Linux-libre 4.19.116-gnu
[librecmc/linux-libre.git] / drivers / gpu / drm / amd / amdkfd / kfd_priv.h
1 /*
2  * Copyright 2014 Advanced Micro Devices, Inc.
3  *
4  * Permission is hereby granted, free of charge, to any person obtaining a
5  * copy of this software and associated documentation files (the "Software"),
6  * to deal in the Software without restriction, including without limitation
7  * the rights to use, copy, modify, merge, publish, distribute, sublicense,
8  * and/or sell copies of the Software, and to permit persons to whom the
9  * Software is furnished to do so, subject to the following conditions:
10  *
11  * The above copyright notice and this permission notice shall be included in
12  * all copies or substantial portions of the Software.
13  *
14  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
15  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
16  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.  IN NO EVENT SHALL
17  * THE COPYRIGHT HOLDER(S) OR AUTHOR(S) BE LIABLE FOR ANY CLAIM, DAMAGES OR
18  * OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE,
19  * ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR
20  * OTHER DEALINGS IN THE SOFTWARE.
21  */
22
23 #ifndef KFD_PRIV_H_INCLUDED
24 #define KFD_PRIV_H_INCLUDED
25
26 #include <linux/hashtable.h>
27 #include <linux/mmu_notifier.h>
28 #include <linux/mutex.h>
29 #include <linux/types.h>
30 #include <linux/atomic.h>
31 #include <linux/workqueue.h>
32 #include <linux/spinlock.h>
33 #include <linux/kfd_ioctl.h>
34 #include <linux/idr.h>
35 #include <linux/kfifo.h>
36 #include <linux/seq_file.h>
37 #include <linux/kref.h>
38 #include <kgd_kfd_interface.h>
39
40 #include "amd_shared.h"
41
42 #define KFD_MAX_RING_ENTRY_SIZE 8
43
44 #define KFD_SYSFS_FILE_MODE 0444
45
46 /* GPU ID hash width in bits */
47 #define KFD_GPU_ID_HASH_WIDTH 16
48
49 /* Use upper bits of mmap offset to store KFD driver specific information.
50  * BITS[63:62] - Encode MMAP type
51  * BITS[61:46] - Encode gpu_id. To identify to which GPU the offset belongs to
52  * BITS[45:0]  - MMAP offset value
53  *
54  * NOTE: struct vm_area_struct.vm_pgoff uses offset in pages. Hence, these
55  *  defines are w.r.t to PAGE_SIZE
56  */
57 #define KFD_MMAP_TYPE_SHIFT     (62 - PAGE_SHIFT)
58 #define KFD_MMAP_TYPE_MASK      (0x3ULL << KFD_MMAP_TYPE_SHIFT)
59 #define KFD_MMAP_TYPE_DOORBELL  (0x3ULL << KFD_MMAP_TYPE_SHIFT)
60 #define KFD_MMAP_TYPE_EVENTS    (0x2ULL << KFD_MMAP_TYPE_SHIFT)
61 #define KFD_MMAP_TYPE_RESERVED_MEM      (0x1ULL << KFD_MMAP_TYPE_SHIFT)
62
63 #define KFD_MMAP_GPU_ID_SHIFT (46 - PAGE_SHIFT)
64 #define KFD_MMAP_GPU_ID_MASK (((1ULL << KFD_GPU_ID_HASH_WIDTH) - 1) \
65                                 << KFD_MMAP_GPU_ID_SHIFT)
66 #define KFD_MMAP_GPU_ID(gpu_id) ((((uint64_t)gpu_id) << KFD_MMAP_GPU_ID_SHIFT)\
67                                 & KFD_MMAP_GPU_ID_MASK)
68 #define KFD_MMAP_GPU_ID_GET(offset)    ((offset & KFD_MMAP_GPU_ID_MASK) \
69                                 >> KFD_MMAP_GPU_ID_SHIFT)
70
71 #define KFD_MMAP_OFFSET_VALUE_MASK      (0x3FFFFFFFFFFFULL >> PAGE_SHIFT)
72 #define KFD_MMAP_OFFSET_VALUE_GET(offset) (offset & KFD_MMAP_OFFSET_VALUE_MASK)
73
74 /*
75  * When working with cp scheduler we should assign the HIQ manually or via
76  * the amdgpu driver to a fixed hqd slot, here are the fixed HIQ hqd slot
77  * definitions for Kaveri. In Kaveri only the first ME queues participates
78  * in the cp scheduling taking that in mind we set the HIQ slot in the
79  * second ME.
80  */
81 #define KFD_CIK_HIQ_PIPE 4
82 #define KFD_CIK_HIQ_QUEUE 0
83
84 /* Macro for allocating structures */
85 #define kfd_alloc_struct(ptr_to_struct) \
86         ((typeof(ptr_to_struct)) kzalloc(sizeof(*ptr_to_struct), GFP_KERNEL))
87
88 #define KFD_MAX_NUM_OF_PROCESSES 512
89 #define KFD_MAX_NUM_OF_QUEUES_PER_PROCESS 1024
90
91 /*
92  * Size of the per-process TBA+TMA buffer: 2 pages
93  *
94  * The first page is the TBA used for the CWSR ISA code. The second
95  * page is used as TMA for daisy changing a user-mode trap handler.
