Linux-libre 4.19.123-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / powerplay / smumgr / iceland_smumgr.c
1 /*
2  * Copyright 2016 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  * Author: Huang Rui <ray.huang@amd.com>
23  *
24  */
25 #include "pp_debug.h"
26 #include <linux/types.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/gfp.h>
30
31 #include "smumgr.h"
32 #include "iceland_smumgr.h"
33
34 #include "ppsmc.h"
35
36 #include "cgs_common.h"
37
38 #include "smu7_dyn_defaults.h"
39 #include "smu7_hwmgr.h"
40 #include "hardwaremanager.h"
41 #include "ppatomctrl.h"
42 #include "atombios.h"
43 #include "pppcielanes.h"
44 #include "pp_endian.h"
45 #include "processpptables.h"
46
47
48 #include "smu/smu_7_1_1_d.h"
49 #include "smu/smu_7_1_1_sh_mask.h"
50 #include "smu71_discrete.h"
51
52 #include "smu_ucode_xfer_vi.h"
53 #include "gmc/gmc_8_1_d.h"
54 #include "gmc/gmc_8_1_sh_mask.h"
55 #include "bif/bif_5_0_d.h"
56 #include "bif/bif_5_0_sh_mask.h"
57 #include "dce/dce_10_0_d.h"
58 #include "dce/dce_10_0_sh_mask.h"
59
60
61 #define ICELAND_SMC_SIZE               0x20000
62
63 #define POWERTUNE_DEFAULT_SET_MAX    1
64 #define MC_CG_ARB_FREQ_F1           0x0b
65 #define VDDC_VDDCI_DELTA            200
66
67 #define DEVICE_ID_VI_ICELAND_M_6900     0x6900
68 #define DEVICE_ID_VI_ICELAND_M_6901     0x6901
69 #define DEVICE_ID_VI_ICELAND_M_6902     0x6902
70 #define DEVICE_ID_VI_ICELAND_M_6903     0x6903
71
72 static const struct iceland_pt_defaults defaults_iceland = {
73         /*
74          * sviLoadLIneEn, SviLoadLineVddC, TDC_VDDC_ThrottleReleaseLimitPerc,
75          * TDC_MAWt, TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac, BAPM_TEMP_GRADIENT
76          */
77         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
78         { 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
79         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
80 };
81
82 /* 35W - XT, XTL */
83 static const struct iceland_pt_defaults defaults_icelandxt = {
84         /*
85          * sviLoadLIneEn, SviLoadLineVddC,
86          * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
87          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
88          * BAPM_TEMP_GRADIENT
89          */
90         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
91         { 0xA7,  0x0, 0x0, 0xB5,  0x0, 0x0, 0x9F,  0x0, 0x0, 0xD6,  0x0, 0x0, 0xD7,  0x0, 0x0},
92         { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
93 };
94
95 /* 25W - PRO, LE */
96 static const struct iceland_pt_defaults defaults_icelandpro = {
97         /*
98          * sviLoadLIneEn, SviLoadLineVddC,
99          * TDC_VDDC_ThrottleReleaseLimitPerc, TDC_MAWt,
100          * TdcWaterfallCtl, DTEAmbientTempBase, DisplayCac,
101          * BAPM_TEMP_GRADIENT
102          */
103         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0x0,
104         { 0xB7,  0x0, 0x0, 0xC3,  0x0, 0x0, 0xB5,  0x0, 0x0, 0xEA,  0x0, 0x0, 0xE6,  0x0, 0x0},
105         { 0x1EA, 0x0, 0x0, 0x224, 0x0, 0x0, 0x25E, 0x0, 0x0, 0x28E, 0x0, 0x0, 0x2AB, 0x0, 0x0}
106 };
107
108 static int iceland_start_smc(struct pp_hwmgr *hwmgr)
109 {
110         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
111                                   SMC_SYSCON_RESET_CNTL, rst_reg, 0);
112
113         return 0;
114 }
115
116 static void iceland_reset_smc(struct pp_hwmgr *hwmgr)
117 {
118         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
119                                   SMC_SYSCON_RESET_CNTL,
120                                   rst_reg, 1);
121 }
122
123
124 static void iceland_stop_smc_clock(struct pp_hwmgr *hwmgr)
125 {
126         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
127                                   SMC_SYSCON_CLOCK_CNTL_0,
128                                   ck_disable, 1);
129 }
130
131 static void iceland_start_smc_clock(struct pp_hwmgr *hwmgr)
132 {
133         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC,
134                                   SMC_SYSCON_CLOCK_CNTL_0,
135                                   ck_disable, 0);
136 }
137
138 static int iceland_smu_start_smc(struct pp_hwmgr *hwmgr)
139 {
140         /* set smc instruct start point at 0x0 */
141         smu7_program_jump_on_start(hwmgr);
142
143         /* enable smc clock */
144         iceland_start_smc_clock(hwmgr);
145
146         /* de-assert reset */
147         iceland_start_smc(hwmgr);
148
149         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
150                                  INTERRUPTS_ENABLED, 1);
151
152         return 0;
153 }
154
155
156 static int iceland_upload_smc_firmware_data(struct pp_hwmgr *hwmgr,
157                                         uint32_t length, const uint8_t *src,
158                                         uint32_t limit, uint32_t start_addr)
159 {
160         uint32_t byte_count = length;
161         uint32_t data;
162
163         PP_ASSERT_WITH_CODE((limit >= byte_count), "SMC address is beyond the SMC RAM area.", return -EINVAL);
164
165         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
166         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
167
168         while (byte_count >= 4) {
169                 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
170                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
171                 src += 4;
172                 byte_count -= 4;
173         }
174
175         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
176
177         PP_ASSERT_WITH_CODE((0 == byte_count), "SMC size must be divisible by 4.", return -EINVAL);
178
179         return 0;
180 }
181
182
183 static int iceland_smu_upload_firmware_image(struct pp_hwmgr *hwmgr)
184 {
185         uint32_t val;
186         struct cgs_firmware_info info = {0};
187
188         if (hwmgr == NULL || hwmgr->device == NULL)
189                 return -EINVAL;
190
191         /* load SMC firmware */
192         cgs_get_firmware_info(hwmgr->device,
193                 smu7_convert_fw_type_to_cgs(UCODE_ID_SMU), &info);
194
195         if (info.image_size & 3) {
196                 pr_err("[ powerplay ] SMC ucode is not 4 bytes aligned\n");
197                 return -EINVAL;
198         }
199
200         if (info.image_size > ICELAND_SMC_SIZE) {
201                 pr_err("[ powerplay ] SMC address is beyond the SMC RAM area\n");
202                 return -EINVAL;
203         }
204         hwmgr->smu_version = info.version;
205         /* wait for smc boot up */
206         PHM_WAIT_INDIRECT_FIELD_UNEQUAL(hwmgr, SMC_IND,
207                                          RCU_UC_EVENTS, boot_seq_done, 0);
208
209         /* clear firmware interrupt enable flag */
210         val = cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC,
211                                     ixSMC_SYSCON_MISC_CNTL);
212         cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
213                                ixSMC_SYSCON_MISC_CNTL, val | 1);
214
215         /* stop smc clock */
216         iceland_stop_smc_clock(hwmgr);
217
218         /* reset smc */
219         iceland_reset_smc(hwmgr);
220         iceland_upload_smc_firmware_data(hwmgr, info.image_size,
221                                 (uint8_t *)info.kptr, ICELAND_SMC_SIZE,
222                                 info.ucode_start_address);
223
224         return 0;
225 }
226
227 static int iceland_request_smu_load_specific_fw(struct pp_hwmgr *hwmgr,
228                                                 uint32_t firmwareType)
229 {
230         return 0;
231 }
232
233 static int iceland_start_smu(struct pp_hwmgr *hwmgr)
234 {
235         int result;
236
237         result = iceland_smu_upload_firmware_image(hwmgr);
238         if (result)
239                 return result;
240         result = iceland_smu_start_smc(hwmgr);
241         if (result)
242                 return result;
243
244         if (!smu7_is_smc_ram_running(hwmgr)) {
245                 pr_info("smu not running, upload firmware again \n");
246                 result = iceland_smu_upload_firmware_image(hwmgr);
247                 if (result)
248                         return result;
249
250                 result = iceland_smu_start_smc(hwmgr);
251                 if (result)
252                         return result;
253         }
254
255         result = smu7_request_smu_load_fw(hwmgr);
256
257         return result;
258 }
259
260 static int iceland_smu_init(struct pp_hwmgr *hwmgr)
261 {
262         struct iceland_smumgr *iceland_priv = NULL;
263
264         iceland_priv = kzalloc(sizeof(struct iceland_smumgr), GFP_KERNEL);
265
266         if (iceland_priv == NULL)
267                 return -ENOMEM;
268
269         hwmgr->smu_backend = iceland_priv;
270
271         if (smu7_init(hwmgr)) {
272                 kfree(iceland_priv);
273                 return -EINVAL;
274         }
275
276         return 0;
277 }
278
279
280 static void iceland_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
281 {
282         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
283         struct amdgpu_device *adev = hwmgr->adev;
284         uint32_t dev_id;
285
286         dev_id = adev->pdev->device;
287
288         switch (dev_id) {
289         case DEVICE_ID_VI_ICELAND_M_6900:
290         case DEVICE_ID_VI_ICELAND_M_6903:
291                 smu_data->power_tune_defaults = &defaults_icelandxt;
292                 break;
293
294         case DEVICE_ID_VI_ICELAND_M_6901:
295         case DEVICE_ID_VI_ICELAND_M_6902:
296                 smu_data->power_tune_defaults = &defaults_icelandpro;
297                 break;
298         default:
299                 smu_data->power_tune_defaults = &defaults_iceland;
300                 pr_warn("Unknown V.I. Device ID.\n");
301                 break;
302         }
303         return;
304 }
305
306 static int iceland_populate_svi_load_line(struct pp_hwmgr *hwmgr)
307 {
308         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
309         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
310
311         smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
312         smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
313         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
314         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
315
316         return 0;
317 }
318
319 static int iceland_populate_tdc_limit(struct pp_hwmgr *hwmgr)
320 {
321         uint16_t tdc_limit;
322         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
323         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
324
325         tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
326         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
327                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
328         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
329                         defaults->tdc_vddc_throttle_release_limit_perc;
330         smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
331
332         return 0;
333 }
334
335 static int iceland_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
336 {
337         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
338         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
339         uint32_t temp;
340
341         if (smu7_read_smc_sram_dword(hwmgr,
342                         fuse_table_offset +
343                         offsetof(SMU71_Discrete_PmFuses, TdcWaterfallCtl),
344                         (uint32_t *)&temp, SMC_RAM_END))
345                 PP_ASSERT_WITH_CODE(false,
346                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
347                                 return -EINVAL);
348         else
349                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
350
351         return 0;
352 }
353
354 static int iceland_populate_temperature_scaler(struct pp_hwmgr *hwmgr)
355 {
356         return 0;
357 }
358
359 static int iceland_populate_gnb_lpml(struct pp_hwmgr *hwmgr)
360 {
361         int i;
362         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
363
364         /* Currently not used. Set all to zero. */
365         for (i = 0; i < 8; i++)
366                 smu_data->power_tune_table.GnbLPML[i] = 0;
367
368         return 0;
369 }
370
371 static int iceland_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
372 {
373         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
374         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
375         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
376         struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
377
378         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
379         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
380
381         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
382                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
383         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
384                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
385
386         return 0;
387 }
388
389 static int iceland_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
390 {
391         int i;
392         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
393         uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
394         uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
395
396         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
397                             "The CAC Leakage table does not exist!", return -EINVAL);
398         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
399                             "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
400         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
401                             "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
402
403         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
404                 for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
405                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
406                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
407                 }
408         } else {
409                 PP_ASSERT_WITH_CODE(false, "Iceland should always support EVV", return -EINVAL);
