Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / crypto / ux500 / hash / hash_core.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Cryptographic API.
4  * Support for Nomadik hardware crypto engine.
5
6  * Copyright (C) ST-Ericsson SA 2010
7  * Author: Shujuan Chen <shujuan.chen@stericsson.com> for ST-Ericsson
8  * Author: Joakim Bech <joakim.xx.bech@stericsson.com> for ST-Ericsson
9  * Author: Berne Hebark <berne.herbark@stericsson.com> for ST-Ericsson.
10  * Author: Niklas Hernaeus <niklas.hernaeus@stericsson.com> for ST-Ericsson.
11  * Author: Andreas Westin <andreas.westin@stericsson.com> for ST-Ericsson.
12  */
13
14 #define pr_fmt(fmt) "hashX hashX: " fmt
15
16 #include <linux/clk.h>
17 #include <linux/device.h>
18 #include <linux/err.h>
19 #include <linux/init.h>
20 #include <linux/io.h>
21 #include <linux/klist.h>
22 #include <linux/kernel.h>
23 #include <linux/module.h>
24 #include <linux/mod_devicetable.h>
25 #include <linux/platform_device.h>
26 #include <linux/crypto.h>
27
28 #include <linux/regulator/consumer.h>
29 #include <linux/dmaengine.h>
30 #include <linux/bitops.h>
31
32 #include <crypto/internal/hash.h>
33 #include <crypto/sha.h>
34 #include <crypto/scatterwalk.h>
35 #include <crypto/algapi.h>
36
37 #include <linux/platform_data/crypto-ux500.h>
38
39 #include "hash_alg.h"
40
41 static int hash_mode;
42 module_param(hash_mode, int, 0);
43 MODULE_PARM_DESC(hash_mode, "CPU or DMA mode. CPU = 0 (default), DMA = 1");
44
45 /* HMAC-SHA1, no key */
46 static const u8 zero_message_hmac_sha1[SHA1_DIGEST_SIZE] = {
47         0xfb, 0xdb, 0x1d, 0x1b, 0x18, 0xaa, 0x6c, 0x08,
48         0x32, 0x4b, 0x7d, 0x64, 0xb7, 0x1f, 0xb7, 0x63,
49         0x70, 0x69, 0x0e, 0x1d
50 };
51
52 /* HMAC-SHA256, no key */
53 static const u8 zero_message_hmac_sha256[SHA256_DIGEST_SIZE] = {
54         0xb6, 0x13, 0x67, 0x9a, 0x08, 0x14, 0xd9, 0xec,
55         0x77, 0x2f, 0x95, 0xd7, 0x78, 0xc3, 0x5f, 0xc5,
56         0xff, 0x16, 0x97, 0xc4, 0x93, 0x71, 0x56, 0x53,
57         0xc6, 0xc7, 0x12, 0x14, 0x42, 0x92, 0xc5, 0xad
58 };
59
60 /**
61  * struct hash_driver_data - data specific to the driver.
62  *
63  * @device_list:        A list of registered devices to choose from.
64  * @device_allocation:  A semaphore initialized with number of devices.
65  */
66 struct hash_driver_data {
67         struct klist            device_list;
68         struct semaphore        device_allocation;
69 };
70
71 static struct hash_driver_data  driver_data;
72
73 /* Declaration of functions */
74 /**
75  * hash_messagepad - Pads a message and write the nblw bits.
76  * @device_data:        Structure for the hash device.
77  * @message:            Last word of a message
78  * @index_bytes:        The number of bytes in the last message
79  *
80  * This function manages the final part of the digest calculation, when less
81  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
82  *
83  */
84 static void hash_messagepad(struct hash_device_data *device_data,
85                             const u32 *message, u8 index_bytes);
86
87 /**
88  * release_hash_device - Releases a previously allocated hash device.
89  * @device_data:        Structure for the hash device.
90  *
91  */
92 static void release_hash_device(struct hash_device_data *device_data)
93 {
94         spin_lock(&device_data->ctx_lock);
95         device_data->current_ctx->device = NULL;
96         device_data->current_ctx = NULL;
97         spin_unlock(&device_data->ctx_lock);
98
99         /*
100          * The down_interruptible part for this semaphore is called in
101          * cryp_get_device_data.
102          */
103         up(&driver_data.device_allocation);
104 }
105
106 static void hash_dma_setup_channel(struct hash_device_data *device_data,
107                                    struct device *dev)
108 {
109         struct hash_platform_data *platform_data = dev->platform_data;
110         struct dma_slave_config conf = {
111                 .direction = DMA_MEM_TO_DEV,
112                 .dst_addr = device_data->phybase + HASH_DMA_FIFO,
113                 .dst_addr_width = DMA_SLAVE_BUSWIDTH_2_BYTES,
114                 .dst_maxburst = 16,
115         };
116
117         dma_cap_zero(device_data->dma.mask);
118         dma_cap_set(DMA_SLAVE, device_data->dma.mask);
119
120         device_data->dma.cfg_mem2hash = platform_data->mem_to_engine;
121         device_data->dma.chan_mem2hash =
122                 dma_request_channel(device_data->dma.mask,
123                                     platform_data->dma_filter,
124                                     device_data->dma.cfg_mem2hash);
125
126         dmaengine_slave_config(device_data->dma.chan_mem2hash, &conf);
127
128         init_completion(&device_data->dma.complete);
129 }
130
131 static void hash_dma_callback(void *data)
132 {
133         struct hash_ctx *ctx = data;
134
135         complete(&ctx->device->dma.complete);
136 }
137
138 static int hash_set_dma_transfer(struct hash_ctx *ctx, struct scatterlist *sg,
139                                  int len, enum dma_data_direction direction)
140 {
141         struct dma_async_tx_descriptor *desc = NULL;
142         struct dma_chan *channel = NULL;
143         dma_cookie_t cookie;
144
145         if (direction != DMA_TO_DEVICE) {
146                 dev_err(ctx->device->dev, "%s: Invalid DMA direction\n",
147                         __func__);
148                 return -EFAULT;
149         }
150
151         sg->length = ALIGN(sg->length, HASH_DMA_ALIGN_SIZE);
152
153         channel = ctx->device->dma.chan_mem2hash;
154         ctx->device->dma.sg = sg;
155         ctx->device->dma.sg_len = dma_map_sg(channel->device->dev,
156                         ctx->device->dma.sg, ctx->device->dma.nents,
157                         direction);
158
159         if (!ctx->device->dma.sg_len) {
160                 dev_err(ctx->device->dev, "%s: Could not map the sg list (TO_DEVICE)\n",
161                         __func__);
162                 return -EFAULT;
163         }
164
165         dev_dbg(ctx->device->dev, "%s: Setting up DMA for buffer (TO_DEVICE)\n",
166                 __func__);
167         desc = dmaengine_prep_slave_sg(channel,
168                         ctx->device->dma.sg, ctx->device->dma.sg_len,
169                         DMA_MEM_TO_DEV, DMA_CTRL_ACK | DMA_PREP_INTERRUPT);
170         if (!desc) {
171                 dev_err(ctx->device->dev,
172                         "%s: dmaengine_prep_slave_sg() failed!\n", __func__);
173                 return -EFAULT;
174         }
175
176         desc->callback = hash_dma_callback;
177         desc->callback_param = ctx;
178
179         cookie = dmaengine_submit(desc);
180         dma_async_issue_pending(channel);
181
182         return 0;
183 }
184
185 static void hash_dma_done(struct hash_ctx *ctx)
186 {
187         struct dma_chan *chan;
188
189         chan = ctx->device->dma.chan_mem2hash;
190         dmaengine_terminate_all(chan);
191         dma_unmap_sg(chan->device->dev, ctx->device->dma.sg,
192                      ctx->device->dma.sg_len, DMA_TO_DEVICE);
193 }
194
195 static int hash_dma_write(struct hash_ctx *ctx,
196                           struct scatterlist *sg, int len)
197 {
198         int error = hash_set_dma_transfer(ctx, sg, len, DMA_TO_DEVICE);
199         if (error) {
200                 dev_dbg(ctx->device->dev,
201                         "%s: hash_set_dma_transfer() failed\n", __func__);
202                 return error;
203         }
204
205         return len;
206 }
207
208 /**
209  * get_empty_message_digest - Returns a pre-calculated digest for
210  * the empty message.
211  * @device_data:        Structure for the hash device.
212  * @zero_hash:          Buffer to return the empty message digest.
213  * @zero_hash_size:     Hash size of the empty message digest.
214  * @zero_digest:        True if zero_digest returned.
215  */
216 static int get_empty_message_digest(
217                 struct hash_device_data *device_data,
218                 u8 *zero_hash, u32 *zero_hash_size, bool *zero_digest)
219 {
220         int ret = 0;
221         struct hash_ctx *ctx = device_data->current_ctx;
222         *zero_digest = false;
223
224         /**
225          * Caller responsible for ctx != NULL.
