Linux-libre 5.7.3-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / i915 / gem / i915_gem_execbuffer.c
1 /*
2  * SPDX-License-Identifier: MIT
3  *
4  * Copyright © 2008,2010 Intel Corporation
5  */
6
7 #include <linux/intel-iommu.h>
8 #include <linux/dma-resv.h>
9 #include <linux/sync_file.h>
10 #include <linux/uaccess.h>
11
12 #include <drm/drm_syncobj.h>
13
14 #include "display/intel_frontbuffer.h"
15
16 #include "gem/i915_gem_ioctls.h"
17 #include "gt/intel_context.h"
18 #include "gt/intel_engine_pool.h"
19 #include "gt/intel_gt.h"
20 #include "gt/intel_gt_pm.h"
21 #include "gt/intel_ring.h"
22
23 #include "i915_drv.h"
24 #include "i915_gem_clflush.h"
25 #include "i915_gem_context.h"
26 #include "i915_gem_ioctls.h"
27 #include "i915_sw_fence_work.h"
28 #include "i915_trace.h"
29
30 struct eb_vma {
31         struct i915_vma *vma;
32         unsigned int flags;
33
34         /** This vma's place in the execbuf reservation list */
35         struct drm_i915_gem_exec_object2 *exec;
36         struct list_head bind_link;
37         struct list_head reloc_link;
38
39         struct hlist_node node;
40         u32 handle;
41 };
42
43 enum {
44         FORCE_CPU_RELOC = 1,
45         FORCE_GTT_RELOC,
46         FORCE_GPU_RELOC,
47 #define DBG_FORCE_RELOC 0 /* choose one of the above! */
48 };
49
50 #define __EXEC_OBJECT_HAS_PIN           BIT(31)
51 #define __EXEC_OBJECT_HAS_FENCE         BIT(30)
52 #define __EXEC_OBJECT_NEEDS_MAP         BIT(29)
53 #define __EXEC_OBJECT_NEEDS_BIAS        BIT(28)
54 #define __EXEC_OBJECT_INTERNAL_FLAGS    (~0u << 28) /* all of the above */
55 #define __EXEC_OBJECT_RESERVED (__EXEC_OBJECT_HAS_PIN | __EXEC_OBJECT_HAS_FENCE)
56
57 #define __EXEC_HAS_RELOC        BIT(31)
58 #define __EXEC_INTERNAL_FLAGS   (~0u << 31)
59 #define UPDATE                  PIN_OFFSET_FIXED
60
61 #define BATCH_OFFSET_BIAS (256*1024)
62
63 #define __I915_EXEC_ILLEGAL_FLAGS \
64         (__I915_EXEC_UNKNOWN_FLAGS | \
65          I915_EXEC_CONSTANTS_MASK  | \
66          I915_EXEC_RESOURCE_STREAMER)
67
68 /* Catch emission of unexpected errors for CI! */
69 #if IS_ENABLED(CONFIG_DRM_I915_DEBUG_GEM)
70 #undef EINVAL
71 #define EINVAL ({ \
72         DRM_DEBUG_DRIVER("EINVAL at %s:%d\n", __func__, __LINE__); \
73         22; \
74 })
75 #endif
76
77 /**
78  * DOC: User command execution
79  *
80  * Userspace submits commands to be executed on the GPU as an instruction
81  * stream within a GEM object we call a batchbuffer. This instructions may
82  * refer to other GEM objects containing auxiliary state such as kernels,
83  * samplers, render targets and even secondary batchbuffers. Userspace does
84  * not know where in the GPU memory these objects reside and so before the
85  * batchbuffer is passed to the GPU for execution, those addresses in the
86  * batchbuffer and auxiliary objects are updated. This is known as relocation,
87  * or patching. To try and avoid having to relocate each object on the next
88  * execution, userspace is told the location of those objects in this pass,
89  * but this remains just a hint as the kernel may choose a new location for
90  * any object in the future.
91  *
92  * At the level of talking to the hardware, submitting a batchbuffer for the
93  * GPU to execute is to add content to a buffer from which the HW
94  * command streamer is reading.
95  *
96  * 1. Add a command to load the HW context. For Logical Ring Contexts, i.e.
97  *    Execlists, this command is not placed on the same buffer as the
98  *    remaining items.
99  *
100  * 2. Add a command to invalidate caches to the buffer.
101  *
102  * 3. Add a batchbuffer start command to the buffer; the start command is
103  *    essentially a token together with the GPU address of the batchbuffer
104  *    to be executed.
105  *
106  * 4. Add a pipeline flush to the buffer.
107  *
108  * 5. Add a memory write command to the buffer to record when the GPU
109  *    is done executing the batchbuffer. The memory write writes the
110  *    global sequence number of the request, ``i915_request::global_seqno``;
111  *    the i915 driver uses the current value in the register to determine
112  *    if the GPU has completed the batchbuffer.
113  *
114  * 6. Add a user interrupt command to the buffer. This command instructs
115  *    the GPU to issue an interrupt when the command, pipeline flush and
116  *    memory write are completed.
117  *
118  * 7. Inform the hardware of the additional commands added to the buffer
119  *    (by updating the tail pointer).
120  *
121  * Processing an execbuf ioctl is conceptually split up into a few phases.
122  *
123  * 1. Validation - Ensure all the pointers, handles and flags are valid.
124  * 2. Reservation - Assign GPU address space for every object
125  * 3. Relocation - Update any addresses to point to the final locations
126  * 4. Serialisation - Order the request with respect to its dependencies
127  * 5. Construction - Construct a request to execute the batchbuffer
128  * 6. Submission (at some point in the future execution)
129  *
130  * Reserving resources for the execbuf is the most complicated phase. We
131  * neither want to have to migrate the object in the address space, nor do
132  * we want to have to update any relocations pointing to this object. Ideally,
133  * we want to leave the object where it is and for all the existing relocations
134  * to match. If the object is given a new address, or if userspace thinks the
135  * object is elsewhere, we have to parse all the relocation entries and update
136  * the addresses. Userspace can set the I915_EXEC_NORELOC flag to hint that
137  * all the target addresses in all of its objects match the value in the
138  * relocation entries and that they all match the presumed offsets given by the
139  * list of execbuffer objects. Using this knowledge, we know that if we haven't
140  * moved any buffers, all the relocation entries are valid and we can skip
141  * the update. (If userspace is wrong, the likely outcome is an impromptu GPU
142  * hang.) The requirement for using I915_EXEC_NO_RELOC are:
143  *
144  *      The addresses written in the objects must match the corresponding
145  *      reloc.presumed_offset which in turn must match the corresponding
146  *      execobject.offset.
147  *
148  *      Any render targets written to in the batch must be flagged with
149  *      EXEC_OBJECT_WRITE.
150  *
151  *      To avoid stalling, execobject.offset should match the current
152  *      address of that object within the active context.
153  *
154  * The reservation is done is multiple phases. First we try and keep any
155  * object already bound in its current location - so as long as meets the
156  * constraints imposed by the new execbuffer. Any object left unbound after the
157  * first pass is then fitted into any available idle space. If an object does
158  * not fit, all objects are removed from the reservation and the process rerun
159  * after sorting the objects into a priority order (more difficult to fit
160  * objects are tried first). Failing that, the entire VM is cleared and we try
161  * to fit the execbuf once last time before concluding that it simply will not
162  * fit.
163  *
164  * A small complication to all of this is that we allow userspace not only to
165  * specify an alignment and a size for the object in the address space, but
166  * we also allow userspace to specify the exact offset. This objects are
167  * simpler to place (the location is known a priori) all we have to do is make
168  * sure the space is available.
169  *
170  * Once all the objects are in place, patching up the buried pointers to point
171  * to the final locations is a fairly simple job of walking over the relocation
172  * entry arrays, looking up the right address and rewriting the value into
173  * the object. Simple! ... The relocation entries are stored in user memory
174  * and so to access them we have to copy them into a local buffer. That copy
175  * has to avoid taking any pagefaults as they may lead back to a GEM object
176  * requiring the struct_mutex (i.e. recursive deadlock). So once again we split
177  * the relocation into multiple passes. First we try to do everything within an
178  * atomic context (avoid the pagefaults) which requires that we never wait. If
179  * we detect that we may wait, or if we need to fault, then we have to fallback
180  * to a slower path. The slowpath has to drop the mutex. (Can you hear alarm
181  * bells yet?) Dropping the mutex means that we lose all the state we have
182  * built up so far for the execbuf and we must reset any global data. However,
183  * we do leave the objects pinned in their final locations - which is a
184  * potential issue for concurrent execbufs. Once we have left the mutex, we can
185  * allocate and copy all the relocation entries into a large array at our
186  * leisure, reacquire the mutex, reclaim all the objects and other state and
187  * then proceed to update any incorrect addresses with the objects.
188  *
189  * As we process the relocation entries, we maintain a record of whether the
190  * object is being written to. Using NORELOC, we expect userspace to provide
191  * this information instead. We also check whether we can skip the relocation
192  * by comparing the expected value inside the relocation entry with the target's
193  * final address. If they differ, we have to map the current object and rewrite
194  * the 4 or 8 byte pointer within.
195  *
196  * Serialising an execbuf is quite simple according to the rules of the GEM
197  * ABI. Execution within each context is ordered by the order of submission.
198  * Writes to any GEM object are in order of submission and are exclusive. Reads
199  * from a GEM object are unordered with respect to other reads, but ordered by
200  * writes. A write submitted after a read cannot occur before the read, and
201  * similarly any read submitted after a write cannot occur before the write.
202  * Writes are ordered between engines such that only one write occurs at any
203  * time (completing any reads beforehand) - using semaphores where available
204  * and CPU serialisation otherwise. Other GEM access obey the same rules, any
205  * write (either via mmaps using set-domain, or via pwrite) must flush all GPU
206  * reads before starting, and any read (either using set-domain or pread) must
207  * flush all GPU writes before starting. (Note we only employ a barrier before,
208  * we currently rely on userspace not concurrently starting a new execution
209  * whilst reading or writing to an object. This may be an advantage or not
210  * depending on how much you trust userspace not to shoot themselves in the
211  * foot.) Serialisation may just result in the request being inserted into
212  * a DAG awaiting its turn, but most simple is to wait on the CPU until
213  * all dependencies are resolved.
214  *
215  * After all of that, is just a matter of closing the request and handing it to
216  * the hardware (well, leaving it in a queue to be executed). However, we also
217  * offer the ability for batchbuffers to be run with elevated privileges so
218  * that they access otherwise hidden registers. (Used to adjust L3 cache etc.)
219  * Before any batch is given extra privileges we first must check that it
220  * contains no nefarious instructions, we check that each instruction is from
221  * our whitelist and all registers are also from an allowed list. We first
222  * copy the user's batchbuffer to a shadow (so that the user doesn't have
223  * access to it, either by the CPU or GPU as we scan it) and then parse each
224  * instruction. If everything is ok, we set a flag telling the hardware to run
225  * the batchbuffer in trusted mode, otherwise the ioctl is rejected.
226  */
227
228 struct i915_execbuffer {
229         struct drm_i915_private *i915; /** i915 backpointer */
230         struct drm_file *file; /** per-file lookup tables and limits */
231         struct drm_i915_gem_execbuffer2 *args; /** ioctl parameters */
232         struct drm_i915_gem_exec_object2 *exec; /** ioctl execobj[] */
233         struct eb_vma *vma;
234
235         struct intel_engine_cs *engine; /** engine to queue the request to */
236         struct intel_context *context; /* logical state for the request */
237         struct i915_gem_context *gem_context; /** caller's context */
238
239         struct i915_request *request; /** our request to build */
240         struct eb_vma *batch; /** identity of the batch obj/vma */
241         struct i915_vma *trampoline; /** trampoline used for chaining */
242
243         /** actual size of execobj[] as we may extend it for the cmdparser */
244         unsigned int buffer_count;
245
246         /** list of vma not yet bound during reservation phase */
247         struct list_head unbound;
248
249         /** list of vma that have execobj.relocation_count */
250         struct list_head relocs;
251
252         /**
253          * Track the most recently used object for relocations, as we
254          * frequently have to perform multiple relocations within the same
255          * obj/page
256          */
257         struct reloc_cache {
258                 struct drm_mm_node node; /** temporary GTT binding */
259                 unsigned long vaddr; /** Current kmap address */
260                 unsigned long page; /** Currently mapped page index */
261                 unsigned int gen; /** Cached value of INTEL_GEN */
262                 bool use_64bit_reloc : 1;
263                 bool has_llc : 1;
264                 bool has_fence : 1;
265                 bool needs_unfenced : 1;
266
267                 struct i915_request *rq;
268                 u32 *rq_cmd;
269                 unsigned int rq_size;
270         } reloc_cache;
271
272         u64 invalid_flags; /** Set of execobj.flags that are invalid */
273         u32 context_flags; /** Set of execobj.flags to insert from the ctx */
274
275         u32 batch_start_offset; /** Location within object of batch */
276         u32 batch_len; /** Length of batch within object */
277         u32 batch_flags; /** Flags composed for emit_bb_start() */
278
279         /**
280          * Indicate either the size of the hastable used to resolve
281          * relocation handles, or if negative that we are using a direct
282          * index into the execobj[].
