(words[0], &object) < 0) {
3446                 DRM_DEBUG_DRIVER("unknown object %s\n", words[0]);
3447                 return -EINVAL;
3448         }
3449
3450         if (display_crc_ctl_parse_pipe(words[1], &pipe) < 0) {
3451                 DRM_DEBUG_DRIVER("unknown pipe %s\n", words[1]);
3452                 return -EINVAL;
3453         }
3454
3455         if (display_crc_ctl_parse_source(words[2], &source) < 0) {
3456                 DRM_DEBUG_DRIVER("unknown source %s\n", words[2]);
3457                 return -EINVAL;
3458         }
3459
3460         return pipe_crc_set_source(dev, pipe, source);
3461 }
3462
3463 static ssize_t display_crc_ctl_write(struct file *file, const char __user *ubuf,
3464                                      size_t len, loff_t *offp)
3465 {
3466         struct seq_file *m = file->private_data;
3467         struct drm_device *dev = m->private;
3468         char *tmpbuf;
3469         int ret;
3470
3471         if (len == 0)
3472                 return 0;
3473
3474         if (len > PAGE_SIZE - 1) {
3475                 DRM_DEBUG_DRIVER("expected <%lu bytes into pipe crc control\n",
3476                                  PAGE_SIZE);
3477                 return -E2BIG;
3478         }
3479
3480         tmpbuf = kmalloc(len + 1, GFP_KERNEL);
3481         if (!tmpbuf)
3482                 return -ENOMEM;
3483
3484         if (copy_from_user(tmpbuf, ubuf, len)) {
3485                 ret = -EFAULT;
3486                 goto out;
3487         }
3488         tmpbuf[len] = '\0';
3489
3490         ret = display_crc_ctl_parse(dev, tmpbuf, len);
3491
3492 out:
3493         kfree(tmpbuf);
3494         if (ret < 0)
3495                 return ret;
3496
3497         *offp += len;
3498         return len;
3499 }
3500
3501 static const struct file_operations i915_display_crc_ctl_fops = {
3502         .owner = THIS_MODULE,
3503         .open = display_crc_ctl_open,
3504         .read = seq_read,
3505         .llseek = seq_lseek,
3506         .release = single_release,
3507         .write = display_crc_ctl_write
3508 };
3509
3510 static void wm_latency_show(struct seq_file *m, const uint16_t wm[5])
3511 {
3512         struct drm_device *dev = m->private;
3513         int num_levels = ilk_wm_max_level(dev) + 1;
3514         int level;
3515
3516         drm_modeset_lock_all(dev);
3517
3518         for (level = 0; level < num_levels; level++) {
3519                 unsigned int latency = wm[level];
3520
3521                 /* WM1+ latency values in 0.5us units */
3522                 if (level > 0)
3523                         latency *= 5;
3524
3525                 seq_printf(m, "WM%d %u (%u.%u usec)\n",
3526                            level, wm[level],
3527                            latency / 10, latency % 10);
3528         }
3529
3530         drm_modeset_unlock_all(dev);
3531 }
3532
3533 static int pri_wm_latency_show(struct seq_file *m, void *data)
3534 {
3535         struct drm_device *dev = m->private;
3536
3537         wm_latency_show(m, to_i915(dev)->wm.pri_latency);
3538
3539         return 0;
3540 }
3541
3542 static int spr_wm_latency_show(struct seq_file *m, void *data)
3543 {
3544         struct drm_device *dev = m->private;
3545
3546         wm_latency_show(m, to_i915(dev)->wm.spr_latency);
3547
3548         return 0;
3549 }
3550
3551 static int cur_wm_latency_show(struct seq_file *m, void *data)
3552 {
3553         struct drm_device *dev = m->private;
3554
3555         wm_latency_show(m, to_i915(dev)->wm.cur_latency);
3556
3557         return 0;
3558 }
3559
3560 static int pri_wm_latency_open(struct inode *inode, struct file *file)
3561 {
3562         struct drm_device *dev = inode->i_private;
3563
