Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / drivers / firewire / core-iso.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  * Isochronous I/O functionality:
4  *   - Isochronous DMA context management
5  *   - Isochronous bus resource management (channels, bandwidth), client side
6  *
7  * Copyright (C) 2006 Kristian Hoegsberg <krh@bitplanet.net>
8  */
9
10 #include <linux/dma-mapping.h>
11 #include <linux/errno.h>
12 #include <linux/firewire.h>
13 #include <linux/firewire-constants.h>
14 #include <linux/kernel.h>
15 #include <linux/mm.h>
16 #include <linux/slab.h>
17 #include <linux/spinlock.h>
18 #include <linux/vmalloc.h>
19 #include <linux/export.h>
20
21 #include <asm/byteorder.h>
22
23 #include "core.h"
24
25 /*
26  * Isochronous DMA context management
27  */
28
29 int fw_iso_buffer_alloc(struct fw_iso_buffer *buffer, int page_count)
30 {
31         int i;
32
33         buffer->page_count = 0;
34         buffer->page_count_mapped = 0;
35         buffer->pages = kmalloc_array(page_count, sizeof(buffer->pages[0]),
36                                       GFP_KERNEL);
37         if (buffer->pages == NULL)
38                 return -ENOMEM;
39
40         for (i = 0; i < page_count; i++) {
41                 buffer->pages[i] = alloc_page(GFP_KERNEL | GFP_DMA32 | __GFP_ZERO);
42                 if (buffer->pages[i] == NULL)
43                         break;
44         }
45         buffer->page_count = i;
46         if (i < page_count) {
47                 fw_iso_buffer_destroy(buffer, NULL);
48                 return -ENOMEM;
49         }
50
51         return 0;
52 }
53
54 int fw_iso_buffer_map_dma(struct fw_iso_buffer *buffer, struct fw_card *card,
55                           enum dma_data_direction direction)
56 {
57         dma_addr_t address;
58         int i;
59
60         buffer->direction = direction;
61
62         for (i = 0; i < buffer->page_count; i++) {
63                 address = dma_map_page(card->device, buffer->pages[i],
64                                        0, PAGE_SIZE, direction);
65                 if (dma_mapping_error(card->device, address))
66                         break;
67
68                 set_page_private(buffer->pages[i], address);
69         }
70         buffer->page_count_mapped = i;
71         if (i < buffer->page_count)
72                 return -ENOMEM;
73
74         return 0;
75 }
76
77 int fw_iso_buffer_init(struct fw_iso_buffer *buffer, struct fw_card *card,
78                        int page_count, enum dma_data_direction direction)
79 {
80         int ret;
81
82         ret = fw_iso_buffer_alloc(buffer, page_count);
83         if (ret < 0)
84                 return ret;
85
86         ret = fw_iso_buffer_map_dma(buffer, card, direction);
87         if (ret < 0)
88                 fw_iso_buffer_destroy(buffer, card);
89
90         return ret;
91 }
92 EXPORT_SYMBOL(fw_iso_buffer_init);
93
94 int fw_iso_buffer_map_vma(struct fw_iso_buffer *buffer,
95                           struct vm_area_struct *vma)
96 {
97         return vm_map_pages_zero(vma, buffer->pages,
98                                         buffer->page_count);
99 }
100
101 void fw_iso_buffer_destroy(struct fw_iso_buffer *buffer,
102                            struct fw_card *card)
103 {
104         int i;
105         dma_addr_t address;
106
107         for (i = 0; i < buffer->page_count_mapped; i++) {
108                 address = page_private(buffer->pages[i]);
109                 dma_unmap_page(card->device, address,
110                                PAGE_SIZE, buffer->direction);
111         }
112         for (i = 0; i < buffer->page_count; i++)
113                 __free_page(buffer->pages[i]);
114
115         kfree(buffer->pages);
116         buffer->pages = NULL;
117         buffer->page_count = 0;
118         buffer->page_count_mapped = 0;
119 }
120 EXPORT_SYMBOL(fw_iso_buffer_destroy);
121
122 /* Convert DMA address to offset into virtually contiguous buffer. */
123 size_t fw_iso_buffer_lookup(struct fw_iso_buffer *buffer, dma_addr_t completed)
124 {
125         size_t i;
126         dma_addr_t address;
127         ssize_t offset;
128
129         for (i = 0; i < buffer->page_count; i++) {
130                 address = page_private(buffer->pages[i]);
131                 offset = (ssize_t)completed - (ssize_t)address;
132                 if (offset > 0 && offset <= PAGE_SIZE)
133                         return (i << PAGE_SHIFT) + offset;
134         }
135
136         return 0;
137 }
138
139 struct fw_iso_context *fw_iso_context_create(struct fw_card *card,
140                 int type, int channel, int speed, size_t header_size,
141                 fw_iso_callback_t callback, void *callback_data)
142 {