283          */
284         int lut_size;
285         struct hlist_head *buckets; /** ht for relocation handles */
286 };
287
288 static inline bool eb_use_cmdparser(const struct i915_execbuffer *eb)
289 {
290         return intel_engine_requires_cmd_parser(eb->engine) ||
291                 (intel_engine_using_cmd_parser(eb->engine) &&
292                  eb->args->batch_len);
293 }
294
295 static int eb_create(struct i915_execbuffer *eb)
296 {
297         if (!(eb->args->flags & I915_EXEC_HANDLE_LUT)) {
298                 unsigned int size = 1 + ilog2(eb->buffer_count);
299
300                 /*
301                  * Without a 1:1 association between relocation handles and
302                  * the execobject[] index, we instead create a hashtable.
303                  * We size it dynamically based on available memory, starting
304                  * first with 1:1 assocative hash and scaling back until
305                  * the allocation succeeds.
306                  *
307                  * Later on we use a positive lut_size to indicate we are
308                  * using this hashtable, and a negative value to indicate a
309                  * direct lookup.
310                  */
311                 do {
312                         gfp_t flags;
313
314                         /* While we can still reduce the allocation size, don't
315                          * raise a warning and allow the allocation to fail.
316                          * On the last pass though, we want to try as hard
317                          * as possible to perform the allocation and warn
318                          * if it fails.
319                          */
320                         flags = GFP_KERNEL;
321                         if (size > 1)
322                                 flags |= __GFP_NORETRY | __GFP_NOWARN;
323
324                         eb->buckets = kzalloc(sizeof(struct hlist_head) << size,
325                                               flags);
326                         if (eb->buckets)
327                                 break;
328                 } while (--size);
329
330                 if (unlikely(!size))
331                         return -ENOMEM;
332
333                 eb->lut_size = size;
334         } else {
335                 eb->lut_size = -eb->buffer_count;
336         }
337
338         return 0;
339 }
340
341 static bool
342 eb_vma_misplaced(const struct drm_i915_gem_exec_object2 *entry,
343                  const struct i915_vma *vma,
344                  unsigned int flags)
345 {
346         if (vma->node.size < entry->pad_to_size)
347                 return true;
348
349         if (entry->alignment && !IS_ALIGNED(vma->node.start, entry->alignment))
350                 return true;
351
352         if (flags & EXEC_OBJECT_PINNED &&
353             vma->node.start != entry->offset)
354                 return true;
355
356         if (flags & __EXEC_OBJECT_NEEDS_BIAS &&
357             vma->node.start < BATCH_OFFSET_BIAS)
358                 return true;
359
360         if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS) &&
361             (vma->node.start + vma->node.size - 1) >> 32)
362                 return true;
363
364         if (flags & __EXEC_OBJECT_NEEDS_MAP &&
365             !i915_vma_is_map_and_fenceable(vma))
366                 return true;
367
368         return false;
369 }
370
371 static inline bool
372 eb_pin_vma(struct i915_execbuffer *eb,
373            const struct drm_i915_gem_exec_object2 *entry,
374            struct eb_vma *ev)
375 {
376         struct i915_vma *vma = ev->vma;
377         u64 pin_flags;
378
379         if (vma->node.size)
380                 pin_flags = vma->node.start;
381         else
382                 pin_flags = entry->offset & PIN_OFFSET_MASK;
383
384         pin_flags |= PIN_USER | PIN_NOEVICT | PIN_OFFSET_FIXED;
385         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_GTT))
386                 pin_flags |= PIN_GLOBAL;
387
388         if (unlikely(i915_vma_pin(vma, 0, 0, pin_flags)))
389                 return false;
390
391         if (unlikely(ev->flags & EXEC_OBJECT_NEEDS_FENCE)) {
392                 if (unlikely(i915_vma_pin_fence(vma))) {
393                         i915_vma_unpin(vma);
394                         return false;
395                 }
396
397                 if (vma->fence)
398                         ev->flags |= __EXEC_OBJECT_HAS_FENCE;
399         }
400
401         ev->flags |= __EXEC_OBJECT_HAS_PIN;
402         return !eb_vma_misplaced(entry, vma, ev->flags);
403 }
404
405 static inline void __eb_unreserve_vma(struct i915_vma *vma, unsigned int flags)
406 {
407         GEM_BUG_ON(!(flags & __EXEC_OBJECT_HAS_PIN));
408
409         if (unlikely(flags & __EXEC_OBJECT_HAS_FENCE))
410                 __i915_vma_unpin_fence(vma);
411
412         __i915_vma_unpin(vma);
413 }
414
415 static inline void
416 eb_unreserve_vma(struct eb_vma *ev)
417 {
418         if (!(ev->flags & __EXEC_OBJECT_HAS_PIN))
419                 return;
420
421         __eb_unreserve_vma(ev->vma, ev->flags);
422         ev->flags &= ~__EXEC_OBJECT_RESERVED;
423 }
424
425 static int
426 eb_validate_vma(struct i915_execbuffer *eb,
427                 struct drm_i915_gem_exec_object2 *entry,
428                 struct i915_vma *vma)
429 {
430         if (unlikely(entry->flags & eb->invalid_flags))
431                 return -EINVAL;
432
433         if (unlikely(entry->alignment &&
434                      !is_power_of_2_u64(entry->alignment)))
435                 return -EINVAL;
436
437         /*
438          * Offset can be used as input (EXEC_OBJECT_PINNED), reject
439          * any non-page-aligned or non-canonical addresses.
440          */
441         if (unlikely(entry->flags & EXEC_OBJECT_PINNED &&
442                      entry->offset != gen8_canonical_addr(entry->offset & I915_GTT_PAGE_MASK)))
443                 return -EINVAL;
444
445         /* pad_to_size was once a reserved field, so sanitize it */
446         if (entry->flags & EXEC_OBJECT_PAD_TO_SIZE) {
447                 if (unlikely(offset_in_page(entry->pad_to_size)))
448                         return -EINVAL;
449         } else {
450                 entry->pad_to_size = 0;
451         }
452         /*
453          * From drm_mm perspective address space is continuous,
454          * so from this point we're always using non-canonical
455          * form internally.
456          */
457         entry->offset = gen8_noncanonical_addr(entry->offset);
458
459         if (!eb->reloc_cache.has_fence) {
460                 entry->flags &= ~EXEC_OBJECT_NEEDS_FENCE;
461         } else {
462                 if ((entry->flags & EXEC_OBJECT_NEEDS_FENCE ||
463                      eb->reloc_cache.needs_unfenced) &&
464                     i915_gem_object_is_tiled(vma->obj))
465                         entry->flags |= EXEC_OBJECT_NEEDS_GTT | __EXEC_OBJECT_NEEDS_MAP;
466         }
467
468         if (!(entry->flags & EXEC_OBJECT_PINNED))
469                 entry->flags |= eb->context_flags;
470
471         return 0;
472 }
473
474 static void
475 eb_add_vma(struct i915_execbuffer *eb,
476            unsigned int i, unsigned batch_idx,
477            struct i915_vma *vma)
478 {
479         struct drm_i915_gem_exec_object2 *entry = &eb->exec[i];
480         struct eb_vma *ev = &eb->vma[i];
481
482         GEM_BUG_ON(i915_vma_is_closed(vma));
483
484         ev->vma = i915_vma_get(vma);
485         ev->exec = entry;
486         ev->flags = entry->flags;
487
488         if (eb->lut_size > 0) {
489                 ev->handle = entry->handle;
490                 hlist_add_head(&ev->node,
491                                &eb->buckets[hash_32(entry->handle,
492                                                     eb->lut_size)]);
493         }
494
495         if (entry->relocation_count)
496                 list_add_tail(&ev->reloc_link, &eb->relocs);
497
498         /*
499          * SNA is doing fancy tricks with compressing batch buffers, which leads
500          * to negative relocation deltas. Usually that works out ok since the
501          * relocate address is still positive, except when the batch is placed
502          * very low in the GTT. Ensure this doesn't happen.
503          *
504          * Note that actual hangs have only been observed on gen7, but for
505          * paranoia do it everywhere.
506          */
507         if (i == batch_idx) {
508                 if (entry->relocation_count &&
509                     !(ev->flags & EXEC_OBJECT_PINNED))
510                         ev->flags |= __EXEC_OBJECT_NEEDS_BIAS;
511                 if (eb->reloc_cache.has_fence)
512                         ev->flags |= EXEC_OBJECT_NEEDS_FENCE;
513
514                 eb->batch = ev;
515         }
516
517         if (eb_pin_vma(eb, entry, ev)) {
518                 if (entry->offset != vma->node.start) {
519                         entry->offset = vma->node.start | UPDATE;
520                         eb->args->flags |= __EXEC_HAS_RELOC;
521                 }
522         } else {
523                 eb_unreserve_vma(ev);
524                 list_add_tail(&ev->bind_link, &eb->unbound);
525         }
526 }
527
528 static inline int use_cpu_reloc(const struct reloc_cache *cache,
529                                 const struct drm_i915_gem_object *obj)
530 {
531         if (!i915_gem_object_has_struct_page(obj))
532                 return false;
533
534         if (DBG_FORCE_RELOC == FORCE_CPU_RELOC)
535                 return true;
536
537         if (DBG_FORCE_RELOC == FORCE_GTT_RELOC)
538                 return false;
539
540         return (cache->has_llc ||
541                 obj->cache_dirty ||
542                 obj->cache_level != I915_CACHE_NONE);
543 }
544
545 static int eb_reserve_vma(const struct i915_execbuffer *eb,
546                           struct eb_vma *ev,
547                           u64 pin_flags)
548 {
549         struct drm_i915_gem_exec_object2 *entry = ev->exec;
550         unsigned int exec_flags = ev->flags;
551         struct i915_vma *vma = ev->vma;
552         int err;
553
554         if (exec_flags & EXEC_OBJECT_NEEDS_GTT)
555                 pin_flags |= PIN_GLOBAL;
556
557         /*
558          * Wa32bitGeneralStateOffset & Wa32bitInstructionBaseOffset,
559          * limit address to the first 4GBs for unflagged objects.
560          */
561         if (!(exec_flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
562                 pin_flags |= PIN_ZONE_4G;
563
564         if (exec_flags & __EXEC_OBJECT_NEEDS_MAP)
565                 pin_flags |= PIN_MAPPABLE;
566
567         if (exec_flags & EXEC_OBJECT_PINNED)
568                 pin_flags |= entry->offset | PIN_OFFSET_FIXED;
569         else if (exec_flags & __EXEC_OBJECT_NEEDS_BIAS)
570                 pin_flags |= BATCH_OFFSET_BIAS | PIN_OFFSET_BIAS;
571
572         if (drm_mm_node_allocated(&vma->node) &&
573             eb_vma_misplaced(entry, vma, ev->flags)) {
574                 err = i915_vma_unbind(vma);
575                 if (err)
576                         return err;
577         }
578
579         err = i915_vma_pin(vma,
580                            entry->pad_to_size, entry->alignment,
581                            pin_flags);
582         if (err)
583                 return err;
584
585         if (entry->offset != vma->node.start) {
586                 entry->offset = vma->node.start | UPDATE;
587                 eb->args->flags |= __EXEC_HAS_RELOC;
588         }
589
590         if (unlikely(exec_flags & EXEC_OBJECT_NEEDS_FENCE)) {
591                 err = i915_vma_pin_fence(vma);
592                 if (unlikely(err)) {
593                         i915_vma_unpin(vma);
594                         return err;
595                 }
596
597                 if (vma->fence)
598                         exec_flags |= __EXEC_OBJECT_HAS_FENCE;
599         }
600
601         ev->flags = exec_flags | __EXEC_OBJECT_HAS_PIN;
602         GEM_BUG_ON(eb_vma_misplaced(entry, vma, ev->flags));
603
604         return 0;
605 }
606
607 static int eb_reserve(struct i915_execbuffer *eb)
608 {
609         const unsigned int count = eb->buffer_count;
610         unsigned int pin_flags = PIN_USER | PIN_NONBLOCK;
611         struct list_head last;
612         struct eb_vma *ev;
613         unsigned int i, pass;
614         int err = 0;
615
616         /*
617          * Attempt to pin all of the buffers into the GTT.
618          * This is done in 3 phases:
619          *
620          * 1a. Unbind all objects that do not match the GTT constraints for
621          *     the execbuffer (fenceable, mappable, alignment etc).
622          * 1b. Increment pin count for already bound objects.
623          * 2.  Bind new objects.
624          * 3.  Decrement pin count.
625          *
626          * This avoid unnecessary unbinding of later objects in order to make
627          * room for the earlier objects *unless* we need to defragment.