410         }
411
412         return 0;
413 }
414
415 static int iceland_populate_vddc_vid(struct pp_hwmgr *hwmgr)
416 {
417         int i;
418         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
419         uint8_t *vid = smu_data->power_tune_table.VddCVid;
420         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
421
422         PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
423                 "There should never be more than 8 entries for VddcVid!!!",
424                 return -EINVAL);
425
426         for (i = 0; i < (int)data->vddc_voltage_table.count; i++) {
427                 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
428         }
429
430         return 0;
431 }
432
433
434
435 static int iceland_populate_pm_fuses(struct pp_hwmgr *hwmgr)
436 {
437         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
438         uint32_t pm_fuse_table_offset;
439
440         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
441                         PHM_PlatformCaps_PowerContainment)) {
442                 if (smu7_read_smc_sram_dword(hwmgr,
443                                 SMU71_FIRMWARE_HEADER_LOCATION +
444                                 offsetof(SMU71_Firmware_Header, PmFuseTable),
445                                 &pm_fuse_table_offset, SMC_RAM_END))
446                         PP_ASSERT_WITH_CODE(false,
447                                         "Attempt to get pm_fuse_table_offset Failed!",
448                                         return -EINVAL);
449
450                 /* DW0 - DW3 */
451                 if (iceland_populate_bapm_vddc_vid_sidd(hwmgr))
452                         PP_ASSERT_WITH_CODE(false,
453                                         "Attempt to populate bapm vddc vid Failed!",
454                                         return -EINVAL);
455
456                 /* DW4 - DW5 */
457                 if (iceland_populate_vddc_vid(hwmgr))
458                         PP_ASSERT_WITH_CODE(false,
459                                         "Attempt to populate vddc vid Failed!",
460                                         return -EINVAL);
461
462                 /* DW6 */
463                 if (iceland_populate_svi_load_line(hwmgr))
464                         PP_ASSERT_WITH_CODE(false,
465                                         "Attempt to populate SviLoadLine Failed!",
466                                         return -EINVAL);
467                 /* DW7 */
468                 if (iceland_populate_tdc_limit(hwmgr))
469                         PP_ASSERT_WITH_CODE(false,
470                                         "Attempt to populate TDCLimit Failed!", return -EINVAL);
471                 /* DW8 */
472                 if (iceland_populate_dw8(hwmgr, pm_fuse_table_offset))
473                         PP_ASSERT_WITH_CODE(false,
474                                         "Attempt to populate TdcWaterfallCtl, "
475                                         "LPMLTemperature Min and Max Failed!",
476                                         return -EINVAL);
477
478                 /* DW9-DW12 */
479                 if (0 != iceland_populate_temperature_scaler(hwmgr))
480                         PP_ASSERT_WITH_CODE(false,
481                                         "Attempt to populate LPMLTemperatureScaler Failed!",
482                                         return -EINVAL);
483
484                 /* DW13-DW16 */
485                 if (iceland_populate_gnb_lpml(hwmgr))
486                         PP_ASSERT_WITH_CODE(false,
487                                         "Attempt to populate GnbLPML Failed!",
488                                         return -EINVAL);
489
490                 /* DW18 */
491                 if (iceland_populate_bapm_vddc_base_leakage_sidd(hwmgr))
492                         PP_ASSERT_WITH_CODE(false,
493                                         "Attempt to populate BapmVddCBaseLeakage Hi and Lo Sidd Failed!",
494                                         return -EINVAL);
495
496                 if (smu7_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
497                                 (uint8_t *)&smu_data->power_tune_table,
498                                 sizeof(struct SMU71_Discrete_PmFuses), SMC_RAM_END))
499                         PP_ASSERT_WITH_CODE(false,
500                                         "Attempt to download PmFuseTable Failed!",
501                                         return -EINVAL);
502         }
503         return 0;
504 }
505
506 static int iceland_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
507         struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
508         uint32_t clock, uint32_t *vol)
509 {
510         uint32_t i = 0;
511
512         /* clock - voltage dependency table is empty table */
513         if (allowed_clock_voltage_table->count == 0)
514                 return -EINVAL;
515
516         for (i = 0; i < allowed_clock_voltage_table->count; i++) {
517                 /* find first sclk bigger than request */
518                 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
519                         *vol = allowed_clock_voltage_table->entries[i].v;
520                         return 0;
521                 }
522         }
523
524         /* sclk is bigger than max sclk in the dependence table */
525         *vol = allowed_clock_voltage_table->entries[i - 1].v;
526
527         return 0;
528 }
529
530 static int iceland_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
531                 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
532                 uint16_t *lo)
533 {
534         uint16_t v_index;
535         bool vol_found = false;
536         *hi = tab->value * VOLTAGE_SCALE;
537         *lo = tab->value * VOLTAGE_SCALE;
538
539         /* SCLK/VDDC Dependency Table has to exist. */
540         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
541                         "The SCLK/VDDC Dependency Table does not exist.",
542                         return -EINVAL);
543
544         if (NULL == hwmgr->dyn_state.cac_leakage_table) {
545                 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
546                 return 0;
547         }
548
549         /*
550          * Since voltage in the sclk/vddc dependency table is not
551          * necessarily in ascending order because of ELB voltage
552          * patching, loop through entire list to find exact voltage.
553          */
554         for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
555                 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
556                         vol_found = true;
557                         if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
558                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
559                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
560                         } else {
561                                 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
562                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
563                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
564                         }
565                         break;
566                 }
567         }
568
569         /*
570          * If voltage is not found in the first pass, loop again to
571          * find the best match, equal or higher value.
572          */
573         if (!vol_found) {
574                 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
575                         if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
576                                 vol_found = true;
577                                 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
578                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
579                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
580                                 } else {
581                                         pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
582                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
583                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
584                                 }
585                                 break;
586                         }
587                 }
588
589                 if (!vol_found)
590                         pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
591         }
592
593         return 0;
594 }
595
596 static int iceland_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
597                 pp_atomctrl_voltage_table_entry *tab,
598                 SMU71_Discrete_VoltageLevel *smc_voltage_tab)
599 {
600         int result;
601
602         result = iceland_get_std_voltage_value_sidd(hwmgr, tab,
603                         &smc_voltage_tab->StdVoltageHiSidd,
604                         &smc_voltage_tab->StdVoltageLoSidd);
605         if (0 != result) {
606                 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
607                 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
608         }
609
610         smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
611         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
612         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
613
614         return 0;
615 }
616
617 static int iceland_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
618                         SMU71_Discrete_DpmTable *table)
619 {
620         unsigned int count;
621         int result;
622         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
623
624         table->VddcLevelCount = data->vddc_voltage_table.count;
625         for (count = 0; count < table->VddcLevelCount; count++) {
626                 result = iceland_populate_smc_voltage_table(hwmgr,
627                                 &(data->vddc_voltage_table.entries[count]),
628                                 &(table->VddcLevel[count]));
629                 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
630
631                 /* GPIO voltage control */
632                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control)
633                         table->VddcLevel[count].Smio |= data->vddc_voltage_table.entries[count].smio_low;
634                 else if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
635                         table->VddcLevel[count].Smio = 0;
636         }
637
638         CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
639
640         return 0;
641 }
642
643 static int iceland_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
644                         SMU71_Discrete_DpmTable *table)
645 {
646         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
647         uint32_t count;
648         int result;
649
650         table->VddciLevelCount = data->vddci_voltage_table.count;
651
652         for (count = 0; count < table->VddciLevelCount; count++) {
653                 result = iceland_populate_smc_voltage_table(hwmgr,
654                                 &(data->vddci_voltage_table.entries[count]),
655                                 &(table->VddciLevel[count]));
656                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
657                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control)
658                         table->VddciLevel[count].Smio |= data->vddci_voltage_table.entries[count].smio_low;
659                 else
660                         table->VddciLevel[count].Smio |= 0;
661         }
662
663         CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
664
665         return 0;
666 }
667
668 static int iceland_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
669                         SMU71_Discrete_DpmTable *table)
670 {
671         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
672         uint32_t count;
673         int result;
674
675         table->MvddLevelCount = data->mvdd_voltage_table.count;
676
677         for (count = 0; count < table->VddciLevelCount; count++) {
678                 result = iceland_populate_smc_voltage_table(hwmgr,
679                                 &(data->mvdd_voltage_table.entries[count]),
680                                 &table->MvddLevel[count]);
681                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
682                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control)
683                         table->MvddLevel[count].Smio |= data->mvdd_voltage_table.entries[count].smio_low;
684                 else
685                         table->MvddLevel[count].Smio |= 0;
686         }
687
688         CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
689
690         return 0;
691 }
692
693
694 static int iceland_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
695         SMU71_Discrete_DpmTable *table)
696 {
697         int result;
698
699         result = iceland_populate_smc_vddc_table(hwmgr, table);
700         PP_ASSERT_WITH_CODE(0 == result,
701                         "can not populate VDDC voltage table to SMC", return -EINVAL);
702
703         result = iceland_populate_smc_vdd_ci_table(hwmgr, table);
704         PP_ASSERT_WITH_CODE(0 == result,
705                         "can not populate VDDCI voltage table to SMC", return -EINVAL);
706
707         result = iceland_populate_smc_mvdd_table(hwmgr, table);
708         PP_ASSERT_WITH_CODE(0 == result,
709                         "can not populate MVDD voltage table to SMC", return -EINVAL);
710
711         return 0;
712 }
713
714 static int iceland_populate_ulv_level(struct pp_hwmgr *hwmgr,
715                 struct SMU71_Discrete_Ulv *state)
716 {
717         uint32_t voltage_response_time, ulv_voltage;
718         int result;
719         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
720
721         state->CcPwrDynRm = 0;
722         state->CcPwrDynRm1 = 0;
723
724         result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
725         PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
726
727         if (ulv_voltage == 0) {
728                 data->ulv_supported = false;
729                 return 0;
730         }
731
732         if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