226          */
227
228         if (HASH_OPER_MODE_HASH == ctx->config.oper_mode) {
229                 if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
230                         memcpy(zero_hash, &sha1_zero_message_hash[0],
231                                SHA1_DIGEST_SIZE);
232                         *zero_hash_size = SHA1_DIGEST_SIZE;
233                         *zero_digest = true;
234                 } else if (HASH_ALGO_SHA256 ==
235                                 ctx->config.algorithm) {
236                         memcpy(zero_hash, &sha256_zero_message_hash[0],
237                                SHA256_DIGEST_SIZE);
238                         *zero_hash_size = SHA256_DIGEST_SIZE;
239                         *zero_digest = true;
240                 } else {
241                         dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
242                                 __func__);
243                         ret = -EINVAL;
244                         goto out;
245                 }
246         } else if (HASH_OPER_MODE_HMAC == ctx->config.oper_mode) {
247                 if (!ctx->keylen) {
248                         if (HASH_ALGO_SHA1 == ctx->config.algorithm) {
249                                 memcpy(zero_hash, &zero_message_hmac_sha1[0],
250                                        SHA1_DIGEST_SIZE);
251                                 *zero_hash_size = SHA1_DIGEST_SIZE;
252                                 *zero_digest = true;
253                         } else if (HASH_ALGO_SHA256 == ctx->config.algorithm) {
254                                 memcpy(zero_hash, &zero_message_hmac_sha256[0],
255                                        SHA256_DIGEST_SIZE);
256                                 *zero_hash_size = SHA256_DIGEST_SIZE;
257                                 *zero_digest = true;
258                         } else {
259                                 dev_err(device_data->dev, "%s: Incorrect algorithm!\n",
260                                         __func__);
261                                 ret = -EINVAL;
262                                 goto out;
263                         }
264                 } else {
265                         dev_dbg(device_data->dev,
266                                 "%s: Continue hash calculation, since hmac key available\n",
267                                 __func__);
268                 }
269         }
270 out:
271
272         return ret;
273 }
274
275 /**
276  * hash_disable_power - Request to disable power and clock.
277  * @device_data:        Structure for the hash device.
278  * @save_device_state:  If true, saves the current hw state.
279  *
280  * This function request for disabling power (regulator) and clock,
281  * and could also save current hw state.
282  */
283 static int hash_disable_power(struct hash_device_data *device_data,
284                               bool save_device_state)
285 {
286         int ret = 0;
287         struct device *dev = device_data->dev;
288
289         spin_lock(&device_data->power_state_lock);
290         if (!device_data->power_state)
291                 goto out;
292
293         if (save_device_state) {
294                 hash_save_state(device_data,
295                                 &device_data->state);
296                 device_data->restore_dev_state = true;
297         }
298
299         clk_disable(device_data->clk);
300         ret = regulator_disable(device_data->regulator);
301         if (ret)
302                 dev_err(dev, "%s: regulator_disable() failed!\n", __func__);
303
304         device_data->power_state = false;
305
306 out:
307         spin_unlock(&device_data->power_state_lock);
308
309         return ret;
310 }
311
312 /**
313  * hash_enable_power - Request to enable power and clock.
314  * @device_data:                Structure for the hash device.
315  * @restore_device_state:       If true, restores a previous saved hw state.
316  *
317  * This function request for enabling power (regulator) and clock,
318  * and could also restore a previously saved hw state.
319  */
320 static int hash_enable_power(struct hash_device_data *device_data,
321                              bool restore_device_state)
322 {
323         int ret = 0;
324         struct device *dev = device_data->dev;
325
326         spin_lock(&device_data->power_state_lock);
327         if (!device_data->power_state) {
328                 ret = regulator_enable(device_data->regulator);
329                 if (ret) {
330                         dev_err(dev, "%s: regulator_enable() failed!\n",
331                                 __func__);
332                         goto out;
333                 }
334                 ret = clk_enable(device_data->clk);
335                 if (ret) {
336                         dev_err(dev, "%s: clk_enable() failed!\n", __func__);
337                         ret = regulator_disable(
338                                         device_data->regulator);
339                         goto out;
340                 }
341                 device_data->power_state = true;
342         }
343
344         if (device_data->restore_dev_state) {
345                 if (restore_device_state) {
346                         device_data->restore_dev_state = false;
347                         hash_resume_state(device_data, &device_data->state);
348                 }
349         }
350 out:
351         spin_unlock(&device_data->power_state_lock);
352
353         return ret;
354 }
355
356 /**
357  * hash_get_device_data - Checks for an available hash device and return it.
358  * @hash_ctx:           Structure for the hash context.
359  * @device_data:        Structure for the hash device.
360  *
361  * This function check for an available hash device and return it to
362  * the caller.
363  * Note! Caller need to release the device, calling up().
364  */
365 static int hash_get_device_data(struct hash_ctx *ctx,
366                                 struct hash_device_data **device_data)
367 {
368         int                     ret;
369         struct klist_iter       device_iterator;
370         struct klist_node       *device_node;
371         struct hash_device_data *local_device_data = NULL;
372
373         /* Wait until a device is available */
374         ret = down_interruptible(&driver_data.device_allocation);
375         if (ret)
376                 return ret;  /* Interrupted */
377
378         /* Select a device */
379         klist_iter_init(&driver_data.device_list, &device_iterator);
380         device_node = klist_next(&device_iterator);
381         while (device_node) {
382                 local_device_data = container_of(device_node,
383                                            struct hash_device_data, list_node);
384                 spin_lock(&local_device_data->ctx_lock);
385                 /* current_ctx allocates a device, NULL = unallocated */
386                 if (local_device_data->current_ctx) {
387                         device_node = klist_next(&device_iterator);
388                 } else {
389                         local_device_data->current_ctx = ctx;
390                         ctx->device = local_device_data;
391                         spin_unlock(&local_device_data->ctx_lock);
392                         break;
393                 }
394                 spin_unlock(&local_device_data->ctx_lock);
395         }
396         klist_iter_exit(&device_iterator);
397
398         if (!device_node) {
399                 /**
400                  * No free device found.
401                  * Since we allocated a device with down_interruptible, this
402                  * should not be able to happen.
403                  * Number of available devices, which are contained in
404                  * device_allocation, is therefore decremented by not doing
405                  * an up(device_allocation).
406                  */
407                 return -EBUSY;
408         }
409
410         *device_data = local_device_data;
411
412         return 0;
413 }
414
415 /**
416  * hash_hw_write_key - Writes the key to the hardware registries.
417  *
418  * @device_data:        Structure for the hash device.
419  * @key:                Key to be written.
420  * @keylen:             The lengt of the key.
421  *
422  * Note! This function DOES NOT write to the NBLW registry, even though
423  * specified in the the hw design spec. Either due to incorrect info in the
424  * spec or due to a bug in the hw.
425  */
426 static void hash_hw_write_key(struct hash_device_data *device_data,
427                               const u8 *key, unsigned int keylen)
428 {
429         u32 word = 0;
430         int nwords = 1;
431
432         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
433
434         while (keylen >= 4) {
435                 u32 *key_word = (u32 *)key;
436
437                 HASH_SET_DIN(key_word, nwords);
438                 keylen -= 4;
439                 key += 4;
440         }
441
442         /* Take care of the remaining bytes in the last word */
443         if (keylen) {
444                 word = 0;
445                 while (keylen) {
446                         word |= (key[keylen - 1] << (8 * (keylen - 1)));
447                         keylen--;
448                 }
449
450                 HASH_SET_DIN(&word, nwords);
451         }
452
453         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
454                 cpu_relax();
455
456         HASH_SET_DCAL;
457
458         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
459                 cpu_relax();
460 }
461
462 /**
463  * init_hash_hw - Initialise the hash hardware for a new calculation.
464  * @device_data:        Structure for the hash device.
465  * @ctx:                The hash context.
466  *
467  * This function will enable the bits needed to clear and start a new
468  * calculation.
469  */
470 static int init_hash_hw(struct hash_device_data *device_data,
471                         struct hash_ctx *ctx)
472 {
473         int ret = 0;
474
475         ret = hash_setconfiguration(device_data, &ctx->config);
476         if (ret) {
477                 dev_err(device_data->dev, "%s: hash_setconfiguration() failed!\n",
478                         __func__);
479                 return ret;
480         }
481
482         hash_begin(device_data, ctx);
483
484         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
485                 hash_hw_write_key(device_data, ctx->key, ctx->keylen);
486
487         return ret;
488 }
489
490 /**
491  * hash_get_nents - Return number of entries (nents) in scatterlist (sg).
