Linux-libre 4.9.123-gnu
[librecmc/linux-libre.git] / drivers / dma / cppi41.c
1 #include <linux/delay.h>
2 #include <linux/dmaengine.h>
3 #include <linux/dma-mapping.h>
4 #include <linux/platform_device.h>
5 #include <linux/module.h>
6 #include <linux/of.h>
7 #include <linux/slab.h>
8 #include <linux/of_dma.h>
9 #include <linux/of_irq.h>
10 #include <linux/dmapool.h>
11 #include <linux/interrupt.h>
12 #include <linux/of_address.h>
13 #include <linux/pm_runtime.h>
14 #include "dmaengine.h"
15
16 #define DESC_TYPE       27
17 #define DESC_TYPE_HOST  0x10
18 #define DESC_TYPE_TEARD 0x13
19
20 #define TD_DESC_IS_RX   (1 << 16)
21 #define TD_DESC_DMA_NUM 10
22
23 #define DESC_LENGTH_BITS_NUM    21
24
25 #define DESC_TYPE_USB   (5 << 26)
26 #define DESC_PD_COMPLETE        (1 << 31)
27
28 /* DMA engine */
29 #define DMA_TDFDQ       4
30 #define DMA_TXGCR(x)    (0x800 + (x) * 0x20)
31 #define DMA_RXGCR(x)    (0x808 + (x) * 0x20)
32 #define RXHPCRA0                4
33
34 #define GCR_CHAN_ENABLE         (1 << 31)
35 #define GCR_TEARDOWN            (1 << 30)
36 #define GCR_STARV_RETRY         (1 << 24)
37 #define GCR_DESC_TYPE_HOST      (1 << 14)
38
39 /* DMA scheduler */
40 #define DMA_SCHED_CTRL          0
41 #define DMA_SCHED_CTRL_EN       (1 << 31)
42 #define DMA_SCHED_WORD(x)       ((x) * 4 + 0x800)
43
44 #define SCHED_ENTRY0_CHAN(x)    ((x) << 0)
45 #define SCHED_ENTRY0_IS_RX      (1 << 7)
46
47 #define SCHED_ENTRY1_CHAN(x)    ((x) << 8)
48 #define SCHED_ENTRY1_IS_RX      (1 << 15)
49
50 #define SCHED_ENTRY2_CHAN(x)    ((x) << 16)
51 #define SCHED_ENTRY2_IS_RX      (1 << 23)
52
53 #define SCHED_ENTRY3_CHAN(x)    ((x) << 24)
54 #define SCHED_ENTRY3_IS_RX      (1 << 31)
55
56 /* Queue manager */
57 /* 4 KiB of memory for descriptors, 2 for each endpoint */
58 #define ALLOC_DECS_NUM          128
59 #define DESCS_AREAS             1
60 #define TOTAL_DESCS_NUM         (ALLOC_DECS_NUM * DESCS_AREAS)
61 #define QMGR_SCRATCH_SIZE       (TOTAL_DESCS_NUM * 4)
62
63 #define QMGR_LRAM0_BASE         0x80
64 #define QMGR_LRAM_SIZE          0x84
65 #define QMGR_LRAM1_BASE         0x88
66 #define QMGR_MEMBASE(x)         (0x1000 + (x) * 0x10)
67 #define QMGR_MEMCTRL(x)         (0x1004 + (x) * 0x10)
68 #define QMGR_MEMCTRL_IDX_SH     16
69 #define QMGR_MEMCTRL_DESC_SH    8
70
71 #define QMGR_NUM_PEND   5
72 #define QMGR_PEND(x)    (0x90 + (x) * 4)
73
74 #define QMGR_PENDING_SLOT_Q(x)  (x / 32)
75 #define QMGR_PENDING_BIT_Q(x)   (x % 32)
76
77 #define QMGR_QUEUE_A(n) (0x2000 + (n) * 0x10)
78 #define QMGR_QUEUE_B(n) (0x2004 + (n) * 0x10)
79 #define QMGR_QUEUE_C(n) (0x2008 + (n) * 0x10)
80 #define QMGR_QUEUE_D(n) (0x200c + (n) * 0x10)
81
82 /* Glue layer specific */
83 /* USBSS  / USB AM335x */
84 #define USBSS_IRQ_STATUS        0x28
85 #define USBSS_IRQ_ENABLER       0x2c
86 #define USBSS_IRQ_CLEARR        0x30
87
88 #define USBSS_IRQ_PD_COMP       (1 <<  2)
89
90 /* Packet Descriptor */
91 #define PD2_ZERO_LENGTH         (1 << 19)
92
93 struct cppi41_channel {
94         struct dma_chan chan;
95         struct dma_async_tx_descriptor txd;
96         struct cppi41_dd *cdd;
97         struct cppi41_desc *desc;
98         dma_addr_t desc_phys;
99         void __iomem *gcr_reg;
100         int is_tx;
101         u32 residue;
102
103         unsigned int q_num;
104         unsigned int q_comp_num;
105         unsigned int port_num;
106
107         unsigned td_retry;
108         unsigned td_queued:1;
109         unsigned td_seen:1;
110         unsigned td_desc_seen:1;
111
112         struct list_head node;          /* Node for pending list */
113 };
114
115 struct cppi41_desc {
116         u32 pd0;
117         u32 pd1;
118         u32 pd2;
119         u32 pd3;
120         u32 pd4;
121         u32 pd5;
122         u32 pd6;
123         u32 pd7;
124 } __aligned(32);
125
126 struct chan_queues {
127         u16 submit;
128         u16 complete;
129 };
130
131 struct cppi41_dd {
132         struct dma_device ddev;
133
134         void *qmgr_scratch;
135         dma_addr_t scratch_phys;
136
137         struct cppi41_desc *cd;
138         dma_addr_t descs_phys;
139         u32 first_td_desc;
140         struct cppi41_channel *chan_busy[ALLOC_DECS_NUM];
141
142         void __iomem *usbss_mem;
143         void __iomem *ctrl_mem;
144         void __iomem *sched_mem;
145         void __iomem *qmgr_mem;
146         unsigned int irq;
147         const struct chan_queues *queues_rx;
148         const struct chan_queues *queues_tx;
149         struct chan_queues td_queue;
150
151         struct list_head pending;       /* Pending queued transfers */
152         spinlock_t lock;                /* Lock for pending list */
153
154         /* context for suspend/resume */
155         unsigned int dma_tdfdq;
156
157         bool is_suspended;
158 };
159
160 #define FIST_COMPLETION_QUEUE   93
161 static struct chan_queues usb_queues_tx[] = {
162         /* USB0 ENDP 1 */
163         [ 0] = { .submit = 32, .complete =  93},
164         [ 1] = { .submit = 34, .complete =  94},
165         [ 2] = { .submit = 36, .complete =  95},
166         [ 3] = { .submit = 38, .complete =  96},
167         [ 4] = { .submit = 40, .complete =  97},
168         [ 5] = { .submit = 42, .complete =  98},
