Linux-libre 4.14.14-gnu
[librecmc/linux-libre.git] / drivers / crypto / padlock-sha.c
1 /*
2  * Cryptographic API.
3  *
4  * Support for VIA PadLock hardware crypto engine.
5  *
6  * Copyright (c) 2006  Michal Ludvig <michal@logix.cz>
7  *
8  * This program is free software; you can redistribute it and/or modify
9  * it under the terms of the GNU General Public License as published by
10  * the Free Software Foundation; either version 2 of the License, or
11  * (at your option) any later version.
12  *
13  */
14
15 #include <crypto/internal/hash.h>
16 #include <crypto/padlock.h>
17 #include <crypto/sha.h>
18 #include <linux/err.h>
19 #include <linux/module.h>
20 #include <linux/init.h>
21 #include <linux/errno.h>
22 #include <linux/interrupt.h>
23 #include <linux/kernel.h>
24 #include <linux/scatterlist.h>
25 #include <asm/cpu_device_id.h>
26 #include <asm/fpu/api.h>
27
28 struct padlock_sha_desc {
29         struct shash_desc fallback;
30 };
31
32 struct padlock_sha_ctx {
33         struct crypto_shash *fallback;
34 };
35
36 static int padlock_sha_init(struct shash_desc *desc)
37 {
38         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
39         struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
40
41         dctx->fallback.tfm = ctx->fallback;
42         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
43         return crypto_shash_init(&dctx->fallback);
44 }
45
46 static int padlock_sha_update(struct shash_desc *desc,
47                               const u8 *data, unsigned int length)
48 {
49         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
50
51         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
52         return crypto_shash_update(&dctx->fallback, data, length);
53 }
54
55 static int padlock_sha_export(struct shash_desc *desc, void *out)
56 {
57         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
58
59         return crypto_shash_export(&dctx->fallback, out);
60 }
61
62 static int padlock_sha_import(struct shash_desc *desc, const void *in)
63 {
64         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
65         struct padlock_sha_ctx *ctx = crypto_shash_ctx(desc->tfm);
66
67         dctx->fallback.tfm = ctx->fallback;
68         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
69         return crypto_shash_import(&dctx->fallback, in);
70 }
71
72 static inline void padlock_output_block(uint32_t *src,
73                         uint32_t *dst, size_t count)
74 {
75         while (count--)
76                 *dst++ = swab32(*src++);
77 }
78
79 static int padlock_sha1_finup(struct shash_desc *desc, const u8 *in,
80                               unsigned int count, u8 *out)
81 {
82         /* We can't store directly to *out as it may be unaligned. */
83         /* BTW Don't reduce the buffer size below 128 Bytes!
84          *     PadLock microcode needs it that big. */
85         char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
86                 ((aligned(STACK_ALIGN)));
87         char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
88         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
89         struct sha1_state state;
90         unsigned int space;
91         unsigned int leftover;
92         int err;
93
94         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
95         err = crypto_shash_export(&dctx->fallback, &state);
96         if (err)
97                 goto out;
98
99         if (state.count + count > ULONG_MAX)
100                 return crypto_shash_finup(&dctx->fallback, in, count, out);
101
102         leftover = ((state.count - 1) & (SHA1_BLOCK_SIZE - 1)) + 1;
103         space =  SHA1_BLOCK_SIZE - leftover;
104         if (space) {
105                 if (count > space) {
106                         err = crypto_shash_update(&dctx->fallback, in, space) ?:
107                               crypto_shash_export(&dctx->fallback, &state);
108                         if (err)
109                                 goto out;
110                         count -= space;
111                         in += space;
112                 } else {
113                         memcpy(state.buffer + leftover, in, count);
114                         in = state.buffer;
115                         count += leftover;
116                         state.count &= ~(SHA1_BLOCK_SIZE - 1);
117                 }
118         }
119
120         memcpy(result, &state.state, SHA1_DIGEST_SIZE);
121
122         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8" /* rep xsha1 */
123                       : \
124                       : "c"((unsigned long)state.count + count), \
125                         "a"((unsigned long)state.count), \
126                         "S"(in), "D"(result));
127
128         padlock_output_block((uint32_t *)result, (uint32_t *)out, 5);
129
130 out:
131         return err;
132 }
133
134 static int padlock_sha1_final(struct shash_desc *desc, u8 *out)
135 {
136         u8 buf[4];
137
138         return padlock_sha1_finup(desc, buf, 0, out);
139 }
140
141 static int padlock_sha256_finup(struct shash_desc *desc, const u8 *in,
142                                 unsigned int count, u8 *out)
143 {
144         /* We can't store directly to *out as it may be unaligned. */
145         /* BTW Don't reduce the buffer size below 128 Bytes!