3564         if (HAS_GMCH_DISPLAY(dev))
3565                 return -ENODEV;
3566
3567         return single_open(file, pri_wm_latency_show, dev);
3568 }
3569
3570 static int spr_wm_latency_open(struct inode *inode, struct file *file)
3571 {
3572         struct drm_device *dev = inode->i_private;
3573
3574         if (HAS_GMCH_DISPLAY(dev))
3575                 return -ENODEV;
3576
3577         return single_open(file, spr_wm_latency_show, dev);
3578 }
3579
3580 static int cur_wm_latency_open(struct inode *inode, struct file *file)
3581 {
3582         struct drm_device *dev = inode->i_private;
3583
3584         if (HAS_GMCH_DISPLAY(dev))
3585                 return -ENODEV;
3586
3587         return single_open(file, cur_wm_latency_show, dev);
3588 }
3589
3590 static ssize_t wm_latency_write(struct file *file, const char __user *ubuf,
3591                                 size_t len, loff_t *offp, uint16_t wm[5])
3592 {
3593         struct seq_file *m = file->private_data;
3594         struct drm_device *dev = m->private;
3595         uint16_t new[5] = { 0 };
3596         int num_levels = ilk_wm_max_level(dev) + 1;
3597         int level;
3598         int ret;
3599         char tmp[32];
3600
3601         if (len >= sizeof(tmp))
3602                 return -EINVAL;
3603
3604         if (copy_from_user(tmp, ubuf, len))
3605                 return -EFAULT;
3606
3607         tmp[len] = '\0';
3608
3609         ret = sscanf(tmp, "%hu %hu %hu %hu %hu", &new[0], &new[1], &new[2], &new[3], &new[4]);
3610         if (ret != num_levels)
3611                 return -EINVAL;
3612
3613         drm_modeset_lock_all(dev);
3614
3615         for (level = 0; level < num_levels; level++)
3616                 wm[level] = new[level];
3617
3618         drm_modeset_unlock_all(dev);
3619
3620         return len;
3621 }
3622
3623
3624 static ssize_t pri_wm_latency_write(struct file *file, const char __user *ubuf,
3625                                     size_t len, loff_t *offp)
3626 {
3627         struct seq_file *m = file->private_data;
3628         struct drm_device *dev = m->private;
3629
3630         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.pri_latency);
3631 }
3632
3633 static ssize_t spr_wm_latency_write(struct file *file, const char __user *ubuf,
3634                                     size_t len, loff_t *offp)
3635 {
3636         struct seq_file *m = file->private_data;
3637         struct drm_device *dev = m->private;
3638
3639         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.spr_latency);
3640 }
3641
3642 static ssize_t cur_wm_latency_write(struct file *file, const char __user *ubuf,
3643                                     size_t len, loff_t *offp)
3644 {
3645         struct seq_file *m = file->private_data;
3646         struct drm_device *dev = m->private;
3647
3648         return wm_latency_write(file, ubuf, len, offp, to_i915(dev)->wm.cur_latency);
3649 }
3650
3651 static const struct file_operations i915_pri_wm_latency_fops = {
3652         .owner = THIS_MODULE,
3653         .open = pri_wm_latency_open,
3654         .read = seq_read,
3655         .llseek = seq_lseek,
3656         .release = single_release,
3657         .write = pri_wm_latency_write
3658 };
3659
3660 static const struct file_operations i915_spr_wm_latency_fops = {
3661         .owner = THIS_MODULE,
3662         .open = spr_wm_latency_open,
3663         .read = seq_read,
3664         .llseek = seq_lseek,
3665         .release = single_release,
3666         .write = spr_wm_latency_write
3667 };
3668
3669 static const struct file_operations i915_cur_wm_latency_fops = {
3670         .owner = THIS_MODULE,
3671         .open = cur_wm_latency_open,
3672         .read = seq_read,