169         [ 6] = { .submit = 44, .complete =  99},
170         [ 7] = { .submit = 46, .complete = 100},
171         [ 8] = { .submit = 48, .complete = 101},
172         [ 9] = { .submit = 50, .complete = 102},
173         [10] = { .submit = 52, .complete = 103},
174         [11] = { .submit = 54, .complete = 104},
175         [12] = { .submit = 56, .complete = 105},
176         [13] = { .submit = 58, .complete = 106},
177         [14] = { .submit = 60, .complete = 107},
178
179         /* USB1 ENDP1 */
180         [15] = { .submit = 62, .complete = 125},
181         [16] = { .submit = 64, .complete = 126},
182         [17] = { .submit = 66, .complete = 127},
183         [18] = { .submit = 68, .complete = 128},
184         [19] = { .submit = 70, .complete = 129},
185         [20] = { .submit = 72, .complete = 130},
186         [21] = { .submit = 74, .complete = 131},
187         [22] = { .submit = 76, .complete = 132},
188         [23] = { .submit = 78, .complete = 133},
189         [24] = { .submit = 80, .complete = 134},
190         [25] = { .submit = 82, .complete = 135},
191         [26] = { .submit = 84, .complete = 136},
192         [27] = { .submit = 86, .complete = 137},
193         [28] = { .submit = 88, .complete = 138},
194         [29] = { .submit = 90, .complete = 139},
195 };
196
197 static const struct chan_queues usb_queues_rx[] = {
198         /* USB0 ENDP 1 */
199         [ 0] = { .submit =  1, .complete = 109},
200         [ 1] = { .submit =  2, .complete = 110},
201         [ 2] = { .submit =  3, .complete = 111},
202         [ 3] = { .submit =  4, .complete = 112},
203         [ 4] = { .submit =  5, .complete = 113},
204         [ 5] = { .submit =  6, .complete = 114},
205         [ 6] = { .submit =  7, .complete = 115},
206         [ 7] = { .submit =  8, .complete = 116},
207         [ 8] = { .submit =  9, .complete = 117},
208         [ 9] = { .submit = 10, .complete = 118},
209         [10] = { .submit = 11, .complete = 119},
210         [11] = { .submit = 12, .complete = 120},
211         [12] = { .submit = 13, .complete = 121},
212         [13] = { .submit = 14, .complete = 122},
213         [14] = { .submit = 15, .complete = 123},
214
215         /* USB1 ENDP 1 */
216         [15] = { .submit = 16, .complete = 141},
217         [16] = { .submit = 17, .complete = 142},
218         [17] = { .submit = 18, .complete = 143},
219         [18] = { .submit = 19, .complete = 144},
220         [19] = { .submit = 20, .complete = 145},
221         [20] = { .submit = 21, .complete = 146},
222         [21] = { .submit = 22, .complete = 147},
223         [22] = { .submit = 23, .complete = 148},
224         [23] = { .submit = 24, .complete = 149},
225         [24] = { .submit = 25, .complete = 150},
226         [25] = { .submit = 26, .complete = 151},
227         [26] = { .submit = 27, .complete = 152},
228         [27] = { .submit = 28, .complete = 153},
229         [28] = { .submit = 29, .complete = 154},
230         [29] = { .submit = 30, .complete = 155},
231 };
232
233 struct cppi_glue_infos {
234         irqreturn_t (*isr)(int irq, void *data);
235         const struct chan_queues *queues_rx;
236         const struct chan_queues *queues_tx;
237         struct chan_queues td_queue;
238 };
239
240 static struct cppi41_channel *to_cpp41_chan(struct dma_chan *c)
241 {
242         return container_of(c, struct cppi41_channel, chan);
243 }
244
245 static struct cppi41_channel *desc_to_chan(struct cppi41_dd *cdd, u32 desc)
246 {
247         struct cppi41_channel *c;
248         u32 descs_size;
249         u32 desc_num;
250
251         descs_size = sizeof(struct cppi41_desc) * ALLOC_DECS_NUM;
252
253         if (!((desc >= cdd->descs_phys) &&
254                         (desc < (cdd->descs_phys + descs_size)))) {
255                 return NULL;
256         }
257
258         desc_num = (desc - cdd->descs_phys) / sizeof(struct cppi41_desc);
259         BUG_ON(desc_num >= ALLOC_DECS_NUM);
260         c = cdd->chan_busy[desc_num];
261         cdd->chan_busy[desc_num] = NULL;
262
263         /* Usecount for chan_busy[], paired with push_desc_queue() */
264         pm_runtime_put(cdd->ddev.dev);
265
266         return c;
267 }
268
269 static void cppi_writel(u32 val, void *__iomem *mem)
270 {
271         __raw_writel(val, mem);
272 }
273
274 static u32 cppi_readl(void *__iomem *mem)
275 {
276         return __raw_readl(mem);
277 }
278
279 static u32 pd_trans_len(u32 val)
280 {
281         return val & ((1 << (DESC_LENGTH_BITS_NUM + 1)) - 1);
282 }
283
284 static u32 cppi41_pop_desc(struct cppi41_dd *cdd, unsigned queue_num)
285 {
286         u32 desc;
287
288         desc = cppi_readl(cdd->qmgr_mem + QMGR_QUEUE_D(queue_num));
289         desc &= ~0x1f;
290         return desc;
291 }
292
293 static irqreturn_t cppi41_irq(int irq, void *data)
294 {
295         struct cppi41_dd *cdd = data;
296         struct cppi41_channel *c;
297         u32 status;
298         int i;
299
300         status = cppi_readl(cdd->usbss_mem + USBSS_IRQ_STATUS);
301         if (!(status & USBSS_IRQ_PD_COMP))
302                 return IRQ_NONE;
303         cppi_writel(status, cdd->usbss_mem + USBSS_IRQ_STATUS);
304
305         for (i = QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE); i < QMGR_NUM_PEND;