96  */
97 #define KFD_CWSR_TBA_TMA_SIZE (PAGE_SIZE * 2)
98 #define KFD_CWSR_TMA_OFFSET PAGE_SIZE
99
100 /*
101  * Kernel module parameter to specify maximum number of supported queues per
102  * device
103  */
104 extern int max_num_of_queues_per_device;
105
106 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE_DEFAULT 4096
107 #define KFD_MAX_NUM_OF_QUEUES_PER_DEVICE                \
108         (KFD_MAX_NUM_OF_PROCESSES *                     \
109                         KFD_MAX_NUM_OF_QUEUES_PER_PROCESS)
110
111 #define KFD_KERNEL_QUEUE_SIZE 2048
112
113 /* Kernel module parameter to specify the scheduling policy */
114 extern int sched_policy;
115
116 /*
117  * Kernel module parameter to specify the maximum process
118  * number per HW scheduler
119  */
120 extern int hws_max_conc_proc;
121
122 extern int cwsr_enable;
123
124 /*
125  * Kernel module parameter to specify whether to send sigterm to HSA process on
126  * unhandled exception
127  */
128 extern int send_sigterm;
129
130 /*
131  * This kernel module is used to simulate large bar machine on non-large bar
132  * enabled machines.
133  */
134 extern int debug_largebar;
135
136 /*
137  * Ignore CRAT table during KFD initialization, can be used to work around
138  * broken CRAT tables on some AMD systems
139  */
140 extern int ignore_crat;
141
142 /*
143  * Set sh_mem_config.retry_disable on Vega10
144  */
145 extern int noretry;
146
147 /*
148  * Halt if HWS hang is detected
149  */
150 extern int halt_if_hws_hang;
151
152 /**
153  * enum kfd_sched_policy
154  *
155  * @KFD_SCHED_POLICY_HWS: H/W scheduling policy known as command processor (cp)
156  * scheduling. In this scheduling mode we're using the firmware code to
157  * schedule the user mode queues and kernel queues such as HIQ and DIQ.
158  * the HIQ queue is used as a special queue that dispatches the configuration
159  * to the cp and the user mode queues list that are currently running.
160  * the DIQ queue is a debugging queue that dispatches debugging commands to the
161  * firmware.
162  * in this scheduling mode user mode queues over subscription feature is
163  * enabled.
164  *
165  * @KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION: The same as above but the over
166  * subscription feature disabled.
167  *
168  * @KFD_SCHED_POLICY_NO_HWS: no H/W scheduling policy is a mode which directly
169  * set the command processor registers and sets the queues "manually". This
170  * mode is used *ONLY* for debugging proposes.
171  *
172  */
173 enum kfd_sched_policy {
174         KFD_SCHED_POLICY_HWS = 0,
175         KFD_SCHED_POLICY_HWS_NO_OVERSUBSCRIPTION,
176         KFD_SCHED_POLICY_NO_HWS
177 };
178
179 enum cache_policy {
180         cache_policy_coherent,
181         cache_policy_noncoherent
182 };
183
184 #define KFD_IS_SOC15(chip) ((chip) >= CHIP_VEGA10)
185
186 struct kfd_event_interrupt_class {
187         bool (*interrupt_isr)(struct kfd_dev *dev,
188                         const uint32_t *ih_ring_entry, uint32_t *patched_ihre,
189                         bool *patched_flag);
190         void (*interrupt_wq)(struct kfd_dev *dev,
191                         const uint32_t *ih_ring_entry);
192 };
193
194 struct kfd_device_info {
195         enum amd_asic_type asic_family;
196         const struct kfd_event_interrupt_class *event_interrupt_class;
197         unsigned int max_pasid_bits;
198         unsigned int max_no_of_hqd;
199         unsigned int doorbell_size;
200         size_t ih_ring_entry_size;
201         uint8_t num_of_watch_points;
202         uint16_t mqd_size_aligned;
203         bool supports_cwsr;
204         bool needs_iommu_device;
205         bool needs_pci_atomics;
206         unsigned int num_sdma_engines;
207 };
208
209 struct kfd_mem_obj {
210         uint32_t range_start;
211         uint32_t range_end;
212         uint64_t gpu_addr;
213         uint32_t *cpu_ptr;
214         void *gtt_mem;
215 };
216
217 struct kfd_vmid_info {
218         uint32_t first_vmid_kfd;
219         uint32_t last_vmid_kfd;
220         uint32_t vmid_num_kfd;
221 };
222
223 struct kfd_dev {
224         struct kgd_dev *kgd;
225
226         const struct kfd_device_info *device_info;
227         struct pci_dev *pdev;
228
229         unsigned int id;                /* topology stub index */
230
231         phys_addr_t doorbell_base;      /* Start of actual doorbells used by
232                                          * KFD. It is aligned for mapping
233                                          * into user mode
234                                          */
235         size_t doorbell_id_offset;      /* Doorbell offset (from KFD doorbell
236                                          * to HW doorbell, GFX reserved some
237                                          * at the start)
238                                          */
239         u32 __iomem *doorbell_kernel_ptr; /* This is a pointer for a doorbells
240                                            * page used by kernel queue
241                                            */
242
243         struct kgd2kfd_shared_resources shared_resources;
244         struct kfd_vmid_info vm_info;
245
246         const struct kfd2kgd_calls *kfd2kgd;
247         struct mutex doorbell_mutex;
248         DECLARE_BITMAP(doorbell_available_index,
249                         KFD_MAX_NUM_OF_QUEUES_PER_PROCESS);
250
251         void *gtt_mem;
252         uint64_t gtt_start_gpu_addr;
253         void *gtt_start_cpu_ptr;
254         void *gtt_sa_bitmap;
255         struct mutex gtt_sa_lock;
256         unsigned int gtt_sa_chunk_size;
257         unsigned int gtt_sa_num_of_chunks;
258
259         /* Interrupts */
260         struct kfifo ih_fifo;
261         struct workqueue_struct *ih_wq;
262         struct work_struct interrupt_work;
263         spinlock_t interrupt_lock;
264
265         /* QCM Device instance */
266         struct device_queue_manager *dqm;
267
268         bool init_complete;
269         /*
270          * Interrupts of interest to KFD are copied
271          * from the HW ring into a SW ring.