3673         .llseek = seq_lseek,
3674         .release = single_release,
3675         .write = cur_wm_latency_write
3676 };
3677
3678 static int
3679 i915_wedged_get(void *data, u64 *val)
3680 {
3681         struct drm_device *dev = data;
3682         struct drm_i915_private *dev_priv = dev->dev_private;
3683
3684         *val = atomic_read(&dev_priv->gpu_error.reset_counter);
3685
3686         return 0;
3687 }
3688
3689 static int
3690 i915_wedged_set(void *data, u64 val)
3691 {
3692         struct drm_device *dev = data;
3693         struct drm_i915_private *dev_priv = dev->dev_private;
3694
3695         intel_runtime_pm_get(dev_priv);
3696
3697         i915_handle_error(dev, val,
3698                           "Manually setting wedged to %llu", val);
3699
3700         intel_runtime_pm_put(dev_priv);
3701
3702         return 0;
3703 }
3704
3705 DEFINE_SIMPLE_ATTRIBUTE(i915_wedged_fops,
3706                         i915_wedged_get, i915_wedged_set,
3707                         "%llu\n");
3708
3709 static int
3710 i915_ring_stop_get(void *data, u64 *val)
3711 {
3712         struct drm_device *dev = data;
3713         struct drm_i915_private *dev_priv = dev->dev_private;
3714
3715         *val = dev_priv->gpu_error.stop_rings;
3716
3717         return 0;
3718 }
3719
3720 static int
3721 i915_ring_stop_set(void *data, u64 val)
3722 {
3723         struct drm_device *dev = data;
3724         struct drm_i915_private *dev_priv = dev->dev_private;
3725         int ret;
3726
3727         DRM_DEBUG_DRIVER("Stopping rings 0x%08llx\n", val);
3728
3729         ret = mutex_lock_interruptible(&dev->struct_mutex);
3730         if (ret)
3731                 return ret;
3732
3733         dev_priv->gpu_error.stop_rings = val;
3734         mutex_unlock(&dev->struct_mutex);
3735
3736         return 0;
3737 }
3738
3739 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_stop_fops,
3740                         i915_ring_stop_get, i915_ring_stop_set,
3741                         "0x%08llx\n");
3742
3743 static int
3744 i915_ring_missed_irq_get(void *data, u64 *val)
3745 {
3746         struct drm_device *dev = data;
3747         struct drm_i915_private *dev_priv = dev->dev_private;
3748
3749         *val = dev_priv->gpu_error.missed_irq_rings;
3750         return 0;
3751 }
3752
3753 static int
3754 i915_ring_missed_irq_set(void *data, u64 val)
3755 {
3756         struct drm_device *dev = data;
3757         struct drm_i915_private *dev_priv = dev->dev_private;
3758         int ret;
3759
3760         /* Lock against concurrent debugfs callers */
3761         ret = mutex_lock_interruptible(&dev->struct_mutex);
3762         if (ret)
3763                 return ret;
3764         dev_priv->gpu_error.missed_irq_rings = val;
3765         mutex_unlock(&dev->struct_mutex);
3766
3767         return 0;
3768 }
3769
3770 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_missed_irq_fops,
3771                         i915_ring_missed_irq_get, i915_ring_missed_irq_set,
3772                         "0x%08llx\n");
3773
3774 static int
3775 i915_ring_test_irq_get(void *data, u64 *val)
3776 {
3777         struct drm_device *dev = data;
3778         struct drm_i915_private *dev_priv = dev->dev_private;
3779
3780         *val = dev_priv->gpu_error.test_irq_rings;
3781
3782         return 0;
3783 }
3784
3785 static int
3786 i915_ring_test_irq_set(void *data, u64 val)
3787 {
3788         struct drm_device *dev = data;
3789         struct drm_i915_private *dev_priv = dev->dev_private;
3790         int ret;
3791
3792         DRM_DEBUG_DRIVER("Masking interrupts on rings 0x%08llx\n", val);
3793
3794         /* Lock against concurrent debugfs callers */