306                         i++) {
307                 u32 val;
308                 u32 q_num;
309
310                 val = cppi_readl(cdd->qmgr_mem + QMGR_PEND(i));
311                 if (i == QMGR_PENDING_SLOT_Q(FIST_COMPLETION_QUEUE) && val) {
312                         u32 mask;
313                         /* set corresponding bit for completetion Q 93 */
314                         mask = 1 << QMGR_PENDING_BIT_Q(FIST_COMPLETION_QUEUE);
315                         /* not set all bits for queues less than Q 93 */
316                         mask--;
317                         /* now invert and keep only Q 93+ set */
318                         val &= ~mask;
319                 }
320
321                 if (val)
322                         __iormb();
323
324                 while (val) {
325                         u32 desc, len;
326                         int error;
327
328                         error = pm_runtime_get(cdd->ddev.dev);
329                         if (error < 0)
330                                 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
331                                         __func__, error);
332
333                         q_num = __fls(val);
334                         val &= ~(1 << q_num);
335                         q_num += 32 * i;
336                         desc = cppi41_pop_desc(cdd, q_num);
337                         c = desc_to_chan(cdd, desc);
338                         if (WARN_ON(!c)) {
339                                 pr_err("%s() q %d desc %08x\n", __func__,
340                                                 q_num, desc);
341                                 continue;
342                         }
343
344                         if (c->desc->pd2 & PD2_ZERO_LENGTH)
345                                 len = 0;
346                         else
347                                 len = pd_trans_len(c->desc->pd0);
348
349                         c->residue = pd_trans_len(c->desc->pd6) - len;
350                         dma_cookie_complete(&c->txd);
351                         dmaengine_desc_get_callback_invoke(&c->txd, NULL);
352
353                         pm_runtime_mark_last_busy(cdd->ddev.dev);
354                         pm_runtime_put_autosuspend(cdd->ddev.dev);
355                 }
356         }
357         return IRQ_HANDLED;
358 }
359
360 static dma_cookie_t cppi41_tx_submit(struct dma_async_tx_descriptor *tx)
361 {
362         dma_cookie_t cookie;
363
364         cookie = dma_cookie_assign(tx);
365
366         return cookie;
367 }
368
369 static int cppi41_dma_alloc_chan_resources(struct dma_chan *chan)
370 {
371         struct cppi41_channel *c = to_cpp41_chan(chan);
372         struct cppi41_dd *cdd = c->cdd;
373         int error;
374
375         error = pm_runtime_get_sync(cdd->ddev.dev);
376         if (error < 0) {
377                 dev_err(cdd->ddev.dev, "%s pm runtime get: %i\n",
378                         __func__, error);
379                 pm_runtime_put_noidle(cdd->ddev.dev);
380
381                 return error;
382         }
383
384         dma_cookie_init(chan);
385         dma_async_tx_descriptor_init(&c->txd, chan);
386         c->txd.tx_submit = cppi41_tx_submit;
387
388         if (!c->is_tx)
389                 cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
390
391         pm_runtime_mark_last_busy(cdd->ddev.dev);
392         pm_runtime_put_autosuspend(cdd->ddev.dev);
393
394         return 0;
395 }
396
397 static void cppi41_dma_free_chan_resources(struct dma_chan *chan)
398 {
399         struct cppi41_channel *c = to_cpp41_chan(chan);
400         struct cppi41_dd *cdd = c->cdd;
401         int error;
402
403         error = pm_runtime_get_sync(cdd->ddev.dev);
404         if (error < 0) {
405                 pm_runtime_put_noidle(cdd->ddev.dev);
406
407                 return;
408         }
409
410         WARN_ON(!list_empty(&cdd->pending));
411
412         pm_runtime_mark_last_busy(cdd->ddev.dev);
413         pm_runtime_put_autosuspend(cdd->ddev.dev);
414 }
415
416 static enum dma_status cppi41_dma_tx_status(struct dma_chan *chan,
417         dma_cookie_t cookie, struct dma_tx_state *txstate)
418 {
419         struct cppi41_channel *c = to_cpp41_chan(chan);
420         enum dma_status ret;
421
422         /* lock */
423         ret = dma_cookie_status(chan, cookie, txstate);
424         if (txstate && ret == DMA_COMPLETE)
425                 txstate->residue = c->residue;
426         /* unlock */
427
428         return ret;
429 }
430
431 static void push_desc_queue(struct cppi41_channel *c)
432 {
433         struct cppi41_dd *cdd = c->cdd;
434         u32 desc_num;
435         u32 desc_phys;
436         u32 reg;
437
438         c->residue = 0;
439
440         reg = GCR_CHAN_ENABLE;
441         if (!c->is_tx) {
442                 reg |= GCR_STARV_RETRY;
443                 reg |= GCR_DESC_TYPE_HOST;
444                 reg |= c->q_comp_num;
445         }
446
447         cppi_writel(reg, c->gcr_reg);
448
449         /*
450          * We don't use writel() but __raw_writel() so we have to make sure
451          * that the DMA descriptor in coherent memory made to the main memory
452          * before starting the dma engine.