733                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
734                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
735                         state->VddcOffset = 0;
736                 else
737                         /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
738                         state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
739         } else {
740                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
741                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
742                         state->VddcOffsetVid = 0;
743                 else  /* used in SVI2 Mode */
744                         state->VddcOffsetVid = (uint8_t)(
745                                         (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
746                                                 * VOLTAGE_VID_OFFSET_SCALE2
747                                                 / VOLTAGE_VID_OFFSET_SCALE1);
748         }
749         state->VddcPhase = 1;
750
751         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
752         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
753         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
754
755         return 0;
756 }
757
758 static int iceland_populate_ulv_state(struct pp_hwmgr *hwmgr,
759                  SMU71_Discrete_Ulv *ulv_level)
760 {
761         return iceland_populate_ulv_level(hwmgr, ulv_level);
762 }
763
764 static int iceland_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU71_Discrete_DpmTable *table)
765 {
766         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
767         struct smu7_dpm_table *dpm_table = &data->dpm_table;
768         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
769         uint32_t i;
770
771         /* Index (dpm_table->pcie_speed_table.count) is reserved for PCIE boot level. */
772         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
773                 table->LinkLevel[i].PcieGenSpeed  =
774                         (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
775                 table->LinkLevel[i].PcieLaneCount =
776                         (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
777                 table->LinkLevel[i].EnabledForActivity =
778                         1;
779                 table->LinkLevel[i].SPC =
780                         (uint8_t)(data->pcie_spc_cap & 0xff);
781                 table->LinkLevel[i].DownThreshold =
782                         PP_HOST_TO_SMC_UL(5);
783                 table->LinkLevel[i].UpThreshold =
784                         PP_HOST_TO_SMC_UL(30);
785         }
786
787         smu_data->smc_state_table.LinkLevelCount =
788                 (uint8_t)dpm_table->pcie_speed_table.count;
789         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
790                 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
791
792         return 0;
793 }
794
795 static int iceland_calculate_sclk_params(struct pp_hwmgr *hwmgr,
796                 uint32_t engine_clock, SMU71_Discrete_GraphicsLevel *sclk)
797 {
798         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
799         pp_atomctrl_clock_dividers_vi dividers;
800         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
801         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
802         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
803         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
804         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
805         uint32_t    reference_clock;
806         uint32_t reference_divider;
807         uint32_t fbdiv;
808         int result;
809
810         /* get the engine clock dividers for this clock value*/
811         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, engine_clock,  &dividers);
812
813         PP_ASSERT_WITH_CODE(result == 0,
814                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
815
816         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref.*/
817         reference_clock = atomctrl_get_reference_clock(hwmgr);
818
819         reference_divider = 1 + dividers.uc_pll_ref_div;
820
821         /* low 14 bits is fraction and high 12 bits is divider*/
822         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
823
824         /* SPLL_FUNC_CNTL setup*/
825         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
826                 CG_SPLL_FUNC_CNTL, SPLL_REF_DIV, dividers.uc_pll_ref_div);
827         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl,
828                 CG_SPLL_FUNC_CNTL, SPLL_PDIV_A,  dividers.uc_pll_post_div);
829
830         /* SPLL_FUNC_CNTL_3 setup*/
831         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
832                 CG_SPLL_FUNC_CNTL_3, SPLL_FB_DIV, fbdiv);
833
834         /* set to use fractional accumulation*/
835         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3,
836                 CG_SPLL_FUNC_CNTL_3, SPLL_DITHEN, 1);
837
838         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
839                         PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
840                 pp_atomctrl_internal_ss_info ss_info;
841
842                 uint32_t vcoFreq = engine_clock * dividers.uc_pll_post_div;
843                 if (0 == atomctrl_get_engine_clock_spread_spectrum(hwmgr, vcoFreq, &ss_info)) {
844                         /*
845                         * ss_info.speed_spectrum_percentage -- in unit of 0.01%
846                         * ss_info.speed_spectrum_rate -- in unit of khz
847                         */
848                         /* clks = reference_clock * 10 / (REFDIV + 1) / speed_spectrum_rate / 2 */
849                         uint32_t clkS = reference_clock * 5 / (reference_divider * ss_info.speed_spectrum_rate);
850
851                         /* clkv = 2 * D * fbdiv / NS */
852                         uint32_t clkV = 4 * ss_info.speed_spectrum_percentage * fbdiv / (clkS * 10000);
853
854                         cg_spll_spread_spectrum =
855                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, CLKS, clkS);
856                         cg_spll_spread_spectrum =
857                                 PHM_SET_FIELD(cg_spll_spread_spectrum, CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
858                         cg_spll_spread_spectrum_2 =
859                                 PHM_SET_FIELD(cg_spll_spread_spectrum_2, CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clkV);
860                 }
861         }
862
863         sclk->SclkFrequency        = engine_clock;
864         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
865         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
866         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
867         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
868         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
869
870         return 0;
871 }
872
873 static int iceland_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
874                                 const struct phm_phase_shedding_limits_table *pl,
875                                         uint32_t sclk, uint32_t *p_shed)
876 {
877         unsigned int i;
878
879         /* use the minimum phase shedding */
880         *p_shed = 1;
881
882         for (i = 0; i < pl->count; i++) {
883                 if (sclk < pl->entries[i].Sclk) {
884                         *p_shed = i;
885                         break;
886                 }
887         }
888         return 0;
889 }
890
891 static int iceland_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
892                                                 uint32_t engine_clock,
893                                 SMU71_Discrete_GraphicsLevel *graphic_level)
894 {
895         int result;
896         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
897
898         result = iceland_calculate_sclk_params(hwmgr, engine_clock, graphic_level);
899
900         /* populate graphics levels*/
901         result = iceland_get_dependency_volt_by_clk(hwmgr,
902                 hwmgr->dyn_state.vddc_dependency_on_sclk, engine_clock,
903                 &graphic_level->MinVddc);
904         PP_ASSERT_WITH_CODE((0 == result),
905                 "can not find VDDC voltage value for VDDC engine clock dependency table", return result);
906
907         /* SCLK frequency in units of 10KHz*/
908         graphic_level->SclkFrequency = engine_clock;
909         graphic_level->MinVddcPhases = 1;
910
911         if (data->vddc_phase_shed_control)
912                 iceland_populate_phase_value_based_on_sclk(hwmgr,
913                                 hwmgr->dyn_state.vddc_phase_shed_limits_table,
914                                 engine_clock,
915                                 &graphic_level->MinVddcPhases);
916
917         /* Indicates maximum activity level for this performance level. 50% for now*/
918         graphic_level->ActivityLevel = data->current_profile_setting.sclk_activity;
919
920         graphic_level->CcPwrDynRm = 0;
921         graphic_level->CcPwrDynRm1 = 0;
922         /* this level can be used if activity is high enough.*/
923         graphic_level->EnabledForActivity = 0;
924         /* this level can be used for throttling.*/
925         graphic_level->EnabledForThrottle = 1;
926         graphic_level->UpHyst = data->current_profile_setting.sclk_up_hyst;
927         graphic_level->DownHyst = data->current_profile_setting.sclk_down_hyst;
928         graphic_level->VoltageDownHyst = 0;
929         graphic_level->PowerThrottle = 0;
930
931         data->display_timing.min_clock_in_sr =
932                         hwmgr->display_config->min_core_set_clock_in_sr;
933
934         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
935                         PHM_PlatformCaps_SclkDeepSleep))
936                 graphic_level->DeepSleepDivId =
937                                 smu7_get_sleep_divider_id_from_clock(engine_clock,
938                                                 data->display_timing.min_clock_in_sr);
939
940         /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
941         graphic_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
942
943         if (0 == result) {
944                 graphic_level->MinVddc = PP_HOST_TO_SMC_UL(graphic_level->MinVddc * VOLTAGE_SCALE);
945                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->MinVddcPhases);
946                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SclkFrequency);
947                 CONVERT_FROM_HOST_TO_SMC_US(graphic_level->ActivityLevel);
948                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl3);
949                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CgSpllFuncCntl4);
950                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum);
951                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->SpllSpreadSpectrum2);
952                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm);
953                 CONVERT_FROM_HOST_TO_SMC_UL(graphic_level->CcPwrDynRm1);
954         }
955
956         return result;
957 }
958
959 static int iceland_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
960 {
961         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
962         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
963         struct smu7_dpm_table *dpm_table = &data->dpm_table;
964         uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start +
965                                 offsetof(SMU71_Discrete_DpmTable, GraphicsLevel);
966
967         uint32_t level_array_size = sizeof(SMU71_Discrete_GraphicsLevel) *
968                                                 SMU71_MAX_LEVELS_GRAPHICS;
969
970         SMU71_Discrete_GraphicsLevel *levels = smu_data->smc_state_table.GraphicsLevel;
971
972         uint32_t i;
973         uint8_t highest_pcie_level_enabled = 0;
974         uint8_t lowest_pcie_level_enabled = 0, mid_pcie_level_enabled = 0;
975         uint8_t count = 0;
976         int result = 0;
977
978         memset(levels, 0x00, level_array_size);
979
980         for (i = 0; i < dpm_table->sclk_table.count; i++) {
981                 result = iceland_populate_single_graphic_level(hwmgr,
982                                         dpm_table->sclk_table.dpm_levels[i].value,
983                                         &(smu_data->smc_state_table.GraphicsLevel[i]));
984                 if (result != 0)
985                         return result;
986
987                 /* Making sure only DPM level 0-1 have Deep Sleep Div ID populated. */
988                 if (i > 1)
989                         smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
990         }
991
992         /* Only enable level 0 for now. */
993         smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
994
995         /* set highest level watermark to high */
996         if (dpm_table->sclk_table.count > 1)
997                 smu_data->smc_state_table.GraphicsLevel[dpm_table->sclk_table.count-1].DisplayWatermark =
998                         PPSMC_DISPLAY_WATERMARK_HIGH;
999
1000         smu_data->smc_state_table.GraphicsDpmLevelCount =
1001                 (uint8_t)dpm_table->sclk_table.count;
1002         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
1003                 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
1004
1005         while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1006                                 (1 << (highest_pcie_level_enabled + 1))) != 0) {
1007                 highest_pcie_level_enabled++;
1008         }
1009
1010         while ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1011                 (1 << lowest_pcie_level_enabled)) == 0) {
1012                 lowest_pcie_level_enabled++;
1013         }
1014
1015         while ((count < highest_pcie_level_enabled) &&
1016                         ((data->dpm_level_enable_mask.pcie_dpm_enable_mask &
1017                                 (1 << (lowest_pcie_level_enabled + 1 + count))) == 0)) {
1018                 count++;
1019         }
1020
1021         mid_pcie_level_enabled = (lowest_pcie_level_enabled+1+count) < highest_pcie_level_enabled ?
