Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / powerplay / smumgr / ci_smumgr.c
1 /*
2  * Copyright 2017 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  *
22  */
23 #include <linux/module.h>
24 #include <linux/slab.h>
25 #include <linux/fb.h>
26 #include "linux/delay.h"
27 #include <linux/types.h>
28 #include <linux/pci.h>
29
30 #include "smumgr.h"
31 #include "pp_debug.h"
32 #include "ci_smumgr.h"
33 #include "ppsmc.h"
34 #include "smu7_hwmgr.h"
35 #include "hardwaremanager.h"
36 #include "ppatomctrl.h"
37 #include "cgs_common.h"
38 #include "atombios.h"
39 #include "pppcielanes.h"
40
41 #include "smu/smu_7_0_1_d.h"
42 #include "smu/smu_7_0_1_sh_mask.h"
43
44 #include "dce/dce_8_0_d.h"
45 #include "dce/dce_8_0_sh_mask.h"
46
47 #include "bif/bif_4_1_d.h"
48 #include "bif/bif_4_1_sh_mask.h"
49
50 #include "gca/gfx_7_2_d.h"
51 #include "gca/gfx_7_2_sh_mask.h"
52
53 #include "gmc/gmc_7_1_d.h"
54 #include "gmc/gmc_7_1_sh_mask.h"
55
56 #include "processpptables.h"
57
58 #define MC_CG_ARB_FREQ_F0           0x0a
59 #define MC_CG_ARB_FREQ_F1           0x0b
60 #define MC_CG_ARB_FREQ_F2           0x0c
61 #define MC_CG_ARB_FREQ_F3           0x0d
62
63 #define SMC_RAM_END 0x40000
64
65 #define CISLAND_MINIMUM_ENGINE_CLOCK 800
66 #define CISLAND_MAX_DEEPSLEEP_DIVIDER_ID 5
67
68 static const struct ci_pt_defaults defaults_hawaii_xt = {
69         1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0xB0000,
70         { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
71         { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
72 };
73
74 static const struct ci_pt_defaults defaults_hawaii_pro = {
75         1, 0xF, 0xFD, 0x19, 5, 0x14, 0, 0x65062,
76         { 0x2E,  0x00,  0x00,  0x88,  0x00,  0x00,  0x72,  0x60,  0x51,  0xA7,  0x79,  0x6B,  0x90,  0xBD,  0x79  },
77         { 0x217, 0x217, 0x217, 0x242, 0x242, 0x242, 0x269, 0x269, 0x269, 0x2A1, 0x2A1, 0x2A1, 0x2C9, 0x2C9, 0x2C9 }
78 };
79
80 static const struct ci_pt_defaults defaults_bonaire_xt = {
81         1, 0xF, 0xFD, 0x19, 5, 45, 0, 0xB0000,
82         { 0x79,  0x253, 0x25D, 0xAE,  0x72,  0x80,  0x83,  0x86,  0x6F,  0xC8,  0xC9,  0xC9,  0x2F,  0x4D,  0x61  },
83         { 0x17C, 0x172, 0x180, 0x1BC, 0x1B3, 0x1BD, 0x206, 0x200, 0x203, 0x25D, 0x25A, 0x255, 0x2C3, 0x2C5, 0x2B4 }
84 };
85
86
87 static const struct ci_pt_defaults defaults_saturn_xt = {
88         1, 0xF, 0xFD, 0x19, 5, 55, 0, 0x70000,
89         { 0x8C,  0x247, 0x249, 0xA6,  0x80,  0x81,  0x8B,  0x89,  0x86,  0xC9,  0xCA,  0xC9,  0x4D,  0x4D,  0x4D  },
90         { 0x187, 0x187, 0x187, 0x1C7, 0x1C7, 0x1C7, 0x210, 0x210, 0x210, 0x266, 0x266, 0x266, 0x2C9, 0x2C9, 0x2C9 }
91 };
92
93
94 static int ci_set_smc_sram_address(struct pp_hwmgr *hwmgr,
95                                         uint32_t smc_addr, uint32_t limit)
96 {
97         if ((0 != (3 & smc_addr))
98                 || ((smc_addr + 3) >= limit)) {
99                 pr_err("smc_addr invalid \n");
100                 return -EINVAL;
101         }
102
103         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, smc_addr);
104         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
105         return 0;
106 }
107
108 static int ci_copy_bytes_to_smc(struct pp_hwmgr *hwmgr, uint32_t smc_start_address,
109                                 const uint8_t *src, uint32_t byte_count, uint32_t limit)
110 {
111         int result;
112         uint32_t data = 0;
113         uint32_t original_data;
114         uint32_t addr = 0;
115         uint32_t extra_shift;
116
117         if ((3 & smc_start_address)
118                 || ((smc_start_address + byte_count) >= limit)) {
119                 pr_err("smc_start_address invalid \n");
120                 return -EINVAL;
121         }
122
123         addr = smc_start_address;
124
125         while (byte_count >= 4) {
126         /* Bytes are written into the SMC address space with the MSB first. */
127                 data = src[0] * 0x1000000 + src[1] * 0x10000 + src[2] * 0x100 + src[3];
128
129                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
130
131                 if (0 != result)
132                         return result;
133
134                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
135
136                 src += 4;
137                 byte_count -= 4;
138                 addr += 4;
139         }
140
141         if (0 != byte_count) {
142
143                 data = 0;
144
145                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
146
147                 if (0 != result)
148                         return result;
149
150
151                 original_data = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
152
153                 extra_shift = 8 * (4 - byte_count);
154
155                 while (byte_count > 0) {
156                         /* Bytes are written into the SMC addres space with the MSB first. */
157                         data = (0x100 * data) + *src++;
158                         byte_count--;
159                 }
160
161                 data <<= extra_shift;
162
163                 data |= (original_data & ~((~0UL) << extra_shift));
164
165                 result = ci_set_smc_sram_address(hwmgr, addr, limit);
166
167                 if (0 != result)
168                         return result;
169
170                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
171         }
172
173         return 0;
174 }
175
176
177 static int ci_program_jump_on_start(struct pp_hwmgr *hwmgr)
178 {
179         static const unsigned char data[4] = { 0xE0, 0x00, 0x80, 0x40 };
180
181         ci_copy_bytes_to_smc(hwmgr, 0x0, data, 4, sizeof(data)+1);
182
183         return 0;
184 }
185
186 bool ci_is_smc_ram_running(struct pp_hwmgr *hwmgr)
187 {
188         return ((0 == PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device,
189                         CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable))
190         && (0x20100 <= cgs_read_ind_register(hwmgr->device,
191                         CGS_IND_REG__SMC, ixSMC_PC_C)));
192 }
193
194 static int ci_read_smc_sram_dword(struct pp_hwmgr *hwmgr, uint32_t smc_addr,
195                                 uint32_t *value, uint32_t limit)
196 {
197         int result;
198
199         result = ci_set_smc_sram_address(hwmgr, smc_addr, limit);
200
201         if (result)
202                 return result;
203
204         *value = cgs_read_register(hwmgr->device, mmSMC_IND_DATA_0);
205         return 0;
206 }
207
208 static int ci_send_msg_to_smc(struct pp_hwmgr *hwmgr, uint16_t msg)
209 {
210         int ret;
211
212         cgs_write_register(hwmgr->device, mmSMC_RESP_0, 0);
213         cgs_write_register(hwmgr->device, mmSMC_MESSAGE_0, msg);
214
215         PHM_WAIT_FIELD_UNEQUAL(hwmgr, SMC_RESP_0, SMC_RESP, 0);
216
217         ret = PHM_READ_FIELD(hwmgr->device, SMC_RESP_0, SMC_RESP);
218
219         if (ret != 1)
220                 pr_info("\n failed to send message %x ret is %d\n",  msg, ret);
221
222         return 0;
223 }
224
225 static int ci_send_msg_to_smc_with_parameter(struct pp_hwmgr *hwmgr,
226                                         uint16_t msg, uint32_t parameter)
227 {
228         cgs_write_register(hwmgr->device, mmSMC_MSG_ARG_0, parameter);
229         return ci_send_msg_to_smc(hwmgr, msg);
230 }
231
232 static void ci_initialize_power_tune_defaults(struct pp_hwmgr *hwmgr)
233 {
234         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
235         struct amdgpu_device *adev = hwmgr->adev;
236         uint32_t dev_id;
237
238         dev_id = adev->pdev->device;
239
240         switch (dev_id) {
241         case 0x67BA:
242         case 0x67B1:
243                 smu_data->power_tune_defaults = &defaults_hawaii_pro;
244                 break;
245         case 0x67B8:
246         case 0x66B0:
247                 smu_data->power_tune_defaults = &defaults_hawaii_xt;
248                 break;
249         case 0x6640:
250         case 0x6641:
251         case 0x6646:
252         case 0x6647:
253                 smu_data->power_tune_defaults = &defaults_saturn_xt;
254                 break;
255         case 0x6649:
256         case 0x6650:
257         case 0x6651:
258         case 0x6658:
259         case 0x665C:
260         case 0x665D:
261         case 0x67A0:
262         case 0x67A1:
263         case 0x67A2:
264         case 0x67A8:
265         case 0x67A9:
266         case 0x67AA:
267         case 0x67B9:
268         case 0x67BE:
269         default:
270                 smu_data->power_tune_defaults = &defaults_bonaire_xt;
271                 break;
272         }
273 }
274
275 static int ci_get_dependency_volt_by_clk(struct pp_hwmgr *hwmgr,
276         struct phm_clock_voltage_dependency_table *allowed_clock_voltage_table,
277         uint32_t clock, uint32_t *vol)
278 {
279         uint32_t i = 0;
280
281         if (allowed_clock_voltage_table->count == 0)
282                 return -EINVAL;
283
284         for (i = 0; i < allowed_clock_voltage_table->count; i++) {
285                 if (allowed_clock_voltage_table->entries[i].clk >= clock) {
286                         *vol = allowed_clock_voltage_table->entries[i].v;
287                         return 0;
288                 }
289         }
290
291         *vol = allowed_clock_voltage_table->entries[i - 1].v;
292         return 0;
293 }
294
295 static int ci_calculate_sclk_params(struct pp_hwmgr *hwmgr,
296                 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *sclk)
297 {
298         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
299         struct pp_atomctrl_clock_dividers_vi dividers;
300         uint32_t spll_func_cntl            = data->clock_registers.vCG_SPLL_FUNC_CNTL;
301         uint32_t spll_func_cntl_3          = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
302         uint32_t spll_func_cntl_4          = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
303         uint32_t cg_spll_spread_spectrum   = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
304         uint32_t cg_spll_spread_spectrum_2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
305         uint32_t ref_clock;
306         uint32_t ref_divider;
307         uint32_t fbdiv;
308         int result;
309
310         /* get the engine clock dividers for this clock value */
311         result = atomctrl_get_engine_pll_dividers_vi(hwmgr, clock,  &dividers);
312
313         PP_ASSERT_WITH_CODE(result == 0,
314                         "Error retrieving Engine Clock dividers from VBIOS.",
315                         return result);
316
317         /* To get FBDIV we need to multiply this by 16384 and divide it by Fref. */
318         ref_clock = atomctrl_get_reference_clock(hwmgr);
319         ref_divider = 1 + dividers.uc_pll_ref_div;
320
321         /* low 14 bits is fraction and high 12 bits is divider */
322         fbdiv = dividers.ul_fb_div.ul_fb_divider & 0x3FFFFFF;
323
324         /* SPLL_FUNC_CNTL setup */
325         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
326                         SPLL_REF_DIV, dividers.uc_pll_ref_div);
327         spll_func_cntl = PHM_SET_FIELD(spll_func_cntl, CG_SPLL_FUNC_CNTL,
328                         SPLL_PDIV_A,  dividers.uc_pll_post_div);
329
330         /* SPLL_FUNC_CNTL_3 setup*/
331         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
332                         SPLL_FB_DIV, fbdiv);
333
334         /* set to use fractional accumulation*/
335         spll_func_cntl_3 = PHM_SET_FIELD(spll_func_cntl_3, CG_SPLL_FUNC_CNTL_3,
336                         SPLL_DITHEN, 1);
337
338         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
339                                 PHM_PlatformCaps_EngineSpreadSpectrumSupport)) {
340                 struct pp_atomctrl_internal_ss_info ss_info;
341                 uint32_t vco_freq = clock * dividers.uc_pll_post_div;
342
343                 if (!atomctrl_get_engine_clock_spread_spectrum(hwmgr,
344                                 vco_freq, &ss_info)) {
345                         uint32_t clk_s = ref_clock * 5 /
346                                         (ref_divider * ss_info.speed_spectrum_rate);
347                         uint32_t clk_v = 4 * ss_info.speed_spectrum_percentage *
348                                         fbdiv / (clk_s * 10000);
349
350                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
351                                         CG_SPLL_SPREAD_SPECTRUM, CLKS, clk_s);
352                         cg_spll_spread_spectrum = PHM_SET_FIELD(cg_spll_spread_spectrum,
353                                         CG_SPLL_SPREAD_SPECTRUM, SSEN, 1);
354                         cg_spll_spread_spectrum_2 = PHM_SET_FIELD(cg_spll_spread_spectrum_2,
355                                         CG_SPLL_SPREAD_SPECTRUM_2, CLKV, clk_v);
356                 }
357         }
358
359         sclk->SclkFrequency        = clock;
360         sclk->CgSpllFuncCntl3      = spll_func_cntl_3;
361         sclk->CgSpllFuncCntl4      = spll_func_cntl_4;
362         sclk->SpllSpreadSpectrum   = cg_spll_spread_spectrum;
363         sclk->SpllSpreadSpectrum2  = cg_spll_spread_spectrum_2;
364         sclk->SclkDid              = (uint8_t)dividers.pll_post_divider;
365
366         return 0;
367 }
368
369 static void ci_populate_phase_value_based_on_sclk(struct pp_hwmgr *hwmgr,
370                                 const struct phm_phase_shedding_limits_table *pl,
371                                         uint32_t sclk, uint32_t *p_shed)
372 {
373         unsigned int i;
374
375         /* use the minimum phase shedding */
376         *p_shed = 1;
377
378         for (i = 0; i < pl->count; i++) {
379                 if (sclk < pl->entries[i].Sclk) {
380                         *p_shed = i;
381                         break;
382                 }
383         }
384 }
385
386 static uint8_t ci_get_sleep_divider_id_from_clock(uint32_t clock,
387                         uint32_t clock_insr)
388 {
389         uint8_t i;
390         uint32_t temp;
391         uint32_t min = min_t(uint32_t, clock_insr, CISLAND_MINIMUM_ENGINE_CLOCK);
392
393         if (clock < min) {
394                 pr_info("Engine clock can't satisfy stutter requirement!\n");
395                 return 0;
396         }
397         for (i = CISLAND_MAX_DEEPSLEEP_DIVIDER_ID;  ; i--) {
398                 temp = clock >> i;
399
400                 if (temp >= min || i == 0)
401                         break;
402         }
403         return i;
404 }
405
406 static int ci_populate_single_graphic_level(struct pp_hwmgr *hwmgr,
407                 uint32_t clock, struct SMU7_Discrete_GraphicsLevel *level)
408 {
409         int result;
410         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
411
412
413         result = ci_calculate_sclk_params(hwmgr, clock, level);
414
415         /* populate graphics levels */
416         result = ci_get_dependency_volt_by_clk(hwmgr,
417                         hwmgr->dyn_state.vddc_dependency_on_sclk, clock,
418                         (uint32_t *)(&level->MinVddc));
419         if (result) {
420                 pr_err("vdd_dep_on_sclk table is NULL\n");
421                 return result;
422         }
423
424         level->SclkFrequency = clock;
425         level->MinVddcPhases = 1;
426
427         if (data->vddc_phase_shed_control)
428                 ci_populate_phase_value_based_on_sclk(hwmgr,
429                                 hwmgr->dyn_state.vddc_phase_shed_limits_table,
430                                 clock,
431                                 &level->MinVddcPhases);
432
433         level->ActivityLevel = data->current_profile_setting.sclk_activity;
434         level->CcPwrDynRm = 0;
435         level->CcPwrDynRm1 = 0;
436         level->EnabledForActivity = 0;
437         /* this level can be used for throttling.*/
438         level->EnabledForThrottle = 1;
439         level->UpH = data->current_profile_setting.sclk_up_hyst;
440         level->DownH = data->current_profile_setting.sclk_down_hyst;
441         level->VoltageDownH = 0;
442         level->PowerThrottle = 0;
443
444
445         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
446                         PHM_PlatformCaps_SclkDeepSleep))
447                 level->DeepSleepDivId =
448                                 ci_get_sleep_divider_id_from_clock(clock,
449                                                 CISLAND_MINIMUM_ENGINE_CLOCK);
450
451         /* Default to slow, highest DPM level will be set to PPSMC_DISPLAY_WATERMARK_LOW later.*/
452         level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
453
454         if (0 == result) {
455                 level->MinVddc = PP_HOST_TO_SMC_UL(level->MinVddc * VOLTAGE_SCALE);
456                 CONVERT_FROM_HOST_TO_SMC_UL(level->MinVddcPhases);
457                 CONVERT_FROM_HOST_TO_SMC_UL(level->SclkFrequency);