453          */
454         __iowmb();
455
456         /*
457          * DMA transfers can take at least 200ms to complete with USB mass
458          * storage connected. To prevent autosuspend timeouts, we must use
459          * pm_runtime_get/put() when chan_busy[] is modified. This will get
460          * cleared in desc_to_chan() or cppi41_stop_chan() depending on the
461          * outcome of the transfer.
462          */
463         pm_runtime_get(cdd->ddev.dev);
464
465         desc_phys = lower_32_bits(c->desc_phys);
466         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
467         WARN_ON(cdd->chan_busy[desc_num]);
468         cdd->chan_busy[desc_num] = c;
469
470         reg = (sizeof(struct cppi41_desc) - 24) / 4;
471         reg |= desc_phys;
472         cppi_writel(reg, cdd->qmgr_mem + QMGR_QUEUE_D(c->q_num));
473 }
474
475 /*
476  * Caller must hold cdd->lock to prevent push_desc_queue()
477  * getting called out of order. We have both cppi41_dma_issue_pending()
478  * and cppi41_runtime_resume() call this function.
479  */
480 static void cppi41_run_queue(struct cppi41_dd *cdd)
481 {
482         struct cppi41_channel *c, *_c;
483
484         list_for_each_entry_safe(c, _c, &cdd->pending, node) {
485                 push_desc_queue(c);
486                 list_del(&c->node);
487         }
488 }
489
490 static void cppi41_dma_issue_pending(struct dma_chan *chan)
491 {
492         struct cppi41_channel *c = to_cpp41_chan(chan);
493         struct cppi41_dd *cdd = c->cdd;
494         unsigned long flags;
495         int error;
496
497         error = pm_runtime_get(cdd->ddev.dev);
498         if ((error != -EINPROGRESS) && error < 0) {
499                 pm_runtime_put_noidle(cdd->ddev.dev);
500                 dev_err(cdd->ddev.dev, "Failed to pm_runtime_get: %i\n",
501                         error);
502
503                 return;
504         }
505
506         spin_lock_irqsave(&cdd->lock, flags);
507         list_add_tail(&c->node, &cdd->pending);
508         if (!cdd->is_suspended)
509                 cppi41_run_queue(cdd);
510         spin_unlock_irqrestore(&cdd->lock, flags);
511
512         pm_runtime_mark_last_busy(cdd->ddev.dev);
513         pm_runtime_put_autosuspend(cdd->ddev.dev);
514 }
515
516 static u32 get_host_pd0(u32 length)
517 {
518         u32 reg;
519
520         reg = DESC_TYPE_HOST << DESC_TYPE;
521         reg |= length;
522
523         return reg;
524 }
525
526 static u32 get_host_pd1(struct cppi41_channel *c)
527 {
528         u32 reg;
529
530         reg = 0;
531
532         return reg;
533 }
534
535 static u32 get_host_pd2(struct cppi41_channel *c)
536 {
537         u32 reg;
538
539         reg = DESC_TYPE_USB;
540         reg |= c->q_comp_num;
541
542         return reg;
543 }
544
545 static u32 get_host_pd3(u32 length)
546 {
547         u32 reg;
548
549         /* PD3 = packet size */
550         reg = length;
551
552         return reg;
553 }
554
555 static u32 get_host_pd6(u32 length)
556 {
557         u32 reg;
558
559         /* PD6 buffer size */
560         reg = DESC_PD_COMPLETE;
561         reg |= length;
562
563         return reg;
564 }
565
566 static u32 get_host_pd4_or_7(u32 addr)
567 {
568         u32 reg;
569
570         reg = addr;
571
572         return reg;
573 }
574
575 static u32 get_host_pd5(void)
576 {
577         u32 reg;
578
579         reg = 0;
580
581         return reg;
582 }
583
584 static struct dma_async_tx_descriptor *cppi41_dma_prep_slave_sg(
585         struct dma_chan *chan, struct scatterlist *sgl, unsigned sg_len,
586         enum dma_transfer_direction dir, unsigned long tx_flags, void *context)
587 {
588         struct cppi41_channel *c = to_cpp41_chan(chan);
589         struct cppi41_desc *d;
590         struct scatterlist *sg;
591         unsigned int i;
592
593         d = c->desc;
594         for_each_sg(sgl, sg, sg_len, i) {
595                 u32 addr;
596                 u32 len;
597
598                 /* We need to use more than one desc once musb supports sg */
599                 addr = lower_32_bits(sg_dma_address(sg));
600                 len = sg_dma_len(sg);
601
602                 d->pd0 = get_host_pd0(len);
603                 d->pd1 = get_host_pd1(c);
604                 d->pd2 = get_host_pd2(c);
605                 d->pd3 = get_host_pd3(len);
606                 d->pd4 = get_host_pd4_or_7(addr);
607                 d->pd5 = get_host_pd5();
608                 d->pd6 = get_host_pd6(len);
609                 d->pd7 = get_host_pd4_or_7(addr);
610
611                 d++;
612         }
613
614         return &c->txd;
615 }
616
617 static void cppi41_compute_td_desc(struct cppi41_desc *d)
618 {
619         d->pd0 = DESC_TYPE_TEARD << DESC_TYPE;
620 }
621
622 static int cppi41_tear_down_chan(struct cppi41_channel *c)
623 {
624         struct cppi41_dd *cdd = c->cdd;
625         struct cppi41_desc *td;
626         u32 reg;