1022                 (lowest_pcie_level_enabled+1+count) : highest_pcie_level_enabled;
1023
1024
1025         /* set pcieDpmLevel to highest_pcie_level_enabled*/
1026         for (i = 2; i < dpm_table->sclk_table.count; i++) {
1027                 smu_data->smc_state_table.GraphicsLevel[i].pcieDpmLevel = highest_pcie_level_enabled;
1028         }
1029
1030         /* set pcieDpmLevel to lowest_pcie_level_enabled*/
1031         smu_data->smc_state_table.GraphicsLevel[0].pcieDpmLevel = lowest_pcie_level_enabled;
1032
1033         /* set pcieDpmLevel to mid_pcie_level_enabled*/
1034         smu_data->smc_state_table.GraphicsLevel[1].pcieDpmLevel = mid_pcie_level_enabled;
1035
1036         /* level count will send to smc once at init smc table and never change*/
1037         result = smu7_copy_bytes_to_smc(hwmgr, level_array_adress,
1038                                 (uint8_t *)levels, (uint32_t)level_array_size,
1039                                                                 SMC_RAM_END);
1040
1041         return result;
1042 }
1043
1044 static int iceland_calculate_mclk_params(
1045                 struct pp_hwmgr *hwmgr,
1046                 uint32_t memory_clock,
1047                 SMU71_Discrete_MemoryLevel *mclk,
1048                 bool strobe_mode,
1049                 bool dllStateOn
1050                 )
1051 {
1052         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1053
1054         uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1055         uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1056         uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1057         uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1058         uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1059         uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1060         uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1061         uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1062         uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1063
1064         pp_atomctrl_memory_clock_param mpll_param;
1065         int result;
1066
1067         result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1068                                 memory_clock, &mpll_param, strobe_mode);
1069         PP_ASSERT_WITH_CODE(0 == result,
1070                 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1071
1072         /* MPLL_FUNC_CNTL setup*/
1073         mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1074
1075         /* MPLL_FUNC_CNTL_1 setup*/
1076         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1077                                                         MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1078         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1079                                                         MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1080         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1081                                                         MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1082
1083         /* MPLL_AD_FUNC_CNTL setup*/
1084         mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1085                                                         MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1086
1087         if (data->is_memory_gddr5) {
1088                 /* MPLL_DQ_FUNC_CNTL setup*/
1089                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1090                                                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1091                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1092                                                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1093         }
1094
1095         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1096                         PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1097                 /*
1098                  ************************************
1099                  Fref = Reference Frequency
1100                  NF = Feedback divider ratio
1101                  NR = Reference divider ratio
1102                  Fnom = Nominal VCO output frequency = Fref * NF / NR
1103                  Fs = Spreading Rate
1104                  D = Percentage down-spread / 2
1105                  Fint = Reference input frequency to PFD = Fref / NR
1106                  NS = Spreading rate divider ratio = int(Fint / (2 * Fs))
1107                  CLKS = NS - 1 = ISS_STEP_NUM[11:0]
1108                  NV = D * Fs / Fnom * 4 * ((Fnom/Fref * NR) ^ 2)
1109                  CLKV = 65536 * NV = ISS_STEP_SIZE[25:0]
1110                  *************************************
1111                  */
1112                 pp_atomctrl_internal_ss_info ss_info;
1113                 uint32_t freq_nom;
1114                 uint32_t tmp;
1115                 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1116
1117                 /* for GDDR5 for all modes and DDR3 */
1118                 if (1 == mpll_param.qdr)
1119                         freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1120                 else
1121                         freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1122
1123                 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1124                 tmp = (freq_nom / reference_clock);
1125                 tmp = tmp * tmp;
1126
1127                 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1128                         /* ss_info.speed_spectrum_percentage -- in unit of 0.01% */
1129                         /* ss.Info.speed_spectrum_rate -- in unit of khz */
1130                         /* CLKS = reference_clock / (2 * speed_spectrum_rate * reference_divider) * 10 */
1131                         /*     = reference_clock * 5 / speed_spectrum_rate */
1132                         uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1133
1134                         /* CLKV = 65536 * speed_spectrum_percentage / 2 * spreadSpecrumRate / freq_nom * 4 / 100000 * ((freq_nom / reference_clock) ^ 2) */
1135                         /*     = 131 * speed_spectrum_percentage * speed_spectrum_rate / 100 * ((freq_nom / reference_clock) ^ 2) / freq_nom */
1136                         uint32_t clkv =
1137                                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1138                                                         ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1139
1140                         mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1141                         mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1142                 }
1143         }
1144
1145         /* MCLK_PWRMGT_CNTL setup */
1146         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1147                 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1148         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1149                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1150         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1151                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1152
1153
1154         /* Save the result data to outpupt memory level structure */
1155         mclk->MclkFrequency   = memory_clock;
1156         mclk->MpllFuncCntl    = mpll_func_cntl;
1157         mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1158         mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1159         mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1160         mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1161         mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1162         mclk->DllCntl         = dll_cntl;
1163         mclk->MpllSs1         = mpll_ss1;
1164         mclk->MpllSs2         = mpll_ss2;
1165
1166         return 0;
1167 }
1168
1169 static uint8_t iceland_get_mclk_frequency_ratio(uint32_t memory_clock,
1170                 bool strobe_mode)
1171 {
1172         uint8_t mc_para_index;
1173
1174         if (strobe_mode) {
1175                 if (memory_clock < 12500) {
1176                         mc_para_index = 0x00;
1177                 } else if (memory_clock > 47500) {
1178                         mc_para_index = 0x0f;
1179                 } else {
1180                         mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1181                 }
1182         } else {
1183                 if (memory_clock < 65000) {
1184                         mc_para_index = 0x00;
1185                 } else if (memory_clock > 135000) {
1186                         mc_para_index = 0x0f;
1187                 } else {
1188                         mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1189                 }
1190         }
1191
1192         return mc_para_index;
1193 }
1194
1195 static uint8_t iceland_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1196 {
1197         uint8_t mc_para_index;
1198
1199         if (memory_clock < 10000) {
1200                 mc_para_index = 0;
1201         } else if (memory_clock >= 80000) {
1202                 mc_para_index = 0x0f;
1203         } else {
1204                 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1205         }
1206
1207         return mc_para_index;
1208 }
1209
1210 static int iceland_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1211                                         uint32_t memory_clock, uint32_t *p_shed)
1212 {
1213         unsigned int i;
1214
1215         *p_shed = 1;
1216
1217         for (i = 0; i < pl->count; i++) {
1218                 if (memory_clock < pl->entries[i].Mclk) {
1219                         *p_shed = i;
1220                         break;
1221                 }
1222         }
1223
1224         return 0;
1225 }
1226
1227 static int iceland_populate_single_memory_level(
1228                 struct pp_hwmgr *hwmgr,
1229                 uint32_t memory_clock,
1230                 SMU71_Discrete_MemoryLevel *memory_level
1231                 )
1232 {
1233         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1234         int result = 0;
1235         bool dll_state_on;
1236         uint32_t mclk_edc_wr_enable_threshold = 40000;
1237         uint32_t mclk_edc_enable_threshold = 40000;
1238         uint32_t mclk_strobe_mode_threshold = 40000;
1239
1240         if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1241                 result = iceland_get_dependency_volt_by_clk(hwmgr,
1242                         hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1243                 PP_ASSERT_WITH_CODE((0 == result),
1244                         "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1245         }
1246
1247         if (data->vddci_control == SMU7_VOLTAGE_CONTROL_NONE) {
1248                 memory_level->MinVddci = memory_level->MinVddc;
1249         } else if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1250                 result = iceland_get_dependency_volt_by_clk(hwmgr,
1251                                 hwmgr->dyn_state.vddci_dependency_on_mclk,
1252                                 memory_clock,
1253                                 &memory_level->MinVddci);
1254                 PP_ASSERT_WITH_CODE((0 == result),
1255                         "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1256         }
1257
1258         memory_level->MinVddcPhases = 1;
1259
1260         if (data->vddc_phase_shed_control) {
1261                 iceland_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1262                                 memory_clock, &memory_level->MinVddcPhases);
1263         }
1264
1265         memory_level->EnabledForThrottle = 1;
1266         memory_level->EnabledForActivity = 0;
1267         memory_level->UpHyst = data->current_profile_setting.mclk_up_hyst;
1268         memory_level->DownHyst = data->current_profile_setting.mclk_down_hyst;
1269         memory_level->VoltageDownHyst = 0;
1270
1271         /* Indicates maximum activity level for this performance level.*/
1272         memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1273         memory_level->StutterEnable = 0;
1274         memory_level->StrobeEnable = 0;
1275         memory_level->EdcReadEnable = 0;
1276         memory_level->EdcWriteEnable = 0;
1277         memory_level->RttEnable = 0;
1278
1279         /* default set to low watermark. Highest level will be set to high later.*/
1280         memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1281
1282         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1283
1284         /* stutter mode not support on iceland */
1285
1286         /* decide strobe mode*/
1287         memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1288                 (memory_clock <= mclk_strobe_mode_threshold);
1289
1290         /* decide EDC mode and memory clock ratio*/
1291         if (data->is_memory_gddr5) {
1292                 memory_level->StrobeRatio = iceland_get_mclk_frequency_ratio(memory_clock,
1293                                         memory_level->StrobeEnable);
1294
1295                 if ((mclk_edc_enable_threshold != 0) &&
1296                                 (memory_clock > mclk_edc_enable_threshold)) {
1297                         memory_level->EdcReadEnable = 1;
1298                 }
1299
1300                 if ((mclk_edc_wr_enable_threshold != 0) &&
1301                                 (memory_clock > mclk_edc_wr_enable_threshold)) {
1302                         memory_level->EdcWriteEnable = 1;
1303                 }
1304
1305                 if (memory_level->StrobeEnable) {
1306                         if (iceland_get_mclk_frequency_ratio(memory_clock, 1) >=
1307                                         ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1308                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1309                         else
1310                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1311                 } else
1312                         dll_state_on = data->dll_default_on;
1313         } else {
1314                 memory_level->StrobeRatio =
1315                         iceland_get_ddr3_mclk_frequency_ratio(memory_clock);
1316                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1317         }
1318
1319         result = iceland_calculate_mclk_params(hwmgr,
1320                 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1321
1322         if (0 == result) {
1323                 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1324                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1325                 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1326                 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1327                 /* MCLK frequency in units of 10KHz*/
1328                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1329                 /* Indicates maximum activity level for this performance level.*/
1330                 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1331                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1332                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1333                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1334                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1335                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1336                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1337                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1338                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1339                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1340         }
1341
1342         return result;
1343 }
1344
1345 static int iceland_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1346 {
1347         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1348         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1349         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1350         int result;
1351
1352         /* populate MCLK dpm table to SMU7 */
1353         uint32_t level_array_adress = smu_data->smu7_data.dpm_table_start + offsetof(SMU71_Discrete_DpmTable, MemoryLevel);
1354         uint32_t level_array_size = sizeof(SMU71_Discrete_MemoryLevel) * SMU71_MAX_LEVELS_MEMORY;
1355         SMU71_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1356         uint32_t i;
1357
1358         memset(levels, 0x00, level_array_size);
1359
1360         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1361                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1362                         "can not populate memory level as memory clock is zero", return -EINVAL);
1363                 result = iceland_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1364                         &(smu_data->smc_state_table.MemoryLevel[i]));
1365                 if (0 != result) {
1366                         return result;
1367                 }
1368         }
1369
1370         /* Only enable level 0 for now.*/
1371         smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1372
1373         /*
1374         * in order to prevent MC activity from stutter mode to push DPM up.