458                 CONVERT_FROM_HOST_TO_SMC_US(level->ActivityLevel);
459                 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl3);
460                 CONVERT_FROM_HOST_TO_SMC_UL(level->CgSpllFuncCntl4);
461                 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum);
462                 CONVERT_FROM_HOST_TO_SMC_UL(level->SpllSpreadSpectrum2);
463                 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm);
464                 CONVERT_FROM_HOST_TO_SMC_UL(level->CcPwrDynRm1);
465         }
466
467         return result;
468 }
469
470 static int ci_populate_all_graphic_levels(struct pp_hwmgr *hwmgr)
471 {
472         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
473         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
474         struct smu7_dpm_table *dpm_table = &data->dpm_table;
475         int result = 0;
476         uint32_t array = smu_data->dpm_table_start +
477                         offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
478         uint32_t array_size = sizeof(struct SMU7_Discrete_GraphicsLevel) *
479                         SMU7_MAX_LEVELS_GRAPHICS;
480         struct SMU7_Discrete_GraphicsLevel *levels =
481                         smu_data->smc_state_table.GraphicsLevel;
482         uint32_t i;
483
484         for (i = 0; i < dpm_table->sclk_table.count; i++) {
485                 result = ci_populate_single_graphic_level(hwmgr,
486                                 dpm_table->sclk_table.dpm_levels[i].value,
487                                 &levels[i]);
488                 if (result)
489                         return result;
490                 if (i > 1)
491                         smu_data->smc_state_table.GraphicsLevel[i].DeepSleepDivId = 0;
492                 if (i == (dpm_table->sclk_table.count - 1))
493                         smu_data->smc_state_table.GraphicsLevel[i].DisplayWatermark =
494                                 PPSMC_DISPLAY_WATERMARK_HIGH;
495         }
496
497         smu_data->smc_state_table.GraphicsLevel[0].EnabledForActivity = 1;
498
499         smu_data->smc_state_table.GraphicsDpmLevelCount = (u8)dpm_table->sclk_table.count;
500         data->dpm_level_enable_mask.sclk_dpm_enable_mask =
501                 phm_get_dpm_level_enable_mask_value(&dpm_table->sclk_table);
502
503         result = ci_copy_bytes_to_smc(hwmgr, array,
504                                    (u8 *)levels, array_size,
505                                    SMC_RAM_END);
506
507         return result;
508
509 }
510
511 static int ci_populate_svi_load_line(struct pp_hwmgr *hwmgr)
512 {
513         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
514         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
515
516         smu_data->power_tune_table.SviLoadLineEn = defaults->svi_load_line_en;
517         smu_data->power_tune_table.SviLoadLineVddC = defaults->svi_load_line_vddc;
518         smu_data->power_tune_table.SviLoadLineTrimVddC = 3;
519         smu_data->power_tune_table.SviLoadLineOffsetVddC = 0;
520
521         return 0;
522 }
523
524 static int ci_populate_tdc_limit(struct pp_hwmgr *hwmgr)
525 {
526         uint16_t tdc_limit;
527         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
528         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
529
530         tdc_limit = (uint16_t)(hwmgr->dyn_state.cac_dtp_table->usTDC * 256);
531         smu_data->power_tune_table.TDC_VDDC_PkgLimit =
532                         CONVERT_FROM_HOST_TO_SMC_US(tdc_limit);
533         smu_data->power_tune_table.TDC_VDDC_ThrottleReleaseLimitPerc =
534                         defaults->tdc_vddc_throttle_release_limit_perc;
535         smu_data->power_tune_table.TDC_MAWt = defaults->tdc_mawt;
536
537         return 0;
538 }
539
540 static int ci_populate_dw8(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
541 {
542         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
543         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
544         uint32_t temp;
545
546         if (ci_read_smc_sram_dword(hwmgr,
547                         fuse_table_offset +
548                         offsetof(SMU7_Discrete_PmFuses, TdcWaterfallCtl),
549                         (uint32_t *)&temp, SMC_RAM_END))
550                 PP_ASSERT_WITH_CODE(false,
551                                 "Attempt to read PmFuses.DW6 (SviLoadLineEn) from SMC Failed!",
552                                 return -EINVAL);
553         else
554                 smu_data->power_tune_table.TdcWaterfallCtl = defaults->tdc_waterfall_ctl;
555
556         return 0;
557 }
558
559 static int ci_populate_fuzzy_fan(struct pp_hwmgr *hwmgr, uint32_t fuse_table_offset)
560 {
561         uint16_t tmp;
562         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
563
564         if ((hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity & (1 << 15))
565                 || 0 == hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity)
566                 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usFanOutputSensitivity;
567         else
568                 tmp = hwmgr->thermal_controller.advanceFanControlParameters.usDefaultFanOutputSensitivity;
569
570         smu_data->power_tune_table.FuzzyFan_PwmSetDelta = CONVERT_FROM_HOST_TO_SMC_US(tmp);
571
572         return 0;
573 }
574
575 static int ci_populate_bapm_vddc_vid_sidd(struct pp_hwmgr *hwmgr)
576 {
577         int i;
578         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
579         uint8_t *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
580         uint8_t *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
581         uint8_t *hi2_vid = smu_data->power_tune_table.BapmVddCVidHiSidd2;
582
583         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.cac_leakage_table,
584                             "The CAC Leakage table does not exist!", return -EINVAL);
585         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count <= 8,
586                             "There should never be more than 8 entries for BapmVddcVid!!!", return -EINVAL);
587         PP_ASSERT_WITH_CODE(hwmgr->dyn_state.cac_leakage_table->count == hwmgr->dyn_state.vddc_dependency_on_sclk->count,
588                             "CACLeakageTable->count and VddcDependencyOnSCLk->count not equal", return -EINVAL);
589
590         for (i = 0; (uint32_t) i < hwmgr->dyn_state.cac_leakage_table->count; i++) {
591                 if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_EVV)) {
592                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc1);
593                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc2);
594                         hi2_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc3);
595                 } else {
596                         lo_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Vddc);
597                         hi_vid[i] = convert_to_vid(hwmgr->dyn_state.cac_leakage_table->entries[i].Leakage);
598                 }
599         }
600
601         return 0;
602 }
603
604 static int ci_populate_vddc_vid(struct pp_hwmgr *hwmgr)
605 {
606         int i;
607         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
608         uint8_t *vid = smu_data->power_tune_table.VddCVid;
609         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
610
611         PP_ASSERT_WITH_CODE(data->vddc_voltage_table.count <= 8,
612                 "There should never be more than 8 entries for VddcVid!!!",
613                 return -EINVAL);
614
615         for (i = 0; i < (int)data->vddc_voltage_table.count; i++)
616                 vid[i] = convert_to_vid(data->vddc_voltage_table.entries[i].value);
617
618         return 0;
619 }
620
621 static int ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(struct pp_hwmgr *hwmgr)
622 {
623         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
624         u8 *hi_vid = smu_data->power_tune_table.BapmVddCVidHiSidd;
625         u8 *lo_vid = smu_data->power_tune_table.BapmVddCVidLoSidd;
626         int i, min, max;
627
628         min = max = hi_vid[0];
629         for (i = 0; i < 8; i++) {
630                 if (0 != hi_vid[i]) {
631                         if (min > hi_vid[i])
632                                 min = hi_vid[i];
633                         if (max < hi_vid[i])
634                                 max = hi_vid[i];
635                 }
636
637                 if (0 != lo_vid[i]) {
638                         if (min > lo_vid[i])
639                                 min = lo_vid[i];
640                         if (max < lo_vid[i])
641                                 max = lo_vid[i];
642                 }
643         }
644
645         if ((min == 0) || (max == 0))
646                 return -EINVAL;
647         smu_data->power_tune_table.GnbLPMLMaxVid = (u8)max;
648         smu_data->power_tune_table.GnbLPMLMinVid = (u8)min;
649
650         return 0;
651 }
652
653 static int ci_populate_bapm_vddc_base_leakage_sidd(struct pp_hwmgr *hwmgr)
654 {
655         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
656         uint16_t HiSidd = smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd;
657         uint16_t LoSidd = smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd;
658         struct phm_cac_tdp_table *cac_table = hwmgr->dyn_state.cac_dtp_table;
659
660         HiSidd = (uint16_t)(cac_table->usHighCACLeakage / 100 * 256);
661         LoSidd = (uint16_t)(cac_table->usLowCACLeakage / 100 * 256);
662
663         smu_data->power_tune_table.BapmVddCBaseLeakageHiSidd =
664                         CONVERT_FROM_HOST_TO_SMC_US(HiSidd);
665         smu_data->power_tune_table.BapmVddCBaseLeakageLoSidd =
666                         CONVERT_FROM_HOST_TO_SMC_US(LoSidd);
667
668         return 0;
669 }
670
671 static int ci_populate_pm_fuses(struct pp_hwmgr *hwmgr)
672 {
673         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
674         uint32_t pm_fuse_table_offset;
675         int ret = 0;
676
677         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
678                         PHM_PlatformCaps_PowerContainment)) {
679                 if (ci_read_smc_sram_dword(hwmgr,
680                                 SMU7_FIRMWARE_HEADER_LOCATION +
681                                 offsetof(SMU7_Firmware_Header, PmFuseTable),
682                                 &pm_fuse_table_offset, SMC_RAM_END)) {
683                         pr_err("Attempt to get pm_fuse_table_offset Failed!\n");
684                         return -EINVAL;
685                 }
686
687                 /* DW0 - DW3 */
688                 ret = ci_populate_bapm_vddc_vid_sidd(hwmgr);
689                 /* DW4 - DW5 */
690                 ret |= ci_populate_vddc_vid(hwmgr);
691                 /* DW6 */
692                 ret |= ci_populate_svi_load_line(hwmgr);
693                 /* DW7 */
694                 ret |= ci_populate_tdc_limit(hwmgr);
695                 /* DW8 */
696                 ret |= ci_populate_dw8(hwmgr, pm_fuse_table_offset);
697
698                 ret |= ci_populate_fuzzy_fan(hwmgr, pm_fuse_table_offset);
699
700                 ret |= ci_min_max_v_gnbl_pm_lid_from_bapm_vddc(hwmgr);
701
702                 ret |= ci_populate_bapm_vddc_base_leakage_sidd(hwmgr);
703                 if (ret)
704                         return ret;
705
706                 ret = ci_copy_bytes_to_smc(hwmgr, pm_fuse_table_offset,
707                                 (uint8_t *)&smu_data->power_tune_table,
708                                 sizeof(struct SMU7_Discrete_PmFuses), SMC_RAM_END);
709         }
710         return ret;
711 }
712
713 static int ci_populate_bapm_parameters_in_dpm_table(struct pp_hwmgr *hwmgr)
714 {
715         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
716         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
717         const struct ci_pt_defaults *defaults = smu_data->power_tune_defaults;
718         SMU7_Discrete_DpmTable  *dpm_table = &(smu_data->smc_state_table);
719         struct phm_cac_tdp_table *cac_dtp_table = hwmgr->dyn_state.cac_dtp_table;
720         struct phm_ppm_table *ppm = hwmgr->dyn_state.ppm_parameter_table;
721         const uint16_t *def1, *def2;
722         int i, j, k;
723
724         dpm_table->DefaultTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usTDP * 256));
725         dpm_table->TargetTdp = PP_HOST_TO_SMC_US((uint16_t)(cac_dtp_table->usConfigurableTDP * 256));
726
727         dpm_table->DTETjOffset = 0;
728         dpm_table->GpuTjMax = (uint8_t)(data->thermal_temp_setting.temperature_high / PP_TEMPERATURE_UNITS_PER_CENTIGRADES);
729         dpm_table->GpuTjHyst = 8;
730
731         dpm_table->DTEAmbientTempBase = defaults->dte_ambient_temp_base;
732
733         if (ppm) {
734                 dpm_table->PPM_PkgPwrLimit = (uint16_t)ppm->dgpu_tdp * 256 / 1000;
735                 dpm_table->PPM_TemperatureLimit = (uint16_t)ppm->tj_max * 256;
736         } else {
737                 dpm_table->PPM_PkgPwrLimit = 0;
738                 dpm_table->PPM_TemperatureLimit = 0;
739         }
740
741         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_PkgPwrLimit);
742         CONVERT_FROM_HOST_TO_SMC_US(dpm_table->PPM_TemperatureLimit);
743
744         dpm_table->BAPM_TEMP_GRADIENT = PP_HOST_TO_SMC_UL(defaults->bapm_temp_gradient);
745         def1 = defaults->bapmti_r;
746         def2 = defaults->bapmti_rc;
747
748         for (i = 0; i < SMU7_DTE_ITERATIONS; i++) {
749                 for (j = 0; j < SMU7_DTE_SOURCES; j++) {
750                         for (k = 0; k < SMU7_DTE_SINKS; k++) {
751                                 dpm_table->BAPMTI_R[i][j][k] = PP_HOST_TO_SMC_US(*def1);
752                                 dpm_table->BAPMTI_RC[i][j][k] = PP_HOST_TO_SMC_US(*def2);
753                                 def1++;
754                                 def2++;
755                         }
756                 }
757         }
758
759         return 0;
760 }
761
762 static int ci_get_std_voltage_value_sidd(struct pp_hwmgr *hwmgr,
763                 pp_atomctrl_voltage_table_entry *tab, uint16_t *hi,
764                 uint16_t *lo)
765 {
766         uint16_t v_index;
767         bool vol_found = false;
768         *hi = tab->value * VOLTAGE_SCALE;
769         *lo = tab->value * VOLTAGE_SCALE;
770
771         PP_ASSERT_WITH_CODE(NULL != hwmgr->dyn_state.vddc_dependency_on_sclk,
772                         "The SCLK/VDDC Dependency Table does not exist.\n",
773                         return -EINVAL);
774
775         if (NULL == hwmgr->dyn_state.cac_leakage_table) {
776                 pr_warn("CAC Leakage Table does not exist, using vddc.\n");
777                 return 0;
778         }
779
780         for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
781                 if (tab->value == hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
782                         vol_found = true;
783                         if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
784                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
785                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage * VOLTAGE_SCALE);
786                         } else {
787                                 pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index, using maximum index from CAC table.\n");
788                                 *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
789                                 *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
790                         }
791                         break;
792                 }
793         }
794
795         if (!vol_found) {
796                 for (v_index = 0; (uint32_t)v_index < hwmgr->dyn_state.vddc_dependency_on_sclk->count; v_index++) {
797                         if (tab->value <= hwmgr->dyn_state.vddc_dependency_on_sclk->entries[v_index].v) {
798                                 vol_found = true;
799                                 if ((uint32_t)v_index < hwmgr->dyn_state.cac_leakage_table->count) {
800                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[v_index].Vddc * VOLTAGE_SCALE;
801                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[v_index].Leakage) * VOLTAGE_SCALE;
802                                 } else {
803                                         pr_warn("Index from SCLK/VDDC Dependency Table exceeds the CAC Leakage Table index in second look up, using maximum index from CAC table.");
804                                         *lo = hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Vddc * VOLTAGE_SCALE;
805                                         *hi = (uint16_t)(hwmgr->dyn_state.cac_leakage_table->entries[hwmgr->dyn_state.cac_leakage_table->count - 1].Leakage * VOLTAGE_SCALE);
806                                 }
807                                 break;