492  *
493  * @sg:         Scatterlist.
494  * @size:       Size in bytes.
495  * @aligned:    True if sg data aligned to work in DMA mode.
496  *
497  */
498 static int hash_get_nents(struct scatterlist *sg, int size, bool *aligned)
499 {
500         int nents = 0;
501         bool aligned_data = true;
502
503         while (size > 0 && sg) {
504                 nents++;
505                 size -= sg->length;
506
507                 /* hash_set_dma_transfer will align last nent */
508                 if ((aligned && !IS_ALIGNED(sg->offset, HASH_DMA_ALIGN_SIZE)) ||
509                     (!IS_ALIGNED(sg->length, HASH_DMA_ALIGN_SIZE) && size > 0))
510                         aligned_data = false;
511
512                 sg = sg_next(sg);
513         }
514
515         if (aligned)
516                 *aligned = aligned_data;
517
518         if (size != 0)
519                 return -EFAULT;
520
521         return nents;
522 }
523
524 /**
525  * hash_dma_valid_data - checks for dma valid sg data.
526  * @sg:         Scatterlist.
527  * @datasize:   Datasize in bytes.
528  *
529  * NOTE! This function checks for dma valid sg data, since dma
530  * only accept datasizes of even wordsize.
531  */
532 static bool hash_dma_valid_data(struct scatterlist *sg, int datasize)
533 {
534         bool aligned;
535
536         /* Need to include at least one nent, else error */
537         if (hash_get_nents(sg, datasize, &aligned) < 1)
538                 return false;
539
540         return aligned;
541 }
542
543 /**
544  * hash_init - Common hash init function for SHA1/SHA2 (SHA256).
545  * @req: The hash request for the job.
546  *
547  * Initialize structures.
548  */
549 static int hash_init(struct ahash_request *req)
550 {
551         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
552         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
553         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
554
555         if (!ctx->key)
556                 ctx->keylen = 0;
557
558         memset(&req_ctx->state, 0, sizeof(struct hash_state));
559         req_ctx->updated = 0;
560         if (hash_mode == HASH_MODE_DMA) {
561                 if (req->nbytes < HASH_DMA_ALIGN_SIZE) {
562                         req_ctx->dma_mode = false; /* Don't use DMA */
563
564                         pr_debug("%s: DMA mode, but direct to CPU mode for data size < %d\n",
565                                  __func__, HASH_DMA_ALIGN_SIZE);
566                 } else {
567                         if (req->nbytes >= HASH_DMA_PERFORMANCE_MIN_SIZE &&
568                             hash_dma_valid_data(req->src, req->nbytes)) {
569                                 req_ctx->dma_mode = true;
570                         } else {
571                                 req_ctx->dma_mode = false;
572                                 pr_debug("%s: DMA mode, but use CPU mode for datalength < %d or non-aligned data, except in last nent\n",
573                                          __func__,
574                                          HASH_DMA_PERFORMANCE_MIN_SIZE);
575                         }
576                 }
577         }
578         return 0;
579 }
580
581 /**
582  * hash_processblock - This function processes a single block of 512 bits (64
583  *                     bytes), word aligned, starting at message.
584  * @device_data:        Structure for the hash device.
585  * @message:            Block (512 bits) of message to be written to
586  *                      the HASH hardware.
587  *
588  */
589 static void hash_processblock(struct hash_device_data *device_data,
590                               const u32 *message, int length)
591 {
592         int len = length / HASH_BYTES_PER_WORD;
593         /*
594          * NBLW bits. Reset the number of bits in last word (NBLW).
595          */
596         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
597
598         /*
599          * Write message data to the HASH_DIN register.
600          */
601         HASH_SET_DIN(message, len);
602 }
603
604 /**
605  * hash_messagepad - Pads a message and write the nblw bits.
606  * @device_data:        Structure for the hash device.
607  * @message:            Last word of a message.
608  * @index_bytes:        The number of bytes in the last message.
609  *
610  * This function manages the final part of the digest calculation, when less
611  * than 512 bits (64 bytes) remain in message. This means index_bytes < 64.
612  *
613  */
614 static void hash_messagepad(struct hash_device_data *device_data,
615                             const u32 *message, u8 index_bytes)
616 {
617         int nwords = 1;
618
619         /*
620          * Clear hash str register, only clear NBLW
621          * since DCAL will be reset by hardware.
622          */
623         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
624
625         /* Main loop */
626         while (index_bytes >= 4) {
627                 HASH_SET_DIN(message, nwords);
628                 index_bytes -= 4;
629                 message++;
630         }
631
632         if (index_bytes)
633                 HASH_SET_DIN(message, nwords);
634
635         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
636                 cpu_relax();
637
638         /* num_of_bytes == 0 => NBLW <- 0 (32 bits valid in DATAIN) */
639         HASH_SET_NBLW(index_bytes * 8);
640         dev_dbg(device_data->dev, "%s: DIN=0x%08x NBLW=%lu\n",
641                 __func__, readl_relaxed(&device_data->base->din),
642                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
643         HASH_SET_DCAL;
644         dev_dbg(device_data->dev, "%s: after dcal -> DIN=0x%08x NBLW=%lu\n",
645                 __func__, readl_relaxed(&device_data->base->din),
646                 readl_relaxed(&device_data->base->str) & HASH_STR_NBLW_MASK);
647
648         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
649                 cpu_relax();
650 }
651
652 /**
653  * hash_incrementlength - Increments the length of the current message.
654  * @ctx: Hash context
655  * @incr: Length of message processed already
656  *
657  * Overflow cannot occur, because conditions for overflow are checked in
658  * hash_hw_update.
659  */
660 static void hash_incrementlength(struct hash_req_ctx *ctx, u32 incr)
661 {
662         ctx->state.length.low_word += incr;
663
664         /* Check for wrap-around */
665         if (ctx->state.length.low_word < incr)
666                 ctx->state.length.high_word++;
667 }
668
669 /**
670  * hash_setconfiguration - Sets the required configuration for the hash
671  *                         hardware.
672  * @device_data:        Structure for the hash device.
673  * @config:             Pointer to a configuration structure.
674  */
675 int hash_setconfiguration(struct hash_device_data *device_data,
676                           struct hash_config *config)
677 {
678         int ret = 0;
679
680         if (config->algorithm != HASH_ALGO_SHA1 &&
681             config->algorithm != HASH_ALGO_SHA256)
682                 return -EPERM;
683
684         /*
685          * DATAFORM bits. Set the DATAFORM bits to 0b11, which means the data
686          * to be written to HASH_DIN is considered as 32 bits.
687          */
688         HASH_SET_DATA_FORMAT(config->data_format);
689
690         /*
691          * ALGO bit. Set to 0b1 for SHA-1 and 0b0 for SHA-256
692          */
693         switch (config->algorithm) {
694         case HASH_ALGO_SHA1:
695                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
696                 break;
697
698         case HASH_ALGO_SHA256:
699                 HASH_CLEAR_BITS(&device_data->base->cr, HASH_CR_ALGO_MASK);
700                 break;
701
702         default:
703                 dev_err(device_data->dev, "%s: Incorrect algorithm\n",
704                         __func__);
705                 return -EPERM;
706         }
707
708         /*
709          * MODE bit. This bit selects between HASH or HMAC mode for the
710          * selected algorithm. 0b0 = HASH and 0b1 = HMAC.
711          */
712         if (HASH_OPER_MODE_HASH == config->oper_mode)
713                 HASH_CLEAR_BITS(&device_data->base->cr,
714                                 HASH_CR_MODE_MASK);
715         else if (HASH_OPER_MODE_HMAC == config->oper_mode) {
716                 HASH_SET_BITS(&device_data->base->cr, HASH_CR_MODE_MASK);
717                 if (device_data->current_ctx->keylen > HASH_BLOCK_SIZE) {
718                         /* Truncate key to blocksize */
719                         dev_dbg(device_data->dev, "%s: LKEY set\n", __func__);
720                         HASH_SET_BITS(&device_data->base->cr,
721                                       HASH_CR_LKEY_MASK);
722                 } else {
723                         dev_dbg(device_data->dev, "%s: LKEY cleared\n",
724                                 __func__);
725                         HASH_CLEAR_BITS(&device_data->base->cr,
726                                         HASH_CR_LKEY_MASK);
727                 }
728         } else {        /* Wrong hash mode */
729                 ret = -EPERM;
730                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
731                         __func__);
732         }
733         return ret;
734 }
735
736 /**
737  * hash_begin - This routine resets some globals and initializes the hash
738  *              hardware.
739  * @device_data:        Structure for the hash device.
740  * @ctx:                Hash context.