628          */
629
630         if (mutex_lock_interruptible(&eb->i915->drm.struct_mutex))
631                 return -EINTR;
632
633         pass = 0;
634         do {
635                 list_for_each_entry(ev, &eb->unbound, bind_link) {
636                         err = eb_reserve_vma(eb, ev, pin_flags);
637                         if (err)
638                                 break;
639                 }
640                 if (!(err == -ENOSPC || err == -EAGAIN))
641                         break;
642
643                 /* Resort *all* the objects into priority order */
644                 INIT_LIST_HEAD(&eb->unbound);
645                 INIT_LIST_HEAD(&last);
646                 for (i = 0; i < count; i++) {
647                         unsigned int flags;
648
649                         ev = &eb->vma[i];
650                         flags = ev->flags;
651                         if (flags & EXEC_OBJECT_PINNED &&
652                             flags & __EXEC_OBJECT_HAS_PIN)
653                                 continue;
654
655                         eb_unreserve_vma(ev);
656
657                         if (flags & EXEC_OBJECT_PINNED)
658                                 /* Pinned must have their slot */
659                                 list_add(&ev->bind_link, &eb->unbound);
660                         else if (flags & __EXEC_OBJECT_NEEDS_MAP)
661                                 /* Map require the lowest 256MiB (aperture) */
662                                 list_add_tail(&ev->bind_link, &eb->unbound);
663                         else if (!(flags & EXEC_OBJECT_SUPPORTS_48B_ADDRESS))
664                                 /* Prioritise 4GiB region for restricted bo */
665                                 list_add(&ev->bind_link, &last);
666                         else
667                                 list_add_tail(&ev->bind_link, &last);
668                 }
669                 list_splice_tail(&last, &eb->unbound);
670
671                 if (err == -EAGAIN) {
672                         mutex_unlock(&eb->i915->drm.struct_mutex);
673                         flush_workqueue(eb->i915->mm.userptr_wq);
674                         mutex_lock(&eb->i915->drm.struct_mutex);
675                         continue;
676                 }
677
678                 switch (pass++) {
679                 case 0:
680                         break;
681
682                 case 1:
683                         /* Too fragmented, unbind everything and retry */
684                         mutex_lock(&eb->context->vm->mutex);
685                         err = i915_gem_evict_vm(eb->context->vm);
686                         mutex_unlock(&eb->context->vm->mutex);
687                         if (err)
688                                 goto unlock;
689                         break;
690
691                 default:
692                         err = -ENOSPC;
693                         goto unlock;
694                 }
695
696                 pin_flags = PIN_USER;
697         } while (1);
698
699 unlock:
700         mutex_unlock(&eb->i915->drm.struct_mutex);
701         return err;
702 }
703
704 static unsigned int eb_batch_index(const struct i915_execbuffer *eb)
705 {
706         if (eb->args->flags & I915_EXEC_BATCH_FIRST)
707                 return 0;
708         else
709                 return eb->buffer_count - 1;
710 }
711
712 static int eb_select_context(struct i915_execbuffer *eb)
713 {
714         struct i915_gem_context *ctx;
715
716         ctx = i915_gem_context_lookup(eb->file->driver_priv, eb->args->rsvd1);
717         if (unlikely(!ctx))
718                 return -ENOENT;
719
720         eb->gem_context = ctx;
721         if (rcu_access_pointer(ctx->vm))
722                 eb->invalid_flags |= EXEC_OBJECT_NEEDS_GTT;
723
724         eb->context_flags = 0;
725         if (test_bit(UCONTEXT_NO_ZEROMAP, &ctx->user_flags))
726                 eb->context_flags |= __EXEC_OBJECT_NEEDS_BIAS;
727
728         return 0;
729 }
730
731 static int eb_lookup_vmas(struct i915_execbuffer *eb)
732 {
733         struct radix_tree_root *handles_vma = &eb->gem_context->handles_vma;
734         struct drm_i915_gem_object *obj;
735         unsigned int i, batch;
736         int err;
737
738         if (unlikely(i915_gem_context_is_closed(eb->gem_context)))
739                 return -ENOENT;
740
741         INIT_LIST_HEAD(&eb->relocs);
742         INIT_LIST_HEAD(&eb->unbound);
743
744         batch = eb_batch_index(eb);
745
746         for (i = 0; i < eb->buffer_count; i++) {
747                 u32 handle = eb->exec[i].handle;
748                 struct i915_lut_handle *lut;
749                 struct i915_vma *vma;
750
751                 vma = radix_tree_lookup(handles_vma, handle);
752                 if (likely(vma))
753                         goto add_vma;
754
755                 obj = i915_gem_object_lookup(eb->file, handle);
756                 if (unlikely(!obj)) {
757                         err = -ENOENT;
758                         goto err_vma;
759                 }
760
761                 vma = i915_vma_instance(obj, eb->context->vm, NULL);
762                 if (IS_ERR(vma)) {
763                         err = PTR_ERR(vma);
764                         goto err_obj;
765                 }
766
767                 lut = i915_lut_handle_alloc();
768                 if (unlikely(!lut)) {
769                         err = -ENOMEM;
770                         goto err_obj;
771                 }
772
773                 err = radix_tree_insert(handles_vma, handle, vma);
774                 if (unlikely(err)) {
775                         i915_lut_handle_free(lut);
776                         goto err_obj;
777                 }
778
779                 /* transfer ref to lut */
780                 if (!atomic_fetch_inc(&vma->open_count))
781                         i915_vma_reopen(vma);
782                 lut->handle = handle;
783                 lut->ctx = eb->gem_context;
784
785                 i915_gem_object_lock(obj);
786                 list_add(&lut->obj_link, &obj->lut_list);
787                 i915_gem_object_unlock(obj);
788
789 add_vma:
790                 err = eb_validate_vma(eb, &eb->exec[i], vma);
791                 if (unlikely(err))
792                         goto err_vma;
793
794                 eb_add_vma(eb, i, batch, vma);
795         }
796
797         return 0;
798
799 err_obj:
800         i915_gem_object_put(obj);
801 err_vma:
802         eb->vma[i].vma = NULL;
803         return err;
804 }
805
806 static struct eb_vma *
807 eb_get_vma(const struct i915_execbuffer *eb, unsigned long handle)
808 {
809         if (eb->lut_size < 0) {
810                 if (handle >= -eb->lut_size)
811                         return NULL;
812                 return &eb->vma[handle];
813         } else {
814                 struct hlist_head *head;
815                 struct eb_vma *ev;
816
817                 head = &eb->buckets[hash_32(handle, eb->lut_size)];
818                 hlist_for_each_entry(ev, head, node) {
819                         if (ev->handle == handle)
820                                 return ev;
821                 }
822                 return NULL;
823         }
824 }
825
826 static void eb_release_vmas(const struct i915_execbuffer *eb)
827 {
828         const unsigned int count = eb->buffer_count;
829         unsigned int i;
830
831         for (i = 0; i < count; i++) {
832                 struct eb_vma *ev = &eb->vma[i];
833                 struct i915_vma *vma = ev->vma;
834
835                 if (!vma)
836                         break;
837
838                 eb->vma[i].vma = NULL;
839
840                 if (ev->flags & __EXEC_OBJECT_HAS_PIN)
841                         __eb_unreserve_vma(vma, ev->flags);
842
843                 i915_vma_put(vma);
844         }
845 }
846
847 static void eb_destroy(const struct i915_execbuffer *eb)
848 {
849         GEM_BUG_ON(eb->reloc_cache.rq);
850
851         if (eb->lut_size > 0)
852                 kfree(eb->buckets);
853 }
854
855 static inline u64
856 relocation_target(const struct drm_i915_gem_relocation_entry *reloc,
857                   const struct i915_vma *target)
858 {
859         return gen8_canonical_addr((int)reloc->delta + target->node.start);
860 }
861
862 static void reloc_cache_init(struct reloc_cache *cache,
863                              struct drm_i915_private *i915)
864 {
865         cache->page = -1;
866         cache->vaddr = 0;
867         /* Must be a variable in the struct to allow GCC to unroll. */
868         cache->gen = INTEL_GEN(i915);
869         cache->has_llc = HAS_LLC(i915);
870         cache->use_64bit_reloc = HAS_64BIT_RELOC(i915);
871         cache->has_fence = cache->gen < 4;
872         cache->needs_unfenced = INTEL_INFO(i915)->unfenced_needs_alignment;
873         cache->node.flags = 0;
874         cache->rq = NULL;
875         cache->rq_size = 0;
876 }
877
878 static inline void *unmask_page(unsigned long p)
879 {
880         return (void *)(uintptr_t)(p & PAGE_MASK);
881 }
882
883 static inline unsigned int unmask_flags(unsigned long p)
884 {
885         return p & ~PAGE_MASK;
886 }
887
888 #define KMAP 0x4 /* after CLFLUSH_FLAGS */
889
890 static inline struct i915_ggtt *cache_to_ggtt(struct reloc_cache *cache)
891 {
892         struct drm_i915_private *i915 =
893                 container_of(cache, struct i915_execbuffer, reloc_cache)->i915;
894         return &i915->ggtt;
895 }
896
897 static void reloc_gpu_flush(struct reloc_cache *cache)
898 {
899         struct drm_i915_gem_object *obj = cache->rq->batch->obj;
900
901         GEM_BUG_ON(cache->rq_size >= obj->base.size / sizeof(u32));
902         cache->rq_cmd[cache->rq_size] = MI_BATCH_BUFFER_END;
903
904         __i915_gem_object_flush_map(obj, 0, sizeof(u32) * (cache->rq_size + 1));
905         i915_gem_object_unpin_map(obj);
906
907         intel_gt_chipset_flush(cache->rq->engine->gt);
908
909         i915_request_add(cache->rq);
910         cache->rq = NULL;
911 }
912
913 static void reloc_cache_reset(struct reloc_cache *cache)
914 {
915         void *vaddr;
916
917         if (cache->rq)
918                 reloc_gpu_flush(cache);
919
920         if (!cache->vaddr)
921                 return;
922
923         vaddr = unmask_page(cache->vaddr);
924         if (cache->vaddr & KMAP) {
925                 if (cache->vaddr & CLFLUSH_AFTER)
926                         mb();
927
928                 kunmap_atomic(vaddr);
929                 i915_gem_object_finish_access((struct drm_i915_gem_object *)cache->node.mm);
930         } else {
931                 struct i915_ggtt *ggtt = cache_to_ggtt(cache);
932
933                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
934                 io_mapping_unmap_atomic((void __iomem *)vaddr);
935
936                 if (drm_mm_node_allocated(&cache->node)) {
937                         ggtt->vm.clear_range(&ggtt->vm,
938                                              cache->node.start,
939                                              cache->node.size);
940                         mutex_lock(&ggtt->vm.mutex);
941                         drm_mm_remove_node(&cache->node);
942                         mutex_unlock(&ggtt->vm.mutex);
943                 } else {
944                         i915_vma_unpin((struct i915_vma *)cache->node.mm);
945                 }
946         }
947
948         cache->vaddr = 0;
949         cache->page = -1;
950 }
951
952 static void *reloc_kmap(struct drm_i915_gem_object *obj,
953                         struct reloc_cache *cache,
954                         unsigned long page)
955 {
956         void *vaddr;
957
958         if (cache->vaddr) {
959                 kunmap_atomic(unmask_page(cache->vaddr));
960         } else {
961                 unsigned int flushes;
962                 int err;
963
964                 err = i915_gem_object_prepare_write(obj, &flushes);
965                 if (err)
966                         return ERR_PTR(err);
967
968                 BUILD_BUG_ON(KMAP & CLFLUSH_FLAGS);
969                 BUILD_BUG_ON((KMAP | CLFLUSH_FLAGS) & PAGE_MASK);
970
971                 cache->vaddr = flushes | KMAP;
972                 cache->node.mm = (void *)obj;
973                 if (flushes)
974                         mb();
975         }
976
977         vaddr = kmap_atomic(i915_gem_object_get_dirty_page(obj, page));
978         cache->vaddr = unmask_flags(cache->vaddr) | (unsigned long)vaddr;
979         cache->page = page;
980
981         return vaddr;
982 }
983
984 static void *reloc_iomap(struct drm_i915_gem_object *obj,
985                          struct reloc_cache *cache,
986                          unsigned long page)
987 {
988         struct i915_ggtt *ggtt = cache_to_ggtt(cache);
989         unsigned long offset;
990         void *vaddr;
991
992         if (cache->vaddr) {
993                 intel_gt_flush_ggtt_writes(ggtt->vm.gt);
994                 io_mapping_unmap_atomic((void __force __iomem *) unmask_page(cache->vaddr));
995         } else {
996                 struct i915_vma *vma;
997                 int err;
998
999                 if (i915_gem_object_is_tiled(obj))
1000                         return ERR_PTR(-EINVAL);
1001
1002                 if (use_cpu_reloc(cache, obj))
1003                         return NULL;
1004
1005                 i915_gem_object_lock(obj);
1006                 err = i915_gem_object_set_to_gtt_domain(obj, true);
1007                 i915_gem_object_unlock(obj);
1008                 if (err)
1009                         return ERR_PTR(err);
1010
1011                 vma = i915_gem_object_ggtt_pin(obj, NULL, 0, 0,
1012                                                PIN_MAPPABLE |
1013                                                PIN_NONBLOCK /* NOWARN */ |
1014                                                PIN_NOEVICT);
1015                 if (IS_ERR(vma)) {
1016                         memset(&cache->node, 0, sizeof(cache->node));
1017                         mutex_lock(&ggtt->vm.mutex);
1018                         err = drm_mm_insert_node_in_range
1019                                 (&ggtt->vm.mm, &cache->node,
1020                                  PAGE_SIZE, 0, I915_COLOR_UNEVICTABLE,
1021                                  0, ggtt->mappable_end,
1022                                  DRM_MM_INSERT_LOW);
1023                         mutex_unlock(&ggtt->vm.mutex);
1024                         if (err) /* no inactive aperture space, use cpu reloc */
1025                                 return NULL;
1026                 } else {
1027                         cache->node.start = vma->node.start;
1028                         cache->node.mm = (void *)vma;
1029                 }
1030         }
1031
1032         offset = cache->node.start;
1033         if (drm_mm_node_allocated(&cache->node)) {
1034                 ggtt->vm.insert_page(&ggtt->vm,
1035                                      i915_gem_object_get_dma_address(obj, page),
1036                                      offset, I915_CACHE_NONE, 0);
1037         } else {
1038                 offset += page << PAGE_SHIFT;
1039         }
1040
1041         vaddr = (void __force *)io_mapping_map_atomic_wc(&ggtt->iomap,
1042                                                          offset);
1043         cache->page = page;
1044         cache->vaddr = (unsigned long)vaddr;
1045
1046         return vaddr;
1047 }
1048
1049 static void *reloc_vaddr(struct drm_i915_gem_object *obj,
1050                          struct reloc_cache *cache,
1051                          unsigned long page)
1052 {
1053         void *vaddr;
1054
1055         if (cache->page == page) {
1056                 vaddr = unmask_page(cache->vaddr);
1057         } else {
1058                 vaddr = NULL;
1059                 if ((cache->vaddr & KMAP) == 0)
1060                         vaddr = reloc_iomap(obj, cache, page);
1061                 if (!vaddr)
1062                         vaddr = reloc_kmap(obj, cache, page);
1063         }
1064
1065         return vaddr;
1066 }
1067
1068 static void clflush_write32(u32 *addr, u32 value, unsigned int flushes)
1069 {
1070         if (unlikely(flushes & (CLFLUSH_BEFORE | CLFLUSH_AFTER))) {
1071                 if (flushes & CLFLUSH_BEFORE) {
1072                         clflushopt(addr);
1073                         mb();
1074                 }
1075
1076                 *addr = value;
1077
1078                 /*
1079                  * Writes to the same cacheline are serialised by the CPU
1080                  * (including clflush). On the write path, we only require
1081                  * that it hits memory in an orderly fashion and place
1082                  * mb barriers at the start and end of the relocation phase
1083                  * to ensure ordering of clflush wrt to the system.
