Linux-libre 4.14.138-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / arm / malidp_crtc.c
1 /*
2  * (C) COPYRIGHT 2016 ARM Limited. All rights reserved.
3  * Author: Liviu Dudau <Liviu.Dudau@arm.com>
4  *
5  * This program is free software and is provided to you under the terms of the
6  * GNU General Public License version 2 as published by the Free Software
7  * Foundation, and any use by you of this program is subject to the terms
8  * of such GNU licence.
9  *
10  * ARM Mali DP500/DP550/DP650 driver (crtc operations)
11  */
12
13 #include <drm/drmP.h>
14 #include <drm/drm_atomic.h>
15 #include <drm/drm_atomic_helper.h>
16 #include <drm/drm_crtc.h>
17 #include <drm/drm_crtc_helper.h>
18 #include <linux/clk.h>
19 #include <linux/pm_runtime.h>
20 #include <video/videomode.h>
21
22 #include "malidp_drv.h"
23 #include "malidp_hw.h"
24
25 static enum drm_mode_status malidp_crtc_mode_valid(struct drm_crtc *crtc,
26                                                    const struct drm_display_mode *mode)
27 {
28         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
29         struct malidp_hw_device *hwdev = malidp->dev;
30
31         /*
32          * check that the hardware can drive the required clock rate,
33          * but skip the check if the clock is meant to be disabled (req_rate = 0)
34          */
35         long rate, req_rate = mode->crtc_clock * 1000;
36
37         if (req_rate) {
38                 rate = clk_round_rate(hwdev->pxlclk, req_rate);
39                 if (rate != req_rate) {
40                         DRM_DEBUG_DRIVER("pxlclk doesn't support %ld Hz\n",
41                                          req_rate);
42                         return MODE_NOCLOCK;
43                 }
44         }
45
46         return MODE_OK;
47 }
48
49 static void malidp_crtc_atomic_enable(struct drm_crtc *crtc,
50                                       struct drm_crtc_state *old_state)
51 {
52         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
53         struct malidp_hw_device *hwdev = malidp->dev;
54         struct videomode vm;
55         int err = pm_runtime_get_sync(crtc->dev->dev);
56
57         if (err < 0) {
58                 DRM_DEBUG_DRIVER("Failed to enable runtime power management: %d\n", err);
59                 return;
60         }
61
62         drm_display_mode_to_videomode(&crtc->state->adjusted_mode, &vm);
63         clk_prepare_enable(hwdev->pxlclk);
64
65         /* We rely on firmware to set mclk to a sensible level. */
66         clk_set_rate(hwdev->pxlclk, crtc->state->adjusted_mode.crtc_clock * 1000);
67
68         hwdev->modeset(hwdev, &vm);
69         hwdev->leave_config_mode(hwdev);
70         drm_crtc_vblank_on(crtc);
71 }
72
73 static void malidp_crtc_atomic_disable(struct drm_crtc *crtc,
74                                        struct drm_crtc_state *old_state)
75 {
76         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
77         struct malidp_hw_device *hwdev = malidp->dev;
78         int err;
79
80         drm_crtc_vblank_off(crtc);
81         hwdev->enter_config_mode(hwdev);
82         clk_disable_unprepare(hwdev->pxlclk);
83
84         err = pm_runtime_put(crtc->dev->dev);
85         if (err < 0) {
86                 DRM_DEBUG_DRIVER("Failed to disable runtime power management: %d\n", err);
87         }
88 }
89
90 static const struct gamma_curve_segment {
91         u16 start;
92         u16 end;
93 } segments[MALIDP_COEFFTAB_NUM_COEFFS] = {
94         /* sector 0 */
95         {    0,    0 }, {    1,    1 }, {    2,    2 }, {    3,    3 },
96         {    4,    4 }, {    5,    5 }, {    6,    6 }, {    7,    7 },
97         {    8,    8 }, {    9,    9 }, {   10,   10 }, {   11,   11 },
98         {   12,   12 }, {   13,   13 }, {   14,   14 }, {   15,   15 },
99         /* sector 1 */
100         {   16,   19 }, {   20,   23 }, {   24,   27 }, {   28,   31 },
101         /* sector 2 */
102         {   32,   39 }, {   40,   47 }, {   48,   55 }, {   56,   63 },
103         /* sector 3 */
104         {   64,   79 }, {   80,   95 }, {   96,  111 }, {  112,  127 },
105         /* sector 4 */