627         u32 desc_phys;
628         u32 td_desc_phys;
629
630         td = cdd->cd;
631         td += cdd->first_td_desc;
632
633         td_desc_phys = cdd->descs_phys;
634         td_desc_phys += cdd->first_td_desc * sizeof(struct cppi41_desc);
635
636         if (!c->td_queued) {
637                 cppi41_compute_td_desc(td);
638                 __iowmb();
639
640                 reg = (sizeof(struct cppi41_desc) - 24) / 4;
641                 reg |= td_desc_phys;
642                 cppi_writel(reg, cdd->qmgr_mem +
643                                 QMGR_QUEUE_D(cdd->td_queue.submit));
644
645                 reg = GCR_CHAN_ENABLE;
646                 if (!c->is_tx) {
647                         reg |= GCR_STARV_RETRY;
648                         reg |= GCR_DESC_TYPE_HOST;
649                         reg |= c->q_comp_num;
650                 }
651                 reg |= GCR_TEARDOWN;
652                 cppi_writel(reg, c->gcr_reg);
653                 c->td_queued = 1;
654                 c->td_retry = 500;
655         }
656
657         if (!c->td_seen || !c->td_desc_seen) {
658
659                 desc_phys = cppi41_pop_desc(cdd, cdd->td_queue.complete);
660                 if (!desc_phys)
661                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
662
663                 if (desc_phys == c->desc_phys) {
664                         c->td_desc_seen = 1;
665
666                 } else if (desc_phys == td_desc_phys) {
667                         u32 pd0;
668
669                         __iormb();
670                         pd0 = td->pd0;
671                         WARN_ON((pd0 >> DESC_TYPE) != DESC_TYPE_TEARD);
672                         WARN_ON(!c->is_tx && !(pd0 & TD_DESC_IS_RX));
673                         WARN_ON((pd0 & 0x1f) != c->port_num);
674                         c->td_seen = 1;
675                 } else if (desc_phys) {
676                         WARN_ON_ONCE(1);
677                 }
678         }
679         c->td_retry--;
680         /*
681          * If the TX descriptor / channel is in use, the caller needs to poke
682          * his TD bit multiple times. After that he hardware releases the
683          * transfer descriptor followed by TD descriptor. Waiting seems not to
684          * cause any difference.
685          * RX seems to be thrown out right away. However once the TearDown
686          * descriptor gets through we are done. If we have seens the transfer
687          * descriptor before the TD we fetch it from enqueue, it has to be
688          * there waiting for us.
689          */
690         if (!c->td_seen && c->td_retry) {
691                 udelay(1);
692                 return -EAGAIN;
693         }
694         WARN_ON(!c->td_retry);
695
696         if (!c->td_desc_seen) {
697                 desc_phys = cppi41_pop_desc(cdd, c->q_num);
698                 if (!desc_phys)
699                         desc_phys = cppi41_pop_desc(cdd, c->q_comp_num);
700                 WARN_ON(!desc_phys);
701         }
702
703         c->td_queued = 0;
704         c->td_seen = 0;
705         c->td_desc_seen = 0;
706         cppi_writel(0, c->gcr_reg);
707         return 0;
708 }
709
710 static int cppi41_stop_chan(struct dma_chan *chan)
711 {
712         struct cppi41_channel *c = to_cpp41_chan(chan);
713         struct cppi41_dd *cdd = c->cdd;
714         u32 desc_num;
715         u32 desc_phys;
716         int ret;
717
718         desc_phys = lower_32_bits(c->desc_phys);
719         desc_num = (desc_phys - cdd->descs_phys) / sizeof(struct cppi41_desc);
720         if (!cdd->chan_busy[desc_num])
721                 return 0;
722
723         ret = cppi41_tear_down_chan(c);
724         if (ret)
725                 return ret;
726
727         WARN_ON(!cdd->chan_busy[desc_num]);
728         cdd->chan_busy[desc_num] = NULL;
729
730         /* Usecount for chan_busy[], paired with push_desc_queue() */
731         pm_runtime_put(cdd->ddev.dev);
732
733         return 0;
734 }
735
736 static void cleanup_chans(struct cppi41_dd *cdd)
737 {
738         while (!list_empty(&cdd->ddev.channels)) {
739                 struct cppi41_channel *cchan;
740
741                 cchan = list_first_entry(&cdd->ddev.channels,
742                                 struct cppi41_channel, chan.device_node);
743                 list_del(&cchan->chan.device_node);
744                 kfree(cchan);
745         }
746 }
747
748 static int cppi41_add_chans(struct device *dev, struct cppi41_dd *cdd)
749 {
750         struct cppi41_channel *cchan;
751         int i;
752         int ret;
753         u32 n_chans;
754
755         ret = of_property_read_u32(dev->of_node, "#dma-channels",
756                         &n_chans);
757         if (ret)
758                 return ret;
759         /*
760          * The channels can only be used as TX or as RX. So we add twice
761          * that much dma channels because USB can only do RX or TX.