3795         ret = mutex_lock_interruptible(&dev->struct_mutex);
3796         if (ret)
3797                 return ret;
3798
3799         dev_priv->gpu_error.test_irq_rings = val;
3800         mutex_unlock(&dev->struct_mutex);
3801
3802         return 0;
3803 }
3804
3805 DEFINE_SIMPLE_ATTRIBUTE(i915_ring_test_irq_fops,
3806                         i915_ring_test_irq_get, i915_ring_test_irq_set,
3807                         "0x%08llx\n");
3808
3809 #define DROP_UNBOUND 0x1
3810 #define DROP_BOUND 0x2
3811 #define DROP_RETIRE 0x4
3812 #define DROP_ACTIVE 0x8
3813 #define DROP_ALL (DROP_UNBOUND | \
3814                   DROP_BOUND | \
3815                   DROP_RETIRE | \
3816                   DROP_ACTIVE)
3817 static int
3818 i915_drop_caches_get(void *data, u64 *val)
3819 {
3820         *val = DROP_ALL;
3821
3822         return 0;
3823 }
3824
3825 static int
3826 i915_drop_caches_set(void *data, u64 val)
3827 {
3828         struct drm_device *dev = data;
3829         struct drm_i915_private *dev_priv = dev->dev_private;
3830         int ret;
3831
3832         DRM_DEBUG("Dropping caches: 0x%08llx\n", val);
3833
3834         /* No need to check and wait for gpu resets, only libdrm auto-restarts
3835          * on ioctls on -EAGAIN. */
3836         ret = mutex_lock_interruptible(&dev->struct_mutex);
3837         if (ret)
3838                 return ret;
3839
3840         if (val & DROP_ACTIVE) {
3841                 ret = i915_gpu_idle(dev);
3842                 if (ret)
3843                         goto unlock;
3844         }
3845
3846         if (val & (DROP_RETIRE | DROP_ACTIVE))
3847                 i915_gem_retire_requests(dev);
3848
3849         if (val & DROP_BOUND)
3850                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_BOUND);
3851
3852         if (val & DROP_UNBOUND)
3853                 i915_gem_shrink(dev_priv, LONG_MAX, I915_SHRINK_UNBOUND);
3854
3855 unlock:
3856         mutex_unlock(&dev->struct_mutex);
3857
3858         return ret;
3859 }
3860
3861 DEFINE_SIMPLE_ATTRIBUTE(i915_drop_caches_fops,
3862                         i915_drop_caches_get, i915_drop_caches_set,
3863                         "0x%08llx\n");
3864
3865 static int
3866 i915_max_freq_get(void *data, u64 *val)
3867 {
3868         struct drm_device *dev = data;
3869         struct drm_i915_private *dev_priv = dev->dev_private;
3870         int ret;
3871
3872         if (INTEL_INFO(dev)->gen < 6)
3873                 return -ENODEV;
3874
3875         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3876
3877         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3878         if (ret)
3879                 return ret;
3880
3881         if (IS_VALLEYVIEW(dev))
3882                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.max_freq_softlimit);
3883         else
3884                 *val = dev_priv->rps.max_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3885         mutex_unlock(&dev_priv->rps.hw_lock);
3886
3887         return 0;
3888 }
3889
3890 static int
3891 i915_max_freq_set(void *data, u64 val)
3892 {
3893         struct drm_device *dev = data;
3894         struct drm_i915_private *dev_priv = dev->dev_private;
3895         u32 rp_state_cap, hw_max, hw_min;
3896         int ret;
3897
3898         if (INTEL_INFO(dev)->gen < 6)
3899                 return -ENODEV;
3900
3901         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3902
3903         DRM_DEBUG_DRIVER("Manually setting max freq to %llu\n", val);
3904
3905         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3906         if (ret)
3907                 return ret;
3908
3909         /*
3910          * Turbo will still be enabled, but won't go above the set value.