741  */
742 void hash_begin(struct hash_device_data *device_data, struct hash_ctx *ctx)
743 {
744         /* HW and SW initializations */
745         /* Note: there is no need to initialize buffer and digest members */
746
747         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
748                 cpu_relax();
749
750         /*
751          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
752          * prepare the initialize the HASH accelerator to compute the message
753          * digest of a new message.
754          */
755         HASH_INITIALIZE;
756
757         /*
758          * NBLW bits. Reset the number of bits in last word (NBLW).
759          */
760         HASH_CLEAR_BITS(&device_data->base->str, HASH_STR_NBLW_MASK);
761 }
762
763 static int hash_process_data(struct hash_device_data *device_data,
764                              struct hash_ctx *ctx, struct hash_req_ctx *req_ctx,
765                              int msg_length, u8 *data_buffer, u8 *buffer,
766                              u8 *index)
767 {
768         int ret = 0;
769         u32 count;
770
771         do {
772                 if ((*index + msg_length) < HASH_BLOCK_SIZE) {
773                         for (count = 0; count < msg_length; count++) {
774                                 buffer[*index + count] =
775                                         *(data_buffer + count);
776                         }
777                         *index += msg_length;
778                         msg_length = 0;
779                 } else {
780                         if (req_ctx->updated) {
781                                 ret = hash_resume_state(device_data,
782                                                 &device_data->state);
783                                 memmove(req_ctx->state.buffer,
784                                         device_data->state.buffer,
785                                         HASH_BLOCK_SIZE);
786                                 if (ret) {
787                                         dev_err(device_data->dev,
788                                                 "%s: hash_resume_state() failed!\n",
789                                                 __func__);
790                                         goto out;
791                                 }
792                         } else {
793                                 ret = init_hash_hw(device_data, ctx);
794                                 if (ret) {
795                                         dev_err(device_data->dev,
796                                                 "%s: init_hash_hw() failed!\n",
797                                                 __func__);
798                                         goto out;
799                                 }
800                                 req_ctx->updated = 1;
801                         }
802                         /*
803                          * If 'data_buffer' is four byte aligned and
804                          * local buffer does not have any data, we can
805                          * write data directly from 'data_buffer' to
806                          * HW peripheral, otherwise we first copy data
807                          * to a local buffer
808                          */
809                         if (IS_ALIGNED((unsigned long)data_buffer, 4) &&
810                             (0 == *index))
811                                 hash_processblock(device_data,
812                                                   (const u32 *)data_buffer,
813                                                   HASH_BLOCK_SIZE);
814                         else {
815                                 for (count = 0;
816                                      count < (u32)(HASH_BLOCK_SIZE - *index);
817                                      count++) {
818                                         buffer[*index + count] =
819                                                 *(data_buffer + count);
820                                 }
821                                 hash_processblock(device_data,
822                                                   (const u32 *)buffer,
823                                                   HASH_BLOCK_SIZE);
824                         }
825                         hash_incrementlength(req_ctx, HASH_BLOCK_SIZE);
826                         data_buffer += (HASH_BLOCK_SIZE - *index);
827
828                         msg_length -= (HASH_BLOCK_SIZE - *index);
829                         *index = 0;
830
831                         ret = hash_save_state(device_data,
832                                         &device_data->state);
833
834                         memmove(device_data->state.buffer,
835                                 req_ctx->state.buffer,
836                                 HASH_BLOCK_SIZE);
837                         if (ret) {
838                                 dev_err(device_data->dev, "%s: hash_save_state() failed!\n",
839                                         __func__);
840                                 goto out;
841                         }
842                 }
843         } while (msg_length != 0);
844 out:
845
846         return ret;
847 }
848
849 /**
850  * hash_dma_final - The hash dma final function for SHA1/SHA256.
851  * @req:        The hash request for the job.
852  */
853 static int hash_dma_final(struct ahash_request *req)
854 {
855         int ret = 0;
856         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
857         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
858         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
859         struct hash_device_data *device_data;
860         u8 digest[SHA256_DIGEST_SIZE];
861         int bytes_written = 0;
862
863         ret = hash_get_device_data(ctx, &device_data);
864         if (ret)
865                 return ret;
866
867         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
868                 (unsigned long)ctx);
869
870         if (req_ctx->updated) {
871                 ret = hash_resume_state(device_data, &device_data->state);
872
873                 if (ret) {
874                         dev_err(device_data->dev, "%s: hash_resume_state() failed!\n",
875                                 __func__);
876                         goto out;
877                 }
878         }
879
880         if (!req_ctx->updated) {
881                 ret = hash_setconfiguration(device_data, &ctx->config);
882                 if (ret) {
883                         dev_err(device_data->dev,
884                                 "%s: hash_setconfiguration() failed!\n",
885                                 __func__);
886                         goto out;
887                 }
888
889                 /* Enable DMA input */
890                 if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode) {
891                         HASH_CLEAR_BITS(&device_data->base->cr,
892                                         HASH_CR_DMAE_MASK);
893                 } else {
894                         HASH_SET_BITS(&device_data->base->cr,
895                                       HASH_CR_DMAE_MASK);
896                         HASH_SET_BITS(&device_data->base->cr,
897                                       HASH_CR_PRIVN_MASK);
898                 }
899
900                 HASH_INITIALIZE;
901
902                 if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC)
903                         hash_hw_write_key(device_data, ctx->key, ctx->keylen);
904
905                 /* Number of bits in last word = (nbytes * 8) % 32 */
906                 HASH_SET_NBLW((req->nbytes * 8) % 32);
907                 req_ctx->updated = 1;
908         }
909
910         /* Store the nents in the dma struct. */
911         ctx->device->dma.nents = hash_get_nents(req->src, req->nbytes, NULL);
912         if (!ctx->device->dma.nents) {
913                 dev_err(device_data->dev, "%s: ctx->device->dma.nents = 0\n",
914                         __func__);
915                 ret = ctx->device->dma.nents;
916                 goto out;
917         }
918
919         bytes_written = hash_dma_write(ctx, req->src, req->nbytes);
920         if (bytes_written != req->nbytes) {
921                 dev_err(device_data->dev, "%s: hash_dma_write() failed!\n",
922                         __func__);
923                 ret = bytes_written;
924                 goto out;
925         }
926
927         wait_for_completion(&ctx->device->dma.complete);
928         hash_dma_done(ctx);
929
930         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
931                 cpu_relax();
932
933         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
934                 unsigned int keylen = ctx->keylen;
935                 u8 *key = ctx->key;
936
937                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
938                         __func__, ctx->keylen);
939                 hash_hw_write_key(device_data, key, keylen);
940         }
941
942         hash_get_digest(device_data, digest, ctx->config.algorithm);
943         memcpy(req->result, digest, ctx->digestsize);
944
945 out:
946         release_hash_device(device_data);
947
948         /**
949          * Allocated in setkey, and only used in HMAC.
950          */
951         kfree(ctx->key);
952
953         return ret;
954 }
955
956 /**
957  * hash_hw_final - The final hash calculation function
958  * @req:        The hash request for the job.
959  */
960 static int hash_hw_final(struct ahash_request *req)
961 {
962         int ret = 0;
963         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
964         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
965         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
966         struct hash_device_data *device_data;
967         u8 digest[SHA256_DIGEST_SIZE];
968
969         ret = hash_get_device_data(ctx, &device_data);
970         if (ret)
971                 return ret;
972
973         dev_dbg(device_data->dev, "%s: (ctx=0x%lx)!\n", __func__,
974                 (unsigned long)ctx);
975
976         if (req_ctx->updated) {
977                 ret = hash_resume_state(device_data, &device_data->state);
978
979                 if (ret) {
980                         dev_err(device_data->dev,
981                                 "%s: hash_resume_state() failed!\n", __func__);
982                         goto out;
983                 }
984         } else if (req->nbytes == 0 && ctx->keylen == 0) {
985                 u8 zero_hash[SHA256_DIGEST_SIZE];
986                 u32 zero_hash_size = 0;
987                 bool zero_digest = false;
988                 /**
989                  * Use a pre-calculated empty message digest
990                  * (workaround since hw return zeroes, hw bug!?)
991                  */
992                 ret = get_empty_message_digest(device_data, &zero_hash[0],
993                                 &zero_hash_size, &zero_digest);
994                 if (!ret && likely(zero_hash_size == ctx->digestsize) &&
995                     zero_digest) {
996                         memcpy(req->result, &zero_hash[0], ctx->digestsize);
997                         goto out;
998                 } else if (!ret && !zero_digest) {
999                         dev_dbg(device_data->dev,
1000                                 "%s: HMAC zero msg with key, continue...\n",
1001                                 __func__);
1002                 } else {
1003                         dev_err(device_data->dev,
1004                                 "%s: ret=%d, or wrong digest size? %s\n",
1005                                 __func__, ret,
1006                                 zero_hash_size == ctx->digestsize ?
