Linux-libre 4.14.12-gnu
[librecmc/linux-libre.git] / drivers / cpufreq / cpufreq.c
1 /*
2  *  linux/drivers/cpufreq/cpufreq.c
3  *
4  *  Copyright (C) 2001 Russell King
5  *            (C) 2002 - 2003 Dominik Brodowski <linux@brodo.de>
6  *            (C) 2013 Viresh Kumar <viresh.kumar@linaro.org>
7  *
8  *  Oct 2005 - Ashok Raj <ashok.raj@intel.com>
9  *      Added handling for CPU hotplug
10  *  Feb 2006 - Jacob Shin <jacob.shin@amd.com>
11  *      Fix handling for CPU hotplug -- affected CPUs
12  *
13  * This program is free software; you can redistribute it and/or modify
14  * it under the terms of the GNU General Public License version 2 as
15  * published by the Free Software Foundation.
16  */
17
18 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
19
20 #include <linux/cpu.h>
21 #include <linux/cpufreq.h>
22 #include <linux/delay.h>
23 #include <linux/device.h>
24 #include <linux/init.h>
25 #include <linux/kernel_stat.h>
26 #include <linux/module.h>
27 #include <linux/mutex.h>
28 #include <linux/slab.h>
29 #include <linux/suspend.h>
30 #include <linux/syscore_ops.h>
31 #include <linux/tick.h>
32 #include <trace/events/power.h>
33
34 static LIST_HEAD(cpufreq_policy_list);
35
36 static inline bool policy_is_inactive(struct cpufreq_policy *policy)
37 {
38         return cpumask_empty(policy->cpus);
39 }
40
41 /* Macros to iterate over CPU policies */
42 #define for_each_suitable_policy(__policy, __active)                     \
43         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list) \
44                 if ((__active) == !policy_is_inactive(__policy))
45
46 #define for_each_active_policy(__policy)                \
47         for_each_suitable_policy(__policy, true)
48 #define for_each_inactive_policy(__policy)              \
49         for_each_suitable_policy(__policy, false)
50
51 #define for_each_policy(__policy)                       \
52         list_for_each_entry(__policy, &cpufreq_policy_list, policy_list)
53
54 /* Iterate over governors */
55 static LIST_HEAD(cpufreq_governor_list);
56 #define for_each_governor(__governor)                           \
57         list_for_each_entry(__governor, &cpufreq_governor_list, governor_list)
58
59 /**
60  * The "cpufreq driver" - the arch- or hardware-dependent low
61  * level driver of CPUFreq support, and its spinlock. This lock
62  * also protects the cpufreq_cpu_data array.
63  */
64 static struct cpufreq_driver *cpufreq_driver;
65 static DEFINE_PER_CPU(struct cpufreq_policy *, cpufreq_cpu_data);
66 static DEFINE_RWLOCK(cpufreq_driver_lock);
67
68 /* Flag to suspend/resume CPUFreq governors */
69 static bool cpufreq_suspended;
70
71 static inline bool has_target(void)
72 {
73         return cpufreq_driver->target_index || cpufreq_driver->target;
74 }
75
76 /* internal prototypes */
77 static unsigned int __cpufreq_get(struct cpufreq_policy *policy);
78 static int cpufreq_init_governor(struct cpufreq_policy *policy);
79 static void cpufreq_exit_governor(struct cpufreq_policy *policy);
80 static int cpufreq_start_governor(struct cpufreq_policy *policy);
81 static void cpufreq_stop_governor(struct cpufreq_policy *policy);
82 static void cpufreq_governor_limits(struct cpufreq_policy *policy);
83
84 /**
85  * Two notifier lists: the "policy" list is involved in the
86  * validation process for a new CPU frequency policy; the
87  * "transition" list for kernel code that needs to handle
88  * changes to devices when the CPU clock speed changes.
89  * The mutex locks both lists.