1084                  */
1085                 if (flushes & CLFLUSH_AFTER)
1086                         clflushopt(addr);
1087         } else
1088                 *addr = value;
1089 }
1090
1091 static int reloc_move_to_gpu(struct i915_request *rq, struct i915_vma *vma)
1092 {
1093         struct drm_i915_gem_object *obj = vma->obj;
1094         int err;
1095
1096         i915_vma_lock(vma);
1097
1098         if (obj->cache_dirty & ~obj->cache_coherent)
1099                 i915_gem_clflush_object(obj, 0);
1100         obj->write_domain = 0;
1101
1102         err = i915_request_await_object(rq, vma->obj, true);
1103         if (err == 0)
1104                 err = i915_vma_move_to_active(vma, rq, EXEC_OBJECT_WRITE);
1105
1106         i915_vma_unlock(vma);
1107
1108         return err;
1109 }
1110
1111 static int __reloc_gpu_alloc(struct i915_execbuffer *eb,
1112                              struct i915_vma *vma,
1113                              unsigned int len)
1114 {
1115         struct reloc_cache *cache = &eb->reloc_cache;
1116         struct intel_engine_pool_node *pool;
1117         struct i915_request *rq;
1118         struct i915_vma *batch;
1119         u32 *cmd;
1120         int err;
1121
1122         pool = intel_engine_get_pool(eb->engine, PAGE_SIZE);
1123         if (IS_ERR(pool))
1124                 return PTR_ERR(pool);
1125
1126         cmd = i915_gem_object_pin_map(pool->obj,
1127                                       cache->has_llc ?
1128                                       I915_MAP_FORCE_WB :
1129                                       I915_MAP_FORCE_WC);
1130         if (IS_ERR(cmd)) {
1131                 err = PTR_ERR(cmd);
1132                 goto out_pool;
1133         }
1134
1135         batch = i915_vma_instance(pool->obj, vma->vm, NULL);
1136         if (IS_ERR(batch)) {
1137                 err = PTR_ERR(batch);
1138                 goto err_unmap;
1139         }
1140
1141         err = i915_vma_pin(batch, 0, 0, PIN_USER | PIN_NONBLOCK);
1142         if (err)
1143                 goto err_unmap;
1144
1145         rq = i915_request_create(eb->context);
1146         if (IS_ERR(rq)) {
1147                 err = PTR_ERR(rq);
1148                 goto err_unpin;
1149         }
1150
1151         err = intel_engine_pool_mark_active(pool, rq);
1152         if (err)
1153                 goto err_request;
1154
1155         err = reloc_move_to_gpu(rq, vma);
1156         if (err)
1157                 goto err_request;
1158
1159         err = eb->engine->emit_bb_start(rq,
1160                                         batch->node.start, PAGE_SIZE,
1161                                         cache->gen > 5 ? 0 : I915_DISPATCH_SECURE);
1162         if (err)
1163                 goto skip_request;
1164
1165         i915_vma_lock(batch);
1166         err = i915_request_await_object(rq, batch->obj, false);
1167         if (err == 0)
1168                 err = i915_vma_move_to_active(batch, rq, 0);
1169         i915_vma_unlock(batch);
1170         if (err)
1171                 goto skip_request;
1172
1173         rq->batch = batch;
1174         i915_vma_unpin(batch);
1175
1176         cache->rq = rq;
1177         cache->rq_cmd = cmd;
1178         cache->rq_size = 0;
1179
1180         /* Return with batch mapping (cmd) still pinned */
1181         goto out_pool;
1182
1183 skip_request:
1184         i915_request_set_error_once(rq, err);
1185 err_request:
1186         i915_request_add(rq);
1187 err_unpin:
1188         i915_vma_unpin(batch);
1189 err_unmap:
1190         i915_gem_object_unpin_map(pool->obj);
1191 out_pool:
1192         intel_engine_pool_put(pool);
1193         return err;
1194 }
1195
1196 static u32 *reloc_gpu(struct i915_execbuffer *eb,
1197                       struct i915_vma *vma,
1198                       unsigned int len)
1199 {
1200         struct reloc_cache *cache = &eb->reloc_cache;
1201         u32 *cmd;
1202
1203         if (cache->rq_size > PAGE_SIZE/sizeof(u32) - (len + 1))
1204                 reloc_gpu_flush(cache);
1205
1206         if (unlikely(!cache->rq)) {
1207                 int err;
1208
1209                 if (!intel_engine_can_store_dword(eb->engine))
1210                         return ERR_PTR(-ENODEV);
1211
1212                 err = __reloc_gpu_alloc(eb, vma, len);
1213                 if (unlikely(err))
1214                         return ERR_PTR(err);
1215         }
1216
1217         cmd = cache->rq_cmd + cache->rq_size;
1218         cache->rq_size += len;
1219
1220         return cmd;
1221 }
1222
1223 static u64
1224 relocate_entry(struct i915_vma *vma,
1225                const struct drm_i915_gem_relocation_entry *reloc,
1226                struct i915_execbuffer *eb,
1227                const struct i915_vma *target)
1228 {
1229         u64 offset = reloc->offset;
1230         u64 target_offset = relocation_target(reloc, target);
1231         bool wide = eb->reloc_cache.use_64bit_reloc;
1232         void *vaddr;
1233
1234         if (!eb->reloc_cache.vaddr &&
1235             (DBG_FORCE_RELOC == FORCE_GPU_RELOC ||
1236              !dma_resv_test_signaled_rcu(vma->resv, true))) {
1237                 const unsigned int gen = eb->reloc_cache.gen;
1238                 unsigned int len;
1239                 u32 *batch;
1240                 u64 addr;
1241
1242                 if (wide)
1243                         len = offset & 7 ? 8 : 5;
1244                 else if (gen >= 4)
1245                         len = 4;
1246                 else
1247                         len = 3;
1248
1249                 batch = reloc_gpu(eb, vma, len);
1250                 if (IS_ERR(batch))
1251                         goto repeat;
1252
1253                 addr = gen8_canonical_addr(vma->node.start + offset);
1254                 if (wide) {
1255                         if (offset & 7) {
1256                                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1257                                 *batch++ = lower_32_bits(addr);
1258                                 *batch++ = upper_32_bits(addr);
1259                                 *batch++ = lower_32_bits(target_offset);
1260
1261                                 addr = gen8_canonical_addr(addr + 4);
1262
1263                                 *batch++ = MI_STORE_DWORD_IMM_GEN4;
1264                                 *batch++ = lower_32_bits(addr);
1265                                 *batch++ = upper_32_bits(addr);
1266                                 *batch++ = upper_32_bits(target_offset);
1267                         } else {
1268                                 *batch++ = (MI_STORE_DWORD_IMM_GEN4 | (1 << 21)) + 1;
1269                                 *batch++ = lower_32_bits(addr);
1270                                 *batch++ = upper_32_bits(addr);
1271                                 *batch++ = lower_32_bits(target_offset);
1272                                 *batch++ = upper_32_bits(target_offset);
1273                         }
1274                 } else if (gen >= 6) {
1275                         *batch++ = MI_STORE_DWORD_IMM_GEN4;
1276                         *batch++ = 0;
1277                         *batch++ = addr;
1278                         *batch++ = target_offset;
1279                 } else if (gen >= 4) {
1280                         *batch++ = MI_STORE_DWORD_IMM_GEN4 | MI_USE_GGTT;
1281                         *batch++ = 0;
1282                         *batch++ = addr;
1283                         *batch++ = target_offset;
1284                 } else {
1285                         *batch++ = MI_STORE_DWORD_IMM | MI_MEM_VIRTUAL;
1286                         *batch++ = addr;
1287                         *batch++ = target_offset;
1288                 }
1289
1290                 goto out;
1291         }
1292
1293 repeat:
1294         vaddr = reloc_vaddr(vma->obj, &eb->reloc_cache, offset >> PAGE_SHIFT);
1295         if (IS_ERR(vaddr))
1296                 return PTR_ERR(vaddr);
1297
1298         clflush_write32(vaddr + offset_in_page(offset),
1299                         lower_32_bits(target_offset),
1300                         eb->reloc_cache.vaddr);
1301
1302         if (wide) {
1303                 offset += sizeof(u32);
1304                 target_offset >>= 32;
1305                 wide = false;
1306                 goto repeat;
1307         }
1308
1309 out:
1310         return target->node.start | UPDATE;
1311 }
1312
1313 static u64
1314 eb_relocate_entry(struct i915_execbuffer *eb,
1315                   struct eb_vma *ev,
1316                   const struct drm_i915_gem_relocation_entry *reloc)
1317 {
1318         struct drm_i915_private *i915 = eb->i915;
1319         struct eb_vma *target;
1320         int err;
1321
1322         /* we've already hold a reference to all valid objects */
1323         target = eb_get_vma(eb, reloc->target_handle);
1324         if (unlikely(!target))
1325                 return -ENOENT;
1326
1327         /* Validate that the target is in a valid r/w GPU domain */
1328         if (unlikely(reloc->write_domain & (reloc->write_domain - 1))) {
1329                 drm_dbg(&i915->drm, "reloc with multiple write domains: "
1330                           "target %d offset %d "
1331                           "read %08x write %08x",
1332                           reloc->target_handle,
1333                           (int) reloc->offset,
1334                           reloc->read_domains,
1335                           reloc->write_domain);
1336                 return -EINVAL;
1337         }
1338         if (unlikely((reloc->write_domain | reloc->read_domains)
1339                      & ~I915_GEM_GPU_DOMAINS)) {
1340                 drm_dbg(&i915->drm, "reloc with read/write non-GPU domains: "
1341                           "target %d offset %d "
1342                           "read %08x write %08x",
1343                           reloc->target_handle,
1344                           (int) reloc->offset,
1345                           reloc->read_domains,
1346                           reloc->write_domain);
1347                 return -EINVAL;
1348         }
1349
1350         if (reloc->write_domain) {
1351                 target->flags |= EXEC_OBJECT_WRITE;
1352
1353                 /*
1354                  * Sandybridge PPGTT errata: We need a global gtt mapping
1355                  * for MI and pipe_control writes because the gpu doesn't
1356                  * properly redirect them through the ppgtt for non_secure
1357                  * batchbuffers.
1358                  */
1359                 if (reloc->write_domain == I915_GEM_DOMAIN_INSTRUCTION &&
1360                     IS_GEN(eb->i915, 6)) {
1361                         err = i915_vma_bind(target->vma,
1362                                             target->vma->obj->cache_level,
1363                                             PIN_GLOBAL, NULL);
1364                         if (WARN_ONCE(err,
1365                                       "Unexpected failure to bind target VMA!"))
1366                                 return err;
1367                 }
1368         }
1369
1370         /*
1371          * If the relocation already has the right value in it, no
1372          * more work needs to be done.
1373          */
1374         if (!DBG_FORCE_RELOC &&
1375             gen8_canonical_addr(target->vma->node.start) == reloc->presumed_offset)
1376                 return 0;
1377
1378         /* Check that the relocation address is valid... */
1379         if (unlikely(reloc->offset >
1380                      ev->vma->size - (eb->reloc_cache.use_64bit_reloc ? 8 : 4))) {
1381                 drm_dbg(&i915->drm, "Relocation beyond object bounds: "
1382                           "target %d offset %d size %d.\n",
1383                           reloc->target_handle,
1384                           (int)reloc->offset,
1385                           (int)ev->vma->size);
1386                 return -EINVAL;
1387         }
1388         if (unlikely(reloc->offset & 3)) {
1389                 drm_dbg(&i915->drm, "Relocation not 4-byte aligned: "
1390                           "target %d offset %d.\n",
1391                           reloc->target_handle,
1392                           (int)reloc->offset);
1393                 return -EINVAL;
1394         }
1395
1396         /*
1397          * If we write into the object, we need to force the synchronisation
1398          * barrier, either with an asynchronous clflush or if we executed the
1399          * patching using the GPU (though that should be serialised by the
1400          * timeline). To be completely sure, and since we are required to
1401          * do relocations we are already stalling, disable the user's opt
1402          * out of our synchronisation.