106         {  128,  159 }, {  160,  191 }, {  192,  223 }, {  224,  255 },
107         /* sector 5 */
108         {  256,  319 }, {  320,  383 }, {  384,  447 }, {  448,  511 },
109         /* sector 6 */
110         {  512,  639 }, {  640,  767 }, {  768,  895 }, {  896, 1023 },
111         { 1024, 1151 }, { 1152, 1279 }, { 1280, 1407 }, { 1408, 1535 },
112         { 1536, 1663 }, { 1664, 1791 }, { 1792, 1919 }, { 1920, 2047 },
113         { 2048, 2175 }, { 2176, 2303 }, { 2304, 2431 }, { 2432, 2559 },
114         { 2560, 2687 }, { 2688, 2815 }, { 2816, 2943 }, { 2944, 3071 },
115         { 3072, 3199 }, { 3200, 3327 }, { 3328, 3455 }, { 3456, 3583 },
116         { 3584, 3711 }, { 3712, 3839 }, { 3840, 3967 }, { 3968, 4095 },
117 };
118
119 #define DE_COEFTAB_DATA(a, b) ((((a) & 0xfff) << 16) | (((b) & 0xfff)))
120
121 static void malidp_generate_gamma_table(struct drm_property_blob *lut_blob,
122                                         u32 coeffs[MALIDP_COEFFTAB_NUM_COEFFS])
123 {
124         struct drm_color_lut *lut = (struct drm_color_lut *)lut_blob->data;
125         int i;
126
127         for (i = 0; i < MALIDP_COEFFTAB_NUM_COEFFS; ++i) {
128                 u32 a, b, delta_in, out_start, out_end;
129
130                 delta_in = segments[i].end - segments[i].start;
131                 /* DP has 12-bit internal precision for its LUTs. */
132                 out_start = drm_color_lut_extract(lut[segments[i].start].green,
133                                                   12);
134                 out_end = drm_color_lut_extract(lut[segments[i].end].green, 12);
135                 a = (delta_in == 0) ? 0 : ((out_end - out_start) * 256) / delta_in;
136                 b = out_start;
137                 coeffs[i] = DE_COEFTAB_DATA(a, b);
138         }
139 }
140
141 /*
142  * Check if there is a new gamma LUT and if it is of an acceptable size. Also,
143  * reject any LUTs that use distinct red, green, and blue curves.
144  */
145 static int malidp_crtc_atomic_check_gamma(struct drm_crtc *crtc,
146                                           struct drm_crtc_state *state)
147 {
148         struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
149         struct drm_color_lut *lut;
150         size_t lut_size;
151         int i;
152
153         if (!state->color_mgmt_changed || !state->gamma_lut)
154                 return 0;
155
156         if (crtc->state->gamma_lut &&
157             (crtc->state->gamma_lut->base.id == state->gamma_lut->base.id))
158                 return 0;
159
160         if (state->gamma_lut->length % sizeof(struct drm_color_lut))
161                 return -EINVAL;
162
163         lut_size = state->gamma_lut->length / sizeof(struct drm_color_lut);
164         if (lut_size != MALIDP_GAMMA_LUT_SIZE)
165                 return -EINVAL;
166
167         lut = (struct drm_color_lut *)state->gamma_lut->data;
168         for (i = 0; i < lut_size; ++i)
169                 if (!((lut[i].red == lut[i].green) &&
170                       (lut[i].red == lut[i].blue)))
171                         return -EINVAL;
172
173         if (!state->mode_changed) {
174                 int ret;
175
176                 state->mode_changed = true;
177                 /*
178                  * Kerneldoc for drm_atomic_helper_check_modeset mandates that
179                  * it be invoked when the driver sets ->mode_changed. Since
180                  * changing the gamma LUT doesn't depend on any external
181                  * resources, it is safe to call it only once.
182                  */
183                 ret = drm_atomic_helper_check_modeset(crtc->dev, state->state);
184                 if (ret)
185                         return ret;
186         }
187
188         malidp_generate_gamma_table(state->gamma_lut, mc->gamma_coeffs);
189         return 0;
190 }
191
192 /*
193  * Check if there is a new CTM and if it contains valid input. Valid here means
194  * that the number is inside the representable range for a Q3.12 number,
195  * excluding truncating the fractional part of the input data.
196  *
197  * The COLORADJ registers can be changed atomically.