90  */
91 static BLOCKING_NOTIFIER_HEAD(cpufreq_policy_notifier_list);
92 static struct srcu_notifier_head cpufreq_transition_notifier_list;
93
94 static bool init_cpufreq_transition_notifier_list_called;
95 static int __init init_cpufreq_transition_notifier_list(void)
96 {
97         srcu_init_notifier_head(&cpufreq_transition_notifier_list);
98         init_cpufreq_transition_notifier_list_called = true;
99         return 0;
100 }
101 pure_initcall(init_cpufreq_transition_notifier_list);
102
103 static int off __read_mostly;
104 static int cpufreq_disabled(void)
105 {
106         return off;
107 }
108 void disable_cpufreq(void)
109 {
110         off = 1;
111 }
112 static DEFINE_MUTEX(cpufreq_governor_mutex);
113
114 bool have_governor_per_policy(void)
115 {
116         return !!(cpufreq_driver->flags & CPUFREQ_HAVE_GOVERNOR_PER_POLICY);
117 }
118 EXPORT_SYMBOL_GPL(have_governor_per_policy);
119
120 struct kobject *get_governor_parent_kobj(struct cpufreq_policy *policy)
121 {
122         if (have_governor_per_policy())
123                 return &policy->kobj;
124         else
125                 return cpufreq_global_kobject;
126 }
127 EXPORT_SYMBOL_GPL(get_governor_parent_kobj);
128
129 static inline u64 get_cpu_idle_time_jiffy(unsigned int cpu, u64 *wall)
130 {
131         u64 idle_time;
132         u64 cur_wall_time;
133         u64 busy_time;
134
135         cur_wall_time = jiffies64_to_nsecs(get_jiffies_64());
136
137         busy_time = kcpustat_cpu(cpu).cpustat[CPUTIME_USER];
138         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SYSTEM];
139         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_IRQ];
140         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_SOFTIRQ];
141         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_STEAL];
142         busy_time += kcpustat_cpu(cpu).cpustat[CPUTIME_NICE];
143
144         idle_time = cur_wall_time - busy_time;
145         if (wall)
146                 *wall = div_u64(cur_wall_time, NSEC_PER_USEC);
147
148         return div_u64(idle_time, NSEC_PER_USEC);
149 }
150
151 u64 get_cpu_idle_time(unsigned int cpu, u64 *wall, int io_busy)
152 {
153         u64 idle_time = get_cpu_idle_time_us(cpu, io_busy ? wall : NULL);
154
155         if (idle_time == -1ULL)
156                 return get_cpu_idle_time_jiffy(cpu, wall);
157         else if (!io_busy)
158                 idle_time += get_cpu_iowait_time_us(cpu, wall);
159
160         return idle_time;
161 }
162 EXPORT_SYMBOL_GPL(get_cpu_idle_time);
163
164 /*
165  * This is a generic cpufreq init() routine which can be used by cpufreq
166  * drivers of SMP systems. It will do following:
167  * - validate & show freq table passed
168  * - set policies transition latency
169  * - policy->cpus with all possible CPUs
170  */
171 int cpufreq_generic_init(struct cpufreq_policy *policy,
172                 struct cpufreq_frequency_table *table,
173                 unsigned int transition_latency)
174 {
175         int ret;
176
177         ret = cpufreq_table_validate_and_show(policy, table);
178         if (ret) {
179                 pr_err("%s: invalid frequency table: %d\n", __func__, ret);
180                 return ret;
181         }
182
183         policy->cpuinfo.transition_latency = transition_latency;
184
185         /*
186          * The driver only supports the SMP configuration where all processors
187          * share the clock and voltage and clock.
188          */
189         cpumask_setall(policy->cpus);
190
191         return 0;
192 }
193 EXPORT_SYMBOL_GPL(cpufreq_generic_init);
194
195 struct cpufreq_policy *cpufreq_cpu_get_raw(unsigned int cpu)
196 {
197         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
198
199         return policy && cpumask_test_cpu(cpu, policy->cpus) ? policy : NULL;
200 }
201 EXPORT_SYMBOL_GPL(cpufreq_cpu_get_raw);
202
203 unsigned int cpufreq_generic_get(unsigned int cpu)
204 {
205         struct cpufreq_policy *policy = cpufreq_cpu_get_raw(cpu);
206
207         if (!policy || IS_ERR(policy->clk)) {
208                 pr_err("%s: No %s associated to cpu: %d\n",
209                        __func__, policy ? "clk" : "policy", cpu);
210                 return 0;
211         }
212
213         return clk_get_rate(policy->clk) / 1000;
214 }
215 EXPORT_SYMBOL_GPL(cpufreq_generic_get);
216
217 /**
218  * cpufreq_cpu_get: returns policy for a cpu and marks it busy.