1375         * the UVD change complements this by putting the MCLK in a higher state
1376         * by default such that we are not effected by up threshold or and MCLK DPM latency.
1377         */
1378         smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1379         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1380
1381         smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1382         data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1383         /* set highest level watermark to high*/
1384         smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1385
1386         /* level count will send to smc once at init smc table and never change*/
1387         result = smu7_copy_bytes_to_smc(hwmgr,
1388                 level_array_adress, (uint8_t *)levels, (uint32_t)level_array_size,
1389                 SMC_RAM_END);
1390
1391         return result;
1392 }
1393
1394 static int iceland_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1395                                         SMU71_Discrete_VoltageLevel *voltage)
1396 {
1397         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1398
1399         uint32_t i = 0;
1400
1401         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1402                 /* find mvdd value which clock is more than request */
1403                 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1404                         if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1405                                 /* Always round to higher voltage. */
1406                                 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1407                                 break;
1408                         }
1409                 }
1410
1411                 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1412                         "MVDD Voltage is outside the supported range.", return -EINVAL);
1413
1414         } else {
1415                 return -EINVAL;
1416         }
1417
1418         return 0;
1419 }
1420
1421 static int iceland_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1422         SMU71_Discrete_DpmTable *table)
1423 {
1424         int result = 0;
1425         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1426         struct pp_atomctrl_clock_dividers_vi dividers;
1427         uint32_t vddc_phase_shed_control = 0;
1428
1429         SMU71_Discrete_VoltageLevel voltage_level;
1430         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1431         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1432         uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1433         uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1434
1435
1436         /* The ACPI state should not do DPM on DC (or ever).*/
1437         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1438
1439         if (data->acpi_vddc)
1440                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1441         else
1442                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1443
1444         table->ACPILevel.MinVddcPhases = vddc_phase_shed_control ? 0 : 1;
1445         /* assign zero for now*/
1446         table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1447
1448         /* get the engine clock dividers for this clock value*/
1449         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1450                 table->ACPILevel.SclkFrequency,  &dividers);
1451
1452         PP_ASSERT_WITH_CODE(result == 0,
1453                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1454
1455         /* divider ID for required SCLK*/
1456         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1457         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1458         table->ACPILevel.DeepSleepDivId = 0;
1459
1460         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1461                                                         CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1462         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1463                                                         CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1464         spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1465                                                         CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1466
1467         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1468         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1469         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1470         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1471         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1472         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1473         table->ACPILevel.CcPwrDynRm = 0;
1474         table->ACPILevel.CcPwrDynRm1 = 0;
1475
1476
1477         /* For various features to be enabled/disabled while this level is active.*/
1478         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1479         /* SCLK frequency in units of 10KHz*/
1480         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1481         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1482         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1483         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1484         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1485         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1486         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1487         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1488         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1489
1490         /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1491         table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1492         table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1493
1494         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1495                 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1496         else {
1497                 if (data->acpi_vddci != 0)
1498                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1499                 else
1500                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1501         }
1502
1503         if (0 == iceland_populate_mvdd_value(hwmgr, 0, &voltage_level))
1504                 table->MemoryACPILevel.MinMvdd =
1505                         PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1506         else
1507                 table->MemoryACPILevel.MinMvdd = 0;
1508
1509         /* Force reset on DLL*/
1510         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1511                 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1512         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1513                 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1514
1515         /* Disable DLL in ACPIState*/
1516         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1517                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1518         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1519                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1520
1521         /* Enable DLL bypass signal*/
1522         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1523                 DLL_CNTL, MRDCK0_BYPASS, 0);
1524         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1525                 DLL_CNTL, MRDCK1_BYPASS, 0);
1526
1527         table->MemoryACPILevel.DllCntl            =
1528                 PP_HOST_TO_SMC_UL(dll_cntl);
1529         table->MemoryACPILevel.MclkPwrmgtCntl     =
1530                 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1531         table->MemoryACPILevel.MpllAdFuncCntl     =
1532                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1533         table->MemoryACPILevel.MpllDqFuncCntl     =
1534                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1535         table->MemoryACPILevel.MpllFuncCntl       =
1536                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1537         table->MemoryACPILevel.MpllFuncCntl_1     =
1538                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1539         table->MemoryACPILevel.MpllFuncCntl_2     =
1540                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1541         table->MemoryACPILevel.MpllSs1            =
1542                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1543         table->MemoryACPILevel.MpllSs2            =
1544                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1545
1546         table->MemoryACPILevel.EnabledForThrottle = 0;
1547         table->MemoryACPILevel.EnabledForActivity = 0;
1548         table->MemoryACPILevel.UpHyst = 0;
1549         table->MemoryACPILevel.DownHyst = 100;
1550         table->MemoryACPILevel.VoltageDownHyst = 0;
1551         /* Indicates maximum activity level for this performance level.*/
1552         table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1553
1554         table->MemoryACPILevel.StutterEnable = 0;
1555         table->MemoryACPILevel.StrobeEnable = 0;
1556         table->MemoryACPILevel.EdcReadEnable = 0;
1557         table->MemoryACPILevel.EdcWriteEnable = 0;
1558         table->MemoryACPILevel.RttEnable = 0;
1559
1560         return result;
1561 }
1562
1563 static int iceland_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1564                                         SMU71_Discrete_DpmTable *table)
1565 {
1566         return 0;
1567 }
1568
1569 static int iceland_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1570                 SMU71_Discrete_DpmTable *table)
1571 {
1572         return 0;
1573 }
1574
1575 static int iceland_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1576                 SMU71_Discrete_DpmTable *table)
1577 {
1578         return 0;
1579 }
1580
1581 static int iceland_populate_memory_timing_parameters(
1582                 struct pp_hwmgr *hwmgr,
1583                 uint32_t engine_clock,
1584                 uint32_t memory_clock,
1585                 struct SMU71_Discrete_MCArbDramTimingTableEntry *arb_regs
1586                 )
1587 {
1588         uint32_t dramTiming;
1589         uint32_t dramTiming2;
1590         uint32_t burstTime;
1591         int result;
1592
1593         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1594                                 engine_clock, memory_clock);
1595
1596         PP_ASSERT_WITH_CODE(result == 0,
1597                 "Error calling VBIOS to set DRAM_TIMING.", return result);
1598
1599         dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1600         dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1601         burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1602
1603         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1604         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1605         arb_regs->McArbBurstTime = (uint8_t)burstTime;
1606
1607         return 0;
1608 }
1609
1610 static int iceland_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1611 {
1612         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1613         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1614         int result = 0;
1615         SMU71_Discrete_MCArbDramTimingTable  arb_regs;
1616         uint32_t i, j;
1617
1618         memset(&arb_regs, 0x00, sizeof(SMU71_Discrete_MCArbDramTimingTable));
1619
1620         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1621                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1622                         result = iceland_populate_memory_timing_parameters
1623                                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1624                                  data->dpm_table.mclk_table.dpm_levels[j].value,
1625                                  &arb_regs.entries[i][j]);
1626
1627                         if (0 != result) {
1628                                 break;
1629                         }
1630                 }
1631         }
1632
1633         if (0 == result) {
1634                 result = smu7_copy_bytes_to_smc(
1635                                 hwmgr,
1636                                 smu_data->smu7_data.arb_table_start,
1637                                 (uint8_t *)&arb_regs,
1638                                 sizeof(SMU71_Discrete_MCArbDramTimingTable),
1639                                 SMC_RAM_END
1640                                 );
1641         }
1642
1643         return result;
1644 }
1645
1646 static int iceland_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1647                         SMU71_Discrete_DpmTable *table)
1648 {
1649         int result = 0;
1650         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1651         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1652         table->GraphicsBootLevel = 0;
1653         table->MemoryBootLevel = 0;
1654
1655         /* find boot level from dpm table*/
1656         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1657                         data->vbios_boot_state.sclk_bootup_value,
1658                         (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1659
1660         if (0 != result) {
1661                 smu_data->smc_state_table.GraphicsBootLevel = 0;
1662                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1663                 result = 0;
1664         }
1665
1666         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1667                 data->vbios_boot_state.mclk_bootup_value,
1668                 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1669
1670         if (0 != result) {
1671                 smu_data->smc_state_table.MemoryBootLevel = 0;
1672                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1673                 result = 0;
1674         }
1675
1676         table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1677         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1678                 table->BootVddci = table->BootVddc;
1679         else
1680                 table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1681