1403          */
1404         ev->flags &= ~EXEC_OBJECT_ASYNC;
1405
1406         /* and update the user's relocation entry */
1407         return relocate_entry(ev->vma, reloc, eb, target->vma);
1408 }
1409
1410 static int eb_relocate_vma(struct i915_execbuffer *eb, struct eb_vma *ev)
1411 {
1412 #define N_RELOC(x) ((x) / sizeof(struct drm_i915_gem_relocation_entry))
1413         struct drm_i915_gem_relocation_entry stack[N_RELOC(512)];
1414         struct drm_i915_gem_relocation_entry __user *urelocs;
1415         const struct drm_i915_gem_exec_object2 *entry = ev->exec;
1416         unsigned int remain;
1417
1418         urelocs = u64_to_user_ptr(entry->relocs_ptr);
1419         remain = entry->relocation_count;
1420         if (unlikely(remain > N_RELOC(ULONG_MAX)))
1421                 return -EINVAL;
1422
1423         /*
1424          * We must check that the entire relocation array is safe
1425          * to read. However, if the array is not writable the user loses
1426          * the updated relocation values.
1427          */
1428         if (unlikely(!access_ok(urelocs, remain*sizeof(*urelocs))))
1429                 return -EFAULT;
1430
1431         do {
1432                 struct drm_i915_gem_relocation_entry *r = stack;
1433                 unsigned int count =
1434                         min_t(unsigned int, remain, ARRAY_SIZE(stack));
1435                 unsigned int copied;
1436
1437                 /*
1438                  * This is the fast path and we cannot handle a pagefault
1439                  * whilst holding the struct mutex lest the user pass in the
1440                  * relocations contained within a mmaped bo. For in such a case
1441                  * we, the page fault handler would call i915_gem_fault() and
1442                  * we would try to acquire the struct mutex again. Obviously
1443                  * this is bad and so lockdep complains vehemently.
1444                  */
1445                 copied = __copy_from_user(r, urelocs, count * sizeof(r[0]));
1446                 if (unlikely(copied)) {
1447                         remain = -EFAULT;
1448                         goto out;
1449                 }
1450
1451                 remain -= count;
1452                 do {
1453                         u64 offset = eb_relocate_entry(eb, ev, r);
1454
1455                         if (likely(offset == 0)) {
1456                         } else if ((s64)offset < 0) {
1457                                 remain = (int)offset;
1458                                 goto out;
1459                         } else {
1460                                 /*
1461                                  * Note that reporting an error now
1462                                  * leaves everything in an inconsistent
1463                                  * state as we have *already* changed
1464                                  * the relocation value inside the
1465                                  * object. As we have not changed the
1466                                  * reloc.presumed_offset or will not
1467                                  * change the execobject.offset, on the
1468                                  * call we may not rewrite the value
1469                                  * inside the object, leaving it
1470                                  * dangling and causing a GPU hang. Unless
1471                                  * userspace dynamically rebuilds the
1472                                  * relocations on each execbuf rather than
1473                                  * presume a static tree.
1474                                  *
1475                                  * We did previously check if the relocations
1476                                  * were writable (access_ok), an error now
1477                                  * would be a strange race with mprotect,
1478                                  * having already demonstrated that we
1479                                  * can read from this userspace address.
1480                                  */
1481                                 offset = gen8_canonical_addr(offset & ~UPDATE);
1482                                 __put_user(offset,
1483                                            &urelocs[r - stack].presumed_offset);
1484                         }
1485                 } while (r++, --count);
1486                 urelocs += ARRAY_SIZE(stack);
1487         } while (remain);
1488 out:
1489         reloc_cache_reset(&eb->reloc_cache);
1490         return remain;
1491 }
1492
1493 static int eb_relocate(struct i915_execbuffer *eb)
1494 {
1495         int err;
1496
1497         mutex_lock(&eb->gem_context->mutex);
1498         err = eb_lookup_vmas(eb);
1499         mutex_unlock(&eb->gem_context->mutex);
1500         if (err)
1501                 return err;
1502
1503         if (!list_empty(&eb->unbound)) {
1504                 err = eb_reserve(eb);
1505                 if (err)
1506                         return err;
1507         }
1508
1509         /* The objects are in their final locations, apply the relocations. */
1510         if (eb->args->flags & __EXEC_HAS_RELOC) {
1511                 struct eb_vma *ev;
1512
1513                 list_for_each_entry(ev, &eb->relocs, reloc_link) {
1514                         err = eb_relocate_vma(eb, ev);
1515                         if (err)
1516                                 return err;
1517                 }
1518         }
1519
1520         return 0;
1521 }
1522
1523 static int eb_move_to_gpu(struct i915_execbuffer *eb)
1524 {
1525         const unsigned int count = eb->buffer_count;
1526         struct ww_acquire_ctx acquire;
1527         unsigned int i;
1528         int err = 0;
1529
1530         ww_acquire_init(&acquire, &reservation_ww_class);
1531
1532         for (i = 0; i < count; i++) {
1533                 struct eb_vma *ev = &eb->vma[i];
1534                 struct i915_vma *vma = ev->vma;
1535
1536                 err = ww_mutex_lock_interruptible(&vma->resv->lock, &acquire);
1537                 if (err == -EDEADLK) {
1538                         GEM_BUG_ON(i == 0);
1539                         do {
1540                                 int j = i - 1;
1541
1542                                 ww_mutex_unlock(&eb->vma[j].vma->resv->lock);
1543
1544                                 swap(eb->vma[i],  eb->vma[j]);
1545                         } while (--i);
1546
1547                         err = ww_mutex_lock_slow_interruptible(&vma->resv->lock,
1548                                                                &acquire);
1549                 }
1550                 if (err)
1551                         break;
1552         }
1553         ww_acquire_done(&acquire);
1554
1555         while (i--) {
1556                 struct eb_vma *ev = &eb->vma[i];
1557                 struct i915_vma *vma = ev->vma;
1558                 unsigned int flags = ev->flags;
1559                 struct drm_i915_gem_object *obj = vma->obj;
1560
1561                 assert_vma_held(vma);
1562
1563                 if (flags & EXEC_OBJECT_CAPTURE) {
1564                         struct i915_capture_list *capture;
1565
1566                         capture = kmalloc(sizeof(*capture), GFP_KERNEL);
1567                         if (capture) {
1568                                 capture->next = eb->request->capture_list;
1569                                 capture->vma = vma;
1570                                 eb->request->capture_list = capture;
1571                         }
1572                 }
1573
1574                 /*
1575                  * If the GPU is not _reading_ through the CPU cache, we need
1576                  * to make sure that any writes (both previous GPU writes from
1577                  * before a change in snooping levels and normal CPU writes)
1578                  * caught in that cache are flushed to main memory.
1579                  *
1580                  * We want to say
1581                  *   obj->cache_dirty &&
1582                  *   !(obj->cache_coherent & I915_BO_CACHE_COHERENT_FOR_READ)
1583                  * but gcc's optimiser doesn't handle that as well and emits
1584                  * two jumps instead of one. Maybe one day...
1585                  */
1586                 if (unlikely(obj->cache_dirty & ~obj->cache_coherent)) {
1587                         if (i915_gem_clflush_object(obj, 0))
1588                                 flags &= ~EXEC_OBJECT_ASYNC;
1589                 }
1590
1591                 if (err == 0 && !(flags & EXEC_OBJECT_ASYNC)) {
1592                         err = i915_request_await_object
1593                                 (eb->request, obj, flags & EXEC_OBJECT_WRITE);
1594                 }
1595
1596                 if (err == 0)
1597                         err = i915_vma_move_to_active(vma, eb->request, flags);
1598
1599                 i915_vma_unlock(vma);
1600
1601                 __eb_unreserve_vma(vma, flags);
1602                 i915_vma_put(vma);
1603
1604                 ev->vma = NULL;
1605         }
1606         ww_acquire_fini(&acquire);
1607
1608         if (unlikely(err))
1609                 goto err_skip;
1610
1611         eb->exec = NULL;
1612
1613         /* Unconditionally flush any chipset caches (for streaming writes). */
1614         intel_gt_chipset_flush(eb->engine->gt);
1615         return 0;
1616
1617 err_skip:
1618         i915_request_set_error_once(eb->request, err);
1619         return err;
1620 }
1621
1622 static int i915_gem_check_execbuffer(struct drm_i915_gem_execbuffer2 *exec)
1623 {
1624         if (exec->flags & __I915_EXEC_ILLEGAL_FLAGS)
1625                 return -EINVAL;
1626
1627         /* Kernel clipping was a DRI1 misfeature */
1628         if (!(exec->flags & I915_EXEC_FENCE_ARRAY)) {
1629                 if (exec->num_cliprects || exec->cliprects_ptr)
1630                         return -EINVAL;
1631         }
1632
1633         if (exec->DR4 == 0xffffffff) {
1634                 DRM_DEBUG("UXA submitting garbage DR4, fixing up\n");
1635                 exec->DR4 = 0;
1636         }
1637         if (exec->DR1 || exec->DR4)
1638                 return -EINVAL;
1639
1640         if ((exec->batch_start_offset | exec->batch_len) & 0x7)
1641                 return -EINVAL;
1642
1643         return 0;
1644 }
1645
1646 static int i915_reset_gen7_sol_offsets(struct i915_request *rq)
1647 {
1648         u32 *cs;
1649         int i;
1650
1651         if (!IS_GEN(rq->i915, 7) || rq->engine->id != RCS0) {
1652                 drm_dbg(&rq->i915->drm, "sol reset is gen7/rcs only\n");
1653                 return -EINVAL;
1654         }
1655
1656         cs = intel_ring_begin(rq, 4 * 2 + 2);
1657         if (IS_ERR(cs))
1658                 return PTR_ERR(cs);
1659
1660         *cs++ = MI_LOAD_REGISTER_IMM(4);
1661         for (i = 0; i < 4; i++) {
1662                 *cs++ = i915_mmio_reg_offset(GEN7_SO_WRITE_OFFSET(i));
1663                 *cs++ = 0;
1664         }
1665         *cs++ = MI_NOOP;
1666         intel_ring_advance(rq, cs);
1667
1668         return 0;
1669 }
1670
1671 static struct i915_vma *
1672 shadow_batch_pin(struct drm_i915_gem_object *obj,
1673                  struct i915_address_space *vm,
1674                  unsigned int flags)
1675 {
1676         struct i915_vma *vma;
1677         int err;
1678
1679         vma = i915_vma_instance(obj, vm, NULL);
1680         if (IS_ERR(vma))
1681                 return vma;
1682
1683         err = i915_vma_pin(vma, 0, 0, flags);
1684         if (err)
1685                 return ERR_PTR(err);
1686
1687         return vma;
1688 }
1689
1690 struct eb_parse_work {
1691         struct dma_fence_work base;
1692         struct intel_engine_cs *engine;
1693         struct i915_vma *batch;
1694         struct i915_vma *shadow;
1695         struct i915_vma *trampoline;
1696         unsigned int batch_offset;
1697         unsigned int batch_length;
1698 };
1699
1700 static int __eb_parse(struct dma_fence_work *work)
1701 {
1702         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1703
1704         return intel_engine_cmd_parser(pw->engine,
1705                                        pw->batch,
1706                                        pw->batch_offset,
1707                                        pw->batch_length,
1708                                        pw->shadow,
1709                                        pw->trampoline);