1007                                 "true" : "false");
1008                         /* Return error */
1009                         goto out;
1010                 }
1011         } else if (req->nbytes == 0 && ctx->keylen > 0) {
1012                 dev_err(device_data->dev, "%s: Empty message with keylength > 0, NOT supported\n",
1013                         __func__);
1014                 goto out;
1015         }
1016
1017         if (!req_ctx->updated) {
1018                 ret = init_hash_hw(device_data, ctx);
1019                 if (ret) {
1020                         dev_err(device_data->dev,
1021                                 "%s: init_hash_hw() failed!\n", __func__);
1022                         goto out;
1023                 }
1024         }
1025
1026         if (req_ctx->state.index) {
1027                 hash_messagepad(device_data, req_ctx->state.buffer,
1028                                 req_ctx->state.index);
1029         } else {
1030                 HASH_SET_DCAL;
1031                 while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1032                         cpu_relax();
1033         }
1034
1035         if (ctx->config.oper_mode == HASH_OPER_MODE_HMAC && ctx->key) {
1036                 unsigned int keylen = ctx->keylen;
1037                 u8 *key = ctx->key;
1038
1039                 dev_dbg(device_data->dev, "%s: keylen: %d\n",
1040                         __func__, ctx->keylen);
1041                 hash_hw_write_key(device_data, key, keylen);
1042         }
1043
1044         hash_get_digest(device_data, digest, ctx->config.algorithm);
1045         memcpy(req->result, digest, ctx->digestsize);
1046
1047 out:
1048         release_hash_device(device_data);
1049
1050         /**
1051          * Allocated in setkey, and only used in HMAC.
1052          */
1053         kfree(ctx->key);
1054
1055         return ret;
1056 }
1057
1058 /**
1059  * hash_hw_update - Updates current HASH computation hashing another part of
1060  *                  the message.
1061  * @req:        Byte array containing the message to be hashed (caller
1062  *              allocated).
1063  */
1064 int hash_hw_update(struct ahash_request *req)
1065 {
1066         int ret = 0;
1067         u8 index = 0;
1068         u8 *buffer;
1069         struct hash_device_data *device_data;
1070         u8 *data_buffer;
1071         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1072         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1073         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1074         struct crypto_hash_walk walk;
1075         int msg_length = crypto_hash_walk_first(req, &walk);
1076
1077         /* Empty message ("") is correct indata */
1078         if (msg_length == 0)
1079                 return ret;
1080
1081         index = req_ctx->state.index;
1082         buffer = (u8 *)req_ctx->state.buffer;
1083
1084         /* Check if ctx->state.length + msg_length
1085            overflows */
1086         if (msg_length > (req_ctx->state.length.low_word + msg_length) &&
1087             HASH_HIGH_WORD_MAX_VAL == req_ctx->state.length.high_word) {
1088                 pr_err("%s: HASH_MSG_LENGTH_OVERFLOW!\n", __func__);
1089                 return -EPERM;
1090         }
1091
1092         ret = hash_get_device_data(ctx, &device_data);
1093         if (ret)
1094                 return ret;
1095
1096         /* Main loop */
1097         while (0 != msg_length) {
1098                 data_buffer = walk.data;
1099                 ret = hash_process_data(device_data, ctx, req_ctx, msg_length,
1100                                 data_buffer, buffer, &index);
1101
1102                 if (ret) {
1103                         dev_err(device_data->dev, "%s: hash_internal_hw_update() failed!\n",
1104                                 __func__);
1105                         goto out;
1106                 }
1107
1108                 msg_length = crypto_hash_walk_done(&walk, 0);
1109         }
1110
1111         req_ctx->state.index = index;
1112         dev_dbg(device_data->dev, "%s: indata length=%d, bin=%d\n",
1113                 __func__, req_ctx->state.index, req_ctx->state.bit_index);
1114
1115 out:
1116         release_hash_device(device_data);
1117
1118         return ret;
1119 }
1120
1121 /**
1122  * hash_resume_state - Function that resumes the state of an calculation.
1123  * @device_data:        Pointer to the device structure.
1124  * @device_state:       The state to be restored in the hash hardware
1125  */
1126 int hash_resume_state(struct hash_device_data *device_data,
1127                       const struct hash_state *device_state)
1128 {
1129         u32 temp_cr;
1130         s32 count;
1131         int hash_mode = HASH_OPER_MODE_HASH;
1132
1133         if (NULL == device_state) {
1134                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1135                         __func__);
1136                 return -EPERM;
1137         }
1138
1139         /* Check correctness of index and length members */
1140         if (device_state->index > HASH_BLOCK_SIZE ||
1141             (device_state->length.low_word % HASH_BLOCK_SIZE) != 0) {
1142                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1143                         __func__);
1144                 return -EPERM;
1145         }
1146
1147         /*
1148          * INIT bit. Set this bit to 0b1 to reset the HASH processor core and
1149          * prepare the initialize the HASH accelerator to compute the message
1150          * digest of a new message.
1151          */
1152         HASH_INITIALIZE;
1153
1154         temp_cr = device_state->temp_cr;
1155         writel_relaxed(temp_cr & HASH_CR_RESUME_MASK, &device_data->base->cr);
1156
1157         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1158                 hash_mode = HASH_OPER_MODE_HMAC;
1159         else
1160                 hash_mode = HASH_OPER_MODE_HASH;
1161
1162         for (count = 0; count < HASH_CSR_COUNT; count++) {
1163                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1164                         break;
1165
1166                 writel_relaxed(device_state->csr[count],
1167                                &device_data->base->csrx[count]);
1168         }
1169
1170         writel_relaxed(device_state->csfull, &device_data->base->csfull);
1171         writel_relaxed(device_state->csdatain, &device_data->base->csdatain);
1172
1173         writel_relaxed(device_state->str_reg, &device_data->base->str);
1174         writel_relaxed(temp_cr, &device_data->base->cr);
1175
1176         return 0;
1177 }
1178
1179 /**
1180  * hash_save_state - Function that saves the state of hardware.
1181  * @device_data:        Pointer to the device structure.
1182  * @device_state:       The strucure where the hardware state should be saved.
1183  */
1184 int hash_save_state(struct hash_device_data *device_data,
1185                     struct hash_state *device_state)
1186 {
1187         u32 temp_cr;
1188         u32 count;
1189         int hash_mode = HASH_OPER_MODE_HASH;
1190
1191         if (NULL == device_state) {
1192                 dev_err(device_data->dev, "%s: HASH_INVALID_PARAMETER!\n",
1193                         __func__);
1194                 return -ENOTSUPP;
1195         }
1196
1197         /* Write dummy value to force digest intermediate calculation. This
1198          * actually makes sure that there isn't any ongoing calculation in the
1199          * hardware.
1200          */
1201         while (readl(&device_data->base->str) & HASH_STR_DCAL_MASK)
1202                 cpu_relax();
1203
1204         temp_cr = readl_relaxed(&device_data->base->cr);
1205
1206         device_state->str_reg = readl_relaxed(&device_data->base->str);
1207
1208         device_state->din_reg = readl_relaxed(&device_data->base->din);
1209
1210         if (readl(&device_data->base->cr) & HASH_CR_MODE_MASK)
1211                 hash_mode = HASH_OPER_MODE_HMAC;
1212         else
1213                 hash_mode = HASH_OPER_MODE_HASH;
1214
1215         for (count = 0; count < HASH_CSR_COUNT; count++) {
1216                 if ((count >= 36) && (hash_mode == HASH_OPER_MODE_HASH))
1217                         break;
1218
1219                 device_state->csr[count] =
1220                         readl_relaxed(&device_data->base->csrx[count]);
1221         }
1222
1223         device_state->csfull = readl_relaxed(&device_data->base->csfull);
1224         device_state->csdatain = readl_relaxed(&device_data->base->csdatain);
1225
1226         device_state->temp_cr = temp_cr;
1227
1228         return 0;
1229 }
1230
1231 /**
1232  * hash_check_hw - This routine checks for peripheral Ids and PCell Ids.
1233  * @device_data:
1234  *
1235  */
1236 int hash_check_hw(struct hash_device_data *device_data)
1237 {
1238         /* Checking Peripheral Ids  */
1239         if (HASH_P_ID0 == readl_relaxed(&device_data->base->periphid0) &&
1240             HASH_P_ID1 == readl_relaxed(&device_data->base->periphid1) &&
1241             HASH_P_ID2 == readl_relaxed(&device_data->base->periphid2) &&
1242             HASH_P_ID3 == readl_relaxed(&device_data->base->periphid3) &&
1243             HASH_CELL_ID0 == readl_relaxed(&device_data->base->cellid0) &&
1244             HASH_CELL_ID1 == readl_relaxed(&device_data->base->cellid1) &&
1245             HASH_CELL_ID2 == readl_relaxed(&device_data->base->cellid2) &&
1246             HASH_CELL_ID3 == readl_relaxed(&device_data->base->cellid3)) {
1247                 return 0;
1248         }
1249
1250         dev_err(device_data->dev, "%s: HASH_UNSUPPORTED_HW!\n", __func__);
1251         return -ENOTSUPP;
1252 }
1253
1254 /**
1255  * hash_get_digest - Gets the digest.