272          */
273         bool interrupts_active;
274
275         /* Debug manager */
276         struct kfd_dbgmgr           *dbgmgr;
277
278         /* Maximum process number mapped to HW scheduler */
279         unsigned int max_proc_per_quantum;
280
281         /* CWSR */
282         bool cwsr_enabled;
283         const void *cwsr_isa;
284         unsigned int cwsr_isa_size;
285 };
286
287 /* KGD2KFD callbacks */
288 void kgd2kfd_exit(void);
289 struct kfd_dev *kgd2kfd_probe(struct kgd_dev *kgd,
290                         struct pci_dev *pdev, const struct kfd2kgd_calls *f2g);
291 bool kgd2kfd_device_init(struct kfd_dev *kfd,
292                         const struct kgd2kfd_shared_resources *gpu_resources);
293 void kgd2kfd_device_exit(struct kfd_dev *kfd);
294
295 enum kfd_mempool {
296         KFD_MEMPOOL_SYSTEM_CACHEABLE = 1,
297         KFD_MEMPOOL_SYSTEM_WRITECOMBINE = 2,
298         KFD_MEMPOOL_FRAMEBUFFER = 3,
299 };
300
301 /* Character device interface */
302 int kfd_chardev_init(void);
303 void kfd_chardev_exit(void);
304 struct device *kfd_chardev(void);
305
306 /**
307  * enum kfd_unmap_queues_filter
308  *
309  * @KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE: Preempts single queue.
310  *
311  * @KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES: Preempts all queues in the
312  *                                              running queues list.
313  *
314  * @KFD_UNMAP_QUEUES_FILTER_BY_PASID: Preempts queues that belongs to
315  *                                              specific process.
316  *
317  */
318 enum kfd_unmap_queues_filter {
319         KFD_UNMAP_QUEUES_FILTER_SINGLE_QUEUE,
320         KFD_UNMAP_QUEUES_FILTER_ALL_QUEUES,
321         KFD_UNMAP_QUEUES_FILTER_DYNAMIC_QUEUES,
322         KFD_UNMAP_QUEUES_FILTER_BY_PASID
323 };
324
325 /**
326  * enum kfd_queue_type
327  *
328  * @KFD_QUEUE_TYPE_COMPUTE: Regular user mode queue type.
329  *
330  * @KFD_QUEUE_TYPE_SDMA: Sdma user mode queue type.
331  *
332  * @KFD_QUEUE_TYPE_HIQ: HIQ queue type.
333  *
334  * @KFD_QUEUE_TYPE_DIQ: DIQ queue type.
335  */
336 enum kfd_queue_type  {
337         KFD_QUEUE_TYPE_COMPUTE,
338         KFD_QUEUE_TYPE_SDMA,
339         KFD_QUEUE_TYPE_HIQ,
340         KFD_QUEUE_TYPE_DIQ
341 };
342
343 enum kfd_queue_format {
344         KFD_QUEUE_FORMAT_PM4,
345         KFD_QUEUE_FORMAT_AQL
346 };
347
348 /**
349  * struct queue_properties
350  *
351  * @type: The queue type.
352  *
353  * @queue_id: Queue identifier.
354  *
355  * @queue_address: Queue ring buffer address.
356  *
357  * @queue_size: Queue ring buffer size.
358  *
359  * @priority: Defines the queue priority relative to other queues in the
360  * process.
361  * This is just an indication and HW scheduling may override the priority as
362  * necessary while keeping the relative prioritization.
363  * the priority granularity is from 0 to f which f is the highest priority.
364  * currently all queues are initialized with the highest priority.
365  *
366  * @queue_percent: This field is partially implemented and currently a zero in
367  * this field defines that the queue is non active.
368  *
369  * @read_ptr: User space address which points to the number of dwords the
370  * cp read from the ring buffer. This field updates automatically by the H/W.
371  *
372  * @write_ptr: Defines the number of dwords written to the ring buffer.
373  *
374  * @doorbell_ptr: This field aim is to notify the H/W of new packet written to
375  * the queue ring buffer. This field should be similar to write_ptr and the
376  * user should update this field after he updated the write_ptr.
377  *
378  * @doorbell_off: The doorbell offset in the doorbell pci-bar.
379  *
380  * @is_interop: Defines if this is a interop queue. Interop queue means that
381  * the queue can access both graphics and compute resources.
382  *
383  * @is_evicted: Defines if the queue is evicted. Only active queues
384  * are evicted, rendering them inactive.