808                         }
809                 }
810
811                 if (!vol_found)
812                         pr_warn("Unable to get std_vddc from SCLK/VDDC Dependency Table, using vddc.\n");
813         }
814
815         return 0;
816 }
817
818 static int ci_populate_smc_voltage_table(struct pp_hwmgr *hwmgr,
819                 pp_atomctrl_voltage_table_entry *tab,
820                 SMU7_Discrete_VoltageLevel *smc_voltage_tab)
821 {
822         int result;
823
824         result = ci_get_std_voltage_value_sidd(hwmgr, tab,
825                         &smc_voltage_tab->StdVoltageHiSidd,
826                         &smc_voltage_tab->StdVoltageLoSidd);
827         if (result) {
828                 smc_voltage_tab->StdVoltageHiSidd = tab->value * VOLTAGE_SCALE;
829                 smc_voltage_tab->StdVoltageLoSidd = tab->value * VOLTAGE_SCALE;
830         }
831
832         smc_voltage_tab->Voltage = PP_HOST_TO_SMC_US(tab->value * VOLTAGE_SCALE);
833         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageHiSidd);
834         CONVERT_FROM_HOST_TO_SMC_US(smc_voltage_tab->StdVoltageLoSidd);
835
836         return 0;
837 }
838
839 static int ci_populate_smc_vddc_table(struct pp_hwmgr *hwmgr,
840                         SMU7_Discrete_DpmTable *table)
841 {
842         unsigned int count;
843         int result;
844         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
845
846         table->VddcLevelCount = data->vddc_voltage_table.count;
847         for (count = 0; count < table->VddcLevelCount; count++) {
848                 result = ci_populate_smc_voltage_table(hwmgr,
849                                 &(data->vddc_voltage_table.entries[count]),
850                                 &(table->VddcLevel[count]));
851                 PP_ASSERT_WITH_CODE(0 == result, "do not populate SMC VDDC voltage table", return -EINVAL);
852
853                 /* GPIO voltage control */
854                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->voltage_control) {
855                         table->VddcLevel[count].Smio = (uint8_t) count;
856                         table->Smio[count] |= data->vddc_voltage_table.entries[count].smio_low;
857                         table->SmioMaskVddcVid |= data->vddc_voltage_table.entries[count].smio_low;
858                 } else {
859                         table->VddcLevel[count].Smio = 0;
860                 }
861         }
862
863         CONVERT_FROM_HOST_TO_SMC_UL(table->VddcLevelCount);
864
865         return 0;
866 }
867
868 static int ci_populate_smc_vdd_ci_table(struct pp_hwmgr *hwmgr,
869                         SMU7_Discrete_DpmTable *table)
870 {
871         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
872         uint32_t count;
873         int result;
874
875         table->VddciLevelCount = data->vddci_voltage_table.count;
876
877         for (count = 0; count < table->VddciLevelCount; count++) {
878                 result = ci_populate_smc_voltage_table(hwmgr,
879                                 &(data->vddci_voltage_table.entries[count]),
880                                 &(table->VddciLevel[count]));
881                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC VDDCI voltage table", return -EINVAL);
882                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
883                         table->VddciLevel[count].Smio = (uint8_t) count;
884                         table->Smio[count] |= data->vddci_voltage_table.entries[count].smio_low;
885                         table->SmioMaskVddciVid |= data->vddci_voltage_table.entries[count].smio_low;
886                 } else {
887                         table->VddciLevel[count].Smio = 0;
888                 }
889         }
890
891         CONVERT_FROM_HOST_TO_SMC_UL(table->VddciLevelCount);
892
893         return 0;
894 }
895
896 static int ci_populate_smc_mvdd_table(struct pp_hwmgr *hwmgr,
897                         SMU7_Discrete_DpmTable *table)
898 {
899         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
900         uint32_t count;
901         int result;
902
903         table->MvddLevelCount = data->mvdd_voltage_table.count;
904
905         for (count = 0; count < table->MvddLevelCount; count++) {
906                 result = ci_populate_smc_voltage_table(hwmgr,
907                                 &(data->mvdd_voltage_table.entries[count]),
908                                 &table->MvddLevel[count]);
909                 PP_ASSERT_WITH_CODE(result == 0, "do not populate SMC mvdd voltage table", return -EINVAL);
910                 if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
911                         table->MvddLevel[count].Smio = (uint8_t) count;
912                         table->Smio[count] |= data->mvdd_voltage_table.entries[count].smio_low;
913                         table->SmioMaskMvddVid |= data->mvdd_voltage_table.entries[count].smio_low;
914                 } else {
915                         table->MvddLevel[count].Smio = 0;
916                 }
917         }
918
919         CONVERT_FROM_HOST_TO_SMC_UL(table->MvddLevelCount);
920
921         return 0;
922 }
923
924
925 static int ci_populate_smc_voltage_tables(struct pp_hwmgr *hwmgr,
926         SMU7_Discrete_DpmTable *table)
927 {
928         int result;
929
930         result = ci_populate_smc_vddc_table(hwmgr, table);
931         PP_ASSERT_WITH_CODE(0 == result,
932                         "can not populate VDDC voltage table to SMC", return -EINVAL);
933
934         result = ci_populate_smc_vdd_ci_table(hwmgr, table);
935         PP_ASSERT_WITH_CODE(0 == result,
936                         "can not populate VDDCI voltage table to SMC", return -EINVAL);
937
938         result = ci_populate_smc_mvdd_table(hwmgr, table);
939         PP_ASSERT_WITH_CODE(0 == result,
940                         "can not populate MVDD voltage table to SMC", return -EINVAL);
941
942         return 0;
943 }
944
945 static int ci_populate_ulv_level(struct pp_hwmgr *hwmgr,
946                 struct SMU7_Discrete_Ulv *state)
947 {
948         uint32_t voltage_response_time, ulv_voltage;
949         int result;
950         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
951
952         state->CcPwrDynRm = 0;
953         state->CcPwrDynRm1 = 0;
954
955         result = pp_tables_get_response_times(hwmgr, &voltage_response_time, &ulv_voltage);
956         PP_ASSERT_WITH_CODE((0 == result), "can not get ULV voltage value", return result;);
957
958         if (ulv_voltage == 0) {
959                 data->ulv_supported = false;
960                 return 0;
961         }
962
963         if (data->voltage_control != SMU7_VOLTAGE_CONTROL_BY_SVID2) {
964                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
965                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
966                         state->VddcOffset = 0;
967                 else
968                         /* used in SMIO Mode. not implemented for now. this is backup only for CI. */
969                         state->VddcOffset = (uint16_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage);
970         } else {
971                 /* use minimum voltage if ulv voltage in pptable is bigger than minimum voltage */
972                 if (ulv_voltage > hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v)
973                         state->VddcOffsetVid = 0;
974                 else  /* used in SVI2 Mode */
975                         state->VddcOffsetVid = (uint8_t)(
976                                         (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[0].v - ulv_voltage)
977                                                 * VOLTAGE_VID_OFFSET_SCALE2
978                                                 / VOLTAGE_VID_OFFSET_SCALE1);
979         }
980         state->VddcPhase = 1;
981
982         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm);
983         CONVERT_FROM_HOST_TO_SMC_UL(state->CcPwrDynRm1);
984         CONVERT_FROM_HOST_TO_SMC_US(state->VddcOffset);
985
986         return 0;
987 }
988
989 static int ci_populate_ulv_state(struct pp_hwmgr *hwmgr,
990                  SMU7_Discrete_Ulv *ulv_level)
991 {
992         return ci_populate_ulv_level(hwmgr, ulv_level);
993 }
994
995 static int ci_populate_smc_link_level(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
996 {
997         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
998         struct smu7_dpm_table *dpm_table = &data->dpm_table;
999         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1000         uint32_t i;
1001
1002 /* Index dpm_table->pcie_speed_table.count is reserved for PCIE boot level.*/
1003         for (i = 0; i <= dpm_table->pcie_speed_table.count; i++) {
1004                 table->LinkLevel[i].PcieGenSpeed  =
1005                         (uint8_t)dpm_table->pcie_speed_table.dpm_levels[i].value;
1006                 table->LinkLevel[i].PcieLaneCount =
1007                         (uint8_t)encode_pcie_lane_width(dpm_table->pcie_speed_table.dpm_levels[i].param1);
1008                 table->LinkLevel[i].EnabledForActivity = 1;
1009                 table->LinkLevel[i].DownT = PP_HOST_TO_SMC_UL(5);
1010                 table->LinkLevel[i].UpT = PP_HOST_TO_SMC_UL(30);
1011         }
1012
1013         smu_data->smc_state_table.LinkLevelCount =
1014                 (uint8_t)dpm_table->pcie_speed_table.count;
1015         data->dpm_level_enable_mask.pcie_dpm_enable_mask =
1016                 phm_get_dpm_level_enable_mask_value(&dpm_table->pcie_speed_table);
1017
1018         return 0;
1019 }
1020
1021 static int ci_calculate_mclk_params(
1022                 struct pp_hwmgr *hwmgr,
1023                 uint32_t memory_clock,
1024                 SMU7_Discrete_MemoryLevel *mclk,
1025                 bool strobe_mode,
1026                 bool dllStateOn
1027                 )
1028 {
1029         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1030         uint32_t  dll_cntl = data->clock_registers.vDLL_CNTL;
1031         uint32_t  mclk_pwrmgt_cntl = data->clock_registers.vMCLK_PWRMGT_CNTL;
1032         uint32_t  mpll_ad_func_cntl = data->clock_registers.vMPLL_AD_FUNC_CNTL;
1033         uint32_t  mpll_dq_func_cntl = data->clock_registers.vMPLL_DQ_FUNC_CNTL;
1034         uint32_t  mpll_func_cntl = data->clock_registers.vMPLL_FUNC_CNTL;
1035         uint32_t  mpll_func_cntl_1 = data->clock_registers.vMPLL_FUNC_CNTL_1;
1036         uint32_t  mpll_func_cntl_2 = data->clock_registers.vMPLL_FUNC_CNTL_2;
1037         uint32_t  mpll_ss1 = data->clock_registers.vMPLL_SS1;
1038         uint32_t  mpll_ss2 = data->clock_registers.vMPLL_SS2;
1039
1040         pp_atomctrl_memory_clock_param mpll_param;
1041         int result;
1042
1043         result = atomctrl_get_memory_pll_dividers_si(hwmgr,
1044                                 memory_clock, &mpll_param, strobe_mode);
1045         PP_ASSERT_WITH_CODE(0 == result,
1046                 "Error retrieving Memory Clock Parameters from VBIOS.", return result);
1047
1048         mpll_func_cntl = PHM_SET_FIELD(mpll_func_cntl, MPLL_FUNC_CNTL, BWCTRL, mpll_param.bw_ctrl);
1049
1050         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1051                                                         MPLL_FUNC_CNTL_1, CLKF, mpll_param.mpll_fb_divider.cl_kf);
1052         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1053                                                         MPLL_FUNC_CNTL_1, CLKFRAC, mpll_param.mpll_fb_divider.clk_frac);
1054         mpll_func_cntl_1  = PHM_SET_FIELD(mpll_func_cntl_1,
1055                                                         MPLL_FUNC_CNTL_1, VCO_MODE, mpll_param.vco_mode);
1056
1057         mpll_ad_func_cntl = PHM_SET_FIELD(mpll_ad_func_cntl,
1058                                                         MPLL_AD_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1059
1060         if (data->is_memory_gddr5) {
1061                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1062                                                                 MPLL_DQ_FUNC_CNTL, YCLK_SEL, mpll_param.yclk_sel);
1063                 mpll_dq_func_cntl  = PHM_SET_FIELD(mpll_dq_func_cntl,
1064                                                                 MPLL_DQ_FUNC_CNTL, YCLK_POST_DIV, mpll_param.mpll_post_divider);
1065         }
1066
1067         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1068                         PHM_PlatformCaps_MemorySpreadSpectrumSupport)) {
1069                 pp_atomctrl_internal_ss_info ss_info;
1070                 uint32_t freq_nom;
1071                 uint32_t tmp;
1072                 uint32_t reference_clock = atomctrl_get_mpll_reference_clock(hwmgr);
1073
1074                 /* for GDDR5 for all modes and DDR3 */
1075                 if (1 == mpll_param.qdr)
1076                         freq_nom = memory_clock * 4 * (1 << mpll_param.mpll_post_divider);
1077                 else
1078                         freq_nom = memory_clock * 2 * (1 << mpll_param.mpll_post_divider);
1079
1080                 /* tmp = (freq_nom / reference_clock * reference_divider) ^ 2  Note: S.I. reference_divider = 1*/
1081                 tmp = (freq_nom / reference_clock);
1082                 tmp = tmp * tmp;
1083
1084                 if (0 == atomctrl_get_memory_clock_spread_spectrum(hwmgr, freq_nom, &ss_info)) {
1085                         uint32_t clks = reference_clock * 5 / ss_info.speed_spectrum_rate;
1086                         uint32_t clkv =
1087                                 (uint32_t)((((131 * ss_info.speed_spectrum_percentage *
1088                                                         ss_info.speed_spectrum_rate) / 100) * tmp) / freq_nom);
1089
1090                         mpll_ss1 = PHM_SET_FIELD(mpll_ss1, MPLL_SS1, CLKV, clkv);
1091                         mpll_ss2 = PHM_SET_FIELD(mpll_ss2, MPLL_SS2, CLKS, clks);
1092                 }
1093         }
1094
1095         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1096                 MCLK_PWRMGT_CNTL, DLL_SPEED, mpll_param.dll_speed);
1097         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1098                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, dllStateOn);
1099         mclk_pwrmgt_cntl = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1100                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, dllStateOn);
1101
1102
1103         mclk->MclkFrequency   = memory_clock;
1104         mclk->MpllFuncCntl    = mpll_func_cntl;
1105         mclk->MpllFuncCntl_1  = mpll_func_cntl_1;
1106         mclk->MpllFuncCntl_2  = mpll_func_cntl_2;
1107         mclk->MpllAdFuncCntl  = mpll_ad_func_cntl;
1108         mclk->MpllDqFuncCntl  = mpll_dq_func_cntl;
1109         mclk->MclkPwrmgtCntl  = mclk_pwrmgt_cntl;
1110         mclk->DllCntl         = dll_cntl;
1111         mclk->MpllSs1         = mpll_ss1;
1112         mclk->MpllSs2         = mpll_ss2;
1113
1114         return 0;
1115 }
1116
1117 static uint8_t ci_get_mclk_frequency_ratio(uint32_t memory_clock,
1118                 bool strobe_mode)
1119 {
1120         uint8_t mc_para_index;
1121
1122         if (strobe_mode) {
1123                 if (memory_clock < 12500)
1124                         mc_para_index = 0x00;
1125                 else if (memory_clock > 47500)
1126                         mc_para_index = 0x0f;
1127                 else
1128                         mc_para_index = (uint8_t)((memory_clock - 10000) / 2500);
1129         } else {
1130                 if (memory_clock < 65000)
1131                         mc_para_index = 0x00;
1132                 else if (memory_clock > 135000)
1133                         mc_para_index = 0x0f;
1134                 else
1135                         mc_para_index = (uint8_t)((memory_clock - 60000) / 5000);
1136         }
1137
1138         return mc_para_index;
1139 }
1140
1141 static uint8_t ci_get_ddr3_mclk_frequency_ratio(uint32_t memory_clock)
1142 {
1143         uint8_t mc_para_index;
1144
1145         if (memory_clock < 10000)
1146                 mc_para_index = 0;
1147         else if (memory_clock >= 80000)
1148                 mc_para_index = 0x0f;
1149         else
1150                 mc_para_index = (uint8_t)((memory_clock - 10000) / 5000 + 1);
1151
1152         return mc_para_index;
1153 }
1154
1155 static int ci_populate_phase_value_based_on_mclk(struct pp_hwmgr *hwmgr, const struct phm_phase_shedding_limits_table *pl,
1156                                         uint32_t memory_clock, uint32_t *p_shed)
1157 {
1158         unsigned int i;
1159
1160         *p_shed = 1;
1161
1162         for (i = 0; i < pl->count; i++) {
1163                 if (memory_clock < pl->entries[i].Mclk) {
1164                         *p_shed = i;
1165                         break;
1166                 }
1167         }
1168
1169         return 0;
1170 }
1171