219  *
220  * @cpu: cpu to find policy for.
221  *
222  * This returns policy for 'cpu', returns NULL if it doesn't exist.
223  * It also increments the kobject reference count to mark it busy and so would
224  * require a corresponding call to cpufreq_cpu_put() to decrement it back.
225  * If corresponding call cpufreq_cpu_put() isn't made, the policy wouldn't be
226  * freed as that depends on the kobj count.
227  *
228  * Return: A valid policy on success, otherwise NULL on failure.
229  */
230 struct cpufreq_policy *cpufreq_cpu_get(unsigned int cpu)
231 {
232         struct cpufreq_policy *policy = NULL;
233         unsigned long flags;
234
235         if (WARN_ON(cpu >= nr_cpu_ids))
236                 return NULL;
237
238         /* get the cpufreq driver */
239         read_lock_irqsave(&cpufreq_driver_lock, flags);
240
241         if (cpufreq_driver) {
242                 /* get the CPU */
243                 policy = cpufreq_cpu_get_raw(cpu);
244                 if (policy)
245                         kobject_get(&policy->kobj);
246         }
247
248         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
249
250         return policy;
251 }
252 EXPORT_SYMBOL_GPL(cpufreq_cpu_get);
253
254 /**
255  * cpufreq_cpu_put: Decrements the usage count of a policy
256  *
257  * @policy: policy earlier returned by cpufreq_cpu_get().
258  *
259  * This decrements the kobject reference count incremented earlier by calling
260  * cpufreq_cpu_get().
261  */
262 void cpufreq_cpu_put(struct cpufreq_policy *policy)
263 {
264         kobject_put(&policy->kobj);
265 }
266 EXPORT_SYMBOL_GPL(cpufreq_cpu_put);
267
268 /*********************************************************************
269  *            EXTERNALLY AFFECTING FREQUENCY CHANGES                 *
270  *********************************************************************/
271
272 /**
273  * adjust_jiffies - adjust the system "loops_per_jiffy"
274  *
275  * This function alters the system "loops_per_jiffy" for the clock
276  * speed change. Note that loops_per_jiffy cannot be updated on SMP
277  * systems as each CPU might be scaled differently. So, use the arch
278  * per-CPU loops_per_jiffy value wherever possible.
279  */
280 static void adjust_jiffies(unsigned long val, struct cpufreq_freqs *ci)
281 {
282 #ifndef CONFIG_SMP
283         static unsigned long l_p_j_ref;
284         static unsigned int l_p_j_ref_freq;
285
286         if (ci->flags & CPUFREQ_CONST_LOOPS)
287                 return;
288
289         if (!l_p_j_ref_freq) {
290                 l_p_j_ref = loops_per_jiffy;
291                 l_p_j_ref_freq = ci->old;
292                 pr_debug("saving %lu as reference value for loops_per_jiffy; freq is %u kHz\n",
293                          l_p_j_ref, l_p_j_ref_freq);
294         }
295         if (val == CPUFREQ_POSTCHANGE && ci->old != ci->new) {
296                 loops_per_jiffy = cpufreq_scale(l_p_j_ref, l_p_j_ref_freq,
297                                                                 ci->new);
298                 pr_debug("scaling loops_per_jiffy to %lu for frequency %u kHz\n",
299                          loops_per_jiffy, ci->new);
300         }
301 #endif
302 }
303
304 static void __cpufreq_notify_transition(struct cpufreq_policy *policy,
305                 struct cpufreq_freqs *freqs, unsigned int state)
306 {
307         BUG_ON(irqs_disabled());
308
309         if (cpufreq_disabled())
310                 return;
311
312         freqs->flags = cpufreq_driver->flags;
313         pr_debug("notification %u of frequency transition to %u kHz\n",
314                  state, freqs->new);
315
316         switch (state) {
317
318         case CPUFREQ_PRECHANGE:
319                 /* detect if the driver reported a value as "old frequency"
320                  * which is not equal to what the cpufreq core thinks is
321                  * "old frequency".