762          */
763         n_chans *= 2;
764
765         for (i = 0; i < n_chans; i++) {
766                 cchan = kzalloc(sizeof(*cchan), GFP_KERNEL);
767                 if (!cchan)
768                         goto err;
769
770                 cchan->cdd = cdd;
771                 if (i & 1) {
772                         cchan->gcr_reg = cdd->ctrl_mem + DMA_TXGCR(i >> 1);
773                         cchan->is_tx = 1;
774                 } else {
775                         cchan->gcr_reg = cdd->ctrl_mem + DMA_RXGCR(i >> 1);
776                         cchan->is_tx = 0;
777                 }
778                 cchan->port_num = i >> 1;
779                 cchan->desc = &cdd->cd[i];
780                 cchan->desc_phys = cdd->descs_phys;
781                 cchan->desc_phys += i * sizeof(struct cppi41_desc);
782                 cchan->chan.device = &cdd->ddev;
783                 list_add_tail(&cchan->chan.device_node, &cdd->ddev.channels);
784         }
785         cdd->first_td_desc = n_chans;
786
787         return 0;
788 err:
789         cleanup_chans(cdd);
790         return -ENOMEM;
791 }
792
793 static void purge_descs(struct device *dev, struct cppi41_dd *cdd)
794 {
795         unsigned int mem_decs;
796         int i;
797
798         mem_decs = ALLOC_DECS_NUM * sizeof(struct cppi41_desc);
799
800         for (i = 0; i < DESCS_AREAS; i++) {
801
802                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMBASE(i));
803                 cppi_writel(0, cdd->qmgr_mem + QMGR_MEMCTRL(i));
804
805                 dma_free_coherent(dev, mem_decs, cdd->cd,
806                                 cdd->descs_phys);
807         }
808 }
809
810 static void disable_sched(struct cppi41_dd *cdd)
811 {
812         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
813 }
814
815 static void deinit_cppi41(struct device *dev, struct cppi41_dd *cdd)
816 {
817         disable_sched(cdd);
818
819         purge_descs(dev, cdd);
820
821         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
822         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM0_BASE);
823         dma_free_coherent(dev, QMGR_SCRATCH_SIZE, cdd->qmgr_scratch,
824                         cdd->scratch_phys);
825 }
826
827 static int init_descs(struct device *dev, struct cppi41_dd *cdd)
828 {
829         unsigned int desc_size;
830         unsigned int mem_decs;
831         int i;
832         u32 reg;
833         u32 idx;
834
835         BUILD_BUG_ON(sizeof(struct cppi41_desc) &
836                         (sizeof(struct cppi41_desc) - 1));
837         BUILD_BUG_ON(sizeof(struct cppi41_desc) < 32);
838         BUILD_BUG_ON(ALLOC_DECS_NUM < 32);
839
840         desc_size = sizeof(struct cppi41_desc);
841         mem_decs = ALLOC_DECS_NUM * desc_size;
842
843         idx = 0;
844         for (i = 0; i < DESCS_AREAS; i++) {
845
846                 reg = idx << QMGR_MEMCTRL_IDX_SH;
847                 reg |= (ilog2(desc_size) - 5) << QMGR_MEMCTRL_DESC_SH;
848                 reg |= ilog2(ALLOC_DECS_NUM) - 5;
849
850                 BUILD_BUG_ON(DESCS_AREAS != 1);
851                 cdd->cd = dma_alloc_coherent(dev, mem_decs,
852                                 &cdd->descs_phys, GFP_KERNEL);
853                 if (!cdd->cd)
854                         return -ENOMEM;
855
856                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
857                 cppi_writel(reg, cdd->qmgr_mem + QMGR_MEMCTRL(i));
858
859                 idx += ALLOC_DECS_NUM;
860         }
861         return 0;
862 }
863
864 static void init_sched(struct cppi41_dd *cdd)
865 {
866         unsigned ch;
867         unsigned word;
868         u32 reg;
869
870         word = 0;
871         cppi_writel(0, cdd->sched_mem + DMA_SCHED_CTRL);
872         for (ch = 0; ch < 15 * 2; ch += 2) {
873
874                 reg = SCHED_ENTRY0_CHAN(ch);
875                 reg |= SCHED_ENTRY1_CHAN(ch) | SCHED_ENTRY1_IS_RX;
876
877                 reg |= SCHED_ENTRY2_CHAN(ch + 1);
878                 reg |= SCHED_ENTRY3_CHAN(ch + 1) | SCHED_ENTRY3_IS_RX;
879                 cppi_writel(reg, cdd->sched_mem + DMA_SCHED_WORD(word));
880                 word++;
881         }
882         reg = 15 * 2 * 2 - 1;
883         reg |= DMA_SCHED_CTRL_EN;
884         cppi_writel(reg, cdd->sched_mem + DMA_SCHED_CTRL);
885 }
886
887 static int init_cppi41(struct device *dev, struct cppi41_dd *cdd)
888 {
889         int ret;
890
891         BUILD_BUG_ON(QMGR_SCRATCH_SIZE > ((1 << 14) - 1));
892         cdd->qmgr_scratch = dma_alloc_coherent(dev, QMGR_SCRATCH_SIZE,
893                         &cdd->scratch_phys, GFP_KERNEL);
894         if (!cdd->qmgr_scratch)
895                 return -ENOMEM;
896
897         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
898         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
899         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
900
901         ret = init_descs(dev, cdd);
902         if (ret)
903                 goto err_td;
904
905         cppi_writel(cdd->td_queue.submit, cdd->ctrl_mem + DMA_TDFDQ);
906         init_sched(cdd);
907         return 0;
908 err_td:
909         deinit_cppi41(dev, cdd);
910         return ret;
911 }
912
913 static struct platform_driver cpp41_dma_driver;
914 /*
915  * The param format is:
916  * X Y
917  * X: Port
918  * Y: 0 = RX else TX
919  */
920 #define INFO_PORT       0
921 #define INFO_IS_TX      1