146          *     PadLock microcode needs it that big. */
147         char buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
148                 ((aligned(STACK_ALIGN)));
149         char *result = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
150         struct padlock_sha_desc *dctx = shash_desc_ctx(desc);
151         struct sha256_state state;
152         unsigned int space;
153         unsigned int leftover;
154         int err;
155
156         dctx->fallback.flags = desc->flags & CRYPTO_TFM_REQ_MAY_SLEEP;
157         err = crypto_shash_export(&dctx->fallback, &state);
158         if (err)
159                 goto out;
160
161         if (state.count + count > ULONG_MAX)
162                 return crypto_shash_finup(&dctx->fallback, in, count, out);
163
164         leftover = ((state.count - 1) & (SHA256_BLOCK_SIZE - 1)) + 1;
165         space =  SHA256_BLOCK_SIZE - leftover;
166         if (space) {
167                 if (count > space) {
168                         err = crypto_shash_update(&dctx->fallback, in, space) ?:
169                               crypto_shash_export(&dctx->fallback, &state);
170                         if (err)
171                                 goto out;
172                         count -= space;
173                         in += space;
174                 } else {
175                         memcpy(state.buf + leftover, in, count);
176                         in = state.buf;
177                         count += leftover;
178                         state.count &= ~(SHA1_BLOCK_SIZE - 1);
179                 }
180         }
181
182         memcpy(result, &state.state, SHA256_DIGEST_SIZE);
183
184         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0" /* rep xsha256 */
185                       : \
186                       : "c"((unsigned long)state.count + count), \
187                         "a"((unsigned long)state.count), \
188                         "S"(in), "D"(result));
189
190         padlock_output_block((uint32_t *)result, (uint32_t *)out, 8);
191
192 out:
193         return err;
194 }
195
196 static int padlock_sha256_final(struct shash_desc *desc, u8 *out)
197 {
198         u8 buf[4];
199
200         return padlock_sha256_finup(desc, buf, 0, out);
201 }
202
203 static int padlock_cra_init(struct crypto_tfm *tfm)
204 {
205         struct crypto_shash *hash = __crypto_shash_cast(tfm);
206         const char *fallback_driver_name = crypto_tfm_alg_name(tfm);
207         struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
208         struct crypto_shash *fallback_tfm;
209         int err = -ENOMEM;
210
211         /* Allocate a fallback and abort if it failed. */
212         fallback_tfm = crypto_alloc_shash(fallback_driver_name, 0,
213                                           CRYPTO_ALG_NEED_FALLBACK);
214         if (IS_ERR(fallback_tfm)) {
215                 printk(KERN_WARNING PFX "Fallback driver '%s' could not be loaded!\n",
216                        fallback_driver_name);
217                 err = PTR_ERR(fallback_tfm);
218                 goto out;
219         }
220
221         ctx->fallback = fallback_tfm;
222         hash->descsize += crypto_shash_descsize(fallback_tfm);
223         return 0;
224
225 out:
226         return err;
227 }
228
229 static void padlock_cra_exit(struct crypto_tfm *tfm)
230 {
231         struct padlock_sha_ctx *ctx = crypto_tfm_ctx(tfm);
232
233         crypto_free_shash(ctx->fallback);
234 }
235
236 static struct shash_alg sha1_alg = {
237         .digestsize     =       SHA1_DIGEST_SIZE,
238         .init           =       padlock_sha_init,
239         .update         =       padlock_sha_update,
240         .finup          =       padlock_sha1_finup,
241         .final          =       padlock_sha1_final,
242         .export         =       padlock_sha_export,
243         .import         =       padlock_sha_import,
244         .descsize       =       sizeof(struct padlock_sha_desc),
245         .statesize      =       sizeof(struct sha1_state),
246         .base           =       {
247                 .cra_name               =       "sha1",
248                 .cra_driver_name        =       "sha1-padlock",
249                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
250                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH |
251                                                 CRYPTO_ALG_NEED_FALLBACK,