385  *
386  * @is_active: Defines if the queue is active or not. @is_active and
387  * @is_evicted are protected by the DQM lock.
388  *
389  * @vmid: If the scheduling mode is no cp scheduling the field defines the vmid
390  * of the queue.
391  *
392  * This structure represents the queue properties for each queue no matter if
393  * it's user mode or kernel mode queue.
394  *
395  */
396 struct queue_properties {
397         enum kfd_queue_type type;
398         enum kfd_queue_format format;
399         unsigned int queue_id;
400         uint64_t queue_address;
401         uint64_t  queue_size;
402         uint32_t priority;
403         uint32_t queue_percent;
404         uint32_t *read_ptr;
405         uint32_t *write_ptr;
406         void __iomem *doorbell_ptr;
407         uint32_t doorbell_off;
408         bool is_interop;
409         bool is_evicted;
410         bool is_active;
411         /* Not relevant for user mode queues in cp scheduling */
412         unsigned int vmid;
413         /* Relevant only for sdma queues*/
414         uint32_t sdma_engine_id;
415         uint32_t sdma_queue_id;
416         uint32_t sdma_vm_addr;
417         /* Relevant only for VI */
418         uint64_t eop_ring_buffer_address;
419         uint32_t eop_ring_buffer_size;
420         uint64_t ctx_save_restore_area_address;
421         uint32_t ctx_save_restore_area_size;
422         uint32_t ctl_stack_size;
423         uint64_t tba_addr;
424         uint64_t tma_addr;
425         /* Relevant for CU */
426         uint32_t cu_mask_count; /* Must be a multiple of 32 */
427         uint32_t *cu_mask;
428 };
429
430 /**
431  * struct queue
432  *
433  * @list: Queue linked list.
434  *
435  * @mqd: The queue MQD.
436  *
437  * @mqd_mem_obj: The MQD local gpu memory object.
438  *
439  * @gart_mqd_addr: The MQD gart mc address.
440  *
441  * @properties: The queue properties.
442  *
443  * @mec: Used only in no cp scheduling mode and identifies to micro engine id
444  *       that the queue should be execute on.
445  *
446  * @pipe: Used only in no cp scheduling mode and identifies the queue's pipe
447  *        id.
448  *
449  * @queue: Used only in no cp scheduliong mode and identifies the queue's slot.
450  *
451  * @process: The kfd process that created this queue.
452  *
453  * @device: The kfd device that created this queue.
454  *
455  * This structure represents user mode compute queues.
456  * It contains all the necessary data to handle such queues.
457  *
458  */
459
460 struct queue {
461         struct list_head list;
462         void *mqd;
463         struct kfd_mem_obj *mqd_mem_obj;
464         uint64_t gart_mqd_addr;
465         struct queue_properties properties;
466
467         uint32_t mec;
468         uint32_t pipe;
469         uint32_t queue;
470
471         unsigned int sdma_id;
472         unsigned int doorbell_id;
473
474         struct kfd_process      *process;
475         struct kfd_dev          *device;
476 };
477
478 /*
479  * Please read the kfd_mqd_manager.h description.
480  */
481 enum KFD_MQD_TYPE {
482         KFD_MQD_TYPE_COMPUTE = 0,       /* for no cp scheduling */
483         KFD_MQD_TYPE_HIQ,               /* for hiq */
484         KFD_MQD_TYPE_CP,                /* for cp queues and diq */
485         KFD_MQD_TYPE_SDMA,              /* for sdma queues */
486         KFD_MQD_TYPE_MAX
487 };
488
489 struct scheduling_resources {
490         unsigned int vmid_mask;
491         enum kfd_queue_type type;
492         uint64_t queue_mask;
493         uint64_t gws_mask;
494         uint32_t oac_mask;
495         uint32_t gds_heap_base;
496         uint32_t gds_heap_size;
497 };
498
499 struct process_queue_manager {
500         /* data */
501         struct kfd_process      *process;
502         struct list_head        queues;
503         unsigned long           *queue_slot_bitmap;
504 };
505
506 struct qcm_process_device {
507         /* The Device Queue Manager that owns this data */
508         struct device_queue_manager *dqm;
509         struct process_queue_manager *pqm;
510         /* Queues list */
511         struct list_head queues_list;
512         struct list_head priv_queue_list;
513
514         unsigned int queue_count;
515         unsigned int vmid;
516         bool is_debug;
517         unsigned int evicted; /* eviction counter, 0=active */
518
519         /* This flag tells if we should reset all wavefronts on
520          * process termination
521          */
522         bool reset_wavefronts;
523
524         /*
525          * All the memory management data should be here too
526          */
527         uint64_t gds_context_area;
528         uint32_t sh_mem_config;
529         uint32_t sh_mem_bases;
530         uint32_t sh_mem_ape1_base;
531         uint32_t sh_mem_ape1_limit;
532         uint32_t page_table_base;
533         uint32_t gds_size;
534         uint32_t num_gws;
535         uint32_t num_oac;
536         uint32_t sh_hidden_private_base;
537
538         /* CWSR memory */
539         void *cwsr_kaddr;
540         uint64_t cwsr_base;
541         uint64_t tba_addr;
542         uint64_t tma_addr;
543
544         /* IB memory */
545         uint64_t ib_base;
546         void *ib_kaddr;
547
548         /* doorbell resources per process per device */
549         unsigned long *doorbell_bitmap;
550 };
551
552 /* KFD Memory Eviction */
553
554 /* Approx. wait time before attempting to restore evicted BOs */
555 #define PROCESS_RESTORE_TIME_MS 100
556 /* Approx. back off time if restore fails due to lack of memory */
557 #define PROCESS_BACK_OFF_TIME_MS 100
558 /* Approx. time before evicting the process again */
559 #define PROCESS_ACTIVE_TIME_MS 10
560
561 int kgd2kfd_quiesce_mm(struct mm_struct *mm);
562 int kgd2kfd_resume_mm(struct mm_struct *mm);
563 int kgd2kfd_schedule_evict_and_restore_process(struct mm_struct *mm,
564                                                struct dma_fence *fence);
565
566 /* 8 byte handle containing GPU ID in the most significant 4 bytes and
567  * idr_handle in the least significant 4 bytes
568  */
569 #define MAKE_HANDLE(gpu_id, idr_handle) \
570         (((uint64_t)(gpu_id) << 32) + idr_handle)
571 #define GET_GPU_ID(handle) (handle >> 32)
572 #define GET_IDR_HANDLE(handle) (handle & 0xFFFFFFFF)
573
574 enum kfd_pdd_bound {
575         PDD_UNBOUND = 0,
576         PDD_BOUND,
577         PDD_BOUND_SUSPENDED,
578 };
579
580 /* Data that is per-process-per device. */
581 struct kfd_process_device {
582         /*
583          * List of all per-device data for a process.