1710 }
1711
1712 static void __eb_parse_release(struct dma_fence_work *work)
1713 {
1714         struct eb_parse_work *pw = container_of(work, typeof(*pw), base);
1715
1716         if (pw->trampoline)
1717                 i915_active_release(&pw->trampoline->active);
1718         i915_active_release(&pw->shadow->active);
1719         i915_active_release(&pw->batch->active);
1720 }
1721
1722 static const struct dma_fence_work_ops eb_parse_ops = {
1723         .name = "eb_parse",
1724         .work = __eb_parse,
1725         .release = __eb_parse_release,
1726 };
1727
1728 static int eb_parse_pipeline(struct i915_execbuffer *eb,
1729                              struct i915_vma *shadow,
1730                              struct i915_vma *trampoline)
1731 {
1732         struct eb_parse_work *pw;
1733         int err;
1734
1735         pw = kzalloc(sizeof(*pw), GFP_KERNEL);
1736         if (!pw)
1737                 return -ENOMEM;
1738
1739         err = i915_active_acquire(&eb->batch->vma->active);
1740         if (err)
1741                 goto err_free;
1742
1743         err = i915_active_acquire(&shadow->active);
1744         if (err)
1745                 goto err_batch;
1746
1747         if (trampoline) {
1748                 err = i915_active_acquire(&trampoline->active);
1749                 if (err)
1750                         goto err_shadow;
1751         }
1752
1753         dma_fence_work_init(&pw->base, &eb_parse_ops);
1754
1755         pw->engine = eb->engine;
1756         pw->batch = eb->batch->vma;
1757         pw->batch_offset = eb->batch_start_offset;
1758         pw->batch_length = eb->batch_len;
1759         pw->shadow = shadow;
1760         pw->trampoline = trampoline;
1761
1762         err = dma_resv_lock_interruptible(pw->batch->resv, NULL);
1763         if (err)
1764                 goto err_trampoline;
1765
1766         err = dma_resv_reserve_shared(pw->batch->resv, 1);
1767         if (err)
1768                 goto err_batch_unlock;
1769
1770         /* Wait for all writes (and relocs) into the batch to complete */
1771         err = i915_sw_fence_await_reservation(&pw->base.chain,
1772                                               pw->batch->resv, NULL, false,
1773                                               0, I915_FENCE_GFP);
1774         if (err < 0)
1775                 goto err_batch_unlock;
1776
1777         /* Keep the batch alive and unwritten as we parse */
1778         dma_resv_add_shared_fence(pw->batch->resv, &pw->base.dma);
1779
1780         dma_resv_unlock(pw->batch->resv);
1781
1782         /* Force execution to wait for completion of the parser */
1783         dma_resv_lock(shadow->resv, NULL);
1784         dma_resv_add_excl_fence(shadow->resv, &pw->base.dma);
1785         dma_resv_unlock(shadow->resv);
1786
1787         dma_fence_work_commit(&pw->base);
1788         return 0;
1789
1790 err_batch_unlock:
1791         dma_resv_unlock(pw->batch->resv);
1792 err_trampoline:
1793         if (trampoline)
1794                 i915_active_release(&trampoline->active);
1795 err_shadow:
1796         i915_active_release(&shadow->active);
1797 err_batch:
1798         i915_active_release(&eb->batch->vma->active);
1799 err_free:
1800         kfree(pw);
1801         return err;
1802 }
1803
1804 static int eb_parse(struct i915_execbuffer *eb)
1805 {
1806         struct drm_i915_private *i915 = eb->i915;
1807         struct intel_engine_pool_node *pool;
1808         struct i915_vma *shadow, *trampoline;
1809         unsigned int len;
1810         int err;
1811
1812         if (!eb_use_cmdparser(eb))
1813                 return 0;
1814
1815         len = eb->batch_len;
1816         if (!CMDPARSER_USES_GGTT(eb->i915)) {
1817                 /*
1818                  * ppGTT backed shadow buffers must be mapped RO, to prevent
1819                  * post-scan tampering
1820                  */
1821                 if (!eb->context->vm->has_read_only) {
1822                         drm_dbg(&i915->drm,
1823                                 "Cannot prevent post-scan tampering without RO capable vm\n");
1824                         return -EINVAL;
1825                 }
1826         } else {
1827                 len += I915_CMD_PARSER_TRAMPOLINE_SIZE;
1828         }
1829
1830         pool = intel_engine_get_pool(eb->engine, len);
1831         if (IS_ERR(pool))
1832                 return PTR_ERR(pool);
1833
1834         shadow = shadow_batch_pin(pool->obj, eb->context->vm, PIN_USER);
1835         if (IS_ERR(shadow)) {
1836                 err = PTR_ERR(shadow);
1837                 goto err;
1838         }
1839         i915_gem_object_set_readonly(shadow->obj);
1840
1841         trampoline = NULL;
1842         if (CMDPARSER_USES_GGTT(eb->i915)) {
1843                 trampoline = shadow;
1844
1845                 shadow = shadow_batch_pin(pool->obj,
1846                                           &eb->engine->gt->ggtt->vm,
1847                                           PIN_GLOBAL);
1848                 if (IS_ERR(shadow)) {
1849                         err = PTR_ERR(shadow);
1850                         shadow = trampoline;
1851                         goto err_shadow;
1852                 }
1853
1854                 eb->batch_flags |= I915_DISPATCH_SECURE;
1855         }
1856
1857         err = eb_parse_pipeline(eb, shadow, trampoline);
1858         if (err)
1859                 goto err_trampoline;
1860
1861         eb->vma[eb->buffer_count].vma = i915_vma_get(shadow);
1862         eb->vma[eb->buffer_count].flags = __EXEC_OBJECT_HAS_PIN;
1863         eb->batch = &eb->vma[eb->buffer_count++];
1864
1865         eb->trampoline = trampoline;
1866         eb->batch_start_offset = 0;
1867
1868         shadow->private = pool;
1869         return 0;
1870
1871 err_trampoline:
1872         if (trampoline)
1873                 i915_vma_unpin(trampoline);
1874 err_shadow:
1875         i915_vma_unpin(shadow);
1876 err:
1877         intel_engine_pool_put(pool);
1878         return err;
1879 }
1880
1881 static void
1882 add_to_client(struct i915_request *rq, struct drm_file *file)
1883 {
1884         struct drm_i915_file_private *file_priv = file->driver_priv;
1885
1886         rq->file_priv = file_priv;
1887
1888         spin_lock(&file_priv->mm.lock);
1889         list_add_tail(&rq->client_link, &file_priv->mm.request_list);
1890         spin_unlock(&file_priv->mm.lock);
1891 }
1892
1893 static int eb_submit(struct i915_execbuffer *eb, struct i915_vma *batch)
1894 {
1895         int err;
1896
1897         err = eb_move_to_gpu(eb);
1898         if (err)
1899                 return err;
1900
1901         if (eb->args->flags & I915_EXEC_GEN7_SOL_RESET) {
1902                 err = i915_reset_gen7_sol_offsets(eb->request);
1903                 if (err)
1904                         return err;
1905         }
1906
1907         /*
1908          * After we completed waiting for other engines (using HW semaphores)
1909          * then we can signal that this request/batch is ready to run. This
1910          * allows us to determine if the batch is still waiting on the GPU
1911          * or actually running by checking the breadcrumb.
1912          */
1913         if (eb->engine->emit_init_breadcrumb) {
1914                 err = eb->engine->emit_init_breadcrumb(eb->request);
1915                 if (err)
1916                         return err;
1917         }
1918
1919         err = eb->engine->emit_bb_start(eb->request,
1920                                         batch->node.start +
1921                                         eb->batch_start_offset,
1922                                         eb->batch_len,
1923                                         eb->batch_flags);
1924         if (err)
1925                 return err;
1926
1927         if (eb->trampoline) {
1928                 GEM_BUG_ON(eb->batch_start_offset);
1929                 err = eb->engine->emit_bb_start(eb->request,
1930                                                 eb->trampoline->node.start +
1931                                                 eb->batch_len,
1932                                                 0, 0);
1933                 if (err)
1934                         return err;
1935         }
1936
1937         if (intel_context_nopreempt(eb->context))
1938                 __set_bit(I915_FENCE_FLAG_NOPREEMPT, &eb->request->fence.flags);
1939
1940         return 0;
1941 }
1942
1943 static int num_vcs_engines(const struct drm_i915_private *i915)
1944 {
1945         return hweight64(INTEL_INFO(i915)->engine_mask &
1946                          GENMASK_ULL(VCS0 + I915_MAX_VCS - 1, VCS0));
1947 }
1948
1949 /*
1950  * Find one BSD ring to dispatch the corresponding BSD command.
1951  * The engine index is returned.
1952  */
1953 static unsigned int
1954 gen8_dispatch_bsd_engine(struct drm_i915_private *dev_priv,
1955                          struct drm_file *file)
1956 {
1957         struct drm_i915_file_private *file_priv = file->driver_priv;
1958
1959         /* Check whether the file_priv has already selected one ring. */
1960         if ((int)file_priv->bsd_engine < 0)
1961                 file_priv->bsd_engine =
1962                         get_random_int() % num_vcs_engines(dev_priv);
1963
1964         return file_priv->bsd_engine;
1965 }
1966
1967 static const enum intel_engine_id user_ring_map[] = {
1968         [I915_EXEC_DEFAULT]     = RCS0,
1969         [I915_EXEC_RENDER]      = RCS0,
1970         [I915_EXEC_BLT]         = BCS0,
1971         [I915_EXEC_BSD]         = VCS0,
1972         [I915_EXEC_VEBOX]       = VECS0
1973 };
1974
1975 static struct i915_request *eb_throttle(struct intel_context *ce)
1976 {
1977         struct intel_ring *ring = ce->ring;
1978         struct intel_timeline *tl = ce->timeline;
1979         struct i915_request *rq;
1980
1981         /*
1982          * Completely unscientific finger-in-the-air estimates for suitable
1983          * maximum user request size (to avoid blocking) and then backoff.
1984          */
1985         if (intel_ring_update_space(ring) >= PAGE_SIZE)
1986                 return NULL;
1987
1988         /*
1989          * Find a request that after waiting upon, there will be at least half
1990          * the ring available. The hysteresis allows us to compete for the
1991          * shared ring and should mean that we sleep less often prior to
1992          * claiming our resources, but not so long that the ring completely
1993          * drains before we can submit our next request.
1994          */
1995         list_for_each_entry(rq, &tl->requests, link) {
1996                 if (rq->ring != ring)
1997                         continue;
1998
1999                 if (__intel_ring_space(rq->postfix,
2000                                        ring->emit, ring->size) > ring->size / 2)
2001                         break;
2002         }
2003         if (&rq->link == &tl->requests)
2004                 return NULL; /* weird, we will check again later for real */
2005
2006         return i915_request_get(rq);
2007 }
2008
2009 static int __eb_pin_engine(struct i915_execbuffer *eb, struct intel_context *ce)
2010 {
2011         struct intel_timeline *tl;
2012         struct i915_request *rq;
2013         int err;
2014
2015         /*
2016          * ABI: Before userspace accesses the GPU (e.g. execbuffer), report
2017          * EIO if the GPU is already wedged.
2018          */
2019         err = intel_gt_terminally_wedged(ce->engine->gt);
2020         if (err)
2021                 return err;
2022
2023         if (unlikely(intel_context_is_banned(ce)))
2024                 return -EIO;
2025
2026         /*
2027          * Pinning the contexts may generate requests in order to acquire
2028          * GGTT space, so do this first before we reserve a seqno for
2029          * ourselves.
2030          */
2031         err = intel_context_pin(ce);
2032         if (err)
2033                 return err;
2034
2035         /*
2036          * Take a local wakeref for preparing to dispatch the execbuf as
2037          * we expect to access the hardware fairly frequently in the
2038          * process, and require the engine to be kept awake between accesses.
2039          * Upon dispatch, we acquire another prolonged wakeref that we hold
2040          * until the timeline is idle, which in turn releases the wakeref
2041          * taken on the engine, and the parent device.