1172 static int ci_populate_single_memory_level(
1173                 struct pp_hwmgr *hwmgr,
1174                 uint32_t memory_clock,
1175                 SMU7_Discrete_MemoryLevel *memory_level
1176                 )
1177 {
1178         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1179         int result = 0;
1180         bool dll_state_on;
1181         uint32_t mclk_edc_wr_enable_threshold = 40000;
1182         uint32_t mclk_edc_enable_threshold = 40000;
1183         uint32_t mclk_strobe_mode_threshold = 40000;
1184
1185         if (hwmgr->dyn_state.vddc_dependency_on_mclk != NULL) {
1186                 result = ci_get_dependency_volt_by_clk(hwmgr,
1187                         hwmgr->dyn_state.vddc_dependency_on_mclk, memory_clock, &memory_level->MinVddc);
1188                 PP_ASSERT_WITH_CODE((0 == result),
1189                         "can not find MinVddc voltage value from memory VDDC voltage dependency table", return result);
1190         }
1191
1192         if (NULL != hwmgr->dyn_state.vddci_dependency_on_mclk) {
1193                 result = ci_get_dependency_volt_by_clk(hwmgr,
1194                                 hwmgr->dyn_state.vddci_dependency_on_mclk,
1195                                 memory_clock,
1196                                 &memory_level->MinVddci);
1197                 PP_ASSERT_WITH_CODE((0 == result),
1198                         "can not find MinVddci voltage value from memory VDDCI voltage dependency table", return result);
1199         }
1200
1201         if (NULL != hwmgr->dyn_state.mvdd_dependency_on_mclk) {
1202                 result = ci_get_dependency_volt_by_clk(hwmgr,
1203                                 hwmgr->dyn_state.mvdd_dependency_on_mclk,
1204                                 memory_clock,
1205                                 &memory_level->MinMvdd);
1206                 PP_ASSERT_WITH_CODE((0 == result),
1207                         "can not find MinVddci voltage value from memory MVDD voltage dependency table", return result);
1208         }
1209
1210         memory_level->MinVddcPhases = 1;
1211
1212         if (data->vddc_phase_shed_control) {
1213                 ci_populate_phase_value_based_on_mclk(hwmgr, hwmgr->dyn_state.vddc_phase_shed_limits_table,
1214                                 memory_clock, &memory_level->MinVddcPhases);
1215         }
1216
1217         memory_level->EnabledForThrottle = 1;
1218         memory_level->EnabledForActivity = 1;
1219         memory_level->UpH = data->current_profile_setting.mclk_up_hyst;
1220         memory_level->DownH = data->current_profile_setting.mclk_down_hyst;
1221         memory_level->VoltageDownH = 0;
1222
1223         /* Indicates maximum activity level for this performance level.*/
1224         memory_level->ActivityLevel = data->current_profile_setting.mclk_activity;
1225         memory_level->StutterEnable = 0;
1226         memory_level->StrobeEnable = 0;
1227         memory_level->EdcReadEnable = 0;
1228         memory_level->EdcWriteEnable = 0;
1229         memory_level->RttEnable = 0;
1230
1231         /* default set to low watermark. Highest level will be set to high later.*/
1232         memory_level->DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1233
1234         data->display_timing.num_existing_displays = hwmgr->display_config->num_display;
1235         data->display_timing.vrefresh = hwmgr->display_config->vrefresh;
1236
1237         /* stutter mode not support on ci */
1238
1239         /* decide strobe mode*/
1240         memory_level->StrobeEnable = (mclk_strobe_mode_threshold != 0) &&
1241                 (memory_clock <= mclk_strobe_mode_threshold);
1242
1243         /* decide EDC mode and memory clock ratio*/
1244         if (data->is_memory_gddr5) {
1245                 memory_level->StrobeRatio = ci_get_mclk_frequency_ratio(memory_clock,
1246                                         memory_level->StrobeEnable);
1247
1248                 if ((mclk_edc_enable_threshold != 0) &&
1249                                 (memory_clock > mclk_edc_enable_threshold)) {
1250                         memory_level->EdcReadEnable = 1;
1251                 }
1252
1253                 if ((mclk_edc_wr_enable_threshold != 0) &&
1254                                 (memory_clock > mclk_edc_wr_enable_threshold)) {
1255                         memory_level->EdcWriteEnable = 1;
1256                 }
1257
1258                 if (memory_level->StrobeEnable) {
1259                         if (ci_get_mclk_frequency_ratio(memory_clock, 1) >=
1260                                         ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC7) >> 16) & 0xf))
1261                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1262                         else
1263                                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC6) >> 1) & 0x1) ? 1 : 0;
1264                 } else
1265                         dll_state_on = data->dll_default_on;
1266         } else {
1267                 memory_level->StrobeRatio =
1268                         ci_get_ddr3_mclk_frequency_ratio(memory_clock);
1269                 dll_state_on = ((cgs_read_register(hwmgr->device, mmMC_SEQ_MISC5) >> 1) & 0x1) ? 1 : 0;
1270         }
1271
1272         result = ci_calculate_mclk_params(hwmgr,
1273                 memory_clock, memory_level, memory_level->StrobeEnable, dll_state_on);
1274
1275         if (0 == result) {
1276                 memory_level->MinVddc = PP_HOST_TO_SMC_UL(memory_level->MinVddc * VOLTAGE_SCALE);
1277                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MinVddcPhases);
1278                 memory_level->MinVddci = PP_HOST_TO_SMC_UL(memory_level->MinVddci * VOLTAGE_SCALE);
1279                 memory_level->MinMvdd = PP_HOST_TO_SMC_UL(memory_level->MinMvdd * VOLTAGE_SCALE);
1280                 /* MCLK frequency in units of 10KHz*/
1281                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkFrequency);
1282                 /* Indicates maximum activity level for this performance level.*/
1283                 CONVERT_FROM_HOST_TO_SMC_US(memory_level->ActivityLevel);
1284                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl);
1285                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_1);
1286                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllFuncCntl_2);
1287                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllAdFuncCntl);
1288                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllDqFuncCntl);
1289                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MclkPwrmgtCntl);
1290                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->DllCntl);
1291                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs1);
1292                 CONVERT_FROM_HOST_TO_SMC_UL(memory_level->MpllSs2);
1293         }
1294
1295         return result;
1296 }
1297
1298 static int ci_populate_all_memory_levels(struct pp_hwmgr *hwmgr)
1299 {
1300         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1301         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1302         struct smu7_dpm_table *dpm_table = &data->dpm_table;
1303         int result;
1304         struct amdgpu_device *adev = hwmgr->adev;
1305         uint32_t dev_id;
1306
1307         uint32_t level_array_address = smu_data->dpm_table_start + offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
1308         uint32_t level_array_size = sizeof(SMU7_Discrete_MemoryLevel) * SMU7_MAX_LEVELS_MEMORY;
1309         SMU7_Discrete_MemoryLevel *levels = smu_data->smc_state_table.MemoryLevel;
1310         uint32_t i;
1311
1312         memset(levels, 0x00, level_array_size);
1313
1314         for (i = 0; i < dpm_table->mclk_table.count; i++) {
1315                 PP_ASSERT_WITH_CODE((0 != dpm_table->mclk_table.dpm_levels[i].value),
1316                         "can not populate memory level as memory clock is zero", return -EINVAL);
1317                 result = ci_populate_single_memory_level(hwmgr, dpm_table->mclk_table.dpm_levels[i].value,
1318                         &(smu_data->smc_state_table.MemoryLevel[i]));
1319                 if (0 != result)
1320                         return result;
1321         }
1322
1323         smu_data->smc_state_table.MemoryLevel[0].EnabledForActivity = 1;
1324
1325         dev_id = adev->pdev->device;
1326
1327         if ((dpm_table->mclk_table.count >= 2)
1328                 && ((dev_id == 0x67B0) ||  (dev_id == 0x67B1))) {
1329                 smu_data->smc_state_table.MemoryLevel[1].MinVddci =
1330                                 smu_data->smc_state_table.MemoryLevel[0].MinVddci;
1331                 smu_data->smc_state_table.MemoryLevel[1].MinMvdd =
1332                                 smu_data->smc_state_table.MemoryLevel[0].MinMvdd;
1333         }
1334         smu_data->smc_state_table.MemoryLevel[0].ActivityLevel = 0x1F;
1335         CONVERT_FROM_HOST_TO_SMC_US(smu_data->smc_state_table.MemoryLevel[0].ActivityLevel);
1336
1337         smu_data->smc_state_table.MemoryDpmLevelCount = (uint8_t)dpm_table->mclk_table.count;
1338         data->dpm_level_enable_mask.mclk_dpm_enable_mask = phm_get_dpm_level_enable_mask_value(&dpm_table->mclk_table);
1339         smu_data->smc_state_table.MemoryLevel[dpm_table->mclk_table.count-1].DisplayWatermark = PPSMC_DISPLAY_WATERMARK_HIGH;
1340
1341         result = ci_copy_bytes_to_smc(hwmgr,
1342                 level_array_address, (uint8_t *)levels, (uint32_t)level_array_size,
1343                 SMC_RAM_END);
1344
1345         return result;
1346 }
1347
1348 static int ci_populate_mvdd_value(struct pp_hwmgr *hwmgr, uint32_t mclk,
1349                                         SMU7_Discrete_VoltageLevel *voltage)
1350 {
1351         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1352
1353         uint32_t i = 0;
1354
1355         if (SMU7_VOLTAGE_CONTROL_NONE != data->mvdd_control) {
1356                 /* find mvdd value which clock is more than request */
1357                 for (i = 0; i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count; i++) {
1358                         if (mclk <= hwmgr->dyn_state.mvdd_dependency_on_mclk->entries[i].clk) {
1359                                 /* Always round to higher voltage. */
1360                                 voltage->Voltage = data->mvdd_voltage_table.entries[i].value;
1361                                 break;
1362                         }
1363                 }
1364
1365                 PP_ASSERT_WITH_CODE(i < hwmgr->dyn_state.mvdd_dependency_on_mclk->count,
1366                         "MVDD Voltage is outside the supported range.", return -EINVAL);
1367
1368         } else {
1369                 return -EINVAL;
1370         }
1371
1372         return 0;
1373 }
1374
1375 static int ci_populate_smc_acpi_level(struct pp_hwmgr *hwmgr,
1376         SMU7_Discrete_DpmTable *table)
1377 {
1378         int result = 0;
1379         const struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1380         struct pp_atomctrl_clock_dividers_vi dividers;
1381
1382         SMU7_Discrete_VoltageLevel voltage_level;
1383         uint32_t spll_func_cntl    = data->clock_registers.vCG_SPLL_FUNC_CNTL;
1384         uint32_t spll_func_cntl_2  = data->clock_registers.vCG_SPLL_FUNC_CNTL_2;
1385         uint32_t dll_cntl          = data->clock_registers.vDLL_CNTL;
1386         uint32_t mclk_pwrmgt_cntl  = data->clock_registers.vMCLK_PWRMGT_CNTL;
1387
1388
1389         /* The ACPI state should not do DPM on DC (or ever).*/
1390         table->ACPILevel.Flags &= ~PPSMC_SWSTATE_FLAG_DC;
1391
1392         if (data->acpi_vddc)
1393                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->acpi_vddc * VOLTAGE_SCALE);
1394         else
1395                 table->ACPILevel.MinVddc = PP_HOST_TO_SMC_UL(data->min_vddc_in_pptable * VOLTAGE_SCALE);
1396
1397         table->ACPILevel.MinVddcPhases = data->vddc_phase_shed_control ? 0 : 1;
1398         /* assign zero for now*/
1399         table->ACPILevel.SclkFrequency = atomctrl_get_reference_clock(hwmgr);
1400
1401         /* get the engine clock dividers for this clock value*/
1402         result = atomctrl_get_engine_pll_dividers_vi(hwmgr,
1403                 table->ACPILevel.SclkFrequency,  &dividers);
1404
1405         PP_ASSERT_WITH_CODE(result == 0,
1406                 "Error retrieving Engine Clock dividers from VBIOS.", return result);
1407
1408         /* divider ID for required SCLK*/
1409         table->ACPILevel.SclkDid = (uint8_t)dividers.pll_post_divider;
1410         table->ACPILevel.DisplayWatermark = PPSMC_DISPLAY_WATERMARK_LOW;
1411         table->ACPILevel.DeepSleepDivId = 0;
1412
1413         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1414                                                         CG_SPLL_FUNC_CNTL,   SPLL_PWRON,     0);
1415         spll_func_cntl      = PHM_SET_FIELD(spll_func_cntl,
1416                                                         CG_SPLL_FUNC_CNTL,   SPLL_RESET,     1);
1417         spll_func_cntl_2    = PHM_SET_FIELD(spll_func_cntl_2,
1418                                                         CG_SPLL_FUNC_CNTL_2, SCLK_MUX_SEL,   4);
1419
1420         table->ACPILevel.CgSpllFuncCntl = spll_func_cntl;
1421         table->ACPILevel.CgSpllFuncCntl2 = spll_func_cntl_2;
1422         table->ACPILevel.CgSpllFuncCntl3 = data->clock_registers.vCG_SPLL_FUNC_CNTL_3;
1423         table->ACPILevel.CgSpllFuncCntl4 = data->clock_registers.vCG_SPLL_FUNC_CNTL_4;
1424         table->ACPILevel.SpllSpreadSpectrum = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM;
1425         table->ACPILevel.SpllSpreadSpectrum2 = data->clock_registers.vCG_SPLL_SPREAD_SPECTRUM_2;
1426         table->ACPILevel.CcPwrDynRm = 0;
1427         table->ACPILevel.CcPwrDynRm1 = 0;
1428
1429         /* For various features to be enabled/disabled while this level is active.*/
1430         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.Flags);
1431         /* SCLK frequency in units of 10KHz*/
1432         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SclkFrequency);
1433         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl);
1434         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl2);
1435         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl3);
1436         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CgSpllFuncCntl4);
1437         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum);
1438         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.SpllSpreadSpectrum2);
1439         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm);
1440         CONVERT_FROM_HOST_TO_SMC_UL(table->ACPILevel.CcPwrDynRm1);
1441
1442
1443         /* table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;*/
1444         table->MemoryACPILevel.MinVddc = table->ACPILevel.MinVddc;
1445         table->MemoryACPILevel.MinVddcPhases = table->ACPILevel.MinVddcPhases;
1446
1447         if (SMU7_VOLTAGE_CONTROL_NONE == data->vddci_control)
1448                 table->MemoryACPILevel.MinVddci = table->MemoryACPILevel.MinVddc;
1449         else {
1450                 if (data->acpi_vddci != 0)
1451                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->acpi_vddci * VOLTAGE_SCALE);
1452                 else
1453                         table->MemoryACPILevel.MinVddci = PP_HOST_TO_SMC_UL(data->min_vddci_in_pptable * VOLTAGE_SCALE);
1454         }
1455
1456         if (0 == ci_populate_mvdd_value(hwmgr, 0, &voltage_level))
1457                 table->MemoryACPILevel.MinMvdd =
1458                         PP_HOST_TO_SMC_UL(voltage_level.Voltage * VOLTAGE_SCALE);
1459         else
1460                 table->MemoryACPILevel.MinMvdd = 0;
1461
1462         /* Force reset on DLL*/
1463         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1464                 MCLK_PWRMGT_CNTL, MRDCK0_RESET, 0x1);
1465         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1466                 MCLK_PWRMGT_CNTL, MRDCK1_RESET, 0x1);
1467
1468         /* Disable DLL in ACPIState*/
1469         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1470                 MCLK_PWRMGT_CNTL, MRDCK0_PDNB, 0);
1471         mclk_pwrmgt_cntl    = PHM_SET_FIELD(mclk_pwrmgt_cntl,
1472                 MCLK_PWRMGT_CNTL, MRDCK1_PDNB, 0);
1473
1474         /* Enable DLL bypass signal*/
1475         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1476                 DLL_CNTL, MRDCK0_BYPASS, 0);
1477         dll_cntl            = PHM_SET_FIELD(dll_cntl,
1478                 DLL_CNTL, MRDCK1_BYPASS, 0);
1479
1480         table->MemoryACPILevel.DllCntl            =
1481                 PP_HOST_TO_SMC_UL(dll_cntl);
1482         table->MemoryACPILevel.MclkPwrmgtCntl     =
1483                 PP_HOST_TO_SMC_UL(mclk_pwrmgt_cntl);
1484         table->MemoryACPILevel.MpllAdFuncCntl     =