584          * Starts from kfd_process.per_device_data.
585          */
586         struct list_head per_device_list;
587
588         /* The device that owns this data. */
589         struct kfd_dev *dev;
590
591         /* The process that owns this kfd_process_device. */
592         struct kfd_process *process;
593
594         /* per-process-per device QCM data structure */
595         struct qcm_process_device qpd;
596
597         /*Apertures*/
598         uint64_t lds_base;
599         uint64_t lds_limit;
600         uint64_t gpuvm_base;
601         uint64_t gpuvm_limit;
602         uint64_t scratch_base;
603         uint64_t scratch_limit;
604
605         /* VM context for GPUVM allocations */
606         struct file *drm_file;
607         void *vm;
608
609         /* GPUVM allocations storage */
610         struct idr alloc_idr;
611
612         /* Flag used to tell the pdd has dequeued from the dqm.
613          * This is used to prevent dev->dqm->ops.process_termination() from
614          * being called twice when it is already called in IOMMU callback
615          * function.
616          */
617         bool already_dequeued;
618
619         /* Is this process/pasid bound to this device? (amd_iommu_bind_pasid) */
620         enum kfd_pdd_bound bound;
621 };
622
623 #define qpd_to_pdd(x) container_of(x, struct kfd_process_device, qpd)
624
625 /* Process data */
626 struct kfd_process {
627         /*
628          * kfd_process are stored in an mm_struct*->kfd_process*
629          * hash table (kfd_processes in kfd_process.c)
630          */
631         struct hlist_node kfd_processes;
632
633         /*
634          * Opaque pointer to mm_struct. We don't hold a reference to
635          * it so it should never be dereferenced from here. This is
636          * only used for looking up processes by their mm.
637          */
638         void *mm;
639
640         struct kref ref;
641         struct work_struct release_work;
642
643         struct mutex mutex;
644
645         /*
646          * In any process, the thread that started main() is the lead
647          * thread and outlives the rest.
648          * It is here because amd_iommu_bind_pasid wants a task_struct.
649          * It can also be used for safely getting a reference to the
650          * mm_struct of the process.
651          */
652         struct task_struct *lead_thread;
653
654         /* We want to receive a notification when the mm_struct is destroyed */
655         struct mmu_notifier mmu_notifier;
656
657         /* Use for delayed freeing of kfd_process structure */
658         struct rcu_head rcu;
659
660         unsigned int pasid;
661         unsigned int doorbell_index;
662
663         /*
664          * List of kfd_process_device structures,
665          * one for each device the process is using.
666          */
667         struct list_head per_device_data;
668
669         struct process_queue_manager pqm;
670
671         /*Is the user space process 32 bit?*/
672         bool is_32bit_user_mode;
673
674         /* Event-related data */
675         struct mutex event_mutex;
676         /* Event ID allocator and lookup */
677         struct idr event_idr;
678         /* Event page */
679         struct kfd_signal_page *signal_page;
680         size_t signal_mapped_size;
681         size_t signal_event_count;
682         bool signal_event_limit_reached;
683
684         /* Information used for memory eviction */
685         void *kgd_process_info;
686         /* Eviction fence that is attached to all the BOs of this process. The
687          * fence will be triggered during eviction and new one will be created
688          * during restore
689          */
690         struct dma_fence *ef;
691
692         /* Work items for evicting and restoring BOs */
693         struct delayed_work eviction_work;
694         struct delayed_work restore_work;
695         /* seqno of the last scheduled eviction */
696         unsigned int last_eviction_seqno;
697         /* Approx. the last timestamp (in jiffies) when the process was
698          * restored after an eviction
699          */
700         unsigned long last_restore_timestamp;
701 };
702
703 #define KFD_PROCESS_TABLE_SIZE 5 /* bits: 32 entries */
704 extern DECLARE_HASHTABLE(kfd_processes_table, KFD_PROCESS_TABLE_SIZE);
705 extern struct srcu_struct kfd_processes_srcu;
706
707 /**
708  * Ioctl function type.