143         struct fw_iso_context *ctx;
144
145         ctx = card->driver->allocate_iso_context(card,
146                                                  type, channel, header_size);
147         if (IS_ERR(ctx))
148                 return ctx;
149
150         ctx->card = card;
151         ctx->type = type;
152         ctx->channel = channel;
153         ctx->speed = speed;
154         ctx->header_size = header_size;
155         ctx->callback.sc = callback;
156         ctx->callback_data = callback_data;
157
158         return ctx;
159 }
160 EXPORT_SYMBOL(fw_iso_context_create);
161
162 void fw_iso_context_destroy(struct fw_iso_context *ctx)
163 {
164         ctx->card->driver->free_iso_context(ctx);
165 }
166 EXPORT_SYMBOL(fw_iso_context_destroy);
167
168 int fw_iso_context_start(struct fw_iso_context *ctx,
169                          int cycle, int sync, int tags)
170 {
171         return ctx->card->driver->start_iso(ctx, cycle, sync, tags);
172 }
173 EXPORT_SYMBOL(fw_iso_context_start);
174
175 int fw_iso_context_set_channels(struct fw_iso_context *ctx, u64 *channels)
176 {
177         return ctx->card->driver->set_iso_channels(ctx, channels);
178 }
179
180 int fw_iso_context_queue(struct fw_iso_context *ctx,
181                          struct fw_iso_packet *packet,
182                          struct fw_iso_buffer *buffer,
183                          unsigned long payload)
184 {
185         return ctx->card->driver->queue_iso(ctx, packet, buffer, payload);
186 }
187 EXPORT_SYMBOL(fw_iso_context_queue);
188
189 void fw_iso_context_queue_flush(struct fw_iso_context *ctx)
190 {
191         ctx->card->driver->flush_queue_iso(ctx);
192 }
193 EXPORT_SYMBOL(fw_iso_context_queue_flush);
194
195 int fw_iso_context_flush_completions(struct fw_iso_context *ctx)
196 {
197         return ctx->card->driver->flush_iso_completions(ctx);
198 }
199 EXPORT_SYMBOL(fw_iso_context_flush_completions);
200
201 int fw_iso_context_stop(struct fw_iso_context *ctx)
202 {
203         return ctx->card->driver->stop_iso(ctx);
204 }
205 EXPORT_SYMBOL(fw_iso_context_stop);
206
207 /*
208  * Isochronous bus resource management (channels, bandwidth), client side
209  */
210
211 static int manage_bandwidth(struct fw_card *card, int irm_id, int generation,
212                             int bandwidth, bool allocate)
213 {
214         int try, new, old = allocate ? BANDWIDTH_AVAILABLE_INITIAL : 0;
215         __be32 data[2];
216
217         /*
218          * On a 1394a IRM with low contention, try < 1 is enough.
219          * On a 1394-1995 IRM, we need at least try < 2.
220          * Let's just do try < 5.
221          */
222         for (try = 0; try < 5; try++) {
223                 new = allocate ? old - bandwidth : old + bandwidth;
224                 if (new < 0 || new > BANDWIDTH_AVAILABLE_INITIAL)
225                         return -EBUSY;
226
227                 data[0] = cpu_to_be32(old);
228                 data[1] = cpu_to_be32(new);
229                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
230                                 irm_id, generation, SCODE_100,
231                                 CSR_REGISTER_BASE + CSR_BANDWIDTH_AVAILABLE,
232                                 data, 8)) {
233                 case RCODE_GENERATION:
234                         /* A generation change frees all bandwidth. */
235                         return allocate ? -EAGAIN : bandwidth;
236
237                 case RCODE_COMPLETE:
238                         if (be32_to_cpup(data) == old)
239                                 return bandwidth;
240
241                         old = be32_to_cpup(data);
242                         /* Fall through. */
243                 }
244         }
245
246         return -EIO;
247 }
248
249 static int manage_channel(struct fw_card *card, int irm_id, int generation,
250                 u32 channels_mask, u64 offset, bool allocate)
251 {
252         __be32 bit, all, old;
253         __be32 data[2];
254         int channel, ret = -EIO, retry = 5;
255
256         old = all = allocate ? cpu_to_be32(~0) : 0;
257
258         for (channel = 0; channel < 32; channel++) {
259                 if (!(channels_mask & 1 << channel))
260                         continue;
261
262                 ret = -EBUSY;
263
264                 bit = cpu_to_be32(1 << (31 - channel));
265                 if ((old & bit) != (all & bit))
266                         continue;
267
268                 data[0] = old;
269                 data[1] = old ^ bit;
270                 switch (fw_run_transaction(card, TCODE_LOCK_COMPARE_SWAP,
271                                            irm_id, generation, SCODE_100,
272                                            offset, data, 8)) {