1485                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_AD_FUNC_CNTL);
1486         table->MemoryACPILevel.MpllDqFuncCntl     =
1487                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_DQ_FUNC_CNTL);
1488         table->MemoryACPILevel.MpllFuncCntl       =
1489                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL);
1490         table->MemoryACPILevel.MpllFuncCntl_1     =
1491                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_1);
1492         table->MemoryACPILevel.MpllFuncCntl_2     =
1493                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_FUNC_CNTL_2);
1494         table->MemoryACPILevel.MpllSs1            =
1495                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS1);
1496         table->MemoryACPILevel.MpllSs2            =
1497                 PP_HOST_TO_SMC_UL(data->clock_registers.vMPLL_SS2);
1498
1499         table->MemoryACPILevel.EnabledForThrottle = 0;
1500         table->MemoryACPILevel.EnabledForActivity = 0;
1501         table->MemoryACPILevel.UpH = 0;
1502         table->MemoryACPILevel.DownH = 100;
1503         table->MemoryACPILevel.VoltageDownH = 0;
1504         /* Indicates maximum activity level for this performance level.*/
1505         table->MemoryACPILevel.ActivityLevel = PP_HOST_TO_SMC_US(data->current_profile_setting.mclk_activity);
1506
1507         table->MemoryACPILevel.StutterEnable = 0;
1508         table->MemoryACPILevel.StrobeEnable = 0;
1509         table->MemoryACPILevel.EdcReadEnable = 0;
1510         table->MemoryACPILevel.EdcWriteEnable = 0;
1511         table->MemoryACPILevel.RttEnable = 0;
1512
1513         return result;
1514 }
1515
1516 static int ci_populate_smc_uvd_level(struct pp_hwmgr *hwmgr,
1517                                         SMU7_Discrete_DpmTable *table)
1518 {
1519         int result = 0;
1520         uint8_t count;
1521         struct pp_atomctrl_clock_dividers_vi dividers;
1522         struct phm_uvd_clock_voltage_dependency_table *uvd_table =
1523                 hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
1524
1525         table->UvdLevelCount = (uint8_t)(uvd_table->count);
1526
1527         for (count = 0; count < table->UvdLevelCount; count++) {
1528                 table->UvdLevel[count].VclkFrequency =
1529                                         uvd_table->entries[count].vclk;
1530                 table->UvdLevel[count].DclkFrequency =
1531                                         uvd_table->entries[count].dclk;
1532                 table->UvdLevel[count].MinVddc =
1533                                         uvd_table->entries[count].v * VOLTAGE_SCALE;
1534                 table->UvdLevel[count].MinVddcPhases = 1;
1535
1536                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1537                                 table->UvdLevel[count].VclkFrequency, &dividers);
1538                 PP_ASSERT_WITH_CODE((0 == result),
1539                                 "can not find divide id for Vclk clock", return result);
1540
1541                 table->UvdLevel[count].VclkDivider = (uint8_t)dividers.pll_post_divider;
1542
1543                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1544                                 table->UvdLevel[count].DclkFrequency, &dividers);
1545                 PP_ASSERT_WITH_CODE((0 == result),
1546                                 "can not find divide id for Dclk clock", return result);
1547
1548                 table->UvdLevel[count].DclkDivider = (uint8_t)dividers.pll_post_divider;
1549                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].VclkFrequency);
1550                 CONVERT_FROM_HOST_TO_SMC_UL(table->UvdLevel[count].DclkFrequency);
1551                 CONVERT_FROM_HOST_TO_SMC_US(table->UvdLevel[count].MinVddc);
1552         }
1553
1554         return result;
1555 }
1556
1557 static int ci_populate_smc_vce_level(struct pp_hwmgr *hwmgr,
1558                 SMU7_Discrete_DpmTable *table)
1559 {
1560         int result = -EINVAL;
1561         uint8_t count;
1562         struct pp_atomctrl_clock_dividers_vi dividers;
1563         struct phm_vce_clock_voltage_dependency_table *vce_table =
1564                                 hwmgr->dyn_state.vce_clock_voltage_dependency_table;
1565
1566         table->VceLevelCount = (uint8_t)(vce_table->count);
1567         table->VceBootLevel = 0;
1568
1569         for (count = 0; count < table->VceLevelCount; count++) {
1570                 table->VceLevel[count].Frequency = vce_table->entries[count].evclk;
1571                 table->VceLevel[count].MinVoltage =
1572                                 vce_table->entries[count].v * VOLTAGE_SCALE;
1573                 table->VceLevel[count].MinPhases = 1;
1574
1575                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1576                                 table->VceLevel[count].Frequency, &dividers);
1577                 PP_ASSERT_WITH_CODE((0 == result),
1578                                 "can not find divide id for VCE engine clock",
1579                                 return result);
1580
1581                 table->VceLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1582
1583                 CONVERT_FROM_HOST_TO_SMC_UL(table->VceLevel[count].Frequency);
1584                 CONVERT_FROM_HOST_TO_SMC_US(table->VceLevel[count].MinVoltage);
1585         }
1586         return result;
1587 }
1588
1589 static int ci_populate_smc_acp_level(struct pp_hwmgr *hwmgr,
1590                                         SMU7_Discrete_DpmTable *table)
1591 {
1592         int result = -EINVAL;
1593         uint8_t count;
1594         struct pp_atomctrl_clock_dividers_vi dividers;
1595         struct phm_acp_clock_voltage_dependency_table *acp_table =
1596                                 hwmgr->dyn_state.acp_clock_voltage_dependency_table;
1597
1598         table->AcpLevelCount = (uint8_t)(acp_table->count);
1599         table->AcpBootLevel = 0;
1600
1601         for (count = 0; count < table->AcpLevelCount; count++) {
1602                 table->AcpLevel[count].Frequency = acp_table->entries[count].acpclk;
1603                 table->AcpLevel[count].MinVoltage = acp_table->entries[count].v;
1604                 table->AcpLevel[count].MinPhases = 1;
1605
1606                 result = atomctrl_get_dfs_pll_dividers_vi(hwmgr,
1607                                 table->AcpLevel[count].Frequency, &dividers);
1608                 PP_ASSERT_WITH_CODE((0 == result),
1609                                 "can not find divide id for engine clock", return result);
1610
1611                 table->AcpLevel[count].Divider = (uint8_t)dividers.pll_post_divider;
1612
1613                 CONVERT_FROM_HOST_TO_SMC_UL(table->AcpLevel[count].Frequency);
1614                 CONVERT_FROM_HOST_TO_SMC_US(table->AcpLevel[count].MinVoltage);
1615         }
1616         return result;
1617 }
1618
1619 static int ci_populate_memory_timing_parameters(
1620                 struct pp_hwmgr *hwmgr,
1621                 uint32_t engine_clock,
1622                 uint32_t memory_clock,
1623                 struct SMU7_Discrete_MCArbDramTimingTableEntry *arb_regs
1624                 )
1625 {
1626         uint32_t dramTiming;
1627         uint32_t dramTiming2;
1628         uint32_t burstTime;
1629         int result;
1630
1631         result = atomctrl_set_engine_dram_timings_rv770(hwmgr,
1632                                 engine_clock, memory_clock);
1633
1634         PP_ASSERT_WITH_CODE(result == 0,
1635                 "Error calling VBIOS to set DRAM_TIMING.", return result);
1636
1637         dramTiming  = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING);
1638         dramTiming2 = cgs_read_register(hwmgr->device, mmMC_ARB_DRAM_TIMING2);
1639         burstTime = PHM_READ_FIELD(hwmgr->device, MC_ARB_BURST_TIME, STATE0);
1640
1641         arb_regs->McArbDramTiming  = PP_HOST_TO_SMC_UL(dramTiming);
1642         arb_regs->McArbDramTiming2 = PP_HOST_TO_SMC_UL(dramTiming2);
1643         arb_regs->McArbBurstTime = (uint8_t)burstTime;
1644
1645         return 0;
1646 }
1647
1648 static int ci_program_memory_timing_parameters(struct pp_hwmgr *hwmgr)
1649 {
1650         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1651         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1652         int result = 0;
1653         SMU7_Discrete_MCArbDramTimingTable  arb_regs;
1654         uint32_t i, j;
1655
1656         memset(&arb_regs, 0x00, sizeof(SMU7_Discrete_MCArbDramTimingTable));
1657
1658         for (i = 0; i < data->dpm_table.sclk_table.count; i++) {
1659                 for (j = 0; j < data->dpm_table.mclk_table.count; j++) {
1660                         result = ci_populate_memory_timing_parameters
1661                                 (hwmgr, data->dpm_table.sclk_table.dpm_levels[i].value,
1662                                  data->dpm_table.mclk_table.dpm_levels[j].value,
1663                                  &arb_regs.entries[i][j]);
1664
1665                         if (0 != result)
1666                                 break;
1667                 }
1668         }
1669
1670         if (0 == result) {
1671                 result = ci_copy_bytes_to_smc(
1672                                 hwmgr,
1673                                 smu_data->arb_table_start,
1674                                 (uint8_t *)&arb_regs,
1675                                 sizeof(SMU7_Discrete_MCArbDramTimingTable),
1676                                 SMC_RAM_END
1677                                 );
1678         }
1679
1680         return result;
1681 }
1682
1683 static int ci_populate_smc_boot_level(struct pp_hwmgr *hwmgr,
1684                         SMU7_Discrete_DpmTable *table)
1685 {
1686         int result = 0;
1687         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1688         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1689
1690         table->GraphicsBootLevel = 0;
1691         table->MemoryBootLevel = 0;
1692
1693         /* find boot level from dpm table*/
1694         result = phm_find_boot_level(&(data->dpm_table.sclk_table),
1695                         data->vbios_boot_state.sclk_bootup_value,
1696                         (uint32_t *)&(smu_data->smc_state_table.GraphicsBootLevel));
1697
1698         if (0 != result) {
1699                 smu_data->smc_state_table.GraphicsBootLevel = 0;
1700                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Graphics DPM level 0!\n");
1701                 result = 0;
1702         }
1703
1704         result = phm_find_boot_level(&(data->dpm_table.mclk_table),
1705                 data->vbios_boot_state.mclk_bootup_value,
1706                 (uint32_t *)&(smu_data->smc_state_table.MemoryBootLevel));
1707
1708         if (0 != result) {
1709                 smu_data->smc_state_table.MemoryBootLevel = 0;
1710                 pr_err("VBIOS did not find boot engine clock value in dependency table. Using Memory DPM level 0!\n");
1711                 result = 0;
1712         }
1713
1714         table->BootVddc = data->vbios_boot_state.vddc_bootup_value;
1715         table->BootVddci = data->vbios_boot_state.vddci_bootup_value;
1716         table->BootMVdd = data->vbios_boot_state.mvdd_bootup_value;
1717
1718         return result;
1719 }
1720
1721 static int ci_populate_mc_reg_address(struct pp_hwmgr *hwmgr,
1722                                  SMU7_Discrete_MCRegisters *mc_reg_table)
1723 {
1724         const struct ci_smumgr *smu_data = (struct ci_smumgr *)hwmgr->smu_backend;
1725
1726         uint32_t i, j;
1727
1728         for (i = 0, j = 0; j < smu_data->mc_reg_table.last; j++) {
1729                 if (smu_data->mc_reg_table.validflag & 1<<j) {
1730                         PP_ASSERT_WITH_CODE(i < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE,
1731                                 "Index of mc_reg_table->address[] array out of boundary", return -EINVAL);
1732                         mc_reg_table->address[i].s0 =
1733                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s0);
1734                         mc_reg_table->address[i].s1 =
1735                                 PP_HOST_TO_SMC_US(smu_data->mc_reg_table.mc_reg_address[j].s1);
1736                         i++;
1737                 }
1738         }
1739
1740         mc_reg_table->last = (uint8_t)i;
1741
1742         return 0;
1743 }
1744
1745 static void ci_convert_mc_registers(
1746         const struct ci_mc_reg_entry *entry,
1747         SMU7_Discrete_MCRegisterSet *data,
1748         uint32_t num_entries, uint32_t valid_flag)
1749 {
1750         uint32_t i, j;
1751
1752         for (i = 0, j = 0; j < num_entries; j++) {
1753                 if (valid_flag & 1<<j) {
1754                         data->value[i] = PP_HOST_TO_SMC_UL(entry->mc_data[j]);
1755                         i++;
1756                 }
1757         }
1758 }
1759
1760 static int ci_convert_mc_reg_table_entry_to_smc(
1761                 struct pp_hwmgr *hwmgr,
1762                 const uint32_t memory_clock,
1763                 SMU7_Discrete_MCRegisterSet *mc_reg_table_data
1764                 )
1765 {
1766         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1767         uint32_t i = 0;
1768
1769         for (i = 0; i < smu_data->mc_reg_table.num_entries; i++) {
1770                 if (memory_clock <=
1771                         smu_data->mc_reg_table.mc_reg_table_entry[i].mclk_max) {
1772                         break;
1773                 }
1774         }
1775
1776         if ((i == smu_data->mc_reg_table.num_entries) && (i > 0))
1777                 --i;
1778
1779         ci_convert_mc_registers(&smu_data->mc_reg_table.mc_reg_table_entry[i],
1780                                 mc_reg_table_data, smu_data->mc_reg_table.last,
1781                                 smu_data->mc_reg_table.validflag);
1782
1783         return 0;
1784 }
1785
1786 static int ci_convert_mc_reg_table_to_smc(struct pp_hwmgr *hwmgr,
1787                 SMU7_Discrete_MCRegisters *mc_regs)
1788 {
1789         int result = 0;
1790         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1791         int res;
1792         uint32_t i;
1793
1794         for (i = 0; i < data->dpm_table.mclk_table.count; i++) {
1795                 res = ci_convert_mc_reg_table_entry_to_smc(
1796                                 hwmgr,
1797                                 data->dpm_table.mclk_table.dpm_levels[i].value,
1798                                 &mc_regs->data[i]
1799                                 );
1800
1801                 if (0 != res)
1802                         result = res;
1803         }
1804
1805         return result;
1806 }
1807
1808 static int ci_update_and_upload_mc_reg_table(struct pp_hwmgr *hwmgr)
1809 {
1810         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1811         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1812         uint32_t address;
1813         int32_t result;
1814
1815         if (0 == (data->need_update_smu7_dpm_table & DPMTABLE_OD_UPDATE_MCLK))
1816                 return 0;
1817
1818
1819         memset(&smu_data->mc_regs, 0, sizeof(SMU7_Discrete_MCRegisters));
1820
1821         result = ci_convert_mc_reg_table_to_smc(hwmgr, &(smu_data->mc_regs));
1822
1823         if (result != 0)
1824                 return result;
1825
1826         address = smu_data->mc_reg_table_start + (uint32_t)offsetof(SMU7_Discrete_MCRegisters, data[0]);
1827
1828         return  ci_copy_bytes_to_smc(hwmgr, address,
1829                                  (uint8_t *)&smu_data->mc_regs.data[0],
1830                                 sizeof(SMU7_Discrete_MCRegisterSet) * data->dpm_table.mclk_table.count,
1831                                 SMC_RAM_END);
1832 }
1833
1834 static int ci_populate_initial_mc_reg_table(struct pp_hwmgr *hwmgr)
1835 {
1836         int result;
1837         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1838
1839         memset(&smu_data->mc_regs, 0x00, sizeof(SMU7_Discrete_MCRegisters));
1840         result = ci_populate_mc_reg_address(hwmgr, &(smu_data->mc_regs));
1841         PP_ASSERT_WITH_CODE(0 == result,
1842                 "Failed to initialize MCRegTable for the MC register addresses!", return result;);
1843
1844         result = ci_convert_mc_reg_table_to_smc(hwmgr, &smu_data->mc_regs);
1845         PP_ASSERT_WITH_CODE(0 == result,
1846                 "Failed to initialize MCRegTable for driver state!", return result;);
1847
1848         return ci_copy_bytes_to_smc(hwmgr, smu_data->mc_reg_table_start,
1849                         (uint8_t *)&smu_data->mc_regs, sizeof(SMU7_Discrete_MCRegisters), SMC_RAM_END);
1850 }
1851
1852 static int ci_populate_smc_initial_state(struct pp_hwmgr *hwmgr)
1853 {
1854         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1855         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1856         uint8_t count, level;