1682         table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1683
1684         return result;
1685 }
1686
1687 static int iceland_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1688                                  SMU71_Discrete_MCRegisters *mc_reg_table)
1689 {
1690         const struct iceland_smumgr *smu_data = (struct iceland_smumgr *)hwmgr->smu_backend;
1691
1692         uint32_t i, j;
1693
1694         for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1695                 if (smu_data->mc_reg_table.validflag & 1<<j) {
1696                         PP_ASSERT_WITH_CODE(i < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1697                                 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1698                         mc_reg_table->address[i].s0 =
1699                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1700                         mc_reg_table->address[i].s1 =
1701                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1702                         i++;
1703                 }
1704         }
1705
1706         mc_reg_table->last = (uint8_t)i;
1707
1708         return 0;
1709 }
1710
1711 /*convert register values from driver to SMC format */
1712 static void iceland_convert_mc_registers(
1713         const struct iceland_mc_reg_entry *entry,
1714         SMU71_Discrete_MCRegisterSet *data,
1715         uint32_t num_entries, uint32_t valid_flag)
1716 {
1717         uint32_t i, j;
1718
1719         for (i = 0, j = 0; j < num_entries; j++) {
1720                 if (valid_flag & 1<<j) {
1721                         data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1722                         i++;
1723                 }
1724         }
1725 }
1726
1727 static int iceland_convert_mc_reg_table_entry_to_smc(struct pp_hwmgr *hwmgr,
1728                 const uint32_t memory_clock,
1729                 SMU71_Discrete_MCRegisterSet *mc_reg_table_data
1730                 )
1731 {
1732         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1733         uint32_t i = 0;
1734
1735         for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1736                 if (memory_clock <=
1737                         smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1738                         break;
1739                 }
1740         }
1741
1742         if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1743                 --i;
1744
1745         iceland_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1746                                 mc_reg_table_data, smu_data->mc_reg_table.last,
1747                                 smu_data->mc_reg_table.validflag);
1748
1749         return 0;
1750 }
1751
1752 static int iceland_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1753                 SMU71_Discrete_MCRegisters *mc_regs)
1754 {
1755         int result = 0;
1756         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1757         int res;
1758         uint32_t i;
1759
1760         for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1761                 res = iceland_convert_mc_reg_table_entry_to_smc(
1762                                 hwmgr,
1763                                 data->dpm_table.mclk_table.dpm_levels[i].value,
1764                                 &mc_regs->data[i]
1765                                 );
1766
1767                 if (0 != res)
1768                         result = res;
1769         }
1770
1771         return result;
1772 }
1773
1774 static int iceland_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1775 {
1776         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1777         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1778         uint32_t address;
1779         int32_t result;
1780
1781         if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1782                 return 0;
1783
1784
1785         memset(&smu_data->mc_regs, 0, sizeof(SMU71_Discrete_MCRegisters));
1786
1787         result = iceland_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1788
1789         if (result != 0)
1790                 return result;
1791
1792
1793         address = smu_data->smu7_data.mc_reg_table_start + (uint32_t)offsetof(SMU71_Discrete_MCRegisters, data[0]);
1794
1795         return  smu7_copy_bytes_to_smc(hwmgr, address,
1796                                  (uint8_t *)&smu_data->mc_regs.data[0],
1797                                 sizeof(SMU71_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1798                                 SMC_RAM_END);
1799 }
1800
1801 static int iceland_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1802 {
1803         int result;
1804         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1805
1806         memset(&smu_data->mc_regs, 0x00, sizeof(SMU71_Discrete_MCRegisters));
1807         result = iceland_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1808         PP_ASSERT_WITH_CODE(0 == result,
1809                 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1810
1811         result = iceland_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1812         PP_ASSERT_WITH_CODE(0 == result,
1813                 "Failed to initialize MCRegTable for driver state!", return result;);
1814
1815         return smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.mc_reg_table_start,
1816                         (uint8_t *)&smu_data->mc_regs, sizeof(SMU71_Discrete_MCRegisters), SMC_RAM_END);
1817 }
1818
1819 static int iceland_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1820 {
1821         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1822         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1823         uint8_t count, level;
1824
1825         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1826
1827         for (level = 0; level < count; level++) {
1828                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1829                          >= data->vbios_boot_state.sclk_bootup_value) {
1830                         smu_data->smc_state_table.GraphicsBootLevel = level;
1831                         break;
1832                 }
1833         }
1834
1835         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1836
1837         for (level = 0; level < count; level++) {
1838                 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1839                         >= data->vbios_boot_state.mclk_bootup_value) {
1840                         smu_data->smc_state_table.MemoryBootLevel = level;
1841                         break;
1842                 }
1843         }
1844
1845         return 0;
1846 }
1847
1848 static int iceland_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
1849 {
1850         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1851         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1852         const struct iceland_pt_defaults *defaults = smu_data->power_tune_defaults;
1853         SMU71_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
1854         struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
1855         struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
1856         const uint16_t *def1, *def2;
1857         int i, j, k;
1858
1859
1860         /*
1861          * TDP number of fraction bits are changed from 8 to 7 for Iceland
1862          * as requested by SMC team
1863          */
1864
1865         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
1866         dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
1867
1868
1869         dpm_table->DTETjOffset = 0;
1870
1871         dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
1872         dpm_table->GpuTjHyst = 8;
1873
1874         dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
1875
1876         /* The following are for new Iceland Multi-input fan/thermal control */
1877         if (NULL != ppm) {
1878                 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
1879                 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
1880         } else {
1881                 dpm_table->PPM_PkgPwrLimit = 0;
1882                 dpm_table->PPM_TemperatureLimit = 0;
1883         }
1884
1885         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
1886         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
1887
1888         dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
1889         def1 = defaults->bapmti_r;
1890         def2 = defaults->bapmti_rc;
1891
1892         for (i = 0; i < SMU71_DTE_ITERATIONS; i++) {
1893                 for (j = 0; j < SMU71_DTE_SOURCES; j++) {
1894                         for (k = 0; k < SMU71_DTE_SINKS; k++) {
1895                                 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
1896                                 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
1897                                 def1++;
1898                                 def2++;
1899                         }
1900                 }
1901         }
1902
1903         return 0;
1904 }
1905
1906 static int iceland_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1907                                             SMU71_Discrete_DpmTable *tab)
1908 {
1909         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1910
1911         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1912                 tab->SVI2Enable |= VDDC_ON_SVI2;
1913
1914         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control)
1915                 tab->SVI2Enable |= VDDCI_ON_SVI2;
1916         else
1917                 tab->MergedVddci = 1;
1918
1919         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->mvdd_control)
1920                 tab->SVI2Enable |= MVDD_ON_SVI2;
1921
1922         PP_ASSERT_WITH_CODE(tab->SVI2Enable != (VDDC_ON_SVI2 | VDDCI_ON_SVI2 | MVDD_ON_SVI2) &&
1923                 (tab->SVI2Enable & VDDC_ON_SVI2), "SVI2 domain configuration is incorrect!", return -EINVAL);
1924
1925         return 0;
1926 }
1927
1928 static int iceland_init_smc_table(struct pp_hwmgr *hwmgr)
1929 {
1930         int result;
1931         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1932         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
1933         SMU71_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1934
1935
1936         iceland_initialize_power_tune_defaults(hwmgr);
1937         memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1938
1939         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control) {
1940                 iceland_populate_smc_voltage_tables(hwmgr, table);
1941         }
1942
1943         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1944                         PHM_PlatformCaps_AutomaticDCTransition))
1945                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1946
1947
1948         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1949                         PHM_PlatformCaps_StepVddc))
1950                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1951
1952         if (data->is_memory_gddr5)
1953                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1954
1955
1956         if (data->ulv_supported) {
1957                 result = iceland_populate_ulv_state(hwmgr, &(smu_data->ulv_setting));
1958                 PP_ASSERT_WITH_CODE(0 == result,
1959                         "Failed to initialize ULV state!", return result;);
1960
1961                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1962                         ixCG_ULV_PARAMETER, 0x40035);
1963         }
1964
1965         result = iceland_populate_smc_link_level(hwmgr, table);
1966         PP_ASSERT_WITH_CODE(0 == result,
1967                 "Failed to initialize Link Level!", return result;);
1968
1969         result = iceland_populate_all_graphic_levels(hwmgr);
1970         PP_ASSERT_WITH_CODE(0 == result,
1971                 "Failed to initialize Graphics Level!", return result;);
1972
1973         result = iceland_populate_all_memory_levels(hwmgr);
1974         PP_ASSERT_WITH_CODE(0 == result,
1975                 "Failed to initialize Memory Level!", return result;);
1976
1977         result = iceland_populate_smc_acpi_level(hwmgr, table);
1978         PP_ASSERT_WITH_CODE(0 == result,
1979                 "Failed to initialize ACPI Level!", return result;);
1980
1981         result = iceland_populate_smc_vce_level(hwmgr, table);
1982         PP_ASSERT_WITH_CODE(0 == result,
1983                 "Failed to initialize VCE Level!", return result;);
1984
1985         result = iceland_populate_smc_acp_level(hwmgr, table);
1986         PP_ASSERT_WITH_CODE(0 == result,
1987                 "Failed to initialize ACP Level!", return result;);
1988
1989         /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
1990         /* need to populate the  ARB settings for the initial state. */
1991         result = iceland_program_memory_timing_parameters(hwmgr);
1992         PP_ASSERT_WITH_CODE(0 == result,
1993                 "Failed to Write ARB settings for the initial state.", return result;);
1994
1995         result = iceland_populate_smc_uvd_level(hwmgr, table);
1996         PP_ASSERT_WITH_CODE(0 == result,
1997                 "Failed to initialize UVD Level!", return result;);
1998
1999         table->GraphicsBootLevel = 0;
2000         table->MemoryBootLevel = 0;
2001
2002         result = iceland_populate_smc_boot_level(hwmgr, table);
2003         PP_ASSERT_WITH_CODE(0 == result,
2004                 "Failed to initialize Boot Level!", return result;);
2005
2006         result = iceland_populate_smc_initial_state(hwmgr);
2007         PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2008
2009         result = iceland_populate_bapm_parameters_in_dpm_table(hwmgr);
2010         PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2011
2012         table->GraphicsVoltageChangeEnable  = 1;
2013         table->GraphicsThermThrottleEnable  = 1;
2014         table->GraphicsInterval = 1;
2015         table->VoltageInterval  = 1;
2016         table->ThermalInterval  = 1;
2017
2018         table->TemperatureLimitHigh =
2019                 (data->thermal_temp_setting.temperature_high *