3911          */
3912         if (IS_VALLEYVIEW(dev)) {
3913                 val = vlv_freq_opcode(dev_priv, val);
3914
3915                 hw_max = dev_priv->rps.max_freq;
3916                 hw_min = dev_priv->rps.min_freq;
3917         } else {
3918                 do_div(val, GT_FREQUENCY_MULTIPLIER);
3919
3920                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
3921                 hw_max = dev_priv->rps.max_freq;
3922                 hw_min = (rp_state_cap >> 16) & 0xff;
3923         }
3924
3925         if (val < hw_min || val > hw_max || val < dev_priv->rps.min_freq_softlimit) {
3926                 mutex_unlock(&dev_priv->rps.hw_lock);
3927                 return -EINVAL;
3928         }
3929
3930         dev_priv->rps.max_freq_softlimit = val;
3931
3932         if (IS_VALLEYVIEW(dev))
3933                 valleyview_set_rps(dev, val);
3934         else
3935                 gen6_set_rps(dev, val);
3936
3937         mutex_unlock(&dev_priv->rps.hw_lock);
3938
3939         return 0;
3940 }
3941
3942 DEFINE_SIMPLE_ATTRIBUTE(i915_max_freq_fops,
3943                         i915_max_freq_get, i915_max_freq_set,
3944                         "%llu\n");
3945
3946 static int
3947 i915_min_freq_get(void *data, u64 *val)
3948 {
3949         struct drm_device *dev = data;
3950         struct drm_i915_private *dev_priv = dev->dev_private;
3951         int ret;
3952
3953         if (INTEL_INFO(dev)->gen < 6)
3954                 return -ENODEV;
3955
3956         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3957
3958         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3959         if (ret)
3960                 return ret;
3961
3962         if (IS_VALLEYVIEW(dev))
3963                 *val = vlv_gpu_freq(dev_priv, dev_priv->rps.min_freq_softlimit);
3964         else
3965                 *val = dev_priv->rps.min_freq_softlimit * GT_FREQUENCY_MULTIPLIER;
3966         mutex_unlock(&dev_priv->rps.hw_lock);
3967
3968         return 0;
3969 }
3970
3971 static int
3972 i915_min_freq_set(void *data, u64 val)
3973 {
3974         struct drm_device *dev = data;
3975         struct drm_i915_private *dev_priv = dev->dev_private;
3976         u32 rp_state_cap, hw_max, hw_min;
3977         int ret;
3978
3979         if (INTEL_INFO(dev)->gen < 6)
3980                 return -ENODEV;
3981
3982         flush_delayed_work(&dev_priv->rps.delayed_resume_work);
3983
3984         DRM_DEBUG_DRIVER("Manually setting min freq to %llu\n", val);
3985
3986         ret = mutex_lock_interruptible(&dev_priv->rps.hw_lock);
3987         if (ret)
3988                 return ret;
3989
3990         /*
3991          * Turbo will still be enabled, but won't go below the set value.