1857
1858         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_sclk->count);
1859
1860         for (level = 0; level < count; level++) {
1861                 if (hwmgr->dyn_state.vddc_dependency_on_sclk->entries[level].clk
1862                          >= data->vbios_boot_state.sclk_bootup_value) {
1863                         smu_data->smc_state_table.GraphicsBootLevel = level;
1864                         break;
1865                 }
1866         }
1867
1868         count = (uint8_t)(hwmgr->dyn_state.vddc_dependency_on_mclk->count);
1869
1870         for (level = 0; level < count; level++) {
1871                 if (hwmgr->dyn_state.vddc_dependency_on_mclk->entries[level].clk
1872                         >= data->vbios_boot_state.mclk_bootup_value) {
1873                         smu_data->smc_state_table.MemoryBootLevel = level;
1874                         break;
1875                 }
1876         }
1877
1878         return 0;
1879 }
1880
1881 static int ci_populate_smc_svi2_config(struct pp_hwmgr *hwmgr,
1882                                             SMU7_Discrete_DpmTable *table)
1883 {
1884         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1885
1886         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control)
1887                 table->SVI2Enable = 1;
1888         else
1889                 table->SVI2Enable = 0;
1890         return 0;
1891 }
1892
1893 static int ci_start_smc(struct pp_hwmgr *hwmgr)
1894 {
1895         /* set smc instruct start point at 0x0 */
1896         ci_program_jump_on_start(hwmgr);
1897
1898         /* enable smc clock */
1899         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 0);
1900
1901         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 0);
1902
1903         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, FIRMWARE_FLAGS,
1904                                  INTERRUPTS_ENABLED, 1);
1905
1906         return 0;
1907 }
1908
1909 static int ci_populate_vr_config(struct pp_hwmgr *hwmgr, SMU7_Discrete_DpmTable *table)
1910 {
1911         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1912         uint16_t config;
1913
1914         config = VR_SVI2_PLANE_1;
1915         table->VRConfig |= (config<<VRCONF_VDDGFX_SHIFT);
1916
1917         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->voltage_control) {
1918                 config = VR_SVI2_PLANE_2;
1919                 table->VRConfig |= config;
1920         } else {
1921                 pr_info("VDDCshould be on SVI2 controller!");
1922         }
1923
1924         if (SMU7_VOLTAGE_CONTROL_BY_SVID2 == data->vddci_control) {
1925                 config = VR_SVI2_PLANE_2;
1926                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1927         } else if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->vddci_control) {
1928                 config = VR_SMIO_PATTERN_1;
1929                 table->VRConfig |= (config<<VRCONF_VDDCI_SHIFT);
1930         }
1931
1932         if (SMU7_VOLTAGE_CONTROL_BY_GPIO == data->mvdd_control) {
1933                 config = VR_SMIO_PATTERN_2;
1934                 table->VRConfig |= (config<<VRCONF_MVDD_SHIFT);
1935         }
1936
1937         return 0;
1938 }
1939
1940 static int ci_init_smc_table(struct pp_hwmgr *hwmgr)
1941 {
1942         int result;
1943         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
1944         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
1945         SMU7_Discrete_DpmTable  *table = &(smu_data->smc_state_table);
1946         struct pp_atomctrl_gpio_pin_assignment gpio_pin;
1947         u32 i;
1948
1949         ci_initialize_power_tune_defaults(hwmgr);
1950         memset(&(smu_data->smc_state_table), 0x00, sizeof(smu_data->smc_state_table));
1951
1952         if (SMU7_VOLTAGE_CONTROL_NONE != data->voltage_control)
1953                 ci_populate_smc_voltage_tables(hwmgr, table);
1954
1955         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1956                         PHM_PlatformCaps_AutomaticDCTransition))
1957                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GPIO_DC;
1958
1959
1960         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
1961                         PHM_PlatformCaps_StepVddc))
1962                 table->SystemFlags |= PPSMC_SYSTEMFLAG_STEPVDDC;
1963
1964         if (data->is_memory_gddr5)
1965                 table->SystemFlags |= PPSMC_SYSTEMFLAG_GDDR5;
1966
1967         if (data->ulv_supported) {
1968                 result = ci_populate_ulv_state(hwmgr, &(table->Ulv));
1969                 PP_ASSERT_WITH_CODE(0 == result,
1970                         "Failed to initialize ULV state!", return result);
1971
1972                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC,
1973                         ixCG_ULV_PARAMETER, 0x40035);
1974         }
1975
1976         result = ci_populate_all_graphic_levels(hwmgr);
1977         PP_ASSERT_WITH_CODE(0 == result,
1978                 "Failed to initialize Graphics Level!", return result);
1979
1980         result = ci_populate_all_memory_levels(hwmgr);
1981         PP_ASSERT_WITH_CODE(0 == result,
1982                 "Failed to initialize Memory Level!", return result);
1983
1984         result = ci_populate_smc_link_level(hwmgr, table);
1985         PP_ASSERT_WITH_CODE(0 == result,
1986                 "Failed to initialize Link Level!", return result);
1987
1988         result = ci_populate_smc_acpi_level(hwmgr, table);
1989         PP_ASSERT_WITH_CODE(0 == result,
1990                 "Failed to initialize ACPI Level!", return result);
1991
1992         result = ci_populate_smc_vce_level(hwmgr, table);
1993         PP_ASSERT_WITH_CODE(0 == result,
1994                 "Failed to initialize VCE Level!", return result);
1995
1996         result = ci_populate_smc_acp_level(hwmgr, table);
1997         PP_ASSERT_WITH_CODE(0 == result,
1998                 "Failed to initialize ACP Level!", return result);
1999
2000         /* Since only the initial state is completely set up at this point (the other states are just copies of the boot state) we only */
2001         /* need to populate the  ARB settings for the initial state. */
2002         result = ci_program_memory_timing_parameters(hwmgr);
2003         PP_ASSERT_WITH_CODE(0 == result,
2004                 "Failed to Write ARB settings for the initial state.", return result);
2005
2006         result = ci_populate_smc_uvd_level(hwmgr, table);
2007         PP_ASSERT_WITH_CODE(0 == result,
2008                 "Failed to initialize UVD Level!", return result);
2009
2010         table->UvdBootLevel  = 0;
2011         table->VceBootLevel  = 0;
2012         table->AcpBootLevel  = 0;
2013         table->SamuBootLevel  = 0;
2014
2015         table->GraphicsBootLevel = 0;
2016         table->MemoryBootLevel = 0;
2017
2018         result = ci_populate_smc_boot_level(hwmgr, table);
2019         PP_ASSERT_WITH_CODE(0 == result,
2020                 "Failed to initialize Boot Level!", return result);
2021
2022         result = ci_populate_smc_initial_state(hwmgr);
2023         PP_ASSERT_WITH_CODE(0 == result, "Failed to initialize Boot State!", return result);
2024
2025         result = ci_populate_bapm_parameters_in_dpm_table(hwmgr);
2026         PP_ASSERT_WITH_CODE(0 == result, "Failed to populate BAPM Parameters!", return result);
2027
2028         table->UVDInterval = 1;
2029         table->VCEInterval = 1;
2030         table->ACPInterval = 1;
2031         table->SAMUInterval = 1;
2032         table->GraphicsVoltageChangeEnable  = 1;
2033         table->GraphicsThermThrottleEnable  = 1;
2034         table->GraphicsInterval = 1;
2035         table->VoltageInterval  = 1;
2036         table->ThermalInterval  = 1;
2037
2038         table->TemperatureLimitHigh =
2039                 (data->thermal_temp_setting.temperature_high *
2040                  SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2041         table->TemperatureLimitLow =
2042                 (data->thermal_temp_setting.temperature_low *
2043                 SMU7_Q88_FORMAT_CONVERSION_UNIT) / PP_TEMPERATURE_UNITS_PER_CENTIGRADES;
2044
2045         table->MemoryVoltageChangeEnable  = 1;
2046         table->MemoryInterval  = 1;
2047         table->VoltageResponseTime  = 0;
2048         table->VddcVddciDelta = 4000;
2049         table->PhaseResponseTime  = 0;
2050         table->MemoryThermThrottleEnable  = 1;
2051
2052         PP_ASSERT_WITH_CODE((1 <= data->dpm_table.pcie_speed_table.count),
2053                         "There must be 1 or more PCIE levels defined in PPTable.",
2054                         return -EINVAL);
2055
2056         table->PCIeBootLinkLevel = (uint8_t)data->dpm_table.pcie_speed_table.count;
2057         table->PCIeGenInterval = 1;
2058
2059         result = ci_populate_vr_config(hwmgr, table);
2060         PP_ASSERT_WITH_CODE(0 == result,
2061                         "Failed to populate VRConfig setting!", return result);
2062         data->vr_config = table->VRConfig;
2063
2064         ci_populate_smc_svi2_config(hwmgr, table);
2065
2066         for (i = 0; i < SMU7_MAX_ENTRIES_SMIO; i++)
2067                 CONVERT_FROM_HOST_TO_SMC_UL(table->Smio[i]);
2068
2069         table->ThermGpio  = 17;
2070         table->SclkStepSize = 0x4000;
2071         if (atomctrl_get_pp_assign_pin(hwmgr, VDDC_VRHOT_GPIO_PINID, &gpio_pin)) {
2072                 table->VRHotGpio = gpio_pin.uc_gpio_pin_bit_shift;
2073                 phm_cap_set(hwmgr->platform_descriptor.platformCaps,
2074                                 PHM_PlatformCaps_RegulatorHot);
2075         } else {
2076                 table->VRHotGpio = SMU7_UNUSED_GPIO_PIN;
2077                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2078                                 PHM_PlatformCaps_RegulatorHot);
2079         }
2080
2081         table->AcDcGpio = SMU7_UNUSED_GPIO_PIN;
2082
2083         CONVERT_FROM_HOST_TO_SMC_UL(table->SystemFlags);
2084         CONVERT_FROM_HOST_TO_SMC_UL(table->VRConfig);
2085         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcVid);
2086         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddcPhase);
2087         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskVddciVid);
2088         CONVERT_FROM_HOST_TO_SMC_UL(table->SmioMaskMvddVid);
2089         CONVERT_FROM_HOST_TO_SMC_UL(table->SclkStepSize);
2090         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitHigh);
2091         CONVERT_FROM_HOST_TO_SMC_US(table->TemperatureLimitLow);
2092         table->VddcVddciDelta = PP_HOST_TO_SMC_US(table->VddcVddciDelta);
2093         CONVERT_FROM_HOST_TO_SMC_US(table->VoltageResponseTime);
2094         CONVERT_FROM_HOST_TO_SMC_US(table->PhaseResponseTime);
2095
2096         table->BootVddc = PP_HOST_TO_SMC_US(table->BootVddc * VOLTAGE_SCALE);
2097         table->BootVddci = PP_HOST_TO_SMC_US(table->BootVddci * VOLTAGE_SCALE);
2098         table->BootMVdd = PP_HOST_TO_SMC_US(table->BootMVdd * VOLTAGE_SCALE);
2099
2100         /* Upload all dpm data to SMC memory.(dpm level, dpm level count etc) */
2101         result = ci_copy_bytes_to_smc(hwmgr, smu_data->dpm_table_start +
2102                                         offsetof(SMU7_Discrete_DpmTable, SystemFlags),
2103                                         (uint8_t *)&(table->SystemFlags),
2104                                         sizeof(SMU7_Discrete_DpmTable)-3 * sizeof(SMU7_PIDController),
2105                                         SMC_RAM_END);
2106
2107         PP_ASSERT_WITH_CODE(0 == result,
2108                 "Failed to upload dpm data to SMC memory!", return result;);
2109
2110         result = ci_populate_initial_mc_reg_table(hwmgr);
2111         PP_ASSERT_WITH_CODE((0 == result),
2112                 "Failed to populate initialize MC Reg table!", return result);
2113
2114         result = ci_populate_pm_fuses(hwmgr);
2115         PP_ASSERT_WITH_CODE(0 == result,
2116                         "Failed to  populate PM fuses to SMC memory!", return result);
2117
2118         ci_start_smc(hwmgr);
2119
2120         return 0;
2121 }
2122
2123 static int ci_thermal_setup_fan_table(struct pp_hwmgr *hwmgr)
2124 {
2125         struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2126         SMU7_Discrete_FanTable fan_table = { FDO_MODE_HARDWARE };
2127         uint32_t duty100;
2128         uint32_t t_diff1, t_diff2, pwm_diff1, pwm_diff2;
2129         uint16_t fdo_min, slope1, slope2;
2130         uint32_t reference_clock;
2131         int res;
2132         uint64_t tmp64;
2133
2134         if (!phm_cap_enabled(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl))
2135                 return 0;
2136
2137         if (hwmgr->thermal_controller.fanInfo.bNoFan) {
2138                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps,
2139                         PHM_PlatformCaps_MicrocodeFanControl);
2140                 return 0;
2141         }
2142
2143         if (0 == ci_data->fan_table_start) {
2144                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2145                 return 0;
2146         }
2147
2148         duty100 = PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_FDO_CTRL1, FMAX_DUTY100);
2149
2150         if (0 == duty100) {
2151                 phm_cap_unset(hwmgr->platform_descriptor.platformCaps, PHM_PlatformCaps_MicrocodeFanControl);
2152                 return 0;
2153         }
2154
2155         tmp64 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin * duty100;
2156         do_div(tmp64, 10000);
2157         fdo_min = (uint16_t)tmp64;
2158
2159         t_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usTMed - hwmgr->thermal_controller.advanceFanControlParameters.usTMin;
2160         t_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usTHigh - hwmgr->thermal_controller.advanceFanControlParameters.usTMed;
2161
2162         pwm_diff1 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMin;
2163         pwm_diff2 = hwmgr->thermal_controller.advanceFanControlParameters.usPWMHigh - hwmgr->thermal_controller.advanceFanControlParameters.usPWMMed;
2164
2165         slope1 = (uint16_t)((50 + ((16 * duty100 * pwm_diff1) / t_diff1)) / 100);
2166         slope2 = (uint16_t)((50 + ((16 * duty100 * pwm_diff2) / t_diff2)) / 100);
2167
2168         fan_table.TempMin = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMin) / 100);
2169         fan_table.TempMed = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMed) / 100);
2170         fan_table.TempMax = cpu_to_be16((50 + hwmgr->thermal_controller.advanceFanControlParameters.usTMax) / 100);
2171
2172         fan_table.Slope1 = cpu_to_be16(slope1);
2173         fan_table.Slope2 = cpu_to_be16(slope2);
2174
2175         fan_table.FdoMin = cpu_to_be16(fdo_min);
2176
2177         fan_table.HystDown = cpu_to_be16(hwmgr->thermal_controller.advanceFanControlParameters.ucTHyst);
2178
2179         fan_table.HystUp = cpu_to_be16(1);
2180
2181         fan_table.HystSlope = cpu_to_be16(1);
2182
2183         fan_table.TempRespLim = cpu_to_be16(5);
2184
2185         reference_clock = amdgpu_asic_get_xclk((struct amdgpu_device *)hwmgr->adev);
2186
2187         fan_table.RefreshPeriod = cpu_to_be32((hwmgr->thermal_controller.advanceFanControlParameters.ulCycleDelay * reference_clock) / 1600);
2188
2189         fan_table.FdoMax = cpu_to_be16((uint16_t)duty100);
2190
2191         fan_table.TempSrc = (uint8_t)PHM_READ_VFPF_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, CG_MULT_THERMAL_CTRL, TEMP_SEL);
2192
2193         res = ci_copy_bytes_to_smc(hwmgr, ci_data->fan_table_start, (uint8_t *)&fan_table, (uint32_t)sizeof(fan_table), SMC_RAM_END);
2194
2195         return 0;
2196 }
2197
2198 static int ci_program_mem_timing_parameters(struct pp_hwmgr *hwmgr)
2199 {
2200         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2201
2202         if (data->need_update_smu7_dpm_table &
2203                         (DPMTABLE_OD_UPDATE_SCLK + DPMTABLE_OD_UPDATE_MCLK))
2204                 return ci_program_memory_timing_parameters(hwmgr);
2205
2206         return 0;
2207 }
2208
2209 static int ci_update_sclk_threshold(struct pp_hwmgr *hwmgr)
2210 {
2211         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2212         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2213
2214         int result = 0;
2215         uint32_t low_sclk_interrupt_threshold = 0;
2216
2217         if (phm_cap_enabled(hwmgr->platform_descriptor.platformCaps,
2218                         PHM_PlatformCaps_SclkThrottleLowNotification)
2219                 && (data->low_sclk_interrupt_threshold != 0)) {
2220                 low_sclk_interrupt_threshold =
2221                                 data->low_sclk_interrupt_threshold;
2222
2223                 CONVERT_FROM_HOST_TO_SMC_UL(low_sclk_interrupt_threshold);
2224