922
923 static bool cpp41_dma_filter_fn(struct dma_chan *chan, void *param)
924 {
925         struct cppi41_channel *cchan;
926         struct cppi41_dd *cdd;
927         const struct chan_queues *queues;
928         u32 *num = param;
929
930         if (chan->device->dev->driver != &cpp41_dma_driver.driver)
931                 return false;
932
933         cchan = to_cpp41_chan(chan);
934
935         if (cchan->port_num != num[INFO_PORT])
936                 return false;
937
938         if (cchan->is_tx && !num[INFO_IS_TX])
939                 return false;
940         cdd = cchan->cdd;
941         if (cchan->is_tx)
942                 queues = cdd->queues_tx;
943         else
944                 queues = cdd->queues_rx;
945
946         BUILD_BUG_ON(ARRAY_SIZE(usb_queues_rx) != ARRAY_SIZE(usb_queues_tx));
947         if (WARN_ON(cchan->port_num > ARRAY_SIZE(usb_queues_rx)))
948                 return false;
949
950         cchan->q_num = queues[cchan->port_num].submit;
951         cchan->q_comp_num = queues[cchan->port_num].complete;
952         return true;
953 }
954
955 static struct of_dma_filter_info cpp41_dma_info = {
956         .filter_fn = cpp41_dma_filter_fn,
957 };
958
959 static struct dma_chan *cppi41_dma_xlate(struct of_phandle_args *dma_spec,
960                 struct of_dma *ofdma)
961 {
962         int count = dma_spec->args_count;
963         struct of_dma_filter_info *info = ofdma->of_dma_data;
964
965         if (!info || !info->filter_fn)
966                 return NULL;
967
968         if (count != 2)
969                 return NULL;
970
971         return dma_request_channel(info->dma_cap, info->filter_fn,
972                         &dma_spec->args[0]);
973 }
974
975 static const struct cppi_glue_infos usb_infos = {
976         .isr = cppi41_irq,
977         .queues_rx = usb_queues_rx,
978         .queues_tx = usb_queues_tx,
979         .td_queue = { .submit = 31, .complete = 0 },
980 };
981
982 static const struct of_device_id cppi41_dma_ids[] = {
983         { .compatible = "ti,am3359-cppi41", .data = &usb_infos},
984         {},
985 };
986 MODULE_DEVICE_TABLE(of, cppi41_dma_ids);
987
988 static const struct cppi_glue_infos *get_glue_info(struct device *dev)
989 {
990         const struct of_device_id *of_id;
991
992         of_id = of_match_node(cppi41_dma_ids, dev->of_node);
993         if (!of_id)
994                 return NULL;
995         return of_id->data;
996 }
997
998 #define CPPI41_DMA_BUSWIDTHS    (BIT(DMA_SLAVE_BUSWIDTH_1_BYTE) | \
999                                 BIT(DMA_SLAVE_BUSWIDTH_2_BYTES) | \
1000                                 BIT(DMA_SLAVE_BUSWIDTH_3_BYTES) | \
1001                                 BIT(DMA_SLAVE_BUSWIDTH_4_BYTES))
1002
1003 static int cppi41_dma_probe(struct platform_device *pdev)
1004 {
1005         struct cppi41_dd *cdd;
1006         struct device *dev = &pdev->dev;
1007         const struct cppi_glue_infos *glue_info;
1008         int irq;
1009         int ret;
1010
1011         glue_info = get_glue_info(dev);
1012         if (!glue_info)
1013                 return -EINVAL;
1014
1015         cdd = devm_kzalloc(&pdev->dev, sizeof(*cdd), GFP_KERNEL);
1016         if (!cdd)
1017                 return -ENOMEM;
1018
1019         dma_cap_set(DMA_SLAVE, cdd->ddev.cap_mask);
1020         cdd->ddev.device_alloc_chan_resources = cppi41_dma_alloc_chan_resources;
1021         cdd->ddev.device_free_chan_resources = cppi41_dma_free_chan_resources;
1022         cdd->ddev.device_tx_status = cppi41_dma_tx_status;
1023         cdd->ddev.device_issue_pending = cppi41_dma_issue_pending;
1024         cdd->ddev.device_prep_slave_sg = cppi41_dma_prep_slave_sg;
1025         cdd->ddev.device_terminate_all = cppi41_stop_chan;
1026         cdd->ddev.directions = BIT(DMA_DEV_TO_MEM) | BIT(DMA_MEM_TO_DEV);
1027         cdd->ddev.src_addr_widths = CPPI41_DMA_BUSWIDTHS;
1028         cdd->ddev.dst_addr_widths = CPPI41_DMA_BUSWIDTHS;
1029         cdd->ddev.residue_granularity = DMA_RESIDUE_GRANULARITY_BURST;
1030         cdd->ddev.dev = dev;
1031         INIT_LIST_HEAD(&cdd->ddev.channels);
1032         cpp41_dma_info.dma_cap = cdd->ddev.cap_mask;
1033
1034         cdd->usbss_mem = of_iomap(dev->of_node, 0);
1035         cdd->ctrl_mem = of_iomap(dev->of_node, 1);
1036         cdd->sched_mem = of_iomap(dev->of_node, 2);
1037         cdd->qmgr_mem = of_iomap(dev->of_node, 3);
1038         spin_lock_init(&cdd->lock);
1039         INIT_LIST_HEAD(&cdd->pending);
1040
1041         platform_set_drvdata(pdev, cdd);
1042
1043         if (!cdd->usbss_mem || !cdd->ctrl_mem || !cdd->sched_mem ||
1044                         !cdd->qmgr_mem)
1045                 return -ENXIO;
1046
1047         pm_runtime_enable(dev);
1048         pm_runtime_set_autosuspend_delay(dev, 100);
1049         pm_runtime_use_autosuspend(dev);
1050         ret = pm_runtime_get_sync(dev);
1051         if (ret < 0)
1052                 goto err_get_sync;
1053
1054         cdd->queues_rx = glue_info->queues_rx;
1055         cdd->queues_tx = glue_info->queues_tx;
1056         cdd->td_queue = glue_info->td_queue;
1057
1058         ret = init_cppi41(dev, cdd);
1059         if (ret)
1060                 goto err_init_cppi;
1061
1062         ret = cppi41_add_chans(dev, cdd);
1063         if (ret)
1064                 goto err_chans;
1065
1066         irq = irq_of_parse_and_map(dev->of_node, 0);