3992          */
3993         if (IS_VALLEYVIEW(dev)) {
3994                 val = vlv_freq_opcode(dev_priv, val);
3995
3996                 hw_max = dev_priv->rps.max_freq;
3997                 hw_min = dev_priv->rps.min_freq;
3998         } else {
3999                 do_div(val, GT_FREQUENCY_MULTIPLIER);
4000
4001                 rp_state_cap = I915_READ(GEN6_RP_STATE_CAP);
4002                 hw_max = dev_priv->rps.max_freq;
4003                 hw_min = (rp_state_cap >> 16) & 0xff;
4004         }
4005
4006         if (val < hw_min || val > hw_max || val > dev_priv->rps.max_freq_softlimit) {
4007                 mutex_unlock(&dev_priv->rps.hw_lock);
4008                 return -EINVAL;
4009         }
4010
4011         dev_priv->rps.min_freq_softlimit = val;
4012
4013         if (IS_VALLEYVIEW(dev))
4014                 valleyview_set_rps(dev, val);
4015         else
4016                 gen6_set_rps(dev, val);
4017
4018         mutex_unlock(&dev_priv->rps.hw_lock);
4019
4020         return 0;
4021 }
4022
4023 DEFINE_SIMPLE_ATTRIBUTE(i915_min_freq_fops,
4024                         i915_min_freq_get, i915_min_freq_set,
4025                         "%llu\n");
4026
4027 static int
4028 i915_cache_sharing_get(void *data, u64 *val)
4029 {
4030         struct drm_device *dev = data;
4031         struct drm_i915_private *dev_priv = dev->dev_private;
4032         u32 snpcr;
4033         int ret;
4034
4035         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4036                 return -ENODEV;
4037
4038         ret = mutex_lock_interruptible(&dev->struct_mutex);
4039         if (ret)
4040                 return ret;
4041         intel_runtime_pm_get(dev_priv);
4042
4043         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4044
4045         intel_runtime_pm_put(dev_priv);
4046         mutex_unlock(&dev_priv->dev->struct_mutex);
4047
4048         *val = (snpcr & GEN6_MBC_SNPCR_MASK) >> GEN6_MBC_SNPCR_SHIFT;
4049
4050         return 0;
4051 }
4052
4053 static int
4054 i915_cache_sharing_set(void *data, u64 val)
4055 {
4056         struct drm_device *dev = data;
4057         struct drm_i915_private *dev_priv = dev->dev_private;
4058         u32 snpcr;
4059
4060         if (!(IS_GEN6(dev) || IS_GEN7(dev)))
4061                 return -ENODEV;
4062
4063         if (val > 3)
4064                 return -EINVAL;
4065
4066         intel_runtime_pm_get(dev_priv);
4067         DRM_DEBUG_DRIVER("Manually setting uncore sharing to %llu\n", val);
4068
4069         /* Update the cache sharing policy here as well */
4070         snpcr = I915_READ(GEN6_MBCUNIT_SNPCR);
4071         snpcr &= ~GEN6_MBC_SNPCR_MASK;
4072         snpcr |= (val << GEN6_MBC_SNPCR_SHIFT);
4073         I915_WRITE(GEN6_MBCUNIT_SNPCR, snpcr);
4074
4075         intel_runtime_pm_put(dev_priv);
4076         return 0;
4077 }
4078
4079 DEFINE_SIMPLE_ATTRIBUTE(i915_cache_sharing_fops,
4080                         i915_cache_sharing_get, i915_cache_sharing_set,
4081                         "%llu\n");
4082
4083 static int i915_forcewake_open(struct inode *inode, struct file *file)
4084 {
4085         struct drm_device *dev = inode->i_private;
4086         struct drm_i915_private *dev_priv = dev->dev_private;
4087
4088         if (INTEL_INFO(dev)->gen < 6)
4089                 return 0;
4090
4091         gen6_gt_force_wake_get(dev_priv, FORCEWAKE_ALL);
4092
4093         return 0;
4094 }
4095
4096 static int i915_forcewake_release(struct inode *inode, struct file *file)
4097 {
4098         struct drm_device *dev = inode->i_private;
4099         struct drm_i915_private *dev_priv = dev->dev_private;
4100
4101         if (INTEL_INFO(dev)->gen < 6)
4102                 return 0;
4103
4104         gen6_gt_force_wake_put(dev_priv, FORCEWAKE_ALL);
4105
4106         return 0;
4107 }
4108
