Linux-libre 3.16.41-gnu
[librecmc/linux-libre.git] / drivers / edac / edac_mc_sysfs.c
1 /*
2  * edac_mc kernel module
3  * (C) 2005-2007 Linux Networx (http://lnxi.com)
4  *
5  * This file may be distributed under the terms of the
6  * GNU General Public License.
7  *
8  * Written Doug Thompson <norsk5@xmission.com> www.softwarebitmaker.com
9  *
10  * (c) 2012-2013 - Mauro Carvalho Chehab
11  *      The entire API were re-written, and ported to use struct device
12  *
13  */
14
15 #include <linux/ctype.h>
16 #include <linux/slab.h>
17 #include <linux/edac.h>
18 #include <linux/bug.h>
19 #include <linux/pm_runtime.h>
20 #include <linux/uaccess.h>
21
22 #include "edac_core.h"
23 #include "edac_module.h"
24
25 /* MC EDAC Controls, setable by module parameter, and sysfs */
26 static int edac_mc_log_ue = 1;
27 static int edac_mc_log_ce = 1;
28 static int edac_mc_panic_on_ue;
29 static int edac_mc_poll_msec = 1000;
30
31 /* Getter functions for above */
32 int edac_mc_get_log_ue(void)
33 {
34         return edac_mc_log_ue;
35 }
36
37 int edac_mc_get_log_ce(void)
38 {
39         return edac_mc_log_ce;
40 }
41
42 int edac_mc_get_panic_on_ue(void)
43 {
44         return edac_mc_panic_on_ue;
45 }
46
47 /* this is temporary */
48 int edac_mc_get_poll_msec(void)
49 {
50         return edac_mc_poll_msec;
51 }
52
53 static int edac_set_poll_msec(const char *val, struct kernel_param *kp)
54 {
55         unsigned long l;
56         int ret;
57
58         if (!val)
59                 return -EINVAL;
60
61         ret = kstrtoul(val, 0, &l);
62         if (ret)
63                 return ret;
64
65         if (l < 1000)
66                 return -EINVAL;
67
68         *((unsigned long *)kp->arg) = l;
69
70         /* notify edac_mc engine to reset the poll period */
71         edac_mc_reset_delay_period(l);
72
73         return 0;
74 }
75
76 /* Parameter declarations for above */
77 module_param(edac_mc_panic_on_ue, int, 0644);
78 MODULE_PARM_DESC(edac_mc_panic_on_ue, "Panic on uncorrected error: 0=off 1=on");
79 module_param(edac_mc_log_ue, int, 0644);
80 MODULE_PARM_DESC(edac_mc_log_ue,
81                  "Log uncorrectable error to console: 0=off 1=on");
82 module_param(edac_mc_log_ce, int, 0644);
83 MODULE_PARM_DESC(edac_mc_log_ce,
84                  "Log correctable error to console: 0=off 1=on");
85 module_param_call(edac_mc_poll_msec, edac_set_poll_msec, param_get_int,
86                   &edac_mc_poll_msec, 0644);
87 MODULE_PARM_DESC(edac_mc_poll_msec, "Polling period in milliseconds");
88
89 static struct device *mci_pdev;
90
91 /*
92  * various constants for Memory Controllers
93  */
94 static const char * const mem_types[] = {
95         [MEM_EMPTY] = "Empty",
96         [MEM_RESERVED] = "Reserved",
97         [MEM_UNKNOWN] = "Unknown",
98         [MEM_FPM] = "FPM",
99         [MEM_EDO] = "EDO",
100         [MEM_BEDO] = "BEDO",
101         [MEM_SDR] = "Unbuffered-SDR",
102         [MEM_RDR] = "Registered-SDR",
103         [MEM_DDR] = "Unbuffered-DDR",
104         [MEM_RDDR] = "Registered-DDR",
105         [MEM_RMBS] = "RMBS",
106         [MEM_DDR2] = "Unbuffered-DDR2",
107         [MEM_FB_DDR2] = "FullyBuffered-DDR2",
108         [MEM_RDDR2] = "Registered-DDR2",
109         [MEM_XDR] = "XDR",
110         [MEM_DDR3] = "Unbuffered-DDR3",
111         [MEM_RDDR3] = "Registered-DDR3"
112 };
113
114 static const char * const dev_types[] = {
115         [DEV_UNKNOWN] = "Unknown",
116         [DEV_X1] = "x1",
117         [DEV_X2] = "x2",
118         [DEV_X4] = "x4",
119         [DEV_X8] = "x8",
120         [DEV_X16] = "x16",
121         [DEV_X32] = "x32",
122         [DEV_X64] = "x64"
123 };
124
125 static const char * const edac_caps[] = {
126         [EDAC_UNKNOWN] = "Unknown",
127         [EDAC_NONE] = "None",
128         [EDAC_RESERVED] = "Reserved",
129         [EDAC_PARITY] = "PARITY",
130         [EDAC_EC] = "EC",
131         [EDAC_SECDED] = "SECDED",
132         [EDAC_S2ECD2ED] = "S2ECD2ED",
133         [EDAC_S4ECD4ED] = "S4ECD4ED",
134         [EDAC_S8ECD8ED] = "S8ECD8ED",
135         [EDAC_S16ECD16ED] = "S16ECD16ED"
136 };
137
138 #ifdef CONFIG_EDAC_LEGACY_SYSFS
139 /*
140  * EDAC sysfs CSROW data structures and methods
141  */
142
143 #define to_csrow(k) container_of(k, struct csrow_info, dev)
144
145 /*
146  * We need it to avoid namespace conflicts between the legacy API
147  * and the per-dimm/per-rank one
148  */
149 #define DEVICE_ATTR_LEGACY(_name, _mode, _show, _store) \
150         static struct device_attribute dev_attr_legacy_##_name = __ATTR(_name, _mode, _show, _store)
151
152 struct dev_ch_attribute {
153         struct device_attribute attr;
154         int channel;
155 };
156
157 #define DEVICE_CHANNEL(_name, _mode, _show, _store, _var) \
158         struct dev_ch_attribute dev_attr_legacy_##_name = \
159                 { __ATTR(_name, _mode, _show, _store), (_var) }
160
161 #define to_channel(k) (container_of(k, struct dev_ch_attribute, attr)->channel)
162
163 /* Set of more default csrow<id> attribute show/store functions */