252                 .cra_blocksize          =       SHA1_BLOCK_SIZE,
253                 .cra_ctxsize            =       sizeof(struct padlock_sha_ctx),
254                 .cra_module             =       THIS_MODULE,
255                 .cra_init               =       padlock_cra_init,
256                 .cra_exit               =       padlock_cra_exit,
257         }
258 };
259
260 static struct shash_alg sha256_alg = {
261         .digestsize     =       SHA256_DIGEST_SIZE,
262         .init           =       padlock_sha_init,
263         .update         =       padlock_sha_update,
264         .finup          =       padlock_sha256_finup,
265         .final          =       padlock_sha256_final,
266         .export         =       padlock_sha_export,
267         .import         =       padlock_sha_import,
268         .descsize       =       sizeof(struct padlock_sha_desc),
269         .statesize      =       sizeof(struct sha256_state),
270         .base           =       {
271                 .cra_name               =       "sha256",
272                 .cra_driver_name        =       "sha256-padlock",
273                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
274                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH |
275                                                 CRYPTO_ALG_NEED_FALLBACK,
276                 .cra_blocksize          =       SHA256_BLOCK_SIZE,
277                 .cra_ctxsize            =       sizeof(struct padlock_sha_ctx),
278                 .cra_module             =       THIS_MODULE,
279                 .cra_init               =       padlock_cra_init,
280                 .cra_exit               =       padlock_cra_exit,
281         }
282 };
283
284 /* Add two shash_alg instance for hardware-implemented *
285 * multiple-parts hash supported by VIA Nano Processor.*/
286 static int padlock_sha1_init_nano(struct shash_desc *desc)
287 {
288         struct sha1_state *sctx = shash_desc_ctx(desc);
289
290         *sctx = (struct sha1_state){
291                 .state = { SHA1_H0, SHA1_H1, SHA1_H2, SHA1_H3, SHA1_H4 },
292         };
293
294         return 0;
295 }
296
297 static int padlock_sha1_update_nano(struct shash_desc *desc,
298                         const u8 *data, unsigned int len)
299 {
300         struct sha1_state *sctx = shash_desc_ctx(desc);
301         unsigned int partial, done;
302         const u8 *src;
303         /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
304         u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
305                 ((aligned(STACK_ALIGN)));
306         u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
307
308         partial = sctx->count & 0x3f;
309         sctx->count += len;
310         done = 0;
311         src = data;
312         memcpy(dst, (u8 *)(sctx->state), SHA1_DIGEST_SIZE);
313
314         if ((partial + len) >= SHA1_BLOCK_SIZE) {
315
316                 /* Append the bytes in state's buffer to a block to handle */
317                 if (partial) {
318                         done = -partial;
319                         memcpy(sctx->buffer + partial, data,
320                                 done + SHA1_BLOCK_SIZE);
321                         src = sctx->buffer;
322                         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
323                         : "+S"(src), "+D"(dst) \
324                         : "a"((long)-1), "c"((unsigned long)1));
325                         done += SHA1_BLOCK_SIZE;
326                         src = data + done;
327                 }
328
329                 /* Process the left bytes from the input data */
330                 if (len - done >= SHA1_BLOCK_SIZE) {
331                         asm volatile (".byte 0xf3,0x0f,0xa6,0xc8"
332                         : "+S"(src), "+D"(dst)
333                         : "a"((long)-1),
334                         "c"((unsigned long)((len - done) / SHA1_BLOCK_SIZE)));
335                         done += ((len - done) - (len - done) % SHA1_BLOCK_SIZE);
336                         src = data + done;
337                 }
338                 partial = 0;
339         }
340         memcpy((u8 *)(sctx->state), dst, SHA1_DIGEST_SIZE);
341         memcpy(sctx->buffer + partial, src, len - done);
342
343         return 0;
344 }
345
346 static int padlock_sha1_final_nano(struct shash_desc *desc, u8 *out)
347 {
348         struct sha1_state *state = (struct sha1_state *)shash_desc_ctx(desc);