2020                  SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2021         table->TemperatureLimitLow =
2022                 (data->thermal_temp_setting.temperature_low *
2023                 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2024
2025         table->MemoryVoltageChangeEnable  = 1;
2026         table->MemoryInterval  = 1;
2027         table->VoltageResponseTime  = 0;
2028         table->PhaseResponseTime  = 0;
2029         table->MemoryThermThrottleEnable  = 1;
2030         table->PCIeBootLinkLevel = 0;
2031         table->PCIeGenInterval = 1;
2032
2033         result = iceland_populate_smc_svi2_config(hwmgr, table);
2034         PP_ASSERT_WITH_CODE(0 == result,
2035                 "Failed to populate SVI2 setting!", return result);
2036
2037         table->ThermGpio  = 17;
2038         table->SclkStepSize = 0x4000;
2039
2040         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2041         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2042         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2043         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2044         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2045         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2046         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2047         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2048         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2049         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2050
2051         table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2052         table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2053         table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2054
2055         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2056         result = smu7_copy_bytes_to_smc(hwmgr, smu_data->smu7_data.dpm_table_start +
2057                                                                                 offsetof(SMU71_Discrete_DpmTable, SystemFlags),
2058                                                                                 (uint8_t *)&(table->SystemFlags),
2059                                                                                 sizeof(SMU71_Discrete_DpmTable)-3 * sizeof(SMU71_PIDController),
2060                                                                                 SMC_RAM_END);
2061
2062         PP_ASSERT_WITH_CODE(0 == result,
2063                 "Failed to upload dpm data to SMC memory!", return result;);
2064
2065         /* Upload all ulv setting to SMC memory.(dpm level, dpm level count etc) */
2066         result = smu7_copy_bytes_to_smc(hwmgr,
2067                         smu_data->smu7_data.ulv_setting_starts,
2068                         (uint8_t *)&(smu_data->ulv_setting),
2069                         sizeof(SMU71_Discrete_Ulv),
2070                         SMC_RAM_END);
2071
2072
2073         result = iceland_populate_initial_mc_reg_table(hwmgr);
2074         PP_ASSERT_WITH_CODE((0 == result),
2075                 "Failed to populate initialize MC Reg table!", return result);
2076
2077         result = iceland_populate_pm_fuses(hwmgr);
2078         PP_ASSERT_WITH_CODE(0 == result,
2079                         "Failed to  populate PM fuses to SMC memory!", return result);
2080
2081         return 0;
2082 }
2083
2084 int iceland_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2085 {
2086         struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2087         SMU71_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2088         uint32_t duty100;
2089         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2090         uint16_t fdo_min, slope1, slope2;
2091         uint32_t reference_clock;
2092         int res;
2093         uint64_t tmp64;
2094
2095         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2096                 return 0;
2097
2098         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2099                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2100                         PHM_PlatformCaps_MicrocodeFanControl);
2101                 return 0;
2102         }
2103
2104         if (0 == smu7_data->fan_table_start) {
2105                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2106                 return 0;
2107         }
2108
2109         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2110
2111         if (0 == duty100) {
2112                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2113                 return 0;
2114         }
2115
2116         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2117         do_div(tmp64, 10000);
2118         fdo_min = (uint16_t)tmp64;
2119
2120         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2121         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2122
2123         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2124         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2125
2126         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2127         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2128
2129         fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2130         fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2131         fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2132
2133         fan_table.Slope1 = cpu_to_be16(slope1);
2134         fan_table.Slope2 = cpu_to_be16(slope2);
2135
2136         fan_table.FdoMin = cpu_to_be16(fdo_min);
2137
2138         fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2139
2140         fan_table.HystUp = cpu_to_be16(1);
2141
2142         fan_table.HystSlope = cpu_to_be16(1);
2143
2144         fan_table.TempRespLim = cpu_to_be16(5);
2145
2146         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2147
2148         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2149
2150         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2151
2152         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2153
2154         /* fan_table.FanControl_GL_Flag = 1; */
2155
2156         res = smu7_copy_bytes_to_smc(hwmgr, smu7_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2157
2158         return 0;
2159 }
2160
2161
2162 static int iceland_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2163 {
2164         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2165
2166         if (data->need_update_smu7_dpm_table &
2167                 (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2168                 return iceland_program_memory_timing_parameters(hwmgr);
2169
2170         return 0;
2171 }
2172
2173 static int iceland_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2174 {
2175         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2176         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2177
2178         int result = 0;
2179         uint32_t low_sclk_interrupt_threshold = 0;
2180
2181         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2182                         PHM_PlatformCaps_SclkThrottleLowNotification)
2183                 && (data->low_sclk_interrupt_threshold != 0)) {
2184                 low_sclk_interrupt_threshold =
2185                                 data->low_sclk_interrupt_threshold;
2186
2187                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2188
2189                 result = smu7_copy_bytes_to_smc(
2190                                 hwmgr,
2191                                 smu_data->smu7_data.dpm_table_start +
2192                                 offsetof(SMU71_Discrete_DpmTable,
2193                                         LowSclkInterruptThreshold),
2194                                 (uint8_t *)&low_sclk_interrupt_threshold,
2195                                 sizeof(uint32_t),
2196                                 SMC_RAM_END);
2197         }
2198
2199         result = iceland_update_and_upload_mc_reg_table(hwmgr);
2200
2201         PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2202
2203         result = iceland_program_mem_timing_parameters(hwmgr);
2204         PP_ASSERT_WITH_CODE((result == 0),
2205                         "Failed to program memory timing parameters!",
2206                         );
2207
2208         return result;
2209 }
2210
2211 static uint32_t iceland_get_offsetof(uint32_t type, uint32_t member)
2212 {
2213         switch (type) {
2214         case SMU_SoftRegisters:
2215                 switch (member) {
2216                 case HandshakeDisables:
2217                         return offsetof(SMU71_SoftRegisters, HandshakeDisables);
2218                 case VoltageChangeTimeout:
2219                         return offsetof(SMU71_SoftRegisters, VoltageChangeTimeout);
2220                 case AverageGraphicsActivity:
2221                         return offsetof(SMU71_SoftRegisters, AverageGraphicsActivity);
2222                 case PreVBlankGap:
2223                         return offsetof(SMU71_SoftRegisters, PreVBlankGap);
2224                 case VBlankTimeout:
2225                         return offsetof(SMU71_SoftRegisters, VBlankTimeout);
2226                 case UcodeLoadStatus:
2227                         return offsetof(SMU71_SoftRegisters, UcodeLoadStatus);
2228                 case DRAM_LOG_ADDR_H:
2229                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_H);
2230                 case DRAM_LOG_ADDR_L:
2231                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_ADDR_L);
2232                 case DRAM_LOG_PHY_ADDR_H:
2233                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2234                 case DRAM_LOG_PHY_ADDR_L:
2235                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2236                 case DRAM_LOG_BUFF_SIZE:
2237                         return offsetof(SMU71_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2238                 }
2239                 break;
2240         case SMU_Discrete_DpmTable:
2241                 switch (member) {
2242                 case LowSclkInterruptThreshold:
2243                         return offsetof(SMU71_Discrete_DpmTable, LowSclkInterruptThreshold);
2244                 }
2245                 break;
2246         }
2247         pr_warn("can't get the offset of type %x member %x\n", type, member);
2248         return 0;
2249 }
2250
2251 static uint32_t iceland_get_mac_definition(uint32_t value)
2252 {
2253         switch (value) {
2254         case SMU_MAX_LEVELS_GRAPHICS:
2255                 return SMU71_MAX_LEVELS_GRAPHICS;
2256         case SMU_MAX_LEVELS_MEMORY:
2257                 return SMU71_MAX_LEVELS_MEMORY;
2258         case SMU_MAX_LEVELS_LINK:
2259                 return SMU71_MAX_LEVELS_LINK;
2260         case SMU_MAX_ENTRIES_SMIO:
2261                 return SMU71_MAX_ENTRIES_SMIO;
2262         case SMU_MAX_LEVELS_VDDC:
2263                 return SMU71_MAX_LEVELS_VDDC;
2264         case SMU_MAX_LEVELS_VDDCI:
2265                 return SMU71_MAX_LEVELS_VDDCI;
2266         case SMU_MAX_LEVELS_MVDD:
2267                 return SMU71_MAX_LEVELS_MVDD;
2268         }
2269
2270         pr_warn("can't get the mac of %x\n", value);
2271         return 0;
2272 }
2273
2274 static int iceland_process_firmware_header(struct pp_hwmgr *hwmgr)
2275 {
2276         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2277         struct smu7_smumgr *smu7_data = (struct smu7_smumgr *)(hwmgr->smu_backend);
2278
2279         uint32_t tmp;
2280         int result;
2281         bool error = false;
2282
2283         result = smu7_read_smc_sram_dword(hwmgr,
2284                                 SMU71_FIRMWARE_HEADER_LOCATION +
2285                                 offsetof(SMU71_Firmware_Header, DpmTable),
2286                                 &tmp, SMC_RAM_END);
2287
2288         if (0 == result) {
2289                 smu7_data->dpm_table_start = tmp;
2290         }
2291
2292         error |= (0 != result);
2293
2294         result = smu7_read_smc_sram_dword(hwmgr,
2295                                 SMU71_FIRMWARE_HEADER_LOCATION +
2296                                 offsetof(SMU71_Firmware_Header, SoftRegisters),
2297                                 &tmp, SMC_RAM_END);
2298
2299         if (0 == result) {
2300                 data->soft_regs_start = tmp;
2301                 smu7_data->soft_regs_start = tmp;
2302         }
2303
2304         error |= (0 != result);
2305
2306
2307         result = smu7_read_smc_sram_dword(hwmgr,
2308                                 SMU71_FIRMWARE_HEADER_LOCATION +
2309                                 offsetof(SMU71_Firmware_Header, mcRegisterTable),
2310                                 &tmp, SMC_RAM_END);
2311
2312         if (0 == result) {
2313                 smu7_data->mc_reg_table_start = tmp;
2314         }
2315
2316         result = smu7_read_smc_sram_dword(hwmgr,
2317                                 SMU71_FIRMWARE_HEADER_LOCATION +
2318                                 offsetof(SMU71_Firmware_Header, FanTable),
2319                                 &tmp, SMC_RAM_END);
2320
2321         if (0 == result) {
2322                 smu7_data->fan_table_start = tmp;
2323         }
2324
2325         error |= (0 != result);
2326
2327         result = smu7_read_smc_sram_dword(hwmgr,
2328                                 SMU71_FIRMWARE_HEADER_LOCATION +
2329                                 offsetof(SMU71_Firmware_Header, mcArbDramTimingTable),
2330                                 &tmp, SMC_RAM_END);
2331
2332         if (0 == result) {
2333                 smu7_data->arb_table_start = tmp;
2334         }
2335
2336         error |= (0 != result);
2337
2338
2339         result = smu7_read_smc_sram_dword(hwmgr,
2340                                 SMU71_FIRMWARE_HEADER_LOCATION +
2341                                 offsetof(SMU71_Firmware_Header, Version),
2342                                 &tmp, SMC_RAM_END);
2343
2344         if (0 == result) {
2345                 hwmgr->microcode_version_info.SMC = tmp;
2346         }
2347
2348         error |= (0 != result);
2349
2350         result = smu7_read_smc_sram_dword(hwmgr,
2351                                 SMU71_FIRMWARE_HEADER_LOCATION +