198  */
199 static int malidp_crtc_atomic_check_ctm(struct drm_crtc *crtc,
200                                         struct drm_crtc_state *state)
201 {
202         struct malidp_crtc_state *mc = to_malidp_crtc_state(state);
203         struct drm_color_ctm *ctm;
204         int i;
205
206         if (!state->color_mgmt_changed)
207                 return 0;
208
209         if (!state->ctm)
210                 return 0;
211
212         if (crtc->state->ctm && (crtc->state->ctm->base.id ==
213                                  state->ctm->base.id))
214                 return 0;
215
216         /*
217          * The size of the ctm is checked in
218          * drm_atomic_replace_property_blob_from_id.
219          */
220         ctm = (struct drm_color_ctm *)state->ctm->data;
221         for (i = 0; i < ARRAY_SIZE(ctm->matrix); ++i) {
222                 /* Convert from S31.32 to Q3.12. */
223                 s64 val = ctm->matrix[i];
224                 u32 mag = ((((u64)val) & ~BIT_ULL(63)) >> 20) &
225                           GENMASK_ULL(14, 0);
226
227                 /*
228                  * Convert to 2s complement and check the destination's top bit
229                  * for overflow. NB: Can't check before converting or it'd
230                  * incorrectly reject the case:
231                  * sign == 1
232                  * mag == 0x2000
233                  */
234                 if (val & BIT_ULL(63))
235                         mag = ~mag + 1;
236                 if (!!(val & BIT_ULL(63)) != !!(mag & BIT(14)))
237                         return -EINVAL;
238                 mc->coloradj_coeffs[i] = mag;
239         }
240
241         return 0;
242 }
243
244 static int malidp_crtc_atomic_check_scaling(struct drm_crtc *crtc,
245                                             struct drm_crtc_state *state)
246 {
247         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
248         struct malidp_hw_device *hwdev = malidp->dev;
249         struct malidp_crtc_state *cs = to_malidp_crtc_state(state);
250         struct malidp_se_config *s = &cs->scaler_config;
251         struct drm_plane *plane;
252         struct videomode vm;
253         const struct drm_plane_state *pstate;
254         u32 h_upscale_factor = 0; /* U16.16 */
255         u32 v_upscale_factor = 0; /* U16.16 */
256         u8 scaling = cs->scaled_planes_mask;
257         int ret;
258
259         if (!scaling) {
260                 s->scale_enable = false;
261                 goto mclk_calc;
262         }
263
264         /* The scaling engine can only handle one plane at a time. */
265         if (scaling & (scaling - 1))
266                 return -EINVAL;
267
268         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
269                 struct malidp_plane *mp = to_malidp_plane(plane);
270                 u32 phase;
271
272                 if (!(mp->layer->id & scaling))
273                         continue;
274
275                 /*
276                  * Convert crtc_[w|h] to U32.32, then divide by U16.16 src_[w|h]
277                  * to get the U16.16 result.
278                  */
279                 h_upscale_factor = div_u64((u64)pstate->crtc_w << 32,
280                                            pstate->src_w);
281                 v_upscale_factor = div_u64((u64)pstate->crtc_h << 32,
282                                            pstate->src_h);
283
284                 s->enhancer_enable = ((h_upscale_factor >> 16) >= 2 ||
285                                       (v_upscale_factor >> 16) >= 2);
286
287                 s->input_w = pstate->src_w >> 16;
288                 s->input_h = pstate->src_h >> 16;
289                 s->output_w = pstate->crtc_w;
290                 s->output_h = pstate->crtc_h;
291
292 #define SE_N_PHASE 4
293 #define SE_SHIFT_N_PHASE 12
294                 /* Calculate initial_phase and delta_phase for horizontal. */
295                 phase = s->input_w;
296                 s->h_init_phase =
297                                 ((phase << SE_N_PHASE) / s->output_w + 1) / 2;
298
299                 phase = s->input_w;
300                 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
301                 s->h_delta_phase = phase / s->output_w;
302
303                 /* Same for vertical. */
304                 phase = s->input_h;
305                 s->v_init_phase =
306                                 ((phase << SE_N_PHASE) / s->output_h + 1) / 2;
307
308                 phase = s->input_h;
309                 phase <<= (SE_SHIFT_N_PHASE + SE_N_PHASE);
310                 s->v_delta_phase = phase / s->output_h;
311 #undef SE_N_PHASE
312 #undef SE_SHIFT_N_PHASE
313                 s->plane_src_id = mp->layer->id;
314         }
315
316         s->scale_enable = true;
317         s->hcoeff = malidp_se_select_coeffs(h_upscale_factor);
318         s->vcoeff = malidp_se_select_coeffs(v_upscale_factor);
319
320 mclk_calc:
321         drm_display_mode_to_videomode(&state->adjusted_mode, &vm);
322         ret = hwdev->se_calc_mclk(hwdev, s, &vm);
323         if (ret < 0)
324                 return -EINVAL;
325         return 0;
326 }
327
328 static int malidp_crtc_atomic_check(struct drm_crtc *crtc,
329                                     struct drm_crtc_state *state)
330 {
331         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
332         struct malidp_hw_device *hwdev = malidp->dev;
333         struct drm_plane *plane;
334         const struct drm_plane_state *pstate;
335         u32 rot_mem_free, rot_mem_usable;
336         int rotated_planes = 0;
337         int ret;
338
339         /*
340          * check if there is enough rotation memory available for planes
341          * that need 90° and 270° rotation. Each plane has set its required
342          * memory size in the ->plane_check() callback, here we only make
343          * sure that the sums are less that the total usable memory.