709  *
710  * \param filep pointer to file structure.
711  * \param p amdkfd process pointer.
712  * \param data pointer to arg that was copied from user.
713  */
714 typedef int amdkfd_ioctl_t(struct file *filep, struct kfd_process *p,
715                                 void *data);
716
717 struct amdkfd_ioctl_desc {
718         unsigned int cmd;
719         int flags;
720         amdkfd_ioctl_t *func;
721         unsigned int cmd_drv;
722         const char *name;
723 };
724
725 int kfd_process_create_wq(void);
726 void kfd_process_destroy_wq(void);
727 struct kfd_process *kfd_create_process(struct file *filep);
728 struct kfd_process *kfd_get_process(const struct task_struct *);
729 struct kfd_process *kfd_lookup_process_by_pasid(unsigned int pasid);
730 struct kfd_process *kfd_lookup_process_by_mm(const struct mm_struct *mm);
731 void kfd_unref_process(struct kfd_process *p);
732 int kfd_process_evict_queues(struct kfd_process *p);
733 int kfd_process_restore_queues(struct kfd_process *p);
734 void kfd_suspend_all_processes(void);
735 int kfd_resume_all_processes(void);
736
737 int kfd_process_device_init_vm(struct kfd_process_device *pdd,
738                                struct file *drm_file);
739 struct kfd_process_device *kfd_bind_process_to_device(struct kfd_dev *dev,
740                                                 struct kfd_process *p);
741 struct kfd_process_device *kfd_get_process_device_data(struct kfd_dev *dev,
742                                                         struct kfd_process *p);
743 struct kfd_process_device *kfd_create_process_device_data(struct kfd_dev *dev,
744                                                         struct kfd_process *p);
745
746 int kfd_reserved_mem_mmap(struct kfd_dev *dev, struct kfd_process *process,
747                           struct vm_area_struct *vma);
748
749 /* KFD process API for creating and translating handles */
750 int kfd_process_device_create_obj_handle(struct kfd_process_device *pdd,
751                                         void *mem);
752 void *kfd_process_device_translate_handle(struct kfd_process_device *p,
753                                         int handle);
754 void kfd_process_device_remove_obj_handle(struct kfd_process_device *pdd,
755                                         int handle);
756
757 /* Process device data iterator */
758 struct kfd_process_device *kfd_get_first_process_device_data(
759                                                         struct kfd_process *p);
760 struct kfd_process_device *kfd_get_next_process_device_data(
761                                                 struct kfd_process *p,
762                                                 struct kfd_process_device *pdd);
763 bool kfd_has_process_device_data(struct kfd_process *p);
764
765 /* PASIDs */
766 int kfd_pasid_init(void);
767 void kfd_pasid_exit(void);
768 bool kfd_set_pasid_limit(unsigned int new_limit);
769 unsigned int kfd_get_pasid_limit(void);
770 unsigned int kfd_pasid_alloc(void);
771 void kfd_pasid_free(unsigned int pasid);
772
773 /* Doorbells */
774 size_t kfd_doorbell_process_slice(struct kfd_dev *kfd);
775 int kfd_doorbell_init(struct kfd_dev *kfd);
776 void kfd_doorbell_fini(struct kfd_dev *kfd);
777 int kfd_doorbell_mmap(struct kfd_dev *dev, struct kfd_process *process,
778                       struct vm_area_struct *vma);
779 void __iomem *kfd_get_kernel_doorbell(struct kfd_dev *kfd,
780                                         unsigned int *doorbell_off);
781 void kfd_release_kernel_doorbell(struct kfd_dev *kfd, u32 __iomem *db_addr);
782 u32 read_kernel_doorbell(u32 __iomem *db);
783 void write_kernel_doorbell(void __iomem *db, u32 value);
784 void write_kernel_doorbell64(void __iomem *db, u64 value);
785 unsigned int kfd_doorbell_id_to_offset(struct kfd_dev *kfd,
786                                         struct kfd_process *process,
787                                         unsigned int doorbell_id);
788 phys_addr_t kfd_get_process_doorbells(struct kfd_dev *dev,
789                                         struct kfd_process *process);
790 int kfd_alloc_process_doorbells(struct kfd_process *process);
791 void kfd_free_process_doorbells(struct kfd_process *process);
792
793 /* GTT Sub-Allocator */
794
795 int kfd_gtt_sa_allocate(struct kfd_dev *kfd, unsigned int size,
796                         struct kfd_mem_obj **mem_obj);
797
798 int kfd_gtt_sa_free(struct kfd_dev *kfd, struct kfd_mem_obj *mem_obj);
799
800 extern struct device *kfd_device;
801
802 /* Topology */
803 int kfd_topology_init(void);
804 void kfd_topology_shutdown(void);
805 int kfd_topology_add_device(struct kfd_dev *gpu);
806 int kfd_topology_remove_device(struct kfd_dev *gpu);
807 struct kfd_topology_device *kfd_topology_device_by_proximity_domain(
808                                                 uint32_t proximity_domain);
809 struct kfd_topology_device *kfd_topology_device_by_id(uint32_t gpu_id);
810 struct kfd_dev *kfd_device_by_id(uint32_t gpu_id);