322                  */
323                 if (!(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
324                         if ((policy) && (policy->cpu == freqs->cpu) &&
325                             (policy->cur) && (policy->cur != freqs->old)) {
326                                 pr_debug("Warning: CPU frequency is %u, cpufreq assumed %u kHz\n",
327                                          freqs->old, policy->cur);
328                                 freqs->old = policy->cur;
329                         }
330                 }
331                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
332                                 CPUFREQ_PRECHANGE, freqs);
333                 adjust_jiffies(CPUFREQ_PRECHANGE, freqs);
334                 break;
335
336         case CPUFREQ_POSTCHANGE:
337                 adjust_jiffies(CPUFREQ_POSTCHANGE, freqs);
338                 pr_debug("FREQ: %lu - CPU: %lu\n",
339                          (unsigned long)freqs->new, (unsigned long)freqs->cpu);
340                 trace_cpu_frequency(freqs->new, freqs->cpu);
341                 cpufreq_stats_record_transition(policy, freqs->new);
342                 srcu_notifier_call_chain(&cpufreq_transition_notifier_list,
343                                 CPUFREQ_POSTCHANGE, freqs);
344                 if (likely(policy) && likely(policy->cpu == freqs->cpu))
345                         policy->cur = freqs->new;
346                 break;
347         }
348 }
349
350 /**
351  * cpufreq_notify_transition - call notifier chain and adjust_jiffies
352  * on frequency transition.
353  *
354  * This function calls the transition notifiers and the "adjust_jiffies"
355  * function. It is called twice on all CPU frequency changes that have
356  * external effects.
357  */
358 static void cpufreq_notify_transition(struct cpufreq_policy *policy,
359                 struct cpufreq_freqs *freqs, unsigned int state)
360 {
361         for_each_cpu(freqs->cpu, policy->cpus)
362                 __cpufreq_notify_transition(policy, freqs, state);
363 }
364
365 /* Do post notifications when there are chances that transition has failed */
366 static void cpufreq_notify_post_transition(struct cpufreq_policy *policy,
367                 struct cpufreq_freqs *freqs, int transition_failed)
368 {
369         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
370         if (!transition_failed)
371                 return;
372
373         swap(freqs->old, freqs->new);
374         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
375         cpufreq_notify_transition(policy, freqs, CPUFREQ_POSTCHANGE);
376 }
377
378 void cpufreq_freq_transition_begin(struct cpufreq_policy *policy,
379                 struct cpufreq_freqs *freqs)
380 {
381
382         /*
383          * Catch double invocations of _begin() which lead to self-deadlock.
384          * ASYNC_NOTIFICATION drivers are left out because the cpufreq core
385          * doesn't invoke _begin() on their behalf, and hence the chances of
386          * double invocations are very low. Moreover, there are scenarios
387          * where these checks can emit false-positive warnings in these
388          * drivers; so we avoid that by skipping them altogether.
389          */
390         WARN_ON(!(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION)
391                                 && current == policy->transition_task);
392
393 wait:
394         wait_event(policy->transition_wait, !policy->transition_ongoing);
395
396         spin_lock(&policy->transition_lock);
397
398         if (unlikely(policy->transition_ongoing)) {
399                 spin_unlock(&policy->transition_lock);
400                 goto wait;
401         }
402
403         policy->transition_ongoing = true;
404         policy->transition_task = current;
405
406         spin_unlock(&policy->transition_lock);
407
408         cpufreq_notify_transition(policy, freqs, CPUFREQ_PRECHANGE);
409 }
410 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_begin);
411
412 void cpufreq_freq_transition_end(struct cpufreq_policy *policy,
413                 struct cpufreq_freqs *freqs, int transition_failed)
414 {
415         if (unlikely(WARN_ON(!policy->transition_ongoing)))
416                 return;
417
418         cpufreq_notify_post_transition(policy, freqs, transition_failed);
419
420         policy->transition_ongoing = false;
421         policy->transition_task = NULL;
422
423         wake_up(&policy->transition_wait);
424 }
425 EXPORT_SYMBOL_GPL(cpufreq_freq_transition_end);
426
427 /*
428  * Fast frequency switching status count.  Positive means "enabled", negative
429  * means "disabled" and 0 means "not decided yet".