344          *
345          * The rotation memory allocation algorithm (for each plane):
346          *  a. If no more rotated planes exist, all remaining rotate
347          *     memory in the bank is available for use by the plane.
348          *  b. If other rotated planes exist, and plane's layer ID is
349          *     DE_VIDEO1, it can use all the memory from first bank if
350          *     secondary rotation memory bank is available, otherwise it can
351          *     use up to half the bank's memory.
352          *  c. If other rotated planes exist, and plane's layer ID is not
353          *     DE_VIDEO1, it can use half of the available memory
354          *
355          * Note: this algorithm assumes that the order in which the planes are
356          * checked always has DE_VIDEO1 plane first in the list if it is
357          * rotated. Because that is how we create the planes in the first
358          * place, under current DRM version things work, but if ever the order
359          * in which drm_atomic_crtc_state_for_each_plane() iterates over planes
360          * changes, we need to pre-sort the planes before validation.
361          */
362
363         /* first count the number of rotated planes */
364         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
365                 if (pstate->rotation & MALIDP_ROTATED_MASK)
366                         rotated_planes++;
367         }
368
369         rot_mem_free = hwdev->rotation_memory[0];
370         /*
371          * if we have more than 1 plane using rotation memory, use the second
372          * block of rotation memory as well
373          */
374         if (rotated_planes > 1)
375                 rot_mem_free += hwdev->rotation_memory[1];
376
377         /* now validate the rotation memory requirements */
378         drm_atomic_crtc_state_for_each_plane_state(plane, pstate, state) {
379                 struct malidp_plane *mp = to_malidp_plane(plane);
380                 struct malidp_plane_state *ms = to_malidp_plane_state(pstate);
381
382                 if (pstate->rotation & MALIDP_ROTATED_MASK) {
383                         /* process current plane */
384                         rotated_planes--;
385
386                         if (!rotated_planes) {
387                                 /* no more rotated planes, we can use what's left */
388                                 rot_mem_usable = rot_mem_free;
389                         } else {
390                                 if ((mp->layer->id != DE_VIDEO1) ||
391                                     (hwdev->rotation_memory[1] == 0))
392                                         rot_mem_usable = rot_mem_free / 2;
393                                 else
394                                         rot_mem_usable = hwdev->rotation_memory[0];
395                         }
396
397                         rot_mem_free -= rot_mem_usable;
398
399                         if (ms->rotmem_size > rot_mem_usable)
400                                 return -EINVAL;
401                 }
402         }
403
404         ret = malidp_crtc_atomic_check_gamma(crtc, state);
405         ret = ret ? ret : malidp_crtc_atomic_check_ctm(crtc, state);
406         ret = ret ? ret : malidp_crtc_atomic_check_scaling(crtc, state);
407
408         return ret;
409 }
410
411 static const struct drm_crtc_helper_funcs malidp_crtc_helper_funcs = {
412         .mode_valid = malidp_crtc_mode_valid,
413         .atomic_check = malidp_crtc_atomic_check,
414         .atomic_enable = malidp_crtc_atomic_enable,
415         .atomic_disable = malidp_crtc_atomic_disable,
416 };
417
418 static struct drm_crtc_state *malidp_crtc_duplicate_state(struct drm_crtc *crtc)
419 {
420         struct malidp_crtc_state *state, *old_state;
421
422         if (WARN_ON(!crtc->state))
423                 return NULL;
424
425         old_state = to_malidp_crtc_state(crtc->state);
426         state = kmalloc(sizeof(*state), GFP_KERNEL);
427         if (!state)
428                 return NULL;
429
430         __drm_atomic_helper_crtc_duplicate_state(crtc, &state->base);