811 struct kfd_dev *kfd_device_by_pci_dev(const struct pci_dev *pdev);
812 int kfd_topology_enum_kfd_devices(uint8_t idx, struct kfd_dev **kdev);
813 int kfd_numa_node_to_apic_id(int numa_node_id);
814
815 /* Interrupts */
816 int kfd_interrupt_init(struct kfd_dev *dev);
817 void kfd_interrupt_exit(struct kfd_dev *dev);
818 void kgd2kfd_interrupt(struct kfd_dev *kfd, const void *ih_ring_entry);
819 bool enqueue_ih_ring_entry(struct kfd_dev *kfd, const void *ih_ring_entry);
820 bool interrupt_is_wanted(struct kfd_dev *dev,
821                                 const uint32_t *ih_ring_entry,
822                                 uint32_t *patched_ihre, bool *flag);
823
824 /* Power Management */
825 void kgd2kfd_suspend(struct kfd_dev *kfd);
826 int kgd2kfd_resume(struct kfd_dev *kfd);
827
828 /* GPU reset */
829 int kgd2kfd_pre_reset(struct kfd_dev *kfd);
830 int kgd2kfd_post_reset(struct kfd_dev *kfd);
831
832 /* amdkfd Apertures */
833 int kfd_init_apertures(struct kfd_process *process);
834
835 /* Queue Context Management */
836 int init_queue(struct queue **q, const struct queue_properties *properties);
837 void uninit_queue(struct queue *q);
838 void print_queue_properties(struct queue_properties *q);
839 void print_queue(struct queue *q);
840
841 struct mqd_manager *mqd_manager_init(enum KFD_MQD_TYPE type,
842                                         struct kfd_dev *dev);
843 struct mqd_manager *mqd_manager_init_cik(enum KFD_MQD_TYPE type,
844                 struct kfd_dev *dev);
845 struct mqd_manager *mqd_manager_init_cik_hawaii(enum KFD_MQD_TYPE type,
846                 struct kfd_dev *dev);
847 struct mqd_manager *mqd_manager_init_vi(enum KFD_MQD_TYPE type,
848                 struct kfd_dev *dev);
849 struct mqd_manager *mqd_manager_init_vi_tonga(enum KFD_MQD_TYPE type,
850                 struct kfd_dev *dev);
851 struct mqd_manager *mqd_manager_init_v9(enum KFD_MQD_TYPE type,
852                 struct kfd_dev *dev);
853 struct device_queue_manager *device_queue_manager_init(struct kfd_dev *dev);
854 void device_queue_manager_uninit(struct device_queue_manager *dqm);
855 struct kernel_queue *kernel_queue_init(struct kfd_dev *dev,
856                                         enum kfd_queue_type type);
857 void kernel_queue_uninit(struct kernel_queue *kq);
858 int kfd_process_vm_fault(struct device_queue_manager *dqm, unsigned int pasid);
859
860 /* Process Queue Manager */
861 struct process_queue_node {
862         struct queue *q;
863         struct kernel_queue *kq;
864         struct list_head process_queue_list;
865 };
866
867 void kfd_process_dequeue_from_device(struct kfd_process_device *pdd);
868 void kfd_process_dequeue_from_all_devices(struct kfd_process *p);
869 int pqm_init(struct process_queue_manager *pqm, struct kfd_process *p);
870 void pqm_uninit(struct process_queue_manager *pqm);
871 int pqm_create_queue(struct process_queue_manager *pqm,
872                             struct kfd_dev *dev,
873                             struct file *f,
874                             struct queue_properties *properties,
875                             unsigned int *qid);
876 int pqm_destroy_queue(struct process_queue_manager *pqm, unsigned int qid);
877 int pqm_update_queue(struct process_queue_manager *pqm, unsigned int qid,
878                         struct queue_properties *p);
879 int pqm_set_cu_mask(struct process_queue_manager *pqm, unsigned int qid,
880                         struct queue_properties *p);
881 struct kernel_queue *pqm_get_kernel_queue(struct process_queue_manager *pqm,
882                                                 unsigned int qid);
883
884 int amdkfd_fence_wait_timeout(unsigned int *fence_addr,
885                                 unsigned int fence_value,
886                                 unsigned int timeout_ms);
887
888 /* Packet Manager */
889
890 #define KFD_FENCE_COMPLETED (100)
891 #define KFD_FENCE_INIT   (10)
892
893 struct packet_manager {
894         struct device_queue_manager *dqm;
895         struct kernel_queue *priv_queue;
896         struct mutex lock;
897         bool allocated;
898         struct kfd_mem_obj *ib_buffer_obj;
899         unsigned int ib_size_bytes;
900
901         const struct packet_manager_funcs *pmf;
902 };
903
904 struct packet_manager_funcs {
905         /* Support ASIC-specific packet formats for PM4 packets */
906         int (*map_process)(struct packet_manager *pm, uint32_t *buffer,
907                         struct qcm_process_device *qpd);
908         int (*runlist)(struct packet_manager *pm, uint32_t *buffer,
909                         uint64_t ib, size_t ib_size_in_dwords, bool chain);
910         int (*set_resources)(struct packet_manager *pm, uint32_t *buffer,
911                         struct scheduling_resources *res);
912         int (*map_queues)(struct packet_manager *pm, uint32_t *buffer,
913                         struct queue *q, bool is_static);