273                 case RCODE_GENERATION:
274                         /* A generation change frees all channels. */
275                         return allocate ? -EAGAIN : channel;
276
277                 case RCODE_COMPLETE:
278                         if (data[0] == old)
279                                 return channel;
280
281                         old = data[0];
282
283                         /* Is the IRM 1394a-2000 compliant? */
284                         if ((data[0] & bit) == (data[1] & bit))
285                                 continue;
286
287                         /* fall through - It's a 1394-1995 IRM, retry. */
288                 default:
289                         if (retry) {
290                                 retry--;
291                                 channel--;
292                         } else {
293                                 ret = -EIO;
294                         }
295                 }
296         }
297
298         return ret;
299 }
300
301 static void deallocate_channel(struct fw_card *card, int irm_id,
302                                int generation, int channel)
303 {
304         u32 mask;
305         u64 offset;
306
307         mask = channel < 32 ? 1 << channel : 1 << (channel - 32);
308         offset = channel < 32 ? CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI :
309                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO;
310
311         manage_channel(card, irm_id, generation, mask, offset, false);
312 }
313
314 /**
315  * fw_iso_resource_manage() - Allocate or deallocate a channel and/or bandwidth
316  * @card: card interface for this action
317  * @generation: bus generation
318  * @channels_mask: bitmask for channel allocation
319  * @channel: pointer for returning channel allocation result
320  * @bandwidth: pointer for returning bandwidth allocation result
321  * @allocate: whether to allocate (true) or deallocate (false)
322  *
323  * In parameters: card, generation, channels_mask, bandwidth, allocate
324  * Out parameters: channel, bandwidth
325  *
326  * This function blocks (sleeps) during communication with the IRM.
327  *
328  * Allocates or deallocates at most one channel out of channels_mask.
329  * channels_mask is a bitfield with MSB for channel 63 and LSB for channel 0.
330  * (Note, the IRM's CHANNELS_AVAILABLE is a big-endian bitfield with MSB for
331  * channel 0 and LSB for channel 63.)
332  * Allocates or deallocates as many bandwidth allocation units as specified.
333  *
334  * Returns channel < 0 if no channel was allocated or deallocated.
335  * Returns bandwidth = 0 if no bandwidth was allocated or deallocated.
336  *
337  * If generation is stale, deallocations succeed but allocations fail with
338  * channel = -EAGAIN.
339  *
340  * If channel allocation fails, no bandwidth will be allocated either.
341  * If bandwidth allocation fails, no channel will be allocated either.
342  * But deallocations of channel and bandwidth are tried independently
343  * of each other's success.
344  */
345 void fw_iso_resource_manage(struct fw_card *card, int generation,
346                             u64 channels_mask, int *channel, int *bandwidth,
347                             bool allocate)
348 {
349         u32 channels_hi = channels_mask;        /* channels 31...0 */
350         u32 channels_lo = channels_mask >> 32;  /* channels 63...32 */
351         int irm_id, ret, c = -EINVAL;
352
353         spin_lock_irq(&card->lock);
354         irm_id = card->irm_node->node_id;
355         spin_unlock_irq(&card->lock);
356
357         if (channels_hi)
358                 c = manage_channel(card, irm_id, generation, channels_hi,
359                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_HI,
360                                 allocate);
361         if (channels_lo && c < 0) {
362                 c = manage_channel(card, irm_id, generation, channels_lo,
363                                 CSR_REGISTER_BASE + CSR_CHANNELS_AVAILABLE_LO,
364                                 allocate);
365                 if (c >= 0)
366                         c += 32;
367         }
368         *channel = c;
369
370         if (allocate && channels_mask != 0 && c < 0)
371                 *bandwidth = 0;
372
373         if (*bandwidth == 0)
374                 return;
375
376         ret = manage_bandwidth(card, irm_id, generation, *bandwidth, allocate);
377         if (ret < 0)
378                 *bandwidth = 0;
379
380         if (allocate && ret < 0) {
381                 if (c >= 0)
382                         deallocate_channel(card, irm_id, generation, c);
383                 *channel = ret;
384         }
385 }
386 EXPORT_SYMBOL(fw_iso_resource_manage);