430  */
431 static int cpufreq_fast_switch_count;
432 static DEFINE_MUTEX(cpufreq_fast_switch_lock);
433
434 static void cpufreq_list_transition_notifiers(void)
435 {
436         struct notifier_block *nb;
437
438         pr_info("Registered transition notifiers:\n");
439
440         mutex_lock(&cpufreq_transition_notifier_list.mutex);
441
442         for (nb = cpufreq_transition_notifier_list.head; nb; nb = nb->next)
443                 pr_info("%pF\n", nb->notifier_call);
444
445         mutex_unlock(&cpufreq_transition_notifier_list.mutex);
446 }
447
448 /**
449  * cpufreq_enable_fast_switch - Enable fast frequency switching for policy.
450  * @policy: cpufreq policy to enable fast frequency switching for.
451  *
452  * Try to enable fast frequency switching for @policy.
453  *
454  * The attempt will fail if there is at least one transition notifier registered
455  * at this point, as fast frequency switching is quite fundamentally at odds
456  * with transition notifiers.  Thus if successful, it will make registration of
457  * transition notifiers fail going forward.
458  */
459 void cpufreq_enable_fast_switch(struct cpufreq_policy *policy)
460 {
461         lockdep_assert_held(&policy->rwsem);
462
463         if (!policy->fast_switch_possible)
464                 return;
465
466         mutex_lock(&cpufreq_fast_switch_lock);
467         if (cpufreq_fast_switch_count >= 0) {
468                 cpufreq_fast_switch_count++;
469                 policy->fast_switch_enabled = true;
470         } else {
471                 pr_warn("CPU%u: Fast frequency switching not enabled\n",
472                         policy->cpu);
473                 cpufreq_list_transition_notifiers();
474         }
475         mutex_unlock(&cpufreq_fast_switch_lock);
476 }
477 EXPORT_SYMBOL_GPL(cpufreq_enable_fast_switch);
478
479 /**
480  * cpufreq_disable_fast_switch - Disable fast frequency switching for policy.
481  * @policy: cpufreq policy to disable fast frequency switching for.
482  */
483 void cpufreq_disable_fast_switch(struct cpufreq_policy *policy)
484 {
485         mutex_lock(&cpufreq_fast_switch_lock);
486         if (policy->fast_switch_enabled) {
487                 policy->fast_switch_enabled = false;
488                 if (!WARN_ON(cpufreq_fast_switch_count <= 0))
489                         cpufreq_fast_switch_count--;
490         }
491         mutex_unlock(&cpufreq_fast_switch_lock);
492 }
493 EXPORT_SYMBOL_GPL(cpufreq_disable_fast_switch);
494
495 /**
496  * cpufreq_driver_resolve_freq - Map a target frequency to a driver-supported
497  * one.
498  * @target_freq: target frequency to resolve.
499  *
500  * The target to driver frequency mapping is cached in the policy.
501  *
502  * Return: Lowest driver-supported frequency greater than or equal to the
503  * given target_freq, subject to policy (min/max) and driver limitations.
504  */
505 unsigned int cpufreq_driver_resolve_freq(struct cpufreq_policy *policy,
506                                          unsigned int target_freq)
507 {
508         target_freq = clamp_val(target_freq, policy->min, policy->max);
509         policy->cached_target_freq = target_freq;
510
511         if (cpufreq_driver->target_index) {
512                 int idx;
513
514                 idx = cpufreq_frequency_table_target(policy, target_freq,
515                                                      CPUFREQ_RELATION_L);
516                 policy->cached_resolved_idx = idx;
517                 return policy->freq_table[idx].frequency;
518         }
519
520         if (cpufreq_driver->resolve_freq)
521                 return cpufreq_driver->resolve_freq(policy, target_freq);
522
523         return target_freq;
524 }
525 EXPORT_SYMBOL_GPL(cpufreq_driver_resolve_freq);
526
527 unsigned int cpufreq_policy_transition_delay_us(struct cpufreq_policy *policy)
528 {
529         unsigned int latency;
530
531         if (policy->transition_delay_us)
532                 return policy->transition_delay_us;
533
534         latency = policy->cpuinfo.transition_latency / NSEC_PER_USEC;
535         if (latency) {
536                 /*
537                  * For platforms that can change the frequency very fast (< 10
538                  * us), the above formula gives a decent transition delay. But
539                  * for platforms where transition_latency is in milliseconds, it
540                  * ends up giving unrealistic values.