2352                                 offsetof(SMU71_Firmware_Header, UlvSettings),
2353                                 &tmp, SMC_RAM_END);
2354
2355         if (0 == result) {
2356                 smu7_data->ulv_setting_starts = tmp;
2357         }
2358
2359         error |= (0 != result);
2360
2361         return error ? 1 : 0;
2362 }
2363
2364 /*---------------------------MC----------------------------*/
2365
2366 static uint8_t iceland_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2367 {
2368         return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2369 }
2370
2371 static bool iceland_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2372 {
2373         bool result = true;
2374
2375         switch (in_reg) {
2376         case  mmMC_SEQ_RAS_TIMING:
2377                 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2378                 break;
2379
2380         case  mmMC_SEQ_DLL_STBY:
2381                 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2382                 break;
2383
2384         case  mmMC_SEQ_G5PDX_CMD0:
2385                 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2386                 break;
2387
2388         case  mmMC_SEQ_G5PDX_CMD1:
2389                 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2390                 break;
2391
2392         case  mmMC_SEQ_G5PDX_CTRL:
2393                 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2394                 break;
2395
2396         case mmMC_SEQ_CAS_TIMING:
2397                 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2398                 break;
2399
2400         case mmMC_SEQ_MISC_TIMING:
2401                 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2402                 break;
2403
2404         case mmMC_SEQ_MISC_TIMING2:
2405                 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2406                 break;
2407
2408         case mmMC_SEQ_PMG_DVS_CMD:
2409                 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2410                 break;
2411
2412         case mmMC_SEQ_PMG_DVS_CTL:
2413                 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2414                 break;
2415
2416         case mmMC_SEQ_RD_CTL_D0:
2417                 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2418                 break;
2419
2420         case mmMC_SEQ_RD_CTL_D1:
2421                 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2422                 break;
2423
2424         case mmMC_SEQ_WR_CTL_D0:
2425                 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2426                 break;
2427
2428         case mmMC_SEQ_WR_CTL_D1:
2429                 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2430                 break;
2431
2432         case mmMC_PMG_CMD_EMRS:
2433                 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2434                 break;
2435
2436         case mmMC_PMG_CMD_MRS:
2437                 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2438                 break;
2439
2440         case mmMC_PMG_CMD_MRS1:
2441                 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2442                 break;
2443
2444         case mmMC_SEQ_PMG_TIMING:
2445                 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2446                 break;
2447
2448         case mmMC_PMG_CMD_MRS2:
2449                 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2450                 break;
2451
2452         case mmMC_SEQ_WR_CTL_2:
2453                 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2454                 break;
2455
2456         default:
2457                 result = false;
2458                 break;
2459         }
2460
2461         return result;
2462 }
2463
2464 static int iceland_set_s0_mc_reg_index(struct iceland_mc_reg_table *table)
2465 {
2466         uint32_t i;
2467         uint16_t address;
2468
2469         for (i = 0; i < table->last; i++) {
2470                 table->mc_reg_address[i].s0 =
2471                         iceland_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2472                         ? address : table->mc_reg_address[i].s1;
2473         }
2474         return 0;
2475 }
2476
2477 static int iceland_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2478                                         struct iceland_mc_reg_table *ni_table)
2479 {
2480         uint8_t i, j;
2481
2482         PP_ASSERT_WITH_CODE((table->last <= SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2483                 "Invalid VramInfo table.", return -EINVAL);
2484         PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2485                 "Invalid VramInfo table.", return -EINVAL);
2486
2487         for (i = 0; i < table->last; i++) {
2488                 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2489         }
2490         ni_table->last = table->last;
2491
2492         for (i = 0; i < table->num_entries; i++) {
2493                 ni_table->mc_reg_table_entry[i].mclk_max =
2494                         table->mc_reg_table_entry[i].mclk_max;
2495                 for (j = 0; j < table->last; j++) {
2496                         ni_table->mc_reg_table_entry[i].mc_data[j] =
2497                                 table->mc_reg_table_entry[i].mc_data[j];
2498                 }
2499         }
2500
2501         ni_table->num_entries = table->num_entries;
2502
2503         return 0;
2504 }
2505
2506 static int iceland_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2507                                         struct iceland_mc_reg_table *table)
2508 {
2509         uint8_t i, j, k;
2510         uint32_t temp_reg;
2511         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2512
2513         for (i = 0, j = table->last; i < table->last; i++) {
2514                 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2515                         "Invalid VramInfo table.", return -EINVAL);
2516
2517                 switch (table->mc_reg_address[i].s1) {
2518
2519                 case mmMC_SEQ_MISC1:
2520                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2521                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2522                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2523                         for (k = 0; k < table->num_entries; k++) {
2524                                 table->mc_reg_table_entry[k].mc_data[j] =
2525                                         ((temp_reg & 0xffff0000)) |
2526                                         ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2527                         }
2528                         j++;
2529
2530                         PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2531                                 "Invalid VramInfo table.", return -EINVAL);
2532                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2533                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2534                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2535                         for (k = 0; k < table->num_entries; k++) {
2536                                 table->mc_reg_table_entry[k].mc_data[j] =
2537                                         (temp_reg & 0xffff0000) |
2538                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2539
2540                                 if (!data->is_memory_gddr5) {
2541                                         table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2542                                 }
2543                         }
2544                         j++;
2545
2546                         if (!data->is_memory_gddr5) {
2547                                 PP_ASSERT_WITH_CODE((j < SMU71_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2548                                         "Invalid VramInfo table.", return -EINVAL);
2549                                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2550                                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2551                                 for (k = 0; k < table->num_entries; k++) {
2552                                         table->mc_reg_table_entry[k].mc_data[j] =
2553                                                 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2554                                 }
2555                                 j++;
2556                         }
2557
2558                         break;
2559
2560                 case mmMC_SEQ_RESERVE_M:
2561                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2562                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2563                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2564                         for (k = 0; k < table->num_entries; k++) {
2565                                 table->mc_reg_table_entry[k].mc_data[j] =
2566                                         (temp_reg & 0xffff0000) |
2567                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2568                         }
2569                         j++;
2570                         break;
2571
2572                 default:
2573                         break;
2574                 }
2575
2576         }
2577
2578         table->last = j;
2579
2580         return 0;
2581 }
2582
2583 static int iceland_set_valid_flag(struct iceland_mc_reg_table *table)
2584 {
2585         uint8_t i, j;
2586         for (i = 0; i < table->last; i++) {
2587                 for (j = 1; j < table->num_entries; j++) {
2588                         if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2589                                 table->mc_reg_table_entry[j].mc_data[i]) {
2590                                 table->validflag |= (1<<i);
2591                                 break;
2592                         }
2593                 }
2594         }
2595
2596         return 0;
2597 }
2598
2599 static int iceland_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2600 {
2601         int result;
2602         struct iceland_smumgr *smu_data = (struct iceland_smumgr *)(hwmgr->smu_backend);
2603         pp_atomctrl_mc_reg_table *table;
2604         struct iceland_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2605         uint8_t module_index = iceland_get_memory_modile_index(hwmgr);
2606
2607         table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2608
2609         if (NULL == table)
2610                 return -ENOMEM;
2611
2612         /* Program additional LP registers that are no longer programmed by VBIOS */
2613         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2614         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2615         cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2616         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2617         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2618         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2619         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2620         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2621         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2622         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2623         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2624         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2625         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2626         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2627         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2628         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2629         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2630         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2631         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2632         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2633
2634         memset(table, 0x00, sizeof(pp_atomctrl_mc_reg_table));
2635
2636         result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2637
2638         if (0 == result)
2639                 result = iceland_copy_vbios_smc_reg_table(table, ni_table);
2640
2641         if (0 == result) {
2642                 iceland_set_s0_mc_reg_index(ni_table);
2643                 result = iceland_set_mc_special_registers(hwmgr, ni_table);
2644         }
2645
2646         if (0 == result)
2647                 iceland_set_valid_flag(ni_table);
2648
2649         kfree(table);
2650
2651         return result;
2652 }
2653
2654 static bool iceland_is_dpm_running(struct pp_hwmgr *hwmgr)
2655 {
2656         return (1 == PHM_READ_INDIRECT_FIELD(hwmgr->device,
2657                         CGS_IND_REG__SMC, FEATURE_STATUS, VOLTAGE_CONTROLLER_ON))
2658                         ? true : false;
2659 }
2660
2661 const struct pp_smumgr_func iceland_smu_funcs = {
2662         .smu_init = &iceland_smu_init,
2663         .smu_fini = &smu7_smu_fini,
2664         .start_smu = &iceland_start_smu,
2665         .check_fw_load_finish = &smu7_check_fw_load_finish,
2666         .request_smu_load_fw = &smu7_reload_firmware,
2667         .request_smu_load_specific_fw = &iceland_request_smu_load_specific_fw,
2668         .send_msg_to_smc = &smu7_send_msg_to_smc,
2669         .send_msg_to_smc_with_parameter = &smu7_send_msg_to_smc_with_parameter,
2670         .download_pptable_settings = NULL,
2671         .upload_pptable_settings = NULL,
2672         .get_offsetof = iceland_get_offsetof,
2673         .process_firmware_header = iceland_process_firmware_header,
2674         .init_smc_table = iceland_init_smc_table,
2675         .update_sclk_threshold = iceland_update_sclk_threshold,
2676         .thermal_setup_fan_table = iceland_thermal_setup_fan_table,
2677         .populate_all_graphic_levels = iceland_populate_all_graphic_levels,
2678         .populate_all_memory_levels = iceland_populate_all_memory_levels,
2679         .get_mac_definition = iceland_get_mac_definition,
2680         .initialize_mc_reg_table = iceland_initialize_mc_reg_table,
2681         .is_dpm_running = iceland_is_dpm_running,
2682 };
2683