164 static ssize_t csrow_ue_count_show(struct device *dev,
165                                    struct device_attribute *mattr, char *data)
166 {
167         struct csrow_info *csrow = to_csrow(dev);
168
169         return sprintf(data, "%u\n", csrow->ue_count);
170 }
171
172 static ssize_t csrow_ce_count_show(struct device *dev,
173                                    struct device_attribute *mattr, char *data)
174 {
175         struct csrow_info *csrow = to_csrow(dev);
176
177         return sprintf(data, "%u\n", csrow->ce_count);
178 }
179
180 static ssize_t csrow_size_show(struct device *dev,
181                                struct device_attribute *mattr, char *data)
182 {
183         struct csrow_info *csrow = to_csrow(dev);
184         int i;
185         u32 nr_pages = 0;
186
187         for (i = 0; i < csrow->nr_channels; i++)
188                 nr_pages += csrow->channels[i]->dimm->nr_pages;
189         return sprintf(data, "%u\n", PAGES_TO_MiB(nr_pages));
190 }
191
192 static ssize_t csrow_mem_type_show(struct device *dev,
193                                    struct device_attribute *mattr, char *data)
194 {
195         struct csrow_info *csrow = to_csrow(dev);
196
197         return sprintf(data, "%s\n", mem_types[csrow->channels[0]->dimm->mtype]);
198 }
199
200 static ssize_t csrow_dev_type_show(struct device *dev,
201                                    struct device_attribute *mattr, char *data)
202 {
203         struct csrow_info *csrow = to_csrow(dev);
204
205         return sprintf(data, "%s\n", dev_types[csrow->channels[0]->dimm->dtype]);
206 }
207
208 static ssize_t csrow_edac_mode_show(struct device *dev,
209                                     struct device_attribute *mattr,
210                                     char *data)
211 {
212         struct csrow_info *csrow = to_csrow(dev);
213
214         return sprintf(data, "%s\n", edac_caps[csrow->channels[0]->dimm->edac_mode]);
215 }
216
217 /* show/store functions for DIMM Label attributes */
218 static ssize_t channel_dimm_label_show(struct device *dev,
219                                        struct device_attribute *mattr,
220                                        char *data)
221 {
222         struct csrow_info *csrow = to_csrow(dev);
223         unsigned chan = to_channel(mattr);
224         struct rank_info *rank = csrow->channels[chan];
225
226         /* if field has not been initialized, there is nothing to send */
227         if (!rank->dimm->label[0])
228                 return 0;
229
230         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n",
231                         rank->dimm->label);
232 }
233
234 static ssize_t channel_dimm_label_store(struct device *dev,
235                                         struct device_attribute *mattr,
236                                         const char *data, size_t count)
237 {
238         struct csrow_info *csrow = to_csrow(dev);
239         unsigned chan = to_channel(mattr);
240         struct rank_info *rank = csrow->channels[chan];
241
242         ssize_t max_size = 0;
243
244         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
245         strncpy(rank->dimm->label, data, max_size);
246         rank->dimm->label[max_size] = '\0';
247
248         return max_size;
249 }
250
251 /* show function for dynamic chX_ce_count attribute */
252 static ssize_t channel_ce_count_show(struct device *dev,
253                                      struct device_attribute *mattr, char *data)
254 {
255         struct csrow_info *csrow = to_csrow(dev);
256         unsigned chan = to_channel(mattr);
257         struct rank_info *rank = csrow->channels[chan];
258
259         return sprintf(data, "%u\n", rank->ce_count);
260 }
261
262 /* cwrow<id>/attribute files */
263 DEVICE_ATTR_LEGACY(size_mb, S_IRUGO, csrow_size_show, NULL);
264 DEVICE_ATTR_LEGACY(dev_type, S_IRUGO, csrow_dev_type_show, NULL);
265 DEVICE_ATTR_LEGACY(mem_type, S_IRUGO, csrow_mem_type_show, NULL);
266 DEVICE_ATTR_LEGACY(edac_mode, S_IRUGO, csrow_edac_mode_show, NULL);
267 DEVICE_ATTR_LEGACY(ue_count, S_IRUGO, csrow_ue_count_show, NULL);
268 DEVICE_ATTR_LEGACY(ce_count, S_IRUGO, csrow_ce_count_show, NULL);
269
270 /* default attributes of the CSROW<id> object */
271 static struct attribute *csrow_attrs[] = {
272         &dev_attr_legacy_dev_type.attr,
273         &dev_attr_legacy_mem_type.attr,
274         &dev_attr_legacy_edac_mode.attr,
275         &dev_attr_legacy_size_mb.attr,
276         &dev_attr_legacy_ue_count.attr,
277         &dev_attr_legacy_ce_count.attr,
278         NULL,
279 };
280
281 static struct attribute_group csrow_attr_grp = {
282         .attrs  = csrow_attrs,
283 };
284
285 static const struct attribute_group *csrow_attr_groups[] = {
286         &csrow_attr_grp,
287         NULL
288 };
289
290 static void csrow_attr_release(struct device *dev)
291 {
292         struct csrow_info *csrow = container_of(dev, struct csrow_info, dev);
293
294         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
295         kfree(csrow);
296 }
297