541                  *
542                  * Cap the default transition delay to 10 ms, which seems to be
543                  * a reasonable amount of time after which we should reevaluate
544                  * the frequency.
545                  */
546                 return min(latency * LATENCY_MULTIPLIER, (unsigned int)10000);
547         }
548
549         return LATENCY_MULTIPLIER;
550 }
551 EXPORT_SYMBOL_GPL(cpufreq_policy_transition_delay_us);
552
553 /*********************************************************************
554  *                          SYSFS INTERFACE                          *
555  *********************************************************************/
556 static ssize_t show_boost(struct kobject *kobj,
557                                  struct attribute *attr, char *buf)
558 {
559         return sprintf(buf, "%d\n", cpufreq_driver->boost_enabled);
560 }
561
562 static ssize_t store_boost(struct kobject *kobj, struct attribute *attr,
563                                   const char *buf, size_t count)
564 {
565         int ret, enable;
566
567         ret = sscanf(buf, "%d", &enable);
568         if (ret != 1 || enable < 0 || enable > 1)
569                 return -EINVAL;
570
571         if (cpufreq_boost_trigger_state(enable)) {
572                 pr_err("%s: Cannot %s BOOST!\n",
573                        __func__, enable ? "enable" : "disable");
574                 return -EINVAL;
575         }
576
577         pr_debug("%s: cpufreq BOOST %s\n",
578                  __func__, enable ? "enabled" : "disabled");
579
580         return count;
581 }
582 define_one_global_rw(boost);
583
584 static struct cpufreq_governor *find_governor(const char *str_governor)
585 {
586         struct cpufreq_governor *t;
587
588         for_each_governor(t)
589                 if (!strncasecmp(str_governor, t->name, CPUFREQ_NAME_LEN))
590                         return t;
591
592         return NULL;
593 }
594
595 /**
596  * cpufreq_parse_governor - parse a governor string
597  */
598 static int cpufreq_parse_governor(char *str_governor, unsigned int *policy,
599                                 struct cpufreq_governor **governor)
600 {
601         int err = -EINVAL;
602
603         if (cpufreq_driver->setpolicy) {
604                 if (!strncasecmp(str_governor, "performance", CPUFREQ_NAME_LEN)) {
605                         *policy = CPUFREQ_POLICY_PERFORMANCE;
606                         err = 0;
607                 } else if (!strncasecmp(str_governor, "powersave",
608                                                 CPUFREQ_NAME_LEN)) {
609                         *policy = CPUFREQ_POLICY_POWERSAVE;
610                         err = 0;
611                 }
612         } else {
613                 struct cpufreq_governor *t;
614
615                 mutex_lock(&cpufreq_governor_mutex);
616
617                 t = find_governor(str_governor);
618
619                 if (t == NULL) {
620                         int ret;
621
622                         mutex_unlock(&cpufreq_governor_mutex);
623                         ret = request_module("cpufreq_%s", str_governor);
624                         mutex_lock(&cpufreq_governor_mutex);
625
626                         if (ret == 0)
627                                 t = find_governor(str_governor);
628                 }
629
630                 if (t != NULL) {
631                         *governor = t;
632                         err = 0;
633                 }
634
635                 mutex_unlock(&cpufreq_governor_mutex);
636         }
637         return err;
638 }
639
640 /**
641  * cpufreq_per_cpu_attr_read() / show_##file_name() -
642  * print out cpufreq information
643  *
644  * Write out information from cpufreq_driver->policy[cpu]; object must be
645  * "unsigned int".