2042          */
2043         tl = intel_context_timeline_lock(ce);
2044         if (IS_ERR(tl)) {
2045                 err = PTR_ERR(tl);
2046                 goto err_unpin;
2047         }
2048
2049         intel_context_enter(ce);
2050         rq = eb_throttle(ce);
2051
2052         intel_context_timeline_unlock(tl);
2053
2054         if (rq) {
2055                 bool nonblock = eb->file->filp->f_flags & O_NONBLOCK;
2056                 long timeout;
2057
2058                 timeout = MAX_SCHEDULE_TIMEOUT;
2059                 if (nonblock)
2060                         timeout = 0;
2061
2062                 timeout = i915_request_wait(rq,
2063                                             I915_WAIT_INTERRUPTIBLE,
2064                                             timeout);
2065                 i915_request_put(rq);
2066
2067                 if (timeout < 0) {
2068                         err = nonblock ? -EWOULDBLOCK : timeout;
2069                         goto err_exit;
2070                 }
2071         }
2072
2073         eb->engine = ce->engine;
2074         eb->context = ce;
2075         return 0;
2076
2077 err_exit:
2078         mutex_lock(&tl->mutex);
2079         intel_context_exit(ce);
2080         intel_context_timeline_unlock(tl);
2081 err_unpin:
2082         intel_context_unpin(ce);
2083         return err;
2084 }
2085
2086 static void eb_unpin_engine(struct i915_execbuffer *eb)
2087 {
2088         struct intel_context *ce = eb->context;
2089         struct intel_timeline *tl = ce->timeline;
2090
2091         mutex_lock(&tl->mutex);
2092         intel_context_exit(ce);
2093         mutex_unlock(&tl->mutex);
2094
2095         intel_context_unpin(ce);
2096 }
2097
2098 static unsigned int
2099 eb_select_legacy_ring(struct i915_execbuffer *eb,
2100                       struct drm_file *file,
2101                       struct drm_i915_gem_execbuffer2 *args)
2102 {
2103         struct drm_i915_private *i915 = eb->i915;
2104         unsigned int user_ring_id = args->flags & I915_EXEC_RING_MASK;
2105
2106         if (user_ring_id != I915_EXEC_BSD &&
2107             (args->flags & I915_EXEC_BSD_MASK)) {
2108                 drm_dbg(&i915->drm,
2109                         "execbuf with non bsd ring but with invalid "
2110                         "bsd dispatch flags: %d\n", (int)(args->flags));
2111                 return -1;
2112         }
2113
2114         if (user_ring_id == I915_EXEC_BSD && num_vcs_engines(i915) > 1) {
2115                 unsigned int bsd_idx = args->flags & I915_EXEC_BSD_MASK;
2116
2117                 if (bsd_idx == I915_EXEC_BSD_DEFAULT) {
2118                         bsd_idx = gen8_dispatch_bsd_engine(i915, file);
2119                 } else if (bsd_idx >= I915_EXEC_BSD_RING1 &&
2120                            bsd_idx <= I915_EXEC_BSD_RING2) {
2121                         bsd_idx >>= I915_EXEC_BSD_SHIFT;
2122                         bsd_idx--;
2123                 } else {
2124                         drm_dbg(&i915->drm,
2125                                 "execbuf with unknown bsd ring: %u\n",
2126                                 bsd_idx);
2127                         return -1;
2128                 }
2129
2130                 return _VCS(bsd_idx);
2131         }
2132
2133         if (user_ring_id >= ARRAY_SIZE(user_ring_map)) {
2134                 drm_dbg(&i915->drm, "execbuf with unknown ring: %u\n",
2135                         user_ring_id);
2136                 return -1;
2137         }
2138
2139         return user_ring_map[user_ring_id];
2140 }
2141
2142 static int
2143 eb_pin_engine(struct i915_execbuffer *eb,
2144               struct drm_file *file,
2145               struct drm_i915_gem_execbuffer2 *args)
2146 {
2147         struct intel_context *ce;
2148         unsigned int idx;
2149         int err;
2150
2151         if (i915_gem_context_user_engines(eb->gem_context))
2152                 idx = args->flags & I915_EXEC_RING_MASK;
2153         else
2154                 idx = eb_select_legacy_ring(eb, file, args);
2155
2156         ce = i915_gem_context_get_engine(eb->gem_context, idx);
2157         if (IS_ERR(ce))
2158                 return PTR_ERR(ce);
2159
2160         err = __eb_pin_engine(eb, ce);
2161         intel_context_put(ce);
2162
2163         return err;
2164 }
2165
2166 static void
2167 __free_fence_array(struct drm_syncobj **fences, unsigned int n)
2168 {
2169         while (n--)
2170                 drm_syncobj_put(ptr_mask_bits(fences[n], 2));
2171         kvfree(fences);
2172 }
2173
2174 static struct drm_syncobj **
2175 get_fence_array(struct drm_i915_gem_execbuffer2 *args,
2176                 struct drm_file *file)
2177 {
2178         const unsigned long nfences = args->num_cliprects;
2179         struct drm_i915_gem_exec_fence __user *user;
2180         struct drm_syncobj **fences;
2181         unsigned long n;
2182         int err;
2183
2184         if (!(args->flags & I915_EXEC_FENCE_ARRAY))
2185                 return NULL;
2186
2187         /* Check multiplication overflow for access_ok() and kvmalloc_array() */
2188         BUILD_BUG_ON(sizeof(size_t) > sizeof(unsigned long));
2189         if (nfences > min_t(unsigned long,
2190                             ULONG_MAX / sizeof(*user),
2191                             SIZE_MAX / sizeof(*fences)))
2192                 return ERR_PTR(-EINVAL);
2193
2194         user = u64_to_user_ptr(args->cliprects_ptr);
2195         if (!access_ok(user, nfences * sizeof(*user)))
2196                 return ERR_PTR(-EFAULT);
2197
2198         fences = kvmalloc_array(nfences, sizeof(*fences),
2199                                 __GFP_NOWARN | GFP_KERNEL);
2200         if (!fences)
2201                 return ERR_PTR(-ENOMEM);
2202
2203         for (n = 0; n < nfences; n++) {
2204                 struct drm_i915_gem_exec_fence fence;
2205                 struct drm_syncobj *syncobj;
2206
2207                 if (__copy_from_user(&fence, user++, sizeof(fence))) {
2208                         err = -EFAULT;
2209                         goto err;
2210                 }
2211
2212                 if (fence.flags & __I915_EXEC_FENCE_UNKNOWN_FLAGS) {
2213                         err = -EINVAL;
2214                         goto err;
2215                 }
2216
2217                 syncobj = drm_syncobj_find(file, fence.handle);
2218                 if (!syncobj) {
2219                         DRM_DEBUG("Invalid syncobj handle provided\n");
2220                         err = -ENOENT;
2221                         goto err;
2222                 }
2223
2224                 BUILD_BUG_ON(~(ARCH_KMALLOC_MINALIGN - 1) &
2225                              ~__I915_EXEC_FENCE_UNKNOWN_FLAGS);
2226
2227                 fences[n] = ptr_pack_bits(syncobj, fence.flags, 2);
2228         }
2229
2230         return fences;
2231
2232 err:
2233         __free_fence_array(fences, n);
2234         return ERR_PTR(err);
2235 }
2236
2237 static void
2238 put_fence_array(struct drm_i915_gem_execbuffer2 *args,
2239                 struct drm_syncobj **fences)
2240 {
2241         if (fences)
2242                 __free_fence_array(fences, args->num_cliprects);
2243 }
2244
2245 static int
2246 await_fence_array(struct i915_execbuffer *eb,
2247                   struct drm_syncobj **fences)
2248 {
2249         const unsigned int nfences = eb->args->num_cliprects;
2250         unsigned int n;
2251         int err;
2252
2253         for (n = 0; n < nfences; n++) {
2254                 struct drm_syncobj *syncobj;
2255                 struct dma_fence *fence;
2256                 unsigned int flags;
2257
2258                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2259                 if (!(flags & I915_EXEC_FENCE_WAIT))
2260                         continue;
2261
2262                 fence = drm_syncobj_fence_get(syncobj);
2263                 if (!fence)
2264                         return -EINVAL;
2265
2266                 err = i915_request_await_dma_fence(eb->request, fence);
2267                 dma_fence_put(fence);
2268                 if (err < 0)
2269                         return err;
2270         }
2271
2272         return 0;
2273 }
2274
2275 static void
2276 signal_fence_array(struct i915_execbuffer *eb,
2277                    struct drm_syncobj **fences)
2278 {
2279         const unsigned int nfences = eb->args->num_cliprects;
2280         struct dma_fence * const fence = &eb->request->fence;
2281         unsigned int n;
2282
2283         for (n = 0; n < nfences; n++) {
2284                 struct drm_syncobj *syncobj;
2285                 unsigned int flags;
2286
2287                 syncobj = ptr_unpack_bits(fences[n], &flags, 2);
2288                 if (!(flags & I915_EXEC_FENCE_SIGNAL))
2289                         continue;
2290
2291                 drm_syncobj_replace_fence(syncobj, fence);
2292         }
2293 }
2294
2295 static void retire_requests(struct intel_timeline *tl, struct i915_request *end)
2296 {
2297         struct i915_request *rq, *rn;
2298
2299         list_for_each_entry_safe(rq, rn, &tl->requests, link)
2300                 if (rq == end || !i915_request_retire(rq))
2301                         break;
2302 }
2303
2304 static void eb_request_add(struct i915_execbuffer *eb)
2305 {
2306         struct i915_request *rq = eb->request;
2307         struct intel_timeline * const tl = i915_request_timeline(rq);
2308         struct i915_sched_attr attr = {};
2309         struct i915_request *prev;
2310
2311         lockdep_assert_held(&tl->mutex);
2312         lockdep_unpin_lock(&tl->mutex, rq->cookie);
2313
2314         trace_i915_request_add(rq);
2315
2316         prev = __i915_request_commit(rq);
2317
2318         /* Check that the context wasn't destroyed before submission */
2319         if (likely(!intel_context_is_closed(eb->context))) {
2320                 attr = eb->gem_context->sched;
2321
2322                 /*
2323                  * Boost actual workloads past semaphores!
2324                  *
2325                  * With semaphores we spin on one engine waiting for another,
2326                  * simply to reduce the latency of starting our work when
2327                  * the signaler completes. However, if there is any other
2328                  * work that we could be doing on this engine instead, that
2329                  * is better utilisation and will reduce the overall duration
2330                  * of the current work. To avoid PI boosting a semaphore
2331                  * far in the distance past over useful work, we keep a history
2332                  * of any semaphore use along our dependency chain.
2333                  */
2334                 if (!(rq->sched.flags & I915_SCHED_HAS_SEMAPHORE_CHAIN))
2335                         attr.priority |= I915_PRIORITY_NOSEMAPHORE;
2336
2337                 /*
2338                  * Boost priorities to new clients (new request flows).
2339                  *
2340                  * Allow interactive/synchronous clients to jump ahead of
2341                  * the bulk clients. (FQ_CODEL)
2342                  */
2343                 if (list_empty(&rq->sched.signalers_list))
2344                         attr.priority |= I915_PRIORITY_WAIT;
2345         } else {
2346                 /* Serialise with context_close via the add_to_timeline */
2347                 i915_request_set_error_once(rq, -ENOENT);
2348                 __i915_request_skip(rq);
2349         }
2350
2351         local_bh_disable();
2352         __i915_request_queue(rq, &attr);
2353         local_bh_enable(); /* Kick the execlists tasklet if just scheduled */
2354
2355         /* Try to clean up the client's timeline after submitting the request */
2356         if (prev)
2357                 retire_requests(tl, prev);
2358
2359         mutex_unlock(&tl->mutex);
2360 }
2361
2362 static int
2363 i915_gem_do_execbuffer(struct drm_device *dev,
2364                        struct drm_file *file,
2365                        struct drm_i915_gem_execbuffer2 *args,
2366                        struct drm_i915_gem_exec_object2 *exec,
2367                        struct drm_syncobj **fences)
2368 {
2369         struct drm_i915_private *i915 = to_i915(dev);
2370         struct i915_execbuffer eb;
2371         struct dma_fence *in_fence = NULL;
2372         struct dma_fence *exec_fence = NULL;
2373         struct sync_file *out_fence = NULL;
2374         struct i915_vma *batch;
2375         int out_fence_fd = -1;
2376         int err;
2377
2378         BUILD_BUG_ON(__EXEC_INTERNAL_FLAGS & ~__I915_EXEC_ILLEGAL_FLAGS);
2379         BUILD_BUG_ON(__EXEC_OBJECT_INTERNAL_FLAGS &
2380                      ~__EXEC_OBJECT_UNKNOWN_FLAGS);
2381
2382         eb.i915 = i915;
2383         eb.file = file;
2384         eb.args = args;
2385         if (DBG_FORCE_RELOC || !(args->flags & I915_EXEC_NO_RELOC))
2386                 args->flags |= __EXEC_HAS_RELOC;
2387
2388         eb.exec = exec;
2389         eb.vma = (struct eb_vma *)(exec + args->buffer_count + 1);
2390         eb.vma[0].vma = NULL;
2391
2392         eb.invalid_flags = __EXEC_OBJECT_UNKNOWN_FLAGS;
2393         reloc_cache_init(&eb.reloc_cache, eb.i915);
2394
2395         eb.buffer_count = args->buffer_count;
2396         eb.batch_start_offset = args->batch_start_offset;
2397         eb.batch_len = args->batch_len;
2398         eb.trampoline = NULL;
2399
2400         eb.batch_flags = 0;
2401         if (args->flags & I915_EXEC_SECURE) {
2402                 if (INTEL_GEN(i915) >= 11)
2403                         return -ENODEV;
2404
2405                 /* Return -EPERM to trigger fallback code on old binaries. */
2406                 if (!HAS_SECURE_BATCHES(i915))
2407                         return -EPERM;
2408
2409                 if (!drm_is_current_master(file) || !capable(CAP_SYS_ADMIN))
2410                         return -EPERM;
2411
2412                 eb.batch_flags |= I915_DISPATCH_SECURE;
2413         }
2414         if (args->flags & I915_EXEC_IS_PINNED)
2415                 eb.batch_flags |= I915_DISPATCH_PINNED;
2416
2417         if (args->flags & I915_EXEC_FENCE_IN) {
2418                 in_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2419                 if (!in_fence)
2420                         return -EINVAL;
2421         }
2422
2423         if (args->flags & I915_EXEC_FENCE_SUBMIT) {
2424                 if (in_fence) {
2425                         err = -EINVAL;
2426                         goto err_in_fence;
2427                 }
2428
2429                 exec_fence = sync_file_get_fence(lower_32_bits(args->rsvd2));
2430                 if (!exec_fence) {
2431                         err = -EINVAL;
2432                         goto err_in_fence;
2433                 }
2434         }
2435
2436         if (args->flags & I915_EXEC_FENCE_OUT) {
2437                 out_fence_fd = get_unused_fd_flags(O_CLOEXEC);
2438                 if (out_fence_fd < 0) {
2439                         err = out_fence_fd;
2440                         goto err_exec_fence;
2441                 }
2442         }
2443
2444         err = eb_create(&eb);
2445         if (err)
2446                 goto err_out_fence;
2447
2448         GEM_BUG_ON(!eb.lut_size);
2449
2450         err = eb_select_context(&eb);
2451         if (unlikely(err))
2452                 goto err_destroy;
2453
2454         err = eb_pin_engine(&eb, file, args);
2455         if (unlikely(err))
2456                 goto err_context;
2457
2458         err = eb_relocate(&eb);
2459         if (err) {
2460                 /*
2461                  * If the user expects the execobject.offset and
2462                  * reloc.presumed_offset to be an exact match,
2463                  * as for using NO_RELOC, then we cannot update
2464                  * the execobject.offset until we have completed
2465                  * relocation.