349         unsigned int partial, padlen;
350         __be64 bits;
351         static const u8 padding[64] = { 0x80, };
352
353         bits = cpu_to_be64(state->count << 3);
354
355         /* Pad out to 56 mod 64 */
356         partial = state->count & 0x3f;
357         padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
358         padlock_sha1_update_nano(desc, padding, padlen);
359
360         /* Append length field bytes */
361         padlock_sha1_update_nano(desc, (const u8 *)&bits, sizeof(bits));
362
363         /* Swap to output */
364         padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 5);
365
366         return 0;
367 }
368
369 static int padlock_sha256_init_nano(struct shash_desc *desc)
370 {
371         struct sha256_state *sctx = shash_desc_ctx(desc);
372
373         *sctx = (struct sha256_state){
374                 .state = { SHA256_H0, SHA256_H1, SHA256_H2, SHA256_H3, \
375                                 SHA256_H4, SHA256_H5, SHA256_H6, SHA256_H7},
376         };
377
378         return 0;
379 }
380
381 static int padlock_sha256_update_nano(struct shash_desc *desc, const u8 *data,
382                           unsigned int len)
383 {
384         struct sha256_state *sctx = shash_desc_ctx(desc);
385         unsigned int partial, done;
386         const u8 *src;
387         /*The PHE require the out buffer must 128 bytes and 16-bytes aligned*/
388         u8 buf[128 + PADLOCK_ALIGNMENT - STACK_ALIGN] __attribute__
389                 ((aligned(STACK_ALIGN)));
390         u8 *dst = PTR_ALIGN(&buf[0], PADLOCK_ALIGNMENT);
391
392         partial = sctx->count & 0x3f;
393         sctx->count += len;
394         done = 0;
395         src = data;
396         memcpy(dst, (u8 *)(sctx->state), SHA256_DIGEST_SIZE);
397
398         if ((partial + len) >= SHA256_BLOCK_SIZE) {
399
400                 /* Append the bytes in state's buffer to a block to handle */
401                 if (partial) {
402                         done = -partial;
403                         memcpy(sctx->buf + partial, data,
404                                 done + SHA256_BLOCK_SIZE);
405                         src = sctx->buf;
406                         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
407                         : "+S"(src), "+D"(dst)
408                         : "a"((long)-1), "c"((unsigned long)1));
409                         done += SHA256_BLOCK_SIZE;
410                         src = data + done;
411                 }
412
413                 /* Process the left bytes from input data*/
414                 if (len - done >= SHA256_BLOCK_SIZE) {
415                         asm volatile (".byte 0xf3,0x0f,0xa6,0xd0"
416                         : "+S"(src), "+D"(dst)
417                         : "a"((long)-1),
418                         "c"((unsigned long)((len - done) / 64)));
419                         done += ((len - done) - (len - done) % 64);
420                         src = data + done;
421                 }
422                 partial = 0;
423         }
424         memcpy((u8 *)(sctx->state), dst, SHA256_DIGEST_SIZE);
425         memcpy(sctx->buf + partial, src, len - done);
426
427         return 0;
428 }
429
430 static int padlock_sha256_final_nano(struct shash_desc *desc, u8 *out)
431 {
432         struct sha256_state *state =
433                 (struct sha256_state *)shash_desc_ctx(desc);
434         unsigned int partial, padlen;
435         __be64 bits;
436         static const u8 padding[64] = { 0x80, };
437
438         bits = cpu_to_be64(state->count << 3);
439
440         /* Pad out to 56 mod 64 */
441         partial = state->count & 0x3f;
442         padlen = (partial < 56) ? (56 - partial) : ((64+56) - partial);
443         padlock_sha256_update_nano(desc, padding, padlen);
444
445         /* Append length field bytes */
446         padlock_sha256_update_nano(desc, (const u8 *)&bits, sizeof(bits));
447
448         /* Swap to output */
449         padlock_output_block((uint32_t *)(state->state), (uint32_t *)out, 8);
450
451         return 0;
452 }
453
454 static int padlock_sha_export_nano(struct shash_desc *desc,
455                                 void *out)
456 {
457         int statesize = crypto_shash_statesize(desc->tfm);
458         void *sctx = shash_desc_ctx(desc);
459
460         memcpy(out, sctx, statesize);
461         return 0;
462 }
463
464 static int padlock_sha_import_nano(struct shash_desc *desc,