298 static struct device_type csrow_attr_type = {
299         .groups         = csrow_attr_groups,
300         .release        = csrow_attr_release,
301 };
302
303 /*
304  * possible dynamic channel DIMM Label attribute files
305  *
306  */
307
308 #define EDAC_NR_CHANNELS        6
309
310 DEVICE_CHANNEL(ch0_dimm_label, S_IRUGO | S_IWUSR,
311         channel_dimm_label_show, channel_dimm_label_store, 0);
312 DEVICE_CHANNEL(ch1_dimm_label, S_IRUGO | S_IWUSR,
313         channel_dimm_label_show, channel_dimm_label_store, 1);
314 DEVICE_CHANNEL(ch2_dimm_label, S_IRUGO | S_IWUSR,
315         channel_dimm_label_show, channel_dimm_label_store, 2);
316 DEVICE_CHANNEL(ch3_dimm_label, S_IRUGO | S_IWUSR,
317         channel_dimm_label_show, channel_dimm_label_store, 3);
318 DEVICE_CHANNEL(ch4_dimm_label, S_IRUGO | S_IWUSR,
319         channel_dimm_label_show, channel_dimm_label_store, 4);
320 DEVICE_CHANNEL(ch5_dimm_label, S_IRUGO | S_IWUSR,
321         channel_dimm_label_show, channel_dimm_label_store, 5);
322
323 /* Total possible dynamic DIMM Label attribute file table */
324 static struct device_attribute *dynamic_csrow_dimm_attr[] = {
325         &dev_attr_legacy_ch0_dimm_label.attr,
326         &dev_attr_legacy_ch1_dimm_label.attr,
327         &dev_attr_legacy_ch2_dimm_label.attr,
328         &dev_attr_legacy_ch3_dimm_label.attr,
329         &dev_attr_legacy_ch4_dimm_label.attr,
330         &dev_attr_legacy_ch5_dimm_label.attr
331 };
332
333 /* possible dynamic channel ce_count attribute files */
334 DEVICE_CHANNEL(ch0_ce_count, S_IRUGO,
335                    channel_ce_count_show, NULL, 0);
336 DEVICE_CHANNEL(ch1_ce_count, S_IRUGO,
337                    channel_ce_count_show, NULL, 1);
338 DEVICE_CHANNEL(ch2_ce_count, S_IRUGO,
339                    channel_ce_count_show, NULL, 2);
340 DEVICE_CHANNEL(ch3_ce_count, S_IRUGO,
341                    channel_ce_count_show, NULL, 3);
342 DEVICE_CHANNEL(ch4_ce_count, S_IRUGO,
343                    channel_ce_count_show, NULL, 4);
344 DEVICE_CHANNEL(ch5_ce_count, S_IRUGO,
345                    channel_ce_count_show, NULL, 5);
346
347 /* Total possible dynamic ce_count attribute file table */
348 static struct device_attribute *dynamic_csrow_ce_count_attr[] = {
349         &dev_attr_legacy_ch0_ce_count.attr,
350         &dev_attr_legacy_ch1_ce_count.attr,
351         &dev_attr_legacy_ch2_ce_count.attr,
352         &dev_attr_legacy_ch3_ce_count.attr,
353         &dev_attr_legacy_ch4_ce_count.attr,
354         &dev_attr_legacy_ch5_ce_count.attr
355 };
356
357 static inline int nr_pages_per_csrow(struct csrow_info *csrow)
358 {
359         int chan, nr_pages = 0;
360
361         for (chan = 0; chan < csrow->nr_channels; chan++)
362                 nr_pages += csrow->channels[chan]->dimm->nr_pages;
363
364         return nr_pages;
365 }
366
367 /* Create a CSROW object under specifed edac_mc_device */
368 static int edac_create_csrow_object(struct mem_ctl_info *mci,
369                                     struct csrow_info *csrow, int index)
370 {
371         int err, chan;
372
373         if (csrow->nr_channels >= EDAC_NR_CHANNELS)
374                 return -ENODEV;
375
376         csrow->dev.type = &csrow_attr_type;
377         csrow->dev.bus = mci->bus;
378         device_initialize(&csrow->dev);
379         csrow->dev.parent = &mci->dev;
380         csrow->mci = mci;
381         dev_set_name(&csrow->dev, "csrow%d", index);
382         dev_set_drvdata(&csrow->dev, csrow);
383
384         edac_dbg(0, "creating (virtual) csrow node %s\n",
385                  dev_name(&csrow->dev));
386
387         err = device_add(&csrow->dev);
388         if (err < 0)
389                 return err;
390
391         for (chan = 0; chan < csrow->nr_channels; chan++) {
392                 /* Only expose populated DIMMs */
393                 if (!csrow->channels[chan]->dimm->nr_pages)
394                         continue;
395                 err = device_create_file(&csrow->dev,
396                                          dynamic_csrow_dimm_attr[chan]);
397                 if (err < 0)
398                         goto error;
399                 err = device_create_file(&csrow->dev,
400                                          dynamic_csrow_ce_count_attr[chan]);
401                 if (err < 0) {
402                         device_remove_file(&csrow->dev,
403                                            dynamic_csrow_dimm_attr[chan]);
404                         goto error;
405                 }
406         }
407
408         return 0;
409
410 error:
411         for (--chan; chan >= 0; chan--) {
412                 device_remove_file(&csrow->dev,
413                                         dynamic_csrow_dimm_attr[chan]);
414                 device_remove_file(&csrow->dev,
415                                            dynamic_csrow_ce_count_attr[chan]);
416         }
417         put_device(&csrow->dev);
418
419         return err;
420 }
421
422 /* Create a CSROW object under specifed edac_mc_device */
423 static int edac_create_csrow_objects(struct mem_ctl_info *mci)