914         int (*unmap_queues)(struct packet_manager *pm, uint32_t *buffer,
915                         enum kfd_queue_type type,
916                         enum kfd_unmap_queues_filter mode,
917                         uint32_t filter_param, bool reset,
918                         unsigned int sdma_engine);
919         int (*query_status)(struct packet_manager *pm, uint32_t *buffer,
920                         uint64_t fence_address, uint32_t fence_value);
921         int (*release_mem)(uint64_t gpu_addr, uint32_t *buffer);
922
923         /* Packet sizes */
924         int map_process_size;
925         int runlist_size;
926         int set_resources_size;
927         int map_queues_size;
928         int unmap_queues_size;
929         int query_status_size;
930         int release_mem_size;
931 };
932
933 extern const struct packet_manager_funcs kfd_vi_pm_funcs;
934 extern const struct packet_manager_funcs kfd_v9_pm_funcs;
935
936 int pm_init(struct packet_manager *pm, struct device_queue_manager *dqm);
937 void pm_uninit(struct packet_manager *pm);
938 int pm_send_set_resources(struct packet_manager *pm,
939                                 struct scheduling_resources *res);
940 int pm_send_runlist(struct packet_manager *pm, struct list_head *dqm_queues);
941 int pm_send_query_status(struct packet_manager *pm, uint64_t fence_address,
942                                 uint32_t fence_value);
943
944 int pm_send_unmap_queue(struct packet_manager *pm, enum kfd_queue_type type,
945                         enum kfd_unmap_queues_filter mode,
946                         uint32_t filter_param, bool reset,
947                         unsigned int sdma_engine);
948
949 void pm_release_ib(struct packet_manager *pm);
950
951 /* Following PM funcs can be shared among VI and AI */
952 unsigned int pm_build_pm4_header(unsigned int opcode, size_t packet_size);
953 int pm_set_resources_vi(struct packet_manager *pm, uint32_t *buffer,
954                                 struct scheduling_resources *res);
955
956 uint64_t kfd_get_number_elems(struct kfd_dev *kfd);
957
958 /* Events */
959 extern const struct kfd_event_interrupt_class event_interrupt_class_cik;
960 extern const struct kfd_event_interrupt_class event_interrupt_class_v9;
961
962 extern const struct kfd_device_global_init_class device_global_init_class_cik;
963
964 void kfd_event_init_process(struct kfd_process *p);
965 void kfd_event_free_process(struct kfd_process *p);
966 int kfd_event_mmap(struct kfd_process *process, struct vm_area_struct *vma);
967 int kfd_wait_on_events(struct kfd_process *p,
968                        uint32_t num_events, void __user *data,
969                        bool all, uint32_t user_timeout_ms,
970                        uint32_t *wait_result);
971 void kfd_signal_event_interrupt(unsigned int pasid, uint32_t partial_id,
972                                 uint32_t valid_id_bits);
973 void kfd_signal_iommu_event(struct kfd_dev *dev,
974                 unsigned int pasid, unsigned long address,
975                 bool is_write_requested, bool is_execute_requested);
976 void kfd_signal_hw_exception_event(unsigned int pasid);
977 int kfd_set_event(struct kfd_process *p, uint32_t event_id);
978 int kfd_reset_event(struct kfd_process *p, uint32_t event_id);
979 int kfd_event_page_set(struct kfd_process *p, void *kernel_address,
980                        uint64_t size);
981 int kfd_event_create(struct file *devkfd, struct kfd_process *p,
982                      uint32_t event_type, bool auto_reset, uint32_t node_id,
983                      uint32_t *event_id, uint32_t *event_trigger_data,
984                      uint64_t *event_page_offset, uint32_t *event_slot_index);
985 int kfd_event_destroy(struct kfd_process *p, uint32_t event_id);
986
987 void kfd_signal_vm_fault_event(struct kfd_dev *dev, unsigned int pasid,
988                                 struct kfd_vm_fault_info *info);
989
990 void kfd_signal_reset_event(struct kfd_dev *dev);
991
992 void kfd_flush_tlb(struct kfd_process_device *pdd);
993
994 int dbgdev_wave_reset_wavefronts(struct kfd_dev *dev, struct kfd_process *p);
995
996 bool kfd_is_locked(void);
997
998 /* Debugfs */
999 #if defined(CONFIG_DEBUG_FS)
1000
1001 void kfd_debugfs_init(void);
1002 void kfd_debugfs_fini(void);
1003 int kfd_debugfs_mqds_by_process(struct seq_file *m, void *data);
1004 int pqm_debugfs_mqds(struct seq_file *m, void *data);
1005 int kfd_debugfs_hqds_by_device(struct seq_file *m, void *data);
1006 int dqm_debugfs_hqds(struct seq_file *m, void *data);
1007 int kfd_debugfs_rls_by_device(struct seq_file *m, void *data);
1008 int pm_debugfs_runlist(struct seq_file *m, void *data);
1009
1010 int kfd_debugfs_hang_hws(struct kfd_dev *dev);
1011 int pm_debugfs_hang_hws(struct packet_manager *pm);
1012 int dqm_debugfs_execute_queues(struct device_queue_manager *dqm);
1013
1014 #else
1015
1016 static inline void kfd_debugfs_init(void) {}
1017 static inline void kfd_debugfs_fini(void) {}
1018
1019 #endif
1020
1021 #endif