1256  * @device_data:        Pointer to the device structure.
1257  * @digest:             User allocated byte array for the calculated digest.
1258  * @algorithm:          The algorithm in use.
1259  */
1260 void hash_get_digest(struct hash_device_data *device_data,
1261                      u8 *digest, int algorithm)
1262 {
1263         u32 temp_hx_val, count;
1264         int loop_ctr;
1265
1266         if (algorithm != HASH_ALGO_SHA1 && algorithm != HASH_ALGO_SHA256) {
1267                 dev_err(device_data->dev, "%s: Incorrect algorithm %d\n",
1268                         __func__, algorithm);
1269                 return;
1270         }
1271
1272         if (algorithm == HASH_ALGO_SHA1)
1273                 loop_ctr = SHA1_DIGEST_SIZE / sizeof(u32);
1274         else
1275                 loop_ctr = SHA256_DIGEST_SIZE / sizeof(u32);
1276
1277         dev_dbg(device_data->dev, "%s: digest array:(0x%lx)\n",
1278                 __func__, (unsigned long)digest);
1279
1280         /* Copy result into digest array */
1281         for (count = 0; count < loop_ctr; count++) {
1282                 temp_hx_val = readl_relaxed(&device_data->base->hx[count]);
1283                 digest[count * 4] = (u8) ((temp_hx_val >> 24) & 0xFF);
1284                 digest[count * 4 + 1] = (u8) ((temp_hx_val >> 16) & 0xFF);
1285                 digest[count * 4 + 2] = (u8) ((temp_hx_val >> 8) & 0xFF);
1286                 digest[count * 4 + 3] = (u8) ((temp_hx_val >> 0) & 0xFF);
1287         }
1288 }
1289
1290 /**
1291  * hash_update - The hash update function for SHA1/SHA2 (SHA256).
1292  * @req: The hash request for the job.
1293  */
1294 static int ahash_update(struct ahash_request *req)
1295 {
1296         int ret = 0;
1297         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1298
1299         if (hash_mode != HASH_MODE_DMA || !req_ctx->dma_mode)
1300                 ret = hash_hw_update(req);
1301         /* Skip update for DMA, all data will be passed to DMA in final */
1302
1303         if (ret) {
1304                 pr_err("%s: hash_hw_update() failed!\n", __func__);
1305         }
1306
1307         return ret;
1308 }
1309
1310 /**
1311  * hash_final - The hash final function for SHA1/SHA2 (SHA256).
1312  * @req:        The hash request for the job.
1313  */
1314 static int ahash_final(struct ahash_request *req)
1315 {
1316         int ret = 0;
1317         struct hash_req_ctx *req_ctx = ahash_request_ctx(req);
1318
1319         pr_debug("%s: data size: %d\n", __func__, req->nbytes);
1320
1321         if ((hash_mode == HASH_MODE_DMA) && req_ctx->dma_mode)
1322                 ret = hash_dma_final(req);
1323         else
1324                 ret = hash_hw_final(req);
1325
1326         if (ret) {
1327                 pr_err("%s: hash_hw/dma_final() failed\n", __func__);
1328         }
1329
1330         return ret;
1331 }
1332
1333 static int hash_setkey(struct crypto_ahash *tfm,
1334                        const u8 *key, unsigned int keylen, int alg)
1335 {
1336         int ret = 0;
1337         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1338
1339         /**
1340          * Freed in final.
1341          */
1342         ctx->key = kmemdup(key, keylen, GFP_KERNEL);
1343         if (!ctx->key) {
1344                 pr_err("%s: Failed to allocate ctx->key for %d\n",
1345                        __func__, alg);
1346                 return -ENOMEM;
1347         }
1348         ctx->keylen = keylen;
1349
1350         return ret;
1351 }
1352
1353 static int ahash_sha1_init(struct ahash_request *req)
1354 {
1355         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1356         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1357
1358         ctx->config.data_format = HASH_DATA_8_BITS;
1359         ctx->config.algorithm = HASH_ALGO_SHA1;
1360         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1361         ctx->digestsize = SHA1_DIGEST_SIZE;
1362
1363         return hash_init(req);
1364 }
1365
1366 static int ahash_sha256_init(struct ahash_request *req)
1367 {
1368         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1369         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1370
1371         ctx->config.data_format = HASH_DATA_8_BITS;
1372         ctx->config.algorithm = HASH_ALGO_SHA256;
1373         ctx->config.oper_mode = HASH_OPER_MODE_HASH;
1374         ctx->digestsize = SHA256_DIGEST_SIZE;
1375
1376         return hash_init(req);
1377 }
1378
1379 static int ahash_sha1_digest(struct ahash_request *req)
1380 {
1381         int ret2, ret1;
1382
1383         ret1 = ahash_sha1_init(req);
1384         if (ret1)
1385                 goto out;
1386
1387         ret1 = ahash_update(req);
1388         ret2 = ahash_final(req);
1389
1390 out:
1391         return ret1 ? ret1 : ret2;
1392 }
1393
1394 static int ahash_sha256_digest(struct ahash_request *req)
1395 {
1396         int ret2, ret1;
1397
1398         ret1 = ahash_sha256_init(req);
1399         if (ret1)
1400                 goto out;
1401
1402         ret1 = ahash_update(req);
1403         ret2 = ahash_final(req);
1404
1405 out:
1406         return ret1 ? ret1 : ret2;
1407 }
1408
1409 static int ahash_noimport(struct ahash_request *req, const void *in)
1410 {
1411         return -ENOSYS;
1412 }
1413
1414 static int ahash_noexport(struct ahash_request *req, void *out)
1415 {
1416         return -ENOSYS;
1417 }
1418
1419 static int hmac_sha1_init(struct ahash_request *req)
1420 {
1421         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1422         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1423
1424         ctx->config.data_format = HASH_DATA_8_BITS;
1425         ctx->config.algorithm   = HASH_ALGO_SHA1;
1426         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1427         ctx->digestsize         = SHA1_DIGEST_SIZE;
1428
1429         return hash_init(req);
1430 }
1431
1432 static int hmac_sha256_init(struct ahash_request *req)
1433 {
1434         struct crypto_ahash *tfm = crypto_ahash_reqtfm(req);
1435         struct hash_ctx *ctx = crypto_ahash_ctx(tfm);
1436
1437         ctx->config.data_format = HASH_DATA_8_BITS;
1438         ctx->config.algorithm   = HASH_ALGO_SHA256;
1439         ctx->config.oper_mode   = HASH_OPER_MODE_HMAC;
1440         ctx->digestsize         = SHA256_DIGEST_SIZE;
1441
1442         return hash_init(req);
1443 }
1444
1445 static int hmac_sha1_digest(struct ahash_request *req)
1446 {
1447         int ret2, ret1;
1448
1449         ret1 = hmac_sha1_init(req);
1450         if (ret1)
1451                 goto out;
1452
1453         ret1 = ahash_update(req);
1454         ret2 = ahash_final(req);
1455
1456 out:
1457         return ret1 ? ret1 : ret2;
1458 }
1459
1460 static int hmac_sha256_digest(struct ahash_request *req)
1461 {
1462         int ret2, ret1;
1463
1464         ret1 = hmac_sha256_init(req);
1465         if (ret1)
1466                 goto out;
1467
1468         ret1 = ahash_update(req);
1469         ret2 = ahash_final(req);
1470
1471 out:
1472         return ret1 ? ret1 : ret2;
1473 }
1474
1475 static int hmac_sha1_setkey(struct crypto_ahash *tfm,
1476                             const u8 *key, unsigned int keylen)
1477 {
1478         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA1);
1479 }
1480
1481 static int hmac_sha256_setkey(struct crypto_ahash *tfm,
1482                               const u8 *key, unsigned int keylen)
1483 {
1484         return hash_setkey(tfm, key, keylen, HASH_ALGO_SHA256);
1485 }
1486
1487 struct hash_algo_template {
1488         struct hash_config conf;
1489         struct ahash_alg hash;
1490 };
1491
1492 static int hash_cra_init(struct crypto_tfm *tfm)
1493 {
1494         struct hash_ctx *ctx = crypto_tfm_ctx(tfm);
1495         struct crypto_alg *alg = tfm->__crt_alg;
1496         struct hash_algo_template *hash_alg;
1497
1498         hash_alg = container_of(__crypto_ahash_alg(alg),
1499                         struct hash_algo_template,
1500                         hash);
1501
1502         crypto_ahash_set_reqsize(__crypto_ahash_cast(tfm),
1503                                  sizeof(struct hash_req_ctx));
1504
1505         ctx->config.data_format = HASH_DATA_8_BITS;
1506         ctx->config.algorithm = hash_alg->conf.algorithm;
1507         ctx->config.oper_mode = hash_alg->conf.oper_mode;
1508
1509         ctx->digestsize = hash_alg->hash.halg.digestsize;
1510
1511         return 0;
1512 }
1513
1514 static struct hash_algo_template hash_algs[] = {
1515         {
1516                 .conf.algorithm = HASH_ALGO_SHA1,
1517                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1518                 .hash = {
1519                         .init = hash_init,
1520                         .update = ahash_update,
1521                         .final = ahash_final,
1522                         .digest = ahash_sha1_digest,
1523                         .export = ahash_noexport,
1524                         .import = ahash_noimport,
1525                         .halg.digestsize = SHA1_DIGEST_SIZE,
1526                         .halg.statesize = sizeof(struct hash_ctx),
1527                         .halg.base = {
1528                                 .cra_name = "sha1",
1529                                 .cra_driver_name = "sha1-ux500",