4109 static const struct file_operations i915_forcewake_fops = {
4110         .owner = THIS_MODULE,
4111         .open = i915_forcewake_open,
4112         .release = i915_forcewake_release,
4113 };
4114
4115 static int i915_forcewake_create(struct dentry *root, struct drm_minor *minor)
4116 {
4117         struct drm_device *dev = minor->dev;
4118         struct dentry *ent;
4119
4120         ent = debugfs_create_file("i915_forcewake_user",
4121                                   S_IRUSR,
4122                                   root, dev,
4123                                   &i915_forcewake_fops);
4124         if (!ent)
4125                 return -ENOMEM;
4126
4127         return drm_add_fake_info_node(minor, ent, &i915_forcewake_fops);
4128 }
4129
4130 static int i915_debugfs_create(struct dentry *root,
4131                                struct drm_minor *minor,
4132                                const char *name,
4133                                const struct file_operations *fops)
4134 {
4135         struct drm_device *dev = minor->dev;
4136         struct dentry *ent;
4137
4138         ent = debugfs_create_file(name,
4139                                   S_IRUGO | S_IWUSR,
4140                                   root, dev,
4141                                   fops);
4142         if (!ent)
4143                 return -ENOMEM;
4144
4145         return drm_add_fake_info_node(minor, ent, fops);
4146 }
4147
4148 static const struct drm_info_list i915_debugfs_list[] = {
4149         {"i915_capabilities", i915_capabilities, 0},
4150         {"i915_gem_objects", i915_gem_object_info, 0},
4151         {"i915_gem_gtt", i915_gem_gtt_info, 0},
4152         {"i915_gem_pinned", i915_gem_gtt_info, 0, (void *) PINNED_LIST},
4153         {"i915_gem_active", i915_gem_object_list_info, 0, (void *) ACTIVE_LIST},
4154         {"i915_gem_inactive", i915_gem_object_list_info, 0, (void *) INACTIVE_LIST},
4155         {"i915_gem_stolen", i915_gem_stolen_list_info },
4156         {"i915_gem_pageflip", i915_gem_pageflip_info, 0},
4157         {"i915_gem_request", i915_gem_request_info, 0},
4158         {"i915_gem_seqno", i915_gem_seqno_info, 0},
4159         {"i915_gem_fence_regs", i915_gem_fence_regs_info, 0},
4160         {"i915_gem_interrupt", i915_interrupt_info, 0},
4161         {"i915_gem_hws", i915_hws_info, 0, (void *)RCS},
4162         {"i915_gem_hws_blt", i915_hws_info, 0, (void *)BCS},
4163         {"i915_gem_hws_bsd", i915_hws_info, 0, (void *)VCS},
4164         {"i915_gem_hws_vebox", i915_hws_info, 0, (void *)VECS},
4165         {"i915_frequency_info", i915_frequency_info, 0},
4166         {"i915_drpc_info", i915_drpc_info, 0},
4167         {"i915_emon_status", i915_emon_status, 0},
4168         {"i915_ring_freq_table", i915_ring_freq_table, 0},
4169         {"i915_fbc_status", i915_fbc_status, 0},
4170         {"i915_ips_status", i915_ips_status, 0},
4171         {"i915_sr_status", i915_sr_status, 0},
4172         {"i915_opregion", i915_opregion, 0},
4173         {"i915_gem_framebuffer", i915_gem_framebuffer_info, 0},
4174         {"i915_context_status", i915_context_status, 0},
4175         {"i915_dump_lrc", i915_dump_lrc, 0},
4176         {"i915_execlists", i915_execlists, 0},
4177         {"i915_gen6_forcewake_count", i915_gen6_forcewake_count_info, 0},
4178         {"i915_swizzle_info", i915_swizzle_info, 0},
4179         {"i915_ppgtt_info", i915_ppgtt_info, 0},
4180         {"i915_llc", i915_llc, 0},
4181         {"i915_edp_psr_status", i915_edp_psr_status, 0},
4182         {"i915_sink_crc_eDP1", i915_sink_crc, 0},
4183         {"i915_energy_uJ", i915_energy_uJ, 0},
4184         {"i915_pc8_status", i915_pc8_status, 0},
4185         {"i915_power_domain_info", i915_power_domain_info, 0},
4186         {"i915_display_info", i915_display_info, 0},
4187         {"i915_semaphore_status", i915_semaphore_status, 0},