431         memcpy(state->gamma_coeffs, old_state->gamma_coeffs,
432                sizeof(state->gamma_coeffs));
433         memcpy(state->coloradj_coeffs, old_state->coloradj_coeffs,
434                sizeof(state->coloradj_coeffs));
435         memcpy(&state->scaler_config, &old_state->scaler_config,
436                sizeof(state->scaler_config));
437         state->scaled_planes_mask = 0;
438
439         return &state->base;
440 }
441
442 static void malidp_crtc_reset(struct drm_crtc *crtc)
443 {
444         struct malidp_crtc_state *state = NULL;
445
446         if (crtc->state) {
447                 state = to_malidp_crtc_state(crtc->state);
448                 __drm_atomic_helper_crtc_destroy_state(crtc->state);
449         }
450
451         kfree(state);
452         state = kzalloc(sizeof(*state), GFP_KERNEL);
453         if (state) {
454                 crtc->state = &state->base;
455                 crtc->state->crtc = crtc;
456         }
457 }
458
459 static void malidp_crtc_destroy_state(struct drm_crtc *crtc,
460                                       struct drm_crtc_state *state)
461 {
462         struct malidp_crtc_state *mali_state = NULL;
463
464         if (state) {
465                 mali_state = to_malidp_crtc_state(state);
466                 __drm_atomic_helper_crtc_destroy_state(state);
467         }
468
469         kfree(mali_state);
470 }
471
472 static int malidp_crtc_enable_vblank(struct drm_crtc *crtc)
473 {
474         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
475         struct malidp_hw_device *hwdev = malidp->dev;
476
477         malidp_hw_enable_irq(hwdev, MALIDP_DE_BLOCK,
478                              hwdev->map.de_irq_map.vsync_irq);
479         return 0;
480 }
481
482 static void malidp_crtc_disable_vblank(struct drm_crtc *crtc)
483 {
484         struct malidp_drm *malidp = crtc_to_malidp_device(crtc);
485         struct malidp_hw_device *hwdev = malidp->dev;
486
487         malidp_hw_disable_irq(hwdev, MALIDP_DE_BLOCK,
488                               hwdev->map.de_irq_map.vsync_irq);
489 }
490
491 static const struct drm_crtc_funcs malidp_crtc_funcs = {
492         .gamma_set = drm_atomic_helper_legacy_gamma_set,
493         .destroy = drm_crtc_cleanup,
494         .set_config = drm_atomic_helper_set_config,
495         .page_flip = drm_atomic_helper_page_flip,
496         .reset = malidp_crtc_reset,
497         .atomic_duplicate_state = malidp_crtc_duplicate_state,
498         .atomic_destroy_state = malidp_crtc_destroy_state,
499         .enable_vblank = malidp_crtc_enable_vblank,
500         .disable_vblank = malidp_crtc_disable_vblank,
501 };
502
503 int malidp_crtc_init(struct drm_device *drm)
504 {
505         struct malidp_drm *malidp = drm->dev_private;
506         struct drm_plane *primary = NULL, *plane;
507         int ret;
508
509         ret = malidp_de_planes_init(drm);
510         if (ret < 0) {
511                 DRM_ERROR("Failed to initialise planes\n");
512                 return ret;
513         }
514
515         drm_for_each_plane(plane, drm) {
516                 if (plane->type == DRM_PLANE_TYPE_PRIMARY) {
517                         primary = plane;
518                         break;
519                 }
520         }
521
522         if (!primary) {
523                 DRM_ERROR("no primary plane found\n");
524                 ret = -EINVAL;
525                 goto crtc_cleanup_planes;
526         }
527
528         ret = drm_crtc_init_with_planes(drm, &malidp->crtc, primary, NULL,
529                                         &malidp_crtc_funcs, NULL);
530         if (ret)
531                 goto crtc_cleanup_planes;
532
533         drm_crtc_helper_add(&malidp->crtc, &malidp_crtc_helper_funcs);
534         drm_mode_crtc_set_gamma_size(&malidp->crtc, MALIDP_GAMMA_LUT_SIZE);
535         /* No inverse-gamma: it is per-plane. */
536         drm_crtc_enable_color_mgmt(&malidp->crtc, 0, true, MALIDP_GAMMA_LUT_SIZE);
537
538         malidp_se_set_enh_coeffs(malidp->dev);
539
540         return 0;
541
542 crtc_cleanup_planes:
543         malidp_de_planes_destroy(drm);
544
545         return ret;
546 }