1530                                 .cra_flags = CRYPTO_ALG_ASYNC,
1531                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1532                                 .cra_ctxsize = sizeof(struct hash_ctx),
1533                                 .cra_init = hash_cra_init,
1534                                 .cra_module = THIS_MODULE,
1535                         }
1536                 }
1537         },
1538         {
1539                 .conf.algorithm = HASH_ALGO_SHA256,
1540                 .conf.oper_mode = HASH_OPER_MODE_HASH,
1541                 .hash = {
1542                         .init = hash_init,
1543                         .update = ahash_update,
1544                         .final = ahash_final,
1545                         .digest = ahash_sha256_digest,
1546                         .export = ahash_noexport,
1547                         .import = ahash_noimport,
1548                         .halg.digestsize = SHA256_DIGEST_SIZE,
1549                         .halg.statesize = sizeof(struct hash_ctx),
1550                         .halg.base = {
1551                                 .cra_name = "sha256",
1552                                 .cra_driver_name = "sha256-ux500",
1553                                 .cra_flags = CRYPTO_ALG_ASYNC,
1554                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1555                                 .cra_ctxsize = sizeof(struct hash_ctx),
1556                                 .cra_init = hash_cra_init,
1557                                 .cra_module = THIS_MODULE,
1558                         }
1559                 }
1560         },
1561         {
1562                 .conf.algorithm = HASH_ALGO_SHA1,
1563                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1564                         .hash = {
1565                         .init = hash_init,
1566                         .update = ahash_update,
1567                         .final = ahash_final,
1568                         .digest = hmac_sha1_digest,
1569                         .setkey = hmac_sha1_setkey,
1570                         .export = ahash_noexport,
1571                         .import = ahash_noimport,
1572                         .halg.digestsize = SHA1_DIGEST_SIZE,
1573                         .halg.statesize = sizeof(struct hash_ctx),
1574                         .halg.base = {
1575                                 .cra_name = "hmac(sha1)",
1576                                 .cra_driver_name = "hmac-sha1-ux500",
1577                                 .cra_flags = CRYPTO_ALG_ASYNC,
1578                                 .cra_blocksize = SHA1_BLOCK_SIZE,
1579                                 .cra_ctxsize = sizeof(struct hash_ctx),
1580                                 .cra_init = hash_cra_init,
1581                                 .cra_module = THIS_MODULE,
1582                         }
1583                 }
1584         },
1585         {
1586                 .conf.algorithm = HASH_ALGO_SHA256,
1587                 .conf.oper_mode = HASH_OPER_MODE_HMAC,
1588                 .hash = {
1589                         .init = hash_init,
1590                         .update = ahash_update,
1591                         .final = ahash_final,
1592                         .digest = hmac_sha256_digest,
1593                         .setkey = hmac_sha256_setkey,
1594                         .export = ahash_noexport,
1595                         .import = ahash_noimport,
1596                         .halg.digestsize = SHA256_DIGEST_SIZE,
1597                         .halg.statesize = sizeof(struct hash_ctx),
1598                         .halg.base = {
1599                                 .cra_name = "hmac(sha256)",
1600                                 .cra_driver_name = "hmac-sha256-ux500",
1601                                 .cra_flags = CRYPTO_ALG_ASYNC,
1602                                 .cra_blocksize = SHA256_BLOCK_SIZE,
1603                                 .cra_ctxsize = sizeof(struct hash_ctx),
1604                                 .cra_init = hash_cra_init,
1605                                 .cra_module = THIS_MODULE,
1606                         }
1607                 }
1608         }
1609 };
1610
1611 /**
1612  * hash_algs_register_all -
1613  */
1614 static int ahash_algs_register_all(struct hash_device_data *device_data)
1615 {
1616         int ret;
1617         int i;
1618         int count;
1619
1620         for (i = 0; i < ARRAY_SIZE(hash_algs); i++) {
1621                 ret = crypto_register_ahash(&hash_algs[i].hash);
1622                 if (ret) {
1623                         count = i;
1624                         dev_err(device_data->dev, "%s: alg registration failed\n",
1625                                 hash_algs[i].hash.halg.base.cra_driver_name);
1626                         goto unreg;
1627                 }
1628         }
1629         return 0;
1630 unreg:
1631         for (i = 0; i < count; i++)
1632                 crypto_unregister_ahash(&hash_algs[i].hash);
1633         return ret;
1634 }
1635
1636 /**
1637  * hash_algs_unregister_all -
1638  */
1639 static void ahash_algs_unregister_all(struct hash_device_data *device_data)
1640 {
1641         int i;
1642
1643         for (i = 0; i < ARRAY_SIZE(hash_algs); i++)
1644                 crypto_unregister_ahash(&hash_algs[i].hash);
1645 }
1646
1647 /**
1648  * ux500_hash_probe - Function that probes the hash hardware.
1649  * @pdev: The platform device.
1650  */
1651 static int ux500_hash_probe(struct platform_device *pdev)
1652 {
1653         int                     ret = 0;
1654         struct resource         *res = NULL;
1655         struct hash_device_data *device_data;
1656         struct device           *dev = &pdev->dev;
1657
1658         device_data = devm_kzalloc(dev, sizeof(*device_data), GFP_ATOMIC);
1659         if (!device_data) {
1660                 ret = -ENOMEM;
1661                 goto out;
1662         }
1663
1664         device_data->dev = dev;
1665         device_data->current_ctx = NULL;
1666
1667         res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
1668         if (!res) {
1669                 dev_dbg(dev, "%s: platform_get_resource() failed!\n", __func__);
1670                 ret = -ENODEV;
1671                 goto out;
1672         }
1673
1674         device_data->phybase = res->start;
1675         device_data->base = devm_ioremap_resource(dev, res);
1676         if (IS_ERR(device_data->base)) {
1677                 dev_err(dev, "%s: ioremap() failed!\n", __func__);
1678                 ret = PTR_ERR(device_data->base);
1679                 goto out;
1680         }
1681         spin_lock_init(&device_data->ctx_lock);
1682         spin_lock_init(&device_data->power_state_lock);
1683
1684         /* Enable power for HASH1 hardware block */
1685         device_data->regulator = regulator_get(dev, "v-ape");
1686         if (IS_ERR(device_data->regulator)) {
1687                 dev_err(dev, "%s: regulator_get() failed!\n", __func__);
1688                 ret = PTR_ERR(device_data->regulator);
1689                 device_data->regulator = NULL;
1690                 goto out;
1691         }
1692
1693         /* Enable the clock for HASH1 hardware block */
1694         device_data->clk = devm_clk_get(dev, NULL);
1695         if (IS_ERR(device_data->clk)) {
1696                 dev_err(dev, "%s: clk_get() failed!\n", __func__);
1697                 ret = PTR_ERR(device_data->clk);
1698                 goto out_regulator;
1699         }
1700
1701         ret = clk_prepare(device_data->clk);
1702         if (ret) {
1703                 dev_err(dev, "%s: clk_prepare() failed!\n", __func__);
1704                 goto out_regulator;
1705         }
1706
1707         /* Enable device power (and clock) */
1708         ret = hash_enable_power(device_data, false);
1709         if (ret) {
1710                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1711                 goto out_clk_unprepare;
1712         }
1713
1714         ret = hash_check_hw(device_data);
1715         if (ret) {
1716                 dev_err(dev, "%s: hash_check_hw() failed!\n", __func__);
1717                 goto out_power;
1718         }
1719
1720         if (hash_mode == HASH_MODE_DMA)
1721                 hash_dma_setup_channel(device_data, dev);
1722
1723         platform_set_drvdata(pdev, device_data);
1724
1725         /* Put the new device into the device list... */
1726         klist_add_tail(&device_data->list_node, &driver_data.device_list);
1727         /* ... and signal that a new device is available. */
1728         up(&driver_data.device_allocation);
1729
1730         ret = ahash_algs_register_all(device_data);
1731         if (ret) {
1732                 dev_err(dev, "%s: ahash_algs_register_all() failed!\n",
1733                         __func__);
1734                 goto out_power;
1735         }
1736
1737         dev_info(dev, "successfully registered\n");
1738         return 0;
1739
1740 out_power:
1741         hash_disable_power(device_data, false);
1742
1743 out_clk_unprepare:
1744         clk_unprepare(device_data->clk);
1745
1746 out_regulator:
1747         regulator_put(device_data->regulator);
1748
1749 out:
1750         return ret;
1751 }
1752
1753 /**
1754  * ux500_hash_remove - Function that removes the hash device from the platform.