4188         {"i915_shared_dplls_info", i915_shared_dplls_info, 0},
4189         {"i915_dp_mst_info", i915_dp_mst_info, 0},
4190         {"i915_wa_registers", i915_wa_registers, 0},
4191 };
4192 #define I915_DEBUGFS_ENTRIES ARRAY_SIZE(i915_debugfs_list)
4193
4194 static const struct i915_debugfs_files {
4195         const char *name;
4196         const struct file_operations *fops;
4197 } i915_debugfs_files[] = {
4198         {"i915_wedged", &i915_wedged_fops},
4199         {"i915_max_freq", &i915_max_freq_fops},
4200         {"i915_min_freq", &i915_min_freq_fops},
4201         {"i915_cache_sharing", &i915_cache_sharing_fops},
4202         {"i915_ring_stop", &i915_ring_stop_fops},
4203         {"i915_ring_missed_irq", &i915_ring_missed_irq_fops},
4204         {"i915_ring_test_irq", &i915_ring_test_irq_fops},
4205         {"i915_gem_drop_caches", &i915_drop_caches_fops},
4206         {"i915_error_state", &i915_error_state_fops},
4207         {"i915_next_seqno", &i915_next_seqno_fops},
4208         {"i915_display_crc_ctl", &i915_display_crc_ctl_fops},
4209         {"i915_pri_wm_latency", &i915_pri_wm_latency_fops},
4210         {"i915_spr_wm_latency", &i915_spr_wm_latency_fops},
4211         {"i915_cur_wm_latency", &i915_cur_wm_latency_fops},
4212         {"i915_fbc_false_color", &i915_fbc_fc_fops},
4213 };
4214
4215 void intel_display_crc_init(struct drm_device *dev)
4216 {
4217         struct drm_i915_private *dev_priv = dev->dev_private;
4218         enum pipe pipe;
4219
4220         for_each_pipe(dev_priv, pipe) {
4221                 struct intel_pipe_crc *pipe_crc = &dev_priv->pipe_crc[pipe];
4222
4223                 pipe_crc->opened = false;
4224                 spin_lock_init(&pipe_crc->lock);
4225                 init_waitqueue_head(&pipe_crc->wq);
4226         }
4227 }
4228
4229 int i915_debugfs_init(struct drm_minor *minor)
4230 {
4231         int ret, i;
4232
4233         ret = i915_forcewake_create(minor->debugfs_root, minor);
4234         if (ret)
4235                 return ret;
4236
4237         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4238                 ret = i915_pipe_crc_create(minor->debugfs_root, minor, i);
4239                 if (ret)
4240                         return ret;
4241         }
4242
4243         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4244                 ret = i915_debugfs_create(minor->debugfs_root, minor,
4245                                           i915_debugfs_files[i].name,
4246                                           i915_debugfs_files[i].fops);
4247                 if (ret)
4248                         return ret;
4249         }
4250
4251         return drm_debugfs_create_files(i915_debugfs_list,
4252                                         I915_DEBUGFS_ENTRIES,
4253                                         minor->debugfs_root, minor);
4254 }
4255
4256 void i915_debugfs_cleanup(struct drm_minor *minor)
4257 {
4258         int i;
4259
4260         drm_debugfs_remove_files(i915_debugfs_list,
4261                                  I915_DEBUGFS_ENTRIES, minor);
4262
4263         drm_debugfs_remove_files((struct drm_info_list *) &i915_forcewake_fops,
4264                                  1, minor);
4265
4266         for (i = 0; i < ARRAY_SIZE(i915_pipe_crc_data); i++) {
4267                 struct drm_info_list *info_list =
4268                         (struct drm_info_list *)&i915_pipe_crc_data[i];
4269
4270                 drm_debugfs_remove_files(info_list, 1, minor);
4271         }
4272
4273         for (i = 0; i < ARRAY_SIZE(i915_debugfs_files); i++) {
4274                 struct drm_info_list *info_list =
4275                         (struct drm_info_list *) i915_debugfs_files[i].fops;
4276
4277                 drm_debugfs_remove_files(info_list, 1, minor);
4278         }
4279 }