465                                 const void *in)
466 {
467         int statesize = crypto_shash_statesize(desc->tfm);
468         void *sctx = shash_desc_ctx(desc);
469
470         memcpy(sctx, in, statesize);
471         return 0;
472 }
473
474 static struct shash_alg sha1_alg_nano = {
475         .digestsize     =       SHA1_DIGEST_SIZE,
476         .init           =       padlock_sha1_init_nano,
477         .update         =       padlock_sha1_update_nano,
478         .final          =       padlock_sha1_final_nano,
479         .export         =       padlock_sha_export_nano,
480         .import         =       padlock_sha_import_nano,
481         .descsize       =       sizeof(struct sha1_state),
482         .statesize      =       sizeof(struct sha1_state),
483         .base           =       {
484                 .cra_name               =       "sha1",
485                 .cra_driver_name        =       "sha1-padlock-nano",
486                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
487                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH,
488                 .cra_blocksize          =       SHA1_BLOCK_SIZE,
489                 .cra_module             =       THIS_MODULE,
490         }
491 };
492
493 static struct shash_alg sha256_alg_nano = {
494         .digestsize     =       SHA256_DIGEST_SIZE,
495         .init           =       padlock_sha256_init_nano,
496         .update         =       padlock_sha256_update_nano,
497         .final          =       padlock_sha256_final_nano,
498         .export         =       padlock_sha_export_nano,
499         .import         =       padlock_sha_import_nano,
500         .descsize       =       sizeof(struct sha256_state),
501         .statesize      =       sizeof(struct sha256_state),
502         .base           =       {
503                 .cra_name               =       "sha256",
504                 .cra_driver_name        =       "sha256-padlock-nano",
505                 .cra_priority           =       PADLOCK_CRA_PRIORITY,
506                 .cra_flags              =       CRYPTO_ALG_TYPE_SHASH,
507                 .cra_blocksize          =       SHA256_BLOCK_SIZE,
508                 .cra_module             =       THIS_MODULE,
509         }
510 };
511
512 static struct x86_cpu_id padlock_sha_ids[] = {
513         X86_FEATURE_MATCH(X86_FEATURE_PHE),
514         {}
515 };
516 MODULE_DEVICE_TABLE(x86cpu, padlock_sha_ids);
517
518 static int __init padlock_init(void)
519 {
520         int rc = -ENODEV;
521         struct cpuinfo_x86 *c = &cpu_data(0);
522         struct shash_alg *sha1;
523         struct shash_alg *sha256;
524
525         if (!x86_match_cpu(padlock_sha_ids) || !boot_cpu_has(X86_FEATURE_PHE_EN))
526                 return -ENODEV;
527
528         /* Register the newly added algorithm module if on *
529         * VIA Nano processor, or else just do as before */
530         if (c->x86_model < 0x0f) {
531                 sha1 = &sha1_alg;
532                 sha256 = &sha256_alg;
533         } else {
534                 sha1 = &sha1_alg_nano;
535                 sha256 = &sha256_alg_nano;
536         }
537
538         rc = crypto_register_shash(sha1);
539         if (rc)
540                 goto out;
541
542         rc = crypto_register_shash(sha256);
543         if (rc)
544                 goto out_unreg1;
545
546         printk(KERN_NOTICE PFX "Using VIA PadLock ACE for SHA1/SHA256 algorithms.\n");
547
548         return 0;
549
550 out_unreg1:
551         crypto_unregister_shash(sha1);
552
553 out:
554         printk(KERN_ERR PFX "VIA PadLock SHA1/SHA256 initialization failed.\n");
555         return rc;
556 }
557
558 static void __exit padlock_fini(void)
559 {
560         struct cpuinfo_x86 *c = &cpu_data(0);
561
562         if (c->x86_model >= 0x0f) {
563                 crypto_unregister_shash(&sha1_alg_nano);
564                 crypto_unregister_shash(&sha256_alg_nano);
565         } else {
566                 crypto_unregister_shash(&sha1_alg);
567                 crypto_unregister_shash(&sha256_alg);
568         }
569 }
570
571 module_init(padlock_init);
572 module_exit(padlock_fini);
573
574 MODULE_DESCRIPTION("VIA PadLock SHA1/SHA256 algorithms support.");
575 MODULE_LICENSE("GPL");
576 MODULE_AUTHOR("Michal Ludvig");
577
578 MODULE_ALIAS_CRYPTO("sha1-all");
579 MODULE_ALIAS_CRYPTO("sha256-all");
580 MODULE_ALIAS_CRYPTO("sha1-padlock");
581 MODULE_ALIAS_CRYPTO("sha256-padlock");