646  */
647
648 #define show_one(file_name, object)                     \
649 static ssize_t show_##file_name                         \
650 (struct cpufreq_policy *policy, char *buf)              \
651 {                                                       \
652         return sprintf(buf, "%u\n", policy->object);    \
653 }
654
655 show_one(cpuinfo_min_freq, cpuinfo.min_freq);
656 show_one(cpuinfo_max_freq, cpuinfo.max_freq);
657 show_one(cpuinfo_transition_latency, cpuinfo.transition_latency);
658 show_one(scaling_min_freq, min);
659 show_one(scaling_max_freq, max);
660
661 __weak unsigned int arch_freq_get_on_cpu(int cpu)
662 {
663         return 0;
664 }
665
666 static ssize_t show_scaling_cur_freq(struct cpufreq_policy *policy, char *buf)
667 {
668         ssize_t ret;
669         unsigned int freq;
670
671         freq = arch_freq_get_on_cpu(policy->cpu);
672         if (freq)
673                 ret = sprintf(buf, "%u\n", freq);
674         else if (cpufreq_driver && cpufreq_driver->setpolicy &&
675                         cpufreq_driver->get)
676                 ret = sprintf(buf, "%u\n", cpufreq_driver->get(policy->cpu));
677         else
678                 ret = sprintf(buf, "%u\n", policy->cur);
679         return ret;
680 }
681
682 static int cpufreq_set_policy(struct cpufreq_policy *policy,
683                                 struct cpufreq_policy *new_policy);
684
685 /**
686  * cpufreq_per_cpu_attr_write() / store_##file_name() - sysfs write access
687  */
688 #define store_one(file_name, object)                    \
689 static ssize_t store_##file_name                                        \
690 (struct cpufreq_policy *policy, const char *buf, size_t count)          \
691 {                                                                       \
692         int ret, temp;                                                  \
693         struct cpufreq_policy new_policy;                               \
694                                                                         \
695         memcpy(&new_policy, policy, sizeof(*policy));                   \
696                                                                         \
697         ret = sscanf(buf, "%u", &new_policy.object);                    \
698         if (ret != 1)                                                   \
699                 return -EINVAL;                                         \
700                                                                         \
701         temp = new_policy.object;                                       \
702         ret = cpufreq_set_policy(policy, &new_policy);          \
703         if (!ret)                                                       \
704                 policy->user_policy.object = temp;                      \
705                                                                         \
706         return ret ? ret : count;                                       \
707 }
708
709 store_one(scaling_min_freq, min);
710 store_one(scaling_max_freq, max);
711
712 /**
713  * show_cpuinfo_cur_freq - current CPU frequency as detected by hardware
714  */
715 static ssize_t show_cpuinfo_cur_freq(struct cpufreq_policy *policy,
716                                         char *buf)
717 {
718         unsigned int cur_freq = __cpufreq_get(policy);
719
720         if (cur_freq)
721                 return sprintf(buf, "%u\n", cur_freq);
722
723         return sprintf(buf, "<unknown>\n");
724 }
725
726 /**
727  * show_scaling_governor - show the current policy for the specified CPU
728  */
729 static ssize_t show_scaling_governor(struct cpufreq_policy *policy, char *buf)
730 {
731         if (policy->policy == CPUFREQ_POLICY_POWERSAVE)
732                 return sprintf(buf, "powersave\n");
733         else if (policy->policy == CPUFREQ_POLICY_PERFORMANCE)
734                 return sprintf(buf, "performance\n");
735         else if (policy->governor)
736                 return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n",
737                                 policy->governor->name);
738         return -EINVAL;
739 }
740
741 /**
742  * store_scaling_governor - store policy for the specified CPU
743  */
744 static ssize_t store_scaling_governor(struct cpufreq_policy *policy,
745                                         const char *buf, size_t count)
746 {
747         int ret;