2225                 result = ci_copy_bytes_to_smc(
2226                                 hwmgr,
2227                                 smu_data->dpm_table_start +
2228                                 offsetof(SMU7_Discrete_DpmTable,
2229                                         LowSclkInterruptT),
2230                                 (uint8_t *)&low_sclk_interrupt_threshold,
2231                                 sizeof(uint32_t),
2232                                 SMC_RAM_END);
2233         }
2234
2235         result = ci_update_and_upload_mc_reg_table(hwmgr);
2236
2237         PP_ASSERT_WITH_CODE((0 == result), "Failed to upload MC reg table!", return result);
2238
2239         result = ci_program_mem_timing_parameters(hwmgr);
2240         PP_ASSERT_WITH_CODE((result == 0),
2241                         "Failed to program memory timing parameters!",
2242                         );
2243
2244         return result;
2245 }
2246
2247 static uint32_t ci_get_offsetof(uint32_t type, uint32_t member)
2248 {
2249         switch (type) {
2250         case SMU_SoftRegisters:
2251                 switch (member) {
2252                 case HandshakeDisables:
2253                         return offsetof(SMU7_SoftRegisters, HandshakeDisables);
2254                 case VoltageChangeTimeout:
2255                         return offsetof(SMU7_SoftRegisters, VoltageChangeTimeout);
2256                 case AverageGraphicsActivity:
2257                         return offsetof(SMU7_SoftRegisters, AverageGraphicsA);
2258                 case AverageMemoryActivity:
2259                         return offsetof(SMU7_SoftRegisters, AverageMemoryA);
2260                 case PreVBlankGap:
2261                         return offsetof(SMU7_SoftRegisters, PreVBlankGap);
2262                 case VBlankTimeout:
2263                         return offsetof(SMU7_SoftRegisters, VBlankTimeout);
2264                 case DRAM_LOG_ADDR_H:
2265                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_H);
2266                 case DRAM_LOG_ADDR_L:
2267                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_ADDR_L);
2268                 case DRAM_LOG_PHY_ADDR_H:
2269                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_H);
2270                 case DRAM_LOG_PHY_ADDR_L:
2271                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_PHY_ADDR_L);
2272                 case DRAM_LOG_BUFF_SIZE:
2273                         return offsetof(SMU7_SoftRegisters, DRAM_LOG_BUFF_SIZE);
2274                 }
2275                 break;
2276         case SMU_Discrete_DpmTable:
2277                 switch (member) {
2278                 case LowSclkInterruptThreshold:
2279                         return offsetof(SMU7_Discrete_DpmTable, LowSclkInterruptT);
2280                 }
2281                 break;
2282         }
2283         pr_debug("can't get the offset of type %x member %x\n", type, member);
2284         return 0;
2285 }
2286
2287 static uint32_t ci_get_mac_definition(uint32_t value)
2288 {
2289         switch (value) {
2290         case SMU_MAX_LEVELS_GRAPHICS:
2291                 return SMU7_MAX_LEVELS_GRAPHICS;
2292         case SMU_MAX_LEVELS_MEMORY:
2293                 return SMU7_MAX_LEVELS_MEMORY;
2294         case SMU_MAX_LEVELS_LINK:
2295                 return SMU7_MAX_LEVELS_LINK;
2296         case SMU_MAX_ENTRIES_SMIO:
2297                 return SMU7_MAX_ENTRIES_SMIO;
2298         case SMU_MAX_LEVELS_VDDC:
2299                 return SMU7_MAX_LEVELS_VDDC;
2300         case SMU_MAX_LEVELS_VDDCI:
2301                 return SMU7_MAX_LEVELS_VDDCI;
2302         case SMU_MAX_LEVELS_MVDD:
2303                 return SMU7_MAX_LEVELS_MVDD;
2304         }
2305
2306         pr_debug("can't get the mac of %x\n", value);
2307         return 0;
2308 }
2309
2310 static int ci_load_smc_ucode(struct pp_hwmgr *hwmgr)
2311 {
2312         uint32_t byte_count, start_addr;
2313         uint8_t *src;
2314         uint32_t data;
2315
2316         struct cgs_firmware_info info = {0};
2317
2318         cgs_get_firmware_info(hwmgr->device, CGS_UCODE_ID_SMU, &info);
2319
2320         hwmgr->is_kicker = info.is_kicker;
2321         hwmgr->smu_version = info.version;
2322         byte_count = info.image_size;
2323         src = (uint8_t *)info.kptr;
2324         start_addr = info.ucode_start_address;
2325
2326         if  (byte_count > SMC_RAM_END) {
2327                 pr_err("SMC address is beyond the SMC RAM area.\n");
2328                 return -EINVAL;
2329         }
2330
2331         cgs_write_register(hwmgr->device, mmSMC_IND_INDEX_0, start_addr);
2332         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 1);
2333
2334         for (; byte_count >= 4; byte_count -= 4) {
2335                 data = (src[0] << 24) | (src[1] << 16) | (src[2] << 8) | src[3];
2336                 cgs_write_register(hwmgr->device, mmSMC_IND_DATA_0, data);
2337                 src += 4;
2338         }
2339         PHM_WRITE_FIELD(hwmgr->device, SMC_IND_ACCESS_CNTL, AUTO_INCREMENT_IND_0, 0);
2340
2341         if (0 != byte_count) {
2342                 pr_err("SMC size must be divisible by 4\n");
2343                 return -EINVAL;
2344         }
2345
2346         return 0;
2347 }
2348
2349 static int ci_upload_firmware(struct pp_hwmgr *hwmgr)
2350 {
2351         if (ci_is_smc_ram_running(hwmgr)) {
2352                 pr_info("smc is running, no need to load smc firmware\n");
2353                 return 0;
2354         }
2355         PHM_WAIT_INDIRECT_FIELD(hwmgr, SMC_IND, RCU_UC_EVENTS,
2356                         boot_seq_done, 1);
2357         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_MISC_CNTL,
2358                         pre_fetcher_en, 1);
2359
2360         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_CLOCK_CNTL_0, ck_disable, 1);
2361         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, SMC_SYSCON_RESET_CNTL, rst_reg, 1);
2362         return ci_load_smc_ucode(hwmgr);
2363 }
2364
2365 static int ci_process_firmware_header(struct pp_hwmgr *hwmgr)
2366 {
2367         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2368         struct ci_smumgr *ci_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2369
2370         uint32_t tmp = 0;
2371         int result;
2372         bool error = false;
2373
2374         if (ci_upload_firmware(hwmgr))
2375                 return -EINVAL;
2376
2377         result = ci_read_smc_sram_dword(hwmgr,
2378                                 SMU7_FIRMWARE_HEADER_LOCATION +
2379                                 offsetof(SMU7_Firmware_Header, DpmTable),
2380                                 &tmp, SMC_RAM_END);
2381
2382         if (0 == result)
2383                 ci_data->dpm_table_start = tmp;
2384
2385         error |= (0 != result);
2386
2387         result = ci_read_smc_sram_dword(hwmgr,
2388                                 SMU7_FIRMWARE_HEADER_LOCATION +
2389                                 offsetof(SMU7_Firmware_Header, SoftRegisters),
2390                                 &tmp, SMC_RAM_END);
2391
2392         if (0 == result) {
2393                 data->soft_regs_start = tmp;
2394                 ci_data->soft_regs_start = tmp;
2395         }
2396
2397         error |= (0 != result);
2398
2399         result = ci_read_smc_sram_dword(hwmgr,
2400                                 SMU7_FIRMWARE_HEADER_LOCATION +
2401                                 offsetof(SMU7_Firmware_Header, mcRegisterTable),
2402                                 &tmp, SMC_RAM_END);
2403
2404         if (0 == result)
2405                 ci_data->mc_reg_table_start = tmp;
2406
2407         result = ci_read_smc_sram_dword(hwmgr,
2408                                 SMU7_FIRMWARE_HEADER_LOCATION +
2409                                 offsetof(SMU7_Firmware_Header, FanTable),
2410                                 &tmp, SMC_RAM_END);
2411
2412         if (0 == result)
2413                 ci_data->fan_table_start = tmp;
2414
2415         error |= (0 != result);
2416
2417         result = ci_read_smc_sram_dword(hwmgr,
2418                                 SMU7_FIRMWARE_HEADER_LOCATION +
2419                                 offsetof(SMU7_Firmware_Header, mcArbDramTimingTable),
2420                                 &tmp, SMC_RAM_END);
2421
2422         if (0 == result)
2423                 ci_data->arb_table_start = tmp;
2424
2425         error |= (0 != result);
2426
2427         result = ci_read_smc_sram_dword(hwmgr,
2428                                 SMU7_FIRMWARE_HEADER_LOCATION +
2429                                 offsetof(SMU7_Firmware_Header, Version),
2430                                 &tmp, SMC_RAM_END);
2431
2432         if (0 == result)
2433                 hwmgr->microcode_version_info.SMC = tmp;
2434
2435         error |= (0 != result);
2436
2437         return error ? 1 : 0;
2438 }
2439
2440 static uint8_t ci_get_memory_modile_index(struct pp_hwmgr *hwmgr)
2441 {
2442         return (uint8_t) (0xFF & (cgs_read_register(hwmgr->device, mmBIOS_SCRATCH_4) >> 16));
2443 }
2444
2445 static bool ci_check_s0_mc_reg_index(uint16_t in_reg, uint16_t *out_reg)
2446 {
2447         bool result = true;
2448
2449         switch (in_reg) {
2450         case  mmMC_SEQ_RAS_TIMING:
2451                 *out_reg = mmMC_SEQ_RAS_TIMING_LP;
2452                 break;
2453
2454         case  mmMC_SEQ_DLL_STBY:
2455                 *out_reg = mmMC_SEQ_DLL_STBY_LP;
2456                 break;
2457
2458         case  mmMC_SEQ_G5PDX_CMD0:
2459                 *out_reg = mmMC_SEQ_G5PDX_CMD0_LP;
2460                 break;
2461
2462         case  mmMC_SEQ_G5PDX_CMD1:
2463                 *out_reg = mmMC_SEQ_G5PDX_CMD1_LP;
2464                 break;
2465
2466         case  mmMC_SEQ_G5PDX_CTRL:
2467                 *out_reg = mmMC_SEQ_G5PDX_CTRL_LP;
2468                 break;
2469
2470         case mmMC_SEQ_CAS_TIMING:
2471                 *out_reg = mmMC_SEQ_CAS_TIMING_LP;
2472                 break;
2473
2474         case mmMC_SEQ_MISC_TIMING:
2475                 *out_reg = mmMC_SEQ_MISC_TIMING_LP;
2476                 break;
2477
2478         case mmMC_SEQ_MISC_TIMING2:
2479                 *out_reg = mmMC_SEQ_MISC_TIMING2_LP;
2480                 break;
2481
2482         case mmMC_SEQ_PMG_DVS_CMD:
2483                 *out_reg = mmMC_SEQ_PMG_DVS_CMD_LP;
2484                 break;
2485
2486         case mmMC_SEQ_PMG_DVS_CTL:
2487                 *out_reg = mmMC_SEQ_PMG_DVS_CTL_LP;
2488                 break;
2489
2490         case mmMC_SEQ_RD_CTL_D0:
2491                 *out_reg = mmMC_SEQ_RD_CTL_D0_LP;
2492                 break;
2493
2494         case mmMC_SEQ_RD_CTL_D1:
2495                 *out_reg = mmMC_SEQ_RD_CTL_D1_LP;
2496                 break;
2497
2498         case mmMC_SEQ_WR_CTL_D0:
2499                 *out_reg = mmMC_SEQ_WR_CTL_D0_LP;
2500                 break;
2501
2502         case mmMC_SEQ_WR_CTL_D1:
2503                 *out_reg = mmMC_SEQ_WR_CTL_D1_LP;
2504                 break;
2505
2506         case mmMC_PMG_CMD_EMRS:
2507                 *out_reg = mmMC_SEQ_PMG_CMD_EMRS_LP;
2508                 break;
2509
2510         case mmMC_PMG_CMD_MRS:
2511                 *out_reg = mmMC_SEQ_PMG_CMD_MRS_LP;
2512                 break;
2513
2514         case mmMC_PMG_CMD_MRS1:
2515                 *out_reg = mmMC_SEQ_PMG_CMD_MRS1_LP;
2516                 break;
2517
2518         case mmMC_SEQ_PMG_TIMING:
2519                 *out_reg = mmMC_SEQ_PMG_TIMING_LP;
2520                 break;
2521
2522         case mmMC_PMG_CMD_MRS2:
2523                 *out_reg = mmMC_SEQ_PMG_CMD_MRS2_LP;
2524                 break;
2525
2526         case mmMC_SEQ_WR_CTL_2:
2527                 *out_reg = mmMC_SEQ_WR_CTL_2_LP;
2528                 break;
2529
2530         default:
2531                 result = false;
2532                 break;
2533         }
2534
2535         return result;
2536 }
2537
2538 static int ci_set_s0_mc_reg_index(struct ci_mc_reg_table *table)
2539 {
2540         uint32_t i;
2541         uint16_t address;
2542
2543         for (i = 0; i < table->last; i++) {
2544                 table->mc_reg_address[i].s0 =
2545                         ci_check_s0_mc_reg_index(table->mc_reg_address[i].s1, &address)
2546                         ? address : table->mc_reg_address[i].s1;
2547         }
2548         return 0;
2549 }
2550
2551 static int ci_copy_vbios_smc_reg_table(const pp_atomctrl_mc_reg_table *table,
2552                                         struct ci_mc_reg_table *ni_table)
2553 {
2554         uint8_t i, j;
2555
2556         PP_ASSERT_WITH_CODE((table->last <= SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2557                 "Invalid VramInfo table.", return -EINVAL);
2558         PP_ASSERT_WITH_CODE((table->num_entries <= MAX_AC_TIMING_ENTRIES),
2559                 "Invalid VramInfo table.", return -EINVAL);
2560
2561         for (i = 0; i < table->last; i++)
2562                 ni_table->mc_reg_address[i].s1 = table->mc_reg_address[i].s1;
2563
2564         ni_table->last = table->last;
2565
2566         for (i = 0; i < table->num_entries; i++) {
2567                 ni_table->mc_reg_table_entry[i].mclk_max =
2568                         table->mc_reg_table_entry[i].mclk_max;
2569                 for (j = 0; j < table->last; j++) {
2570                         ni_table->mc_reg_table_entry[i].mc_data[j] =
2571                                 table->mc_reg_table_entry[i].mc_data[j];
2572                 }
2573         }
2574
2575         ni_table->num_entries = table->num_entries;
2576
2577         return 0;
2578 }
2579
2580 static int ci_set_mc_special_registers(struct pp_hwmgr *hwmgr,
2581                                         struct ci_mc_reg_table *table)
2582 {
2583         uint8_t i, j, k;
2584         uint32_t temp_reg;
2585         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2586
2587         for (i = 0, j = table->last; i < table->last; i++) {
2588                 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2589                         "Invalid VramInfo table.", return -EINVAL);
2590
2591                 switch (table->mc_reg_address[i].s1) {
2592
2593                 case mmMC_SEQ_MISC1:
2594                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS);
2595                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_EMRS;
2596                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_EMRS_LP;
2597                         for (k = 0; k < table->num_entries; k++) {
2598                                 table->mc_reg_table_entry[k].mc_data[j] =
2599                                         ((temp_reg & 0xffff0000)) |
2600                                         ((table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16);
2601                         }
2602                         j++;
2603
2604                         PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2605                                 "Invalid VramInfo table.", return -EINVAL);
2606                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS);
2607                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS;
2608                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS_LP;
2609                         for (k = 0; k < table->num_entries; k++) {
2610                                 table->mc_reg_table_entry[k].mc_data[j] =
2611                                         (temp_reg & 0xffff0000) |
2612                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2613
2614                                 if (!data->is_memory_gddr5)
2615                                         table->mc_reg_table_entry[k].mc_data[j] |= 0x100;
2616                         }
2617                         j++;
2618
2619                         if (!data->is_memory_gddr5) {
2620                                 PP_ASSERT_WITH_CODE((j < SMU7_DISCRETE_MC_REGISTER_ARRAY_SIZE),
2621                                         "Invalid VramInfo table.", return -EINVAL);
2622                                 table->mc_reg_address[j].s1 = mmMC_PMG_AUTO_CMD;
2623                                 table->mc_reg_address[j].s0 = mmMC_PMG_AUTO_CMD;
2624                                 for (k = 0; k < table->num_entries; k++) {
2625                                         table->mc_reg_table_entry[k].mc_data[j] =
2626                                                 (table->mc_reg_table_entry[k].mc_data[i] & 0xffff0000) >> 16;
2627                                 }
2628                                 j++;
2629                         }
2630
2631                         break;
2632
2633                 case mmMC_SEQ_RESERVE_M:
2634                         temp_reg = cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1);
2635                         table->mc_reg_address[j].s1 = mmMC_PMG_CMD_MRS1;
2636                         table->mc_reg_address[j].s0 = mmMC_SEQ_PMG_CMD_MRS1_LP;