424 {
425         int err, i, chan;
426         struct csrow_info *csrow;
427
428         for (i = 0; i < mci->nr_csrows; i++) {
429                 csrow = mci->csrows[i];
430                 if (!nr_pages_per_csrow(csrow))
431                         continue;
432                 err = edac_create_csrow_object(mci, mci->csrows[i], i);
433                 if (err < 0) {
434                         edac_dbg(1,
435                                  "failure: create csrow objects for csrow %d\n",
436                                  i);
437                         goto error;
438                 }
439         }
440         return 0;
441
442 error:
443         for (--i; i >= 0; i--) {
444                 csrow = mci->csrows[i];
445                 if (!nr_pages_per_csrow(csrow))
446                         continue;
447                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
448                         if (!csrow->channels[chan]->dimm->nr_pages)
449                                 continue;
450                         device_remove_file(&csrow->dev,
451                                                 dynamic_csrow_dimm_attr[chan]);
452                         device_remove_file(&csrow->dev,
453                                                 dynamic_csrow_ce_count_attr[chan]);
454                 }
455                 put_device(&mci->csrows[i]->dev);
456         }
457
458         return err;
459 }
460
461 static void edac_delete_csrow_objects(struct mem_ctl_info *mci)
462 {
463         int i, chan;
464         struct csrow_info *csrow;
465
466         for (i = mci->nr_csrows - 1; i >= 0; i--) {
467                 csrow = mci->csrows[i];
468                 if (!nr_pages_per_csrow(csrow))
469                         continue;
470                 for (chan = csrow->nr_channels - 1; chan >= 0; chan--) {
471                         if (!csrow->channels[chan]->dimm->nr_pages)
472                                 continue;
473                         edac_dbg(1, "Removing csrow %d channel %d sysfs nodes\n",
474                                  i, chan);
475                         device_remove_file(&csrow->dev,
476                                                 dynamic_csrow_dimm_attr[chan]);
477                         device_remove_file(&csrow->dev,
478                                                 dynamic_csrow_ce_count_attr[chan]);
479                 }
480                 device_unregister(&mci->csrows[i]->dev);
481         }
482 }
483 #endif
484
485 /*
486  * Per-dimm (or per-rank) devices
487  */
488
489 #define to_dimm(k) container_of(k, struct dimm_info, dev)
490
491 /* show/store functions for DIMM Label attributes */
492 static ssize_t dimmdev_location_show(struct device *dev,
493                                      struct device_attribute *mattr, char *data)
494 {
495         struct dimm_info *dimm = to_dimm(dev);
496
497         return edac_dimm_info_location(dimm, data, PAGE_SIZE);
498 }
499
500 static ssize_t dimmdev_label_show(struct device *dev,
501                                   struct device_attribute *mattr, char *data)
502 {
503         struct dimm_info *dimm = to_dimm(dev);
504
505         /* if field has not been initialized, there is nothing to send */
506         if (!dimm->label[0])
507                 return 0;
508
509         return snprintf(data, EDAC_MC_LABEL_LEN, "%s\n", dimm->label);
510 }
511
512 static ssize_t dimmdev_label_store(struct device *dev,
513                                    struct device_attribute *mattr,
514                                    const char *data,
515                                    size_t count)
516 {
517         struct dimm_info *dimm = to_dimm(dev);
518
519         ssize_t max_size = 0;
520
521         max_size = min((ssize_t) count, (ssize_t) EDAC_MC_LABEL_LEN - 1);
522         strncpy(dimm->label, data, max_size);
523         dimm->label[max_size] = '\0';
524
525         return max_size;
526 }
527
528 static ssize_t dimmdev_size_show(struct device *dev,
529                                  struct device_attribute *mattr, char *data)
530 {
531         struct dimm_info *dimm = to_dimm(dev);
532
533         return sprintf(data, "%u\n", PAGES_TO_MiB(dimm->nr_pages));
534 }
535
536 static ssize_t dimmdev_mem_type_show(struct device *dev,
537                                      struct device_attribute *mattr, char *data)
538 {
539         struct dimm_info *dimm = to_dimm(dev);
540
541         return sprintf(data, "%s\n", mem_types[dimm->mtype]);
542 }
543
544 static ssize_t dimmdev_dev_type_show(struct device *dev,
545                                      struct device_attribute *mattr, char *data)
546 {
547         struct dimm_info *dimm = to_dimm(dev);
548
549         return sprintf(data, "%s\n", dev_types[dimm->dtype]);
550 }
551
552 static ssize_t dimmdev_edac_mode_show(struct device *dev,
553                                       struct device_attribute *mattr,
554                                       char *data)
555 {