1067         if (!irq) {
1068                 ret = -EINVAL;
1069                 goto err_irq;
1070         }
1071
1072         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1073
1074         ret = devm_request_irq(&pdev->dev, irq, glue_info->isr, IRQF_SHARED,
1075                         dev_name(dev), cdd);
1076         if (ret)
1077                 goto err_irq;
1078         cdd->irq = irq;
1079
1080         ret = dma_async_device_register(&cdd->ddev);
1081         if (ret)
1082                 goto err_dma_reg;
1083
1084         ret = of_dma_controller_register(dev->of_node,
1085                         cppi41_dma_xlate, &cpp41_dma_info);
1086         if (ret)
1087                 goto err_of;
1088
1089         pm_runtime_mark_last_busy(dev);
1090         pm_runtime_put_autosuspend(dev);
1091
1092         return 0;
1093 err_of:
1094         dma_async_device_unregister(&cdd->ddev);
1095 err_dma_reg:
1096 err_irq:
1097         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1098         cleanup_chans(cdd);
1099 err_chans:
1100         deinit_cppi41(dev, cdd);
1101 err_init_cppi:
1102         pm_runtime_dont_use_autosuspend(dev);
1103 err_get_sync:
1104         pm_runtime_put_sync(dev);
1105         pm_runtime_disable(dev);
1106         iounmap(cdd->usbss_mem);
1107         iounmap(cdd->ctrl_mem);
1108         iounmap(cdd->sched_mem);
1109         iounmap(cdd->qmgr_mem);
1110         return ret;
1111 }
1112
1113 static int cppi41_dma_remove(struct platform_device *pdev)
1114 {
1115         struct cppi41_dd *cdd = platform_get_drvdata(pdev);
1116         int error;
1117
1118         error = pm_runtime_get_sync(&pdev->dev);
1119         if (error < 0)
1120                 dev_err(&pdev->dev, "%s could not pm_runtime_get: %i\n",
1121                         __func__, error);
1122         of_dma_controller_free(pdev->dev.of_node);
1123         dma_async_device_unregister(&cdd->ddev);
1124
1125         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1126         devm_free_irq(&pdev->dev, cdd->irq, cdd);
1127         cleanup_chans(cdd);
1128         deinit_cppi41(&pdev->dev, cdd);
1129         iounmap(cdd->usbss_mem);
1130         iounmap(cdd->ctrl_mem);
1131         iounmap(cdd->sched_mem);
1132         iounmap(cdd->qmgr_mem);
1133         pm_runtime_dont_use_autosuspend(&pdev->dev);
1134         pm_runtime_put_sync(&pdev->dev);
1135         pm_runtime_disable(&pdev->dev);
1136         return 0;
1137 }
1138
1139 static int __maybe_unused cppi41_suspend(struct device *dev)
1140 {
1141         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1142
1143         cdd->dma_tdfdq = cppi_readl(cdd->ctrl_mem + DMA_TDFDQ);
1144         cppi_writel(0, cdd->usbss_mem + USBSS_IRQ_CLEARR);
1145         disable_sched(cdd);
1146
1147         return 0;
1148 }
1149
1150 static int __maybe_unused cppi41_resume(struct device *dev)
1151 {
1152         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1153         struct cppi41_channel *c;
1154         int i;
1155
1156         for (i = 0; i < DESCS_AREAS; i++)
1157                 cppi_writel(cdd->descs_phys, cdd->qmgr_mem + QMGR_MEMBASE(i));
1158
1159         list_for_each_entry(c, &cdd->ddev.channels, chan.device_node)
1160                 if (!c->is_tx)
1161                         cppi_writel(c->q_num, c->gcr_reg + RXHPCRA0);
1162
1163         init_sched(cdd);
1164
1165         cppi_writel(cdd->dma_tdfdq, cdd->ctrl_mem + DMA_TDFDQ);
1166         cppi_writel(cdd->scratch_phys, cdd->qmgr_mem + QMGR_LRAM0_BASE);
1167         cppi_writel(QMGR_SCRATCH_SIZE, cdd->qmgr_mem + QMGR_LRAM_SIZE);
1168         cppi_writel(0, cdd->qmgr_mem + QMGR_LRAM1_BASE);
1169
1170         cppi_writel(USBSS_IRQ_PD_COMP, cdd->usbss_mem + USBSS_IRQ_ENABLER);
1171
1172         return 0;
1173 }
1174
1175 static int __maybe_unused cppi41_runtime_suspend(struct device *dev)
1176 {
1177         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1178         unsigned long flags;
1179
1180         spin_lock_irqsave(&cdd->lock, flags);
1181         cdd->is_suspended = true;
1182         WARN_ON(!list_empty(&cdd->pending));
1183         spin_unlock_irqrestore(&cdd->lock, flags);
1184
1185         return 0;
1186 }
1187
1188 static int __maybe_unused cppi41_runtime_resume(struct device *dev)
1189 {
1190         struct cppi41_dd *cdd = dev_get_drvdata(dev);
1191         unsigned long flags;
1192
1193         spin_lock_irqsave(&cdd->lock, flags);
1194         cdd->is_suspended = false;
1195         cppi41_run_queue(cdd);
1196         spin_unlock_irqrestore(&cdd->lock, flags);
1197
1198         return 0;
1199 }
1200
1201 static const struct dev_pm_ops cppi41_pm_ops = {
1202         SET_LATE_SYSTEM_SLEEP_PM_OPS(cppi41_suspend, cppi41_resume)
1203         SET_RUNTIME_PM_OPS(cppi41_runtime_suspend,
1204                            cppi41_runtime_resume,
1205                            NULL)
1206 };
1207
1208 static struct platform_driver cpp41_dma_driver = {
1209         .probe  = cppi41_dma_probe,
1210         .remove = cppi41_dma_remove,
1211         .driver = {
1212                 .name = "cppi41-dma-engine",
1213                 .pm = &cppi41_pm_ops,
1214                 .of_match_table = of_match_ptr(cppi41_dma_ids),
1215         },
1216 };
1217
1218 module_platform_driver(cpp41_dma_driver);
1219 MODULE_LICENSE("GPL");
1220 MODULE_AUTHOR("Sebastian Andrzej Siewior <bigeasy@linutronix.de>");