2637                         for (k = 0; k < table->num_entries; k++) {
2638                                 table->mc_reg_table_entry[k].mc_data[j] =
2639                                         (temp_reg & 0xffff0000) |
2640                                         (table->mc_reg_table_entry[k].mc_data[i] & 0x0000ffff);
2641                         }
2642                         j++;
2643                         break;
2644
2645                 default:
2646                         break;
2647                 }
2648
2649         }
2650
2651         table->last = j;
2652
2653         return 0;
2654 }
2655
2656 static int ci_set_valid_flag(struct ci_mc_reg_table *table)
2657 {
2658         uint8_t i, j;
2659
2660         for (i = 0; i < table->last; i++) {
2661                 for (j = 1; j < table->num_entries; j++) {
2662                         if (table->mc_reg_table_entry[j-1].mc_data[i] !=
2663                                 table->mc_reg_table_entry[j].mc_data[i]) {
2664                                 table->validflag |= (1 << i);
2665                                 break;
2666                         }
2667                 }
2668         }
2669
2670         return 0;
2671 }
2672
2673 static int ci_initialize_mc_reg_table(struct pp_hwmgr *hwmgr)
2674 {
2675         int result;
2676         struct ci_smumgr *smu_data = (struct ci_smumgr *)(hwmgr->smu_backend);
2677         pp_atomctrl_mc_reg_table *table;
2678         struct ci_mc_reg_table *ni_table = &smu_data->mc_reg_table;
2679         uint8_t module_index = ci_get_memory_modile_index(hwmgr);
2680
2681         table = kzalloc(sizeof(pp_atomctrl_mc_reg_table), GFP_KERNEL);
2682
2683         if (NULL == table)
2684                 return -ENOMEM;
2685
2686         /* Program additional LP registers that are no longer programmed by VBIOS */
2687         cgs_write_register(hwmgr->device, mmMC_SEQ_RAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RAS_TIMING));
2688         cgs_write_register(hwmgr->device, mmMC_SEQ_CAS_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_CAS_TIMING));
2689         cgs_write_register(hwmgr->device, mmMC_SEQ_DLL_STBY_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_DLL_STBY));
2690         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD0));
2691         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CMD1));
2692         cgs_write_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_G5PDX_CTRL));
2693         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CMD));
2694         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_DVS_CTL));
2695         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING));
2696         cgs_write_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_MISC_TIMING2));
2697         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_EMRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_EMRS));
2698         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS));
2699         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS1_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS1));
2700         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D0));
2701         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_D1));
2702         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D0));
2703         cgs_write_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_RD_CTL_D1));
2704         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_TIMING_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_PMG_TIMING));
2705         cgs_write_register(hwmgr->device, mmMC_SEQ_PMG_CMD_MRS2_LP, cgs_read_register(hwmgr->device, mmMC_PMG_CMD_MRS2));
2706         cgs_write_register(hwmgr->device, mmMC_SEQ_WR_CTL_2_LP, cgs_read_register(hwmgr->device, mmMC_SEQ_WR_CTL_2));
2707
2708         result = atomctrl_initialize_mc_reg_table(hwmgr, module_index, table);
2709
2710         if (0 == result)
2711                 result = ci_copy_vbios_smc_reg_table(table, ni_table);
2712
2713         if (0 == result) {
2714                 ci_set_s0_mc_reg_index(ni_table);
2715                 result = ci_set_mc_special_registers(hwmgr, ni_table);
2716         }
2717
2718         if (0 == result)
2719                 ci_set_valid_flag(ni_table);
2720
2721         kfree(table);
2722
2723         return result;
2724 }
2725
2726 static bool ci_is_dpm_running(struct pp_hwmgr *hwmgr)
2727 {
2728         return ci_is_smc_ram_running(hwmgr);
2729 }
2730
2731 static int ci_smu_init(struct pp_hwmgr *hwmgr)
2732 {
2733         struct ci_smumgr *ci_priv = NULL;
2734
2735         ci_priv = kzalloc(sizeof(struct ci_smumgr), GFP_KERNEL);
2736
2737         if (ci_priv == NULL)
2738                 return -ENOMEM;
2739
2740         hwmgr->smu_backend = ci_priv;
2741
2742         return 0;
2743 }
2744
2745 static int ci_smu_fini(struct pp_hwmgr *hwmgr)
2746 {
2747         kfree(hwmgr->smu_backend);
2748         hwmgr->smu_backend = NULL;
2749         return 0;
2750 }
2751
2752 static int ci_start_smu(struct pp_hwmgr *hwmgr)
2753 {
2754         return 0;
2755 }
2756
2757 static int ci_update_dpm_settings(struct pp_hwmgr *hwmgr,
2758                                 void *profile_setting)
2759 {
2760         struct smu7_hwmgr *data = (struct smu7_hwmgr *)(hwmgr->backend);
2761         struct ci_smumgr *smu_data = (struct ci_smumgr *)
2762                         (hwmgr->smu_backend);
2763         struct profile_mode_setting *setting;
2764         struct SMU7_Discrete_GraphicsLevel *levels =
2765                         smu_data->smc_state_table.GraphicsLevel;
2766         uint32_t array = smu_data->dpm_table_start +
2767                         offsetof(SMU7_Discrete_DpmTable, GraphicsLevel);
2768
2769         uint32_t mclk_array = smu_data->dpm_table_start +
2770                         offsetof(SMU7_Discrete_DpmTable, MemoryLevel);
2771         struct SMU7_Discrete_MemoryLevel *mclk_levels =
2772                         smu_data->smc_state_table.MemoryLevel;
2773         uint32_t i;
2774         uint32_t offset, up_hyst_offset, down_hyst_offset, clk_activity_offset, tmp;
2775
2776         if (profile_setting == NULL)
2777                 return -EINVAL;
2778
2779         setting = (struct profile_mode_setting *)profile_setting;
2780
2781         if (setting->bupdate_sclk) {
2782                 if (!data->sclk_dpm_key_disabled)
2783                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_FreezeLevel);
2784                 for (i = 0; i < smu_data->smc_state_table.GraphicsDpmLevelCount; i++) {
2785                         if (levels[i].ActivityLevel !=
2786                                 cpu_to_be16(setting->sclk_activity)) {
2787                                 levels[i].ActivityLevel = cpu_to_be16(setting->sclk_activity);
2788
2789                                 clk_activity_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2790                                                 + offsetof(SMU7_Discrete_GraphicsLevel, ActivityLevel);
2791                                 offset = clk_activity_offset & ~0x3;
2792                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2793                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, levels[i].ActivityLevel, sizeof(uint16_t));
2794                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2795
2796                         }
2797                         if (levels[i].UpH != setting->sclk_up_hyst ||
2798                                 levels[i].DownH != setting->sclk_down_hyst) {
2799                                 levels[i].UpH = setting->sclk_up_hyst;
2800                                 levels[i].DownH = setting->sclk_down_hyst;
2801                                 up_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2802                                                 + offsetof(SMU7_Discrete_GraphicsLevel, UpH);
2803                                 down_hyst_offset = array + (sizeof(SMU7_Discrete_GraphicsLevel) * i)
2804                                                 + offsetof(SMU7_Discrete_GraphicsLevel, DownH);
2805                                 offset = up_hyst_offset & ~0x3;
2806                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2807                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, levels[i].UpH, sizeof(uint8_t));
2808                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, levels[i].DownH, sizeof(uint8_t));
2809                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2810                         }
2811                 }
2812                 if (!data->sclk_dpm_key_disabled)
2813                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_SCLKDPM_UnfreezeLevel);
2814         }
2815
2816         if (setting->bupdate_mclk) {
2817                 if (!data->mclk_dpm_key_disabled)
2818                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_FreezeLevel);
2819                 for (i = 0; i < smu_data->smc_state_table.MemoryDpmLevelCount; i++) {
2820                         if (mclk_levels[i].ActivityLevel !=
2821                                 cpu_to_be16(setting->mclk_activity)) {
2822                                 mclk_levels[i].ActivityLevel = cpu_to_be16(setting->mclk_activity);
2823
2824                                 clk_activity_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2825                                                 + offsetof(SMU7_Discrete_MemoryLevel, ActivityLevel);
2826                                 offset = clk_activity_offset & ~0x3;
2827                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2828                                 tmp = phm_set_field_to_u32(clk_activity_offset, tmp, mclk_levels[i].ActivityLevel, sizeof(uint16_t));
2829                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2830
2831                         }
2832                         if (mclk_levels[i].UpH != setting->mclk_up_hyst ||
2833                                 mclk_levels[i].DownH != setting->mclk_down_hyst) {
2834                                 mclk_levels[i].UpH = setting->mclk_up_hyst;
2835                                 mclk_levels[i].DownH = setting->mclk_down_hyst;
2836                                 up_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2837                                                 + offsetof(SMU7_Discrete_MemoryLevel, UpH);
2838                                 down_hyst_offset = mclk_array + (sizeof(SMU7_Discrete_MemoryLevel) * i)
2839                                                 + offsetof(SMU7_Discrete_MemoryLevel, DownH);
2840                                 offset = up_hyst_offset & ~0x3;
2841                                 tmp = PP_HOST_TO_SMC_UL(cgs_read_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset));
2842                                 tmp = phm_set_field_to_u32(up_hyst_offset, tmp, mclk_levels[i].UpH, sizeof(uint8_t));
2843                                 tmp = phm_set_field_to_u32(down_hyst_offset, tmp, mclk_levels[i].DownH, sizeof(uint8_t));
2844                                 cgs_write_ind_register(hwmgr->device, CGS_IND_REG__SMC, offset, PP_HOST_TO_SMC_UL(tmp));
2845                         }
2846                 }
2847                 if (!data->mclk_dpm_key_disabled)
2848                         smum_send_msg_to_smc(hwmgr, PPSMC_MSG_MCLKDPM_UnfreezeLevel);
2849         }
2850         return 0;
2851 }
2852
2853 static int ci_update_uvd_smc_table(struct pp_hwmgr *hwmgr)
2854 {
2855         struct amdgpu_device *adev = hwmgr->adev;
2856         struct smu7_hwmgr *data = hwmgr->backend;
2857         struct ci_smumgr *smu_data = hwmgr->smu_backend;
2858         struct phm_uvd_clock_voltage_dependency_table *uvd_table =
2859                         hwmgr->dyn_state.uvd_clock_voltage_dependency_table;
2860         uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2861                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2862                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2863                                         AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2864         uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2865                                                 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2866         int32_t i;
2867
2868         if (PP_CAP(PHM_PlatformCaps_UVDDPM) || uvd_table->count <= 0)
2869                 smu_data->smc_state_table.UvdBootLevel = 0;
2870         else
2871                 smu_data->smc_state_table.UvdBootLevel = uvd_table->count - 1;
2872
2873         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2874                                 UvdBootLevel, smu_data->smc_state_table.UvdBootLevel);
2875
2876         data->dpm_level_enable_mask.uvd_dpm_enable_mask = 0;
2877
2878         for (i = uvd_table->count - 1; i >= 0; i--) {
2879                 if (uvd_table->entries[i].v <= max_vddc)
2880                         data->dpm_level_enable_mask.uvd_dpm_enable_mask |= 1 << i;
2881                 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_UVDDPM))
2882                         break;
2883         }
2884         ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_UVDDPM_SetEnabledMask,
2885                                 data->dpm_level_enable_mask.uvd_dpm_enable_mask);
2886
2887         return 0;
2888 }
2889
2890 static int ci_update_vce_smc_table(struct pp_hwmgr *hwmgr)
2891 {
2892         struct amdgpu_device *adev = hwmgr->adev;
2893         struct smu7_hwmgr *data = hwmgr->backend;
2894         struct phm_vce_clock_voltage_dependency_table *vce_table =
2895                         hwmgr->dyn_state.vce_clock_voltage_dependency_table;
2896         uint32_t profile_mode_mask = AMD_DPM_FORCED_LEVEL_PROFILE_STANDARD |
2897                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_SCLK |
2898                                         AMD_DPM_FORCED_LEVEL_PROFILE_MIN_MCLK |
2899                                         AMD_DPM_FORCED_LEVEL_PROFILE_PEAK;
2900         uint32_t max_vddc = adev->pm.ac_power ? hwmgr->dyn_state.max_clock_voltage_on_ac.vddc :
2901                                                 hwmgr->dyn_state.max_clock_voltage_on_dc.vddc;
2902         int32_t i;
2903
2904         PHM_WRITE_INDIRECT_FIELD(hwmgr->device, CGS_IND_REG__SMC, DPM_TABLE_475,
2905                                 VceBootLevel, 0); /* temp hard code to level 0, vce can set min evclk*/
2906
2907         data->dpm_level_enable_mask.vce_dpm_enable_mask = 0;
2908
2909         for (i = vce_table->count - 1; i >= 0; i--) {
2910                 if (vce_table->entries[i].v <= max_vddc)
2911                         data->dpm_level_enable_mask.vce_dpm_enable_mask |= 1 << i;
2912                 if (hwmgr->dpm_level & profile_mode_mask || !PP_CAP(PHM_PlatformCaps_VCEDPM))
2913                         break;
2914         }
2915         ci_send_msg_to_smc_with_parameter(hwmgr, PPSMC_MSG_VCEDPM_SetEnabledMask,
2916                                 data->dpm_level_enable_mask.vce_dpm_enable_mask);
2917
2918         return 0;
2919 }
2920
2921 static int ci_update_smc_table(struct pp_hwmgr *hwmgr, uint32_t type)
2922 {
2923         switch (type) {
2924         case SMU_UVD_TABLE:
2925                 ci_update_uvd_smc_table(hwmgr);
2926                 break;
2927         case SMU_VCE_TABLE:
2928                 ci_update_vce_smc_table(hwmgr);
2929                 break;
2930         default:
2931                 break;
2932         }
2933         return 0;
2934 }
2935
2936 const struct pp_smumgr_func ci_smu_funcs = {
2937         .name = "ci_smu",
2938         .smu_init = ci_smu_init,
2939         .smu_fini = ci_smu_fini,
2940         .start_smu = ci_start_smu,
2941         .check_fw_load_finish = NULL,
2942         .request_smu_load_fw = NULL,
2943         .request_smu_load_specific_fw = NULL,
2944         .send_msg_to_smc = ci_send_msg_to_smc,
2945         .send_msg_to_smc_with_parameter = ci_send_msg_to_smc_with_parameter,
2946         .download_pptable_settings = NULL,
2947         .upload_pptable_settings = NULL,
2948         .get_offsetof = ci_get_offsetof,
2949         .process_firmware_header = ci_process_firmware_header,
2950         .init_smc_table = ci_init_smc_table,
2951         .update_sclk_threshold = ci_update_sclk_threshold,
2952         .thermal_setup_fan_table = ci_thermal_setup_fan_table,
2953         .populate_all_graphic_levels = ci_populate_all_graphic_levels,
2954         .populate_all_memory_levels = ci_populate_all_memory_levels,
2955         .get_mac_definition = ci_get_mac_definition,
2956         .initialize_mc_reg_table = ci_initialize_mc_reg_table,
2957         .is_dpm_running = ci_is_dpm_running,
2958         .update_dpm_settings = ci_update_dpm_settings,
2959         .update_smc_table = ci_update_smc_table,
2960 };