556         struct dimm_info *dimm = to_dimm(dev);
557
558         return sprintf(data, "%s\n", edac_caps[dimm->edac_mode]);
559 }
560
561 /* dimm/rank attribute files */
562 static DEVICE_ATTR(dimm_label, S_IRUGO | S_IWUSR,
563                    dimmdev_label_show, dimmdev_label_store);
564 static DEVICE_ATTR(dimm_location, S_IRUGO, dimmdev_location_show, NULL);
565 static DEVICE_ATTR(size, S_IRUGO, dimmdev_size_show, NULL);
566 static DEVICE_ATTR(dimm_mem_type, S_IRUGO, dimmdev_mem_type_show, NULL);
567 static DEVICE_ATTR(dimm_dev_type, S_IRUGO, dimmdev_dev_type_show, NULL);
568 static DEVICE_ATTR(dimm_edac_mode, S_IRUGO, dimmdev_edac_mode_show, NULL);
569
570 /* attributes of the dimm<id>/rank<id> object */
571 static struct attribute *dimm_attrs[] = {
572         &dev_attr_dimm_label.attr,
573         &dev_attr_dimm_location.attr,
574         &dev_attr_size.attr,
575         &dev_attr_dimm_mem_type.attr,
576         &dev_attr_dimm_dev_type.attr,
577         &dev_attr_dimm_edac_mode.attr,
578         NULL,
579 };
580
581 static struct attribute_group dimm_attr_grp = {
582         .attrs  = dimm_attrs,
583 };
584
585 static const struct attribute_group *dimm_attr_groups[] = {
586         &dimm_attr_grp,
587         NULL
588 };
589
590 static void dimm_attr_release(struct device *dev)
591 {
592         struct dimm_info *dimm = container_of(dev, struct dimm_info, dev);
593
594         edac_dbg(1, "Releasing dimm device %s\n", dev_name(dev));
595         kfree(dimm);
596 }
597
598 static struct device_type dimm_attr_type = {
599         .groups         = dimm_attr_groups,
600         .release        = dimm_attr_release,
601 };
602
603 /* Create a DIMM object under specifed memory controller device */
604 static int edac_create_dimm_object(struct mem_ctl_info *mci,
605                                    struct dimm_info *dimm,
606                                    int index)
607 {
608         int err;
609         dimm->mci = mci;
610
611         dimm->dev.type = &dimm_attr_type;
612         dimm->dev.bus = mci->bus;
613         device_initialize(&dimm->dev);
614
615         dimm->dev.parent = &mci->dev;
616         if (mci->csbased)
617                 dev_set_name(&dimm->dev, "rank%d", index);
618         else
619                 dev_set_name(&dimm->dev, "dimm%d", index);
620         dev_set_drvdata(&dimm->dev, dimm);
621         pm_runtime_forbid(&mci->dev);
622
623         err =  device_add(&dimm->dev);
624
625         edac_dbg(0, "creating rank/dimm device %s\n", dev_name(&dimm->dev));
626
627         return err;
628 }
629
630 /*
631  * Memory controller device
632  */
633
634 #define to_mci(k) container_of(k, struct mem_ctl_info, dev)
635
636 static ssize_t mci_reset_counters_store(struct device *dev,
637                                         struct device_attribute *mattr,
638                                         const char *data, size_t count)
639 {
640         struct mem_ctl_info *mci = to_mci(dev);
641         int cnt, row, chan, i;
642         mci->ue_mc = 0;
643         mci->ce_mc = 0;
644         mci->ue_noinfo_count = 0;
645         mci->ce_noinfo_count = 0;
646
647         for (row = 0; row < mci->nr_csrows; row++) {
648                 struct csrow_info *ri = mci->csrows[row];
649
650                 ri->ue_count = 0;
651                 ri->ce_count = 0;
652
653                 for (chan = 0; chan < ri->nr_channels; chan++)
654                         ri->channels[chan]->ce_count = 0;
655         }
656
657         cnt = 1;
658         for (i = 0; i < mci->n_layers; i++) {
659                 cnt *= mci->layers[i].size;
660                 memset(mci->ce_per_layer[i], 0, cnt * sizeof(u32));
661                 memset(mci->ue_per_layer[i], 0, cnt * sizeof(u32));
662         }
663
664         mci->start_time = jiffies;
665         return count;
666 }
667
668 /* Memory scrubbing interface:
669  *
670  * A MC driver can limit the scrubbing bandwidth based on the CPU type.
671  * Therefore, ->set_sdram_scrub_rate should be made to return the actual
672  * bandwidth that is accepted or 0 when scrubbing is to be disabled.
673  *
674  * Negative value still means that an error has occurred while setting
675  * the scrub rate.
676  */
677 static ssize_t mci_sdram_scrub_rate_store(struct device *dev,
678                                           struct device_attribute *mattr,
679                                           const char *data, size_t count)
680 {
681         struct mem_ctl_info *mci = to_mci(dev);
682         unsigned long bandwidth = 0;
683         int new_bw = 0;
684
685         if (kstrtoul(data, 10, &bandwidth) < 0)
686                 return -EINVAL;
687
688         new_bw = mci->set_sdram_scrub_rate(mci, bandwidth);
689         if (new_bw < 0) {
690                 edac_printk(KERN_WARNING, EDAC_MC,
691                             "Error setting scrub rate to: %lu\n", bandwidth);
692                 return -EINVAL;
693         }
694
695         return count;
696 }
697
698 /*
699  * ->get_sdram_scrub_rate() return value semantics same as above.
700  */
701 static ssize_t mci_sdram_scrub_rate_show(struct device *dev,
702                                          struct device_attribute *mattr,
703                                          char *data)
704 {
705         struct mem_ctl_info *mci = to_mci(dev);
706         int bandwidth = 0;
707
708         bandwidth = mci->get_sdram_scrub_rate(mci);
709         if (bandwidth < 0) {
710                 edac_printk(KERN_DEBUG, EDAC_MC, "Error reading scrub rate\n");
711                 return bandwidth;
712         }
713
714         return sprintf(data, "%d\n", bandwidth);
715 }
716
717 /* default attribute files for the MCI object */
718 static ssize_t mci_ue_count_show(struct device *dev,
719                                  struct device_attribute *mattr,
720                                  char *data)
721 {
722         struct mem_ctl_info *mci = to_mci(dev);
723
724         return sprintf(data, "%d\n", mci->ue_mc);
725 }
726
727 static ssize_t mci_ce_count_show(struct device *dev,
728                                  struct device_attribute *mattr,
729                                  char *data)
730 {
731         struct mem_ctl_info *mci = to_mci(dev);
732
733         return sprintf(data, "%d\n", mci->ce_mc);
734 }
735
736 static ssize_t mci_ce_noinfo_show(struct device *dev,
737                                   struct device_attribute *mattr,
738                                   char *data)
739 {
740         struct mem_ctl_info *mci = to_mci(dev);
741
742         return sprintf(data, "%d\n", mci->ce_noinfo_count);
743 }
744
745 static ssize_t mci_ue_noinfo_show(struct device *dev,
746                                   struct device_attribute *mattr,
747                                   char *data)
748 {
749         struct mem_ctl_info *mci = to_mci(dev);
750
751         return sprintf(data, "%d\n", mci->ue_noinfo_count);
752 }
753
754 static ssize_t mci_seconds_show(struct device *dev,
755                                 struct device_attribute *mattr,
756                                 char *data)
757 {
758         struct mem_ctl_info *mci = to_mci(dev);
759
760         return sprintf(data, "%ld\n", (jiffies - mci->start_time) / HZ);
761 }
762
763 static ssize_t mci_ctl_name_show(struct device *dev,
764                                  struct device_attribute *mattr,
765                                  char *data)
766 {
767         struct mem_ctl_info *mci = to_mci(dev);
768
769         return sprintf(data, "%s\n", mci->ctl_name);
770 }
771
772 static ssize_t mci_size_mb_show(struct device *dev,
773                                 struct device_attribute *mattr,
774                                 char *data)
775 {
776         struct mem_ctl_info *mci = to_mci(dev);
777         int total_pages = 0, csrow_idx, j;
778
779         for (csrow_idx = 0; csrow_idx < mci->nr_csrows; csrow_idx++) {
780                 struct csrow_info *csrow = mci->csrows[csrow_idx];
781
782                 for (j = 0; j < csrow->nr_channels; j++) {
783                         struct dimm_info *dimm = csrow->channels[j]->dimm;
784
785                         total_pages += dimm->nr_pages;
786                 }
787         }
788
789         return sprintf(data, "%u\n", PAGES_TO_MiB(total_pages));
790 }
791
792 static ssize_t mci_max_location_show(struct device *dev,
793                                      struct device_attribute *mattr,
794                                      char *data)
795 {
796         struct mem_ctl_info *mci = to_mci(dev);
797         int i;
798         char *p = data;
799
800         for (i = 0; i < mci->n_layers; i++) {
801                 p += sprintf(p, "%s %d ",
802                              edac_layer_name[mci->layers[i].type],
803                              mci->layers[i].size - 1);
804         }
805
806         return p - data;
807 }
808
809 #ifdef CONFIG_EDAC_DEBUG
810 static ssize_t edac_fake_inject_write(struct file *file,
811                                       const char __user *data,
812                                       size_t count, loff_t *ppos)
813 {
814         struct device *dev = file->private_data;
815         struct mem_ctl_info *mci = to_mci(dev);
816         static enum hw_event_mc_err_type type;
817         u16 errcount = mci->fake_inject_count;
818
819         if (!errcount)
820                 errcount = 1;
821
822         type = mci->fake_inject_ue ? HW_EVENT_ERR_UNCORRECTED
823                                    : HW_EVENT_ERR_CORRECTED;
824
825         printk(KERN_DEBUG
826                "Generating %d %s fake error%s to %d.%d.%d to test core handling. NOTE: this won't test the driver-specific decoding logic.\n",
827                 errcount,
828                 (type == HW_EVENT_ERR_UNCORRECTED) ? "UE" : "CE",
829                 errcount > 1 ? "s" : "",
830                 mci->fake_inject_layer[0],
831                 mci->fake_inject_layer[1],
832                 mci->fake_inject_layer[2]
833                );
834         edac_mc_handle_error(type, mci, errcount, 0, 0, 0,
835                              mci->fake_inject_layer[0],
836                              mci->fake_inject_layer[1],
837                              mci->fake_inject_layer[2],
838                              "FAKE ERROR", "for EDAC testing only");
839
840         return count;
841 }
842
843 static const struct file_operations debug_fake_inject_fops = {
844         .open = simple_open,
845         .write = edac_fake_inject_write,
846         .llseek = generic_file_llseek,
847 };
848 #endif
849
850 /* default Control file */
851 DEVICE_ATTR(reset_counters, S_IWUSR, NULL, mci_reset_counters_store);
852
853 /* default Attribute files */
854 DEVICE_ATTR(mc_name, S_IRUGO, mci_ctl_name_show, NULL);
855 DEVICE_ATTR(size_mb, S_IRUGO, mci_size_mb_show, NULL);
856 DEVICE_ATTR(seconds_since_reset, S_IRUGO, mci_seconds_show, NULL);
857 DEVICE_ATTR(ue_noinfo_count, S_IRUGO, mci_ue_noinfo_show, NULL);
858 DEVICE_ATTR(ce_noinfo_count, S_IRUGO, mci_ce_noinfo_show, NULL);
859 DEVICE_ATTR(ue_count, S_IRUGO, mci_ue_count_show, NULL);
860 DEVICE_ATTR(ce_count, S_IRUGO, mci_ce_count_show, NULL);
861 DEVICE_ATTR(max_location, S_IRUGO, mci_max_location_show, NULL);
862
863 /* memory scrubber attribute file */
864 DEVICE_ATTR(sdram_scrub_rate, 0, NULL, NULL);
865
866 static struct attribute *mci_attrs[] = {
867         &dev_attr_reset_counters.attr,
868         &dev_attr_mc_name.attr,
869         &dev_attr_size_mb.attr,
870         &dev_attr_seconds_since_reset.attr,
871         &dev_attr_ue_noinfo_count.attr,
872         &dev_attr_ce_noinfo_count.attr,
873         &dev_attr_ue_count.attr,
874         &dev_attr_ce_count.attr,
875         &dev_attr_max_location.attr,
876         NULL
877 };
878
879 static struct attribute_group mci_attr_grp = {
880         .attrs  = mci_attrs,
881 };
882
883 static const struct attribute_group *mci_attr_groups[] = {
884         &mci_attr_grp,
885         NULL
886 };
887
888 static void mci_attr_release(struct device *dev)
889 {
890         struct mem_ctl_info *mci = container_of(dev, struct mem_ctl_info, dev);
891
892         edac_dbg(1, "Releasing csrow device %s\n", dev_name(dev));
893         kfree(mci);
894 }
895
896 static struct device_type mci_attr_type = {
897         .groups         = mci_attr_groups,
898         .release        = mci_attr_release,
899 };
900
901 #ifdef CONFIG_EDAC_DEBUG
902 static struct dentry *edac_debugfs;
903
904 int __init edac_debugfs_init(void)
905 {
906         edac_debugfs = debugfs_create_dir("edac", NULL);
907         if (IS_ERR(edac_debugfs)) {
908                 edac_debugfs = NULL;
909                 return -ENOMEM;
910         }
911         return 0;
912 }
913
914 void __exit edac_debugfs_exit(void)
915 {
916         debugfs_remove(edac_debugfs);
917 }
918
919 static int edac_create_debug_nodes(struct mem_ctl_info *mci)
920 {
921         struct dentry *d, *parent;
922         char name[80];
923         int i;
924
925         if (!edac_debugfs)
926                 return -ENODEV;
927
928         d = debugfs_create_dir(mci->dev.kobj.name, edac_debugfs);
929         if (!d)
930                 return -ENOMEM;
931         parent = d;
932
933         for (i = 0; i < mci->n_layers; i++) {
934                 sprintf(name, "fake_inject_%s",
935                              edac_layer_name[mci->layers[i].type]);
936                 d = debugfs_create_u8(name, S_IRUGO | S_IWUSR, parent,
937                                       &mci->fake_inject_layer[i]);
938                 if (!d)
939                         goto nomem;
940         }
941
942         d = debugfs_create_bool("fake_inject_ue", S_IRUGO | S_IWUSR, parent,
943                                 &mci->fake_inject_ue);
944         if (!d)
945                 goto nomem;
946
947         d = debugfs_create_u16("fake_inject_count", S_IRUGO | S_IWUSR, parent,
948                                 &mci->fake_inject_count);
949         if (!d)
950                 goto nomem;
951
952         d = debugfs_create_file("fake_inject", S_IWUSR, parent,
953                                 &mci->dev,
954                                 &debug_fake_inject_fops);
955         if (!d)
956                 goto nomem;
957
958         mci->debugfs = parent;
959         return 0;
960 nomem:
961         debugfs_remove(mci->debugfs);
962         return -ENOMEM;
963 }
964 #endif
965
966 /*
967  * Create a new Memory Controller kobject instance,
968  *      mc<id> under the 'mc' directory
969  *
970  * Return:
971  *      0       Success
972  *      !0      Failure
973  */
974 int edac_create_sysfs_mci_device(struct mem_ctl_info *mci)
975 {
976         char *name;
977         int i, err;
978
979         /*
980          * The memory controller needs its own bus, in order to avoid
981          * namespace conflicts at /sys/bus/edac.
982          */
983         name = kasprintf(GFP_KERNEL, "mc%d", mci->mc_idx);
984         if (!name)
985                 return -ENOMEM;
986
987         mci->bus->name = name;
988
989         edac_dbg(0, "creating bus %s\n", mci->bus->name);
990
991         err = bus_register(mci->bus);
992         if (err < 0) {
993                 kfree(name);
994                 return err;
995         }
996
997         /* get the /sys/devices/system/edac subsys reference */
998         mci->dev.type = &mci_attr_type;
999         device_initialize(&mci->dev);
1000
1001         mci->dev.parent = mci_pdev;
1002         mci->dev.bus = mci->bus;
1003         dev_set_name(&mci->dev, "mc%d", mci->mc_idx);
1004         dev_set_drvdata(&mci->dev, mci);
1005         pm_runtime_forbid(&mci->dev);
1006
1007         edac_dbg(0, "creating device %s\n", dev_name(&mci->dev));
1008         err = device_add(&mci->dev);
1009         if (err < 0) {
1010                 edac_dbg(1, "failure: create device %s\n", dev_name(&mci->dev));
1011                 goto fail_unregister_bus;
1012         }
1013
1014         if (mci->set_sdram_scrub_rate || mci->get_sdram_scrub_rate) {
1015                 if (mci->get_sdram_scrub_rate) {
1016                         dev_attr_sdram_scrub_rate.attr.mode |= S_IRUGO;
1017                         dev_attr_sdram_scrub_rate.show = &mci_sdram_scrub_rate_show;
1018                 }
1019
1020                 if (mci->set_sdram_scrub_rate) {
1021                         dev_attr_sdram_scrub_rate.attr.mode |= S_IWUSR;
1022                         dev_attr_sdram_scrub_rate.store = &mci_sdram_scrub_rate_store;
1023                 }
1024
1025                 err = device_create_file(&mci->dev, &dev_attr_sdram_scrub_rate);
1026                 if (err) {
1027                         edac_dbg(1, "failure: create sdram_scrub_rate\n");
1028                         goto fail_unregister_dev;
1029                 }
1030         }
1031         /*
1032          * Create the dimm/rank devices
1033          */
1034         for (i = 0; i < mci->tot_dimms; i++) {
1035                 struct dimm_info *dimm = mci->dimms[i];
1036                 /* Only expose populated DIMMs */
1037                 if (!dimm->nr_pages)
1038                         continue;
1039
1040 #ifdef CONFIG_EDAC_DEBUG
1041                 edac_dbg(1, "creating dimm%d, located at ", i);
1042                 if (edac_debug_level >= 1) {
1043                         int lay;
1044                         for (lay = 0; lay < mci->n_layers; lay++)
1045                                 printk(KERN_CONT "%s %d ",
1046                                         edac_layer_name[mci->layers[lay].type],
1047                                         dimm->location[lay]);
1048                         printk(KERN_CONT "\n");
1049                 }
1050 #endif
1051                 err = edac_create_dimm_object(mci, dimm, i);
1052                 if (err) {
1053                         edac_dbg(1, "failure: create dimm %d obj\n", i);
1054                         goto fail_unregister_dimm;
1055                 }
1056         }
1057
1058 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1059         err = edac_create_csrow_objects(mci);
1060         if (err < 0)
1061                 goto fail_unregister_dimm;
1062 #endif
1063
1064 #ifdef CONFIG_EDAC_DEBUG
1065         edac_create_debug_nodes(mci);
1066 #endif
1067         return 0;
1068
1069 fail_unregister_dimm:
1070         for (i--; i >= 0; i--) {
1071                 struct dimm_info *dimm = mci->dimms[i];
1072                 if (!dimm->nr_pages)
1073                         continue;
1074
1075                 device_unregister(&dimm->dev);
1076         }
1077 fail_unregister_dev:
1078         device_unregister(&mci->dev);
1079 fail_unregister_bus:
1080         bus_unregister(mci->bus);
1081         kfree(name);
1082
1083         return err;
1084 }
1085
1086 /*
1087  * remove a Memory Controller instance
1088  */
1089 void edac_remove_sysfs_mci_device(struct mem_ctl_info *mci)
1090 {
1091         int i;
1092
1093         edac_dbg(0, "\n");
1094
1095 #ifdef CONFIG_EDAC_DEBUG
1096         debugfs_remove(mci->debugfs);
1097 #endif
1098 #ifdef CONFIG_EDAC_LEGACY_SYSFS
1099         edac_delete_csrow_objects(mci);
1100 #endif
1101
1102         for (i = 0; i < mci->tot_dimms; i++) {
1103                 struct dimm_info *dimm = mci->dimms[i];
1104                 if (dimm->nr_pages == 0)
1105                         continue;
1106                 edac_dbg(0, "removing device %s\n", dev_name(&dimm->dev));
1107                 device_unregister(&dimm->dev);
1108         }
1109 }
1110
1111 void edac_unregister_sysfs(struct mem_ctl_info *mci)
1112 {
1113         const char *name = mci->bus->name;
1114
1115         edac_dbg(1, "Unregistering device %s\n", dev_name(&mci->dev));
1116         device_unregister(&mci->dev);
1117         bus_unregister(mci->bus);
1118         kfree(name);
1119 }
1120
1121 static void mc_attr_release(struct device *dev)
1122 {
1123         /*
1124          * There's no container structure here, as this is just the mci
1125          * parent device, used to create the /sys/devices/mc sysfs node.
1126          * So, there are no attributes on it.
1127          */
1128         edac_dbg(1, "Releasing device %s\n", dev_name(dev));
1129         kfree(dev);
1130 }
1131
1132 static struct device_type mc_attr_type = {
1133         .release        = mc_attr_release,
1134 };
1135 /*
1136  * Init/exit code for the module. Basically, creates/removes /sys/class/rc
1137  */
1138 int __init edac_mc_sysfs_init(void)
1139 {
1140         struct bus_type *edac_subsys;
1141         int err;
1142
1143         /* get the /sys/devices/system/edac subsys reference */
1144         edac_subsys = edac_get_sysfs_subsys();
1145         if (edac_subsys == NULL) {
1146                 edac_dbg(1, "no edac_subsys\n");
1147                 err = -EINVAL;
1148                 goto out;
1149         }
1150
1151         mci_pdev = kzalloc(sizeof(*mci_pdev), GFP_KERNEL);
1152         if (!mci_pdev) {
1153                 err = -ENOMEM;
1154                 goto out_put_sysfs;
1155         }
1156
1157         mci_pdev->bus = edac_subsys;
1158         mci_pdev->type = &mc_attr_type;
1159         device_initialize(mci_pdev);
1160         dev_set_name(mci_pdev, "mc");
1161
1162         err = device_add(mci_pdev);
1163         if (err < 0)
1164                 goto out_dev_free;
1165
1166         edac_dbg(0, "device %s created\n", dev_name(mci_pdev));
1167
1168         return 0;
1169
1170  out_dev_free:
1171         kfree(mci_pdev);
1172  out_put_sysfs:
1173         edac_put_sysfs_subsys();
1174  out:
1175         return err;
1176 }
1177
1178 void __exit edac_mc_sysfs_exit(void)
1179 {
1180         device_unregister(mci_pdev);
1181         edac_put_sysfs_subsys();
1182 }