1755  * @pdev: The platform device.
1756  */
1757 static int ux500_hash_remove(struct platform_device *pdev)
1758 {
1759         struct hash_device_data *device_data;
1760         struct device           *dev = &pdev->dev;
1761
1762         device_data = platform_get_drvdata(pdev);
1763         if (!device_data) {
1764                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1765                 return -ENOMEM;
1766         }
1767
1768         /* Try to decrease the number of available devices. */
1769         if (down_trylock(&driver_data.device_allocation))
1770                 return -EBUSY;
1771
1772         /* Check that the device is free */
1773         spin_lock(&device_data->ctx_lock);
1774         /* current_ctx allocates a device, NULL = unallocated */
1775         if (device_data->current_ctx) {
1776                 /* The device is busy */
1777                 spin_unlock(&device_data->ctx_lock);
1778                 /* Return the device to the pool. */
1779                 up(&driver_data.device_allocation);
1780                 return -EBUSY;
1781         }
1782
1783         spin_unlock(&device_data->ctx_lock);
1784
1785         /* Remove the device from the list */
1786         if (klist_node_attached(&device_data->list_node))
1787                 klist_remove(&device_data->list_node);
1788
1789         /* If this was the last device, remove the services */
1790         if (list_empty(&driver_data.device_list.k_list))
1791                 ahash_algs_unregister_all(device_data);
1792
1793         if (hash_disable_power(device_data, false))
1794                 dev_err(dev, "%s: hash_disable_power() failed\n",
1795                         __func__);
1796
1797         clk_unprepare(device_data->clk);
1798         regulator_put(device_data->regulator);
1799
1800         return 0;
1801 }
1802
1803 /**
1804  * ux500_hash_shutdown - Function that shutdown the hash device.
1805  * @pdev: The platform device
1806  */
1807 static void ux500_hash_shutdown(struct platform_device *pdev)
1808 {
1809         struct hash_device_data *device_data;
1810
1811         device_data = platform_get_drvdata(pdev);
1812         if (!device_data) {
1813                 dev_err(&pdev->dev, "%s: platform_get_drvdata() failed!\n",
1814                         __func__);
1815                 return;
1816         }
1817
1818         /* Check that the device is free */
1819         spin_lock(&device_data->ctx_lock);
1820         /* current_ctx allocates a device, NULL = unallocated */
1821         if (!device_data->current_ctx) {
1822                 if (down_trylock(&driver_data.device_allocation))
1823                         dev_dbg(&pdev->dev, "%s: Cryp still in use! Shutting down anyway...\n",
1824                                 __func__);
1825                 /**
1826                  * (Allocate the device)
1827                  * Need to set this to non-null (dummy) value,
1828                  * to avoid usage if context switching.
1829                  */
1830                 device_data->current_ctx++;
1831         }
1832         spin_unlock(&device_data->ctx_lock);
1833
1834         /* Remove the device from the list */
1835         if (klist_node_attached(&device_data->list_node))
1836                 klist_remove(&device_data->list_node);
1837
1838         /* If this was the last device, remove the services */
1839         if (list_empty(&driver_data.device_list.k_list))
1840                 ahash_algs_unregister_all(device_data);
1841
1842         if (hash_disable_power(device_data, false))
1843                 dev_err(&pdev->dev, "%s: hash_disable_power() failed\n",
1844                         __func__);
1845 }
1846
1847 #ifdef CONFIG_PM_SLEEP
1848 /**
1849  * ux500_hash_suspend - Function that suspends the hash device.
1850  * @dev:        Device to suspend.
1851  */
1852 static int ux500_hash_suspend(struct device *dev)
1853 {
1854         int ret;
1855         struct hash_device_data *device_data;
1856         struct hash_ctx *temp_ctx = NULL;
1857
1858         device_data = dev_get_drvdata(dev);
1859         if (!device_data) {
1860                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1861                 return -ENOMEM;
1862         }
1863
1864         spin_lock(&device_data->ctx_lock);
1865         if (!device_data->current_ctx)
1866                 device_data->current_ctx++;
1867         spin_unlock(&device_data->ctx_lock);
1868
1869         if (device_data->current_ctx == ++temp_ctx) {
1870                 if (down_interruptible(&driver_data.device_allocation))
1871                         dev_dbg(dev, "%s: down_interruptible() failed\n",
1872                                 __func__);
1873                 ret = hash_disable_power(device_data, false);
1874
1875         } else {
1876                 ret = hash_disable_power(device_data, true);
1877         }
1878
1879         if (ret)
1880                 dev_err(dev, "%s: hash_disable_power()\n", __func__);
1881
1882         return ret;
1883 }
1884
1885 /**
1886  * ux500_hash_resume - Function that resume the hash device.
1887  * @dev:        Device to resume.
1888  */
1889 static int ux500_hash_resume(struct device *dev)
1890 {
1891         int ret = 0;
1892         struct hash_device_data *device_data;
1893         struct hash_ctx *temp_ctx = NULL;
1894
1895         device_data = dev_get_drvdata(dev);
1896         if (!device_data) {
1897                 dev_err(dev, "%s: platform_get_drvdata() failed!\n", __func__);
1898                 return -ENOMEM;
1899         }
1900
1901         spin_lock(&device_data->ctx_lock);
1902         if (device_data->current_ctx == ++temp_ctx)
1903                 device_data->current_ctx = NULL;
1904         spin_unlock(&device_data->ctx_lock);
1905
1906         if (!device_data->current_ctx)
1907                 up(&driver_data.device_allocation);
1908         else
1909                 ret = hash_enable_power(device_data, true);
1910
1911         if (ret)
1912                 dev_err(dev, "%s: hash_enable_power() failed!\n", __func__);
1913
1914         return ret;
1915 }
1916 #endif
1917
1918 static SIMPLE_DEV_PM_OPS(ux500_hash_pm, ux500_hash_suspend, ux500_hash_resume);
1919
1920 static const struct of_device_id ux500_hash_match[] = {
1921         { .compatible = "stericsson,ux500-hash" },
1922         { },
1923 };
1924 MODULE_DEVICE_TABLE(of, ux500_hash_match);
1925
1926 static struct platform_driver hash_driver = {
1927         .probe  = ux500_hash_probe,
1928         .remove = ux500_hash_remove,
1929         .shutdown = ux500_hash_shutdown,
1930         .driver = {
1931                 .name  = "hash1",
1932                 .of_match_table = ux500_hash_match,
1933                 .pm    = &ux500_hash_pm,
1934         }
1935 };
1936
1937 /**
1938  * ux500_hash_mod_init - The kernel module init function.
1939  */
1940 static int __init ux500_hash_mod_init(void)
1941 {
1942         klist_init(&driver_data.device_list, NULL, NULL);
1943         /* Initialize the semaphore to 0 devices (locked state) */
1944         sema_init(&driver_data.device_allocation, 0);
1945
1946         return platform_driver_register(&hash_driver);
1947 }
1948
1949 /**
1950  * ux500_hash_mod_fini - The kernel module exit function.
1951  */
1952 static void __exit ux500_hash_mod_fini(void)
1953 {
1954         platform_driver_unregister(&hash_driver);
1955 }
1956
1957 module_init(ux500_hash_mod_init);
1958 module_exit(ux500_hash_mod_fini);
1959
1960 MODULE_DESCRIPTION("Driver for ST-Ericsson UX500 HASH engine.");
1961 MODULE_LICENSE("GPL");
1962
1963 MODULE_ALIAS_CRYPTO("sha1-all");
1964 MODULE_ALIAS_CRYPTO("sha256-all");
1965 MODULE_ALIAS_CRYPTO("hmac-sha1-all");
1966 MODULE_ALIAS_CRYPTO("hmac-sha256-all");