748         char    str_governor[16];
749         struct cpufreq_policy new_policy;
750
751         memcpy(&new_policy, policy, sizeof(*policy));
752
753         ret = sscanf(buf, "%15s", str_governor);
754         if (ret != 1)
755                 return -EINVAL;
756
757         if (cpufreq_parse_governor(str_governor, &new_policy.policy,
758                                                 &new_policy.governor))
759                 return -EINVAL;
760
761         ret = cpufreq_set_policy(policy, &new_policy);
762         return ret ? ret : count;
763 }
764
765 /**
766  * show_scaling_driver - show the cpufreq driver currently loaded
767  */
768 static ssize_t show_scaling_driver(struct cpufreq_policy *policy, char *buf)
769 {
770         return scnprintf(buf, CPUFREQ_NAME_PLEN, "%s\n", cpufreq_driver->name);
771 }
772
773 /**
774  * show_scaling_available_governors - show the available CPUfreq governors
775  */
776 static ssize_t show_scaling_available_governors(struct cpufreq_policy *policy,
777                                                 char *buf)
778 {
779         ssize_t i = 0;
780         struct cpufreq_governor *t;
781
782         if (!has_target()) {
783                 i += sprintf(buf, "performance powersave");
784                 goto out;
785         }
786
787         for_each_governor(t) {
788                 if (i >= (ssize_t) ((PAGE_SIZE / sizeof(char))
789                     - (CPUFREQ_NAME_LEN + 2)))
790                         goto out;
791                 i += scnprintf(&buf[i], CPUFREQ_NAME_PLEN, "%s ", t->name);
792         }
793 out:
794         i += sprintf(&buf[i], "\n");
795         return i;
796 }
797
798 ssize_t cpufreq_show_cpus(const struct cpumask *mask, char *buf)
799 {
800         ssize_t i = 0;
801         unsigned int cpu;
802
803         for_each_cpu(cpu, mask) {
804                 if (i)
805                         i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), " ");
806                 i += scnprintf(&buf[i], (PAGE_SIZE - i - 2), "%u", cpu);
807                 if (i >= (PAGE_SIZE - 5))
808                         break;
809         }
810         i += sprintf(&buf[i], "\n");
811         return i;
812 }
813 EXPORT_SYMBOL_GPL(cpufreq_show_cpus);
814
815 /**
816  * show_related_cpus - show the CPUs affected by each transition even if
817  * hw coordination is in use
818  */
819 static ssize_t show_related_cpus(struct cpufreq_policy *policy, char *buf)
820 {
821         return cpufreq_show_cpus(policy->related_cpus, buf);
822 }
823
824 /**
825  * show_affected_cpus - show the CPUs affected by each transition
826  */
827 static ssize_t show_affected_cpus(struct cpufreq_policy *policy, char *buf)
828 {
829         return cpufreq_show_cpus(policy->cpus, buf);
830 }
831
832 static ssize_t store_scaling_setspeed(struct cpufreq_policy *policy,
833                                         const char *buf, size_t count)
834 {
835         unsigned int freq = 0;
836         unsigned int ret;
837
838         if (!policy->governor || !policy->governor->store_setspeed)
839                 return -EINVAL;
840
841         ret = sscanf(buf, "%u", &freq);
842         if (ret != 1)
843                 return -EINVAL;
844
845         policy->governor->store_setspeed(policy, freq);
846
847         return count;
848 }
849
850 static ssize_t show_scaling_setspeed(struct cpufreq_policy *policy, char *buf)
851 {
852         if (!policy->governor || !policy->governor->show_setspeed)
853                 return sprintf(buf, "<unsupported>\n");
854
855         return policy->governor->show_setspeed(policy, buf);
856 }
857
858 /**
859  * show_bios_limit - show the current cpufreq HW/BIOS limitation
860  */
861 static ssize_t show_bios_limit(struct cpufreq_policy *policy, char *buf)
862 {
863         unsigned int limit;
864         int ret;
865         if (cpufreq_driver->bios_limit) {
866                 ret = cpufreq_driver->bios_limit(policy->cpu, &limit);
867                 if (!ret)
868                         return sprintf(buf, "%u\n", limit);
869         }
870         return sprintf(buf, "%u\n", policy->cpuinfo.max_freq);
871 }
872
873 cpufreq_freq_attr_ro_perm(cpuinfo_cur_freq, 0400);
874 cpufreq_freq_attr_ro(cpuinfo_min_freq);
875 cpufreq_freq_attr_ro(cpuinfo_max_freq);
876 cpufreq_freq_attr_ro(cpuinfo_transition_latency);
877 cpufreq_freq_attr_ro(scaling_available_governors);
878 