2466                  */
2467                 args->flags &= ~__EXEC_HAS_RELOC;
2468                 goto err_vma;
2469         }
2470
2471         if (unlikely(eb.batch->flags & EXEC_OBJECT_WRITE)) {
2472                 drm_dbg(&i915->drm,
2473                         "Attempting to use self-modifying batch buffer\n");
2474                 err = -EINVAL;
2475                 goto err_vma;
2476         }
2477
2478         if (range_overflows_t(u64,
2479                               eb.batch_start_offset, eb.batch_len,
2480                               eb.batch->vma->size)) {
2481                 drm_dbg(&i915->drm, "Attempting to use out-of-bounds batch\n");
2482                 err = -EINVAL;
2483                 goto err_vma;
2484         }
2485
2486         if (eb.batch_len == 0)
2487                 eb.batch_len = eb.batch->vma->size - eb.batch_start_offset;
2488
2489         err = eb_parse(&eb);
2490         if (err)
2491                 goto err_vma;
2492
2493         /*
2494          * snb/ivb/vlv conflate the "batch in ppgtt" bit with the "non-secure
2495          * batch" bit. Hence we need to pin secure batches into the global gtt.
2496          * hsw should have this fixed, but bdw mucks it up again. */
2497         batch = eb.batch->vma;
2498         if (eb.batch_flags & I915_DISPATCH_SECURE) {
2499                 struct i915_vma *vma;
2500
2501                 /*
2502                  * So on first glance it looks freaky that we pin the batch here
2503                  * outside of the reservation loop. But:
2504                  * - The batch is already pinned into the relevant ppgtt, so we
2505                  *   already have the backing storage fully allocated.
2506                  * - No other BO uses the global gtt (well contexts, but meh),
2507                  *   so we don't really have issues with multiple objects not
2508                  *   fitting due to fragmentation.
2509                  * So this is actually safe.
2510                  */
2511                 vma = i915_gem_object_ggtt_pin(batch->obj, NULL, 0, 0, 0);
2512                 if (IS_ERR(vma)) {
2513                         err = PTR_ERR(vma);
2514                         goto err_parse;
2515                 }
2516
2517                 batch = vma;
2518         }
2519
2520         /* All GPU relocation batches must be submitted prior to the user rq */
2521         GEM_BUG_ON(eb.reloc_cache.rq);
2522
2523         /* Allocate a request for this batch buffer nice and early. */
2524         eb.request = i915_request_create(eb.context);
2525         if (IS_ERR(eb.request)) {
2526                 err = PTR_ERR(eb.request);
2527                 goto err_batch_unpin;
2528         }
2529
2530         if (in_fence) {
2531                 err = i915_request_await_dma_fence(eb.request, in_fence);
2532                 if (err < 0)
2533                         goto err_request;
2534         }
2535
2536         if (exec_fence) {
2537                 err = i915_request_await_execution(eb.request, exec_fence,
2538                                                    eb.engine->bond_execute);
2539                 if (err < 0)
2540                         goto err_request;
2541         }
2542
2543         if (fences) {
2544                 err = await_fence_array(&eb, fences);
2545                 if (err)
2546                         goto err_request;
2547         }
2548
2549         if (out_fence_fd != -1) {
2550                 out_fence = sync_file_create(&eb.request->fence);
2551                 if (!out_fence) {
2552                         err = -ENOMEM;
2553                         goto err_request;
2554                 }
2555         }
2556
2557         /*
2558          * Whilst this request exists, batch_obj will be on the
2559          * active_list, and so will hold the active reference. Only when this
2560          * request is retired will the the batch_obj be moved onto the
2561          * inactive_list and lose its active reference. Hence we do not need
2562          * to explicitly hold another reference here.
2563          */
2564         eb.request->batch = batch;
2565         if (batch->private)
2566                 intel_engine_pool_mark_active(batch->private, eb.request);
2567
2568         trace_i915_request_queue(eb.request, eb.batch_flags);
2569         err = eb_submit(&eb, batch);
2570 err_request:
2571         add_to_client(eb.request, file);
2572         i915_request_get(eb.request);
2573         eb_request_add(&eb);
2574
2575         if (fences)
2576                 signal_fence_array(&eb, fences);
2577
2578         if (out_fence) {
2579                 if (err == 0) {
2580                         fd_install(out_fence_fd, out_fence->file);
2581                         args->rsvd2 &= GENMASK_ULL(31, 0); /* keep in-fence */
2582                         args->rsvd2 |= (u64)out_fence_fd << 32;
2583                         out_fence_fd = -1;
2584                 } else {
2585                         fput(out_fence->file);
2586                 }
2587         }
2588         i915_request_put(eb.request);
2589
2590 err_batch_unpin:
2591         if (eb.batch_flags & I915_DISPATCH_SECURE)
2592                 i915_vma_unpin(batch);
2593 err_parse:
2594         if (batch->private)
2595                 intel_engine_pool_put(batch->private);
2596 err_vma:
2597         if (eb.exec)
2598                 eb_release_vmas(&eb);
2599         if (eb.trampoline)
2600                 i915_vma_unpin(eb.trampoline);
2601         eb_unpin_engine(&eb);
2602 err_context:
2603         i915_gem_context_put(eb.gem_context);
2604 err_destroy:
2605         eb_destroy(&eb);
2606 err_out_fence:
2607         if (out_fence_fd != -1)
2608                 put_unused_fd(out_fence_fd);
2609 err_exec_fence:
2610         dma_fence_put(exec_fence);
2611 err_in_fence:
2612         dma_fence_put(in_fence);
2613         return err;
2614 }
2615
2616 static size_t eb_element_size(void)
2617 {
2618         return sizeof(struct drm_i915_gem_exec_object2) + sizeof(struct eb_vma);
2619 }
2620
2621 static bool check_buffer_count(size_t count)
2622 {
2623         const size_t sz = eb_element_size();
2624
2625         /*
2626          * When using LUT_HANDLE, we impose a limit of INT_MAX for the lookup
2627          * array size (see eb_create()). Otherwise, we can accept an array as
2628          * large as can be addressed (though use large arrays at your peril)!
2629          */
2630
2631         return !(count < 1 || count > INT_MAX || count > SIZE_MAX / sz - 1);
2632 }
2633
2634 /*
2635  * Legacy execbuffer just creates an exec2 list from the original exec object
2636  * list array and passes it to the real function.
2637  */
2638 int
2639 i915_gem_execbuffer_ioctl(struct drm_device *dev, void *data,
2640                           struct drm_file *file)
2641 {
2642         struct drm_i915_private *i915 = to_i915(dev);
2643         struct drm_i915_gem_execbuffer *args = data;
2644         struct drm_i915_gem_execbuffer2 exec2;
2645         struct drm_i915_gem_exec_object *exec_list = NULL;
2646         struct drm_i915_gem_exec_object2 *exec2_list = NULL;
2647         const size_t count = args->buffer_count;
2648         unsigned int i;
2649         int err;
2650
2651         if (!check_buffer_count(count)) {
2652                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2653                 return -EINVAL;
2654         }
2655
2656         exec2.buffers_ptr = args->buffers_ptr;
2657         exec2.buffer_count = args->buffer_count;
2658         exec2.batch_start_offset = args->batch_start_offset;
2659         exec2.batch_len = args->batch_len;
2660         exec2.DR1 = args->DR1;
2661         exec2.DR4 = args->DR4;
2662         exec2.num_cliprects = args->num_cliprects;
2663         exec2.cliprects_ptr = args->cliprects_ptr;
2664         exec2.flags = I915_EXEC_RENDER;
2665         i915_execbuffer2_set_context_id(exec2, 0);
2666
2667         err = i915_gem_check_execbuffer(&exec2);
2668         if (err)
2669                 return err;
2670
2671         /* Copy in the exec list from userland */
2672         exec_list = kvmalloc_array(count, sizeof(*exec_list),
2673                                    __GFP_NOWARN | GFP_KERNEL);
2674         exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2675                                     __GFP_NOWARN | GFP_KERNEL);
2676         if (exec_list == NULL || exec2_list == NULL) {
2677                 drm_dbg(&i915->drm,
2678                         "Failed to allocate exec list for %d buffers\n",
2679                         args->buffer_count);
2680                 kvfree(exec_list);
2681                 kvfree(exec2_list);
2682                 return -ENOMEM;
2683         }
2684         err = copy_from_user(exec_list,
2685                              u64_to_user_ptr(args->buffers_ptr),
2686                              sizeof(*exec_list) * count);
2687         if (err) {
2688                 drm_dbg(&i915->drm, "copy %d exec entries failed %d\n",
2689                         args->buffer_count, err);
2690                 kvfree(exec_list);
2691                 kvfree(exec2_list);
2692                 return -EFAULT;
2693         }
2694
2695         for (i = 0; i < args->buffer_count; i++) {
2696                 exec2_list[i].handle = exec_list[i].handle;
2697                 exec2_list[i].relocation_count = exec_list[i].relocation_count;
2698                 exec2_list[i].relocs_ptr = exec_list[i].relocs_ptr;
2699                 exec2_list[i].alignment = exec_list[i].alignment;
2700                 exec2_list[i].offset = exec_list[i].offset;
2701                 if (INTEL_GEN(to_i915(dev)) < 4)
2702                         exec2_list[i].flags = EXEC_OBJECT_NEEDS_FENCE;
2703                 else
2704                         exec2_list[i].flags = 0;
2705         }
2706
2707         err = i915_gem_do_execbuffer(dev, file, &exec2, exec2_list, NULL);
2708         if (exec2.flags & __EXEC_HAS_RELOC) {
2709                 struct drm_i915_gem_exec_object __user *user_exec_list =
2710                         u64_to_user_ptr(args->buffers_ptr);
2711
2712                 /* Copy the new buffer offsets back to the user's exec list. */
2713                 for (i = 0; i < args->buffer_count; i++) {
2714                         if (!(exec2_list[i].offset & UPDATE))
2715                                 continue;
2716
2717                         exec2_list[i].offset =
2718                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2719                         exec2_list[i].offset &= PIN_OFFSET_MASK;
2720                         if (__copy_to_user(&user_exec_list[i].offset,
2721                                            &exec2_list[i].offset,
2722                                            sizeof(user_exec_list[i].offset)))
2723                                 break;
2724                 }
2725         }
2726
2727         kvfree(exec_list);
2728         kvfree(exec2_list);
2729         return err;
2730 }
2731
2732 int
2733 i915_gem_execbuffer2_ioctl(struct drm_device *dev, void *data,
2734                            struct drm_file *file)
2735 {
2736         struct drm_i915_private *i915 = to_i915(dev);
2737         struct drm_i915_gem_execbuffer2 *args = data;
2738         struct drm_i915_gem_exec_object2 *exec2_list;
2739         struct drm_syncobj **fences = NULL;
2740         const size_t count = args->buffer_count;
2741         int err;
2742
2743         if (!check_buffer_count(count)) {
2744                 drm_dbg(&i915->drm, "execbuf2 with %zd buffers\n", count);
2745                 return -EINVAL;
2746         }
2747
2748         err = i915_gem_check_execbuffer(args);
2749         if (err)
2750                 return err;
2751
2752         /* Allocate an extra slot for use by the command parser */
2753         exec2_list = kvmalloc_array(count + 1, eb_element_size(),
2754                                     __GFP_NOWARN | GFP_KERNEL);
2755         if (exec2_list == NULL) {
2756                 drm_dbg(&i915->drm, "Failed to allocate exec list for %zd buffers\n",
2757                         count);
2758                 return -ENOMEM;
2759         }
2760         if (copy_from_user(exec2_list,
2761                            u64_to_user_ptr(args->buffers_ptr),
2762                            sizeof(*exec2_list) * count)) {
2763                 drm_dbg(&i915->drm, "copy %zd exec entries failed\n", count);
2764                 kvfree(exec2_list);
2765                 return -EFAULT;
2766         }
2767
2768         if (args->flags & I915_EXEC_FENCE_ARRAY) {
2769                 fences = get_fence_array(args, file);
2770                 if (IS_ERR(fences)) {
2771                         kvfree(exec2_list);
2772                         return PTR_ERR(fences);
2773                 }
2774         }
2775
2776         err = i915_gem_do_execbuffer(dev, file, args, exec2_list, fences);
2777
2778         /*
2779          * Now that we have begun execution of the batchbuffer, we ignore
2780          * any new error after this point. Also given that we have already
2781          * updated the associated relocations, we try to write out the current
2782          * object locations irrespective of any error.
2783          */
2784         if (args->flags & __EXEC_HAS_RELOC) {
2785                 struct drm_i915_gem_exec_object2 __user *user_exec_list =
2786                         u64_to_user_ptr(args->buffers_ptr);
2787                 unsigned int i;
2788
2789                 /* Copy the new buffer offsets back to the user's exec list. */
2790                 /*
2791                  * Note: count * sizeof(*user_exec_list) does not overflow,
2792                  * because we checked 'count' in check_buffer_count().
2793                  *
2794                  * And this range already got effectively checked earlier
2795                  * when we did the "copy_from_user()" above.
2796                  */
2797                 if (!user_access_begin(user_exec_list, count * sizeof(*user_exec_list)))
2798                         goto end;
2799
2800                 for (i = 0; i < args->buffer_count; i++) {
2801                         if (!(exec2_list[i].offset & UPDATE))
2802                                 continue;
2803
2804                         exec2_list[i].offset =
2805                                 gen8_canonical_addr(exec2_list[i].offset & PIN_OFFSET_MASK);
2806                         unsafe_put_user(exec2_list[i].offset,
2807                                         &user_exec_list[i].offset,
2808                                         end_user);
2809                 }
2810 end_user:
2811                 user_access_end();
2812 end:;
2813         }
2814
2815         args->flags &= ~__I915_EXEC_UNKNOWN_FLAGS;
2816         put_fence_array(args, fences);
2817         kvfree(exec2_list);
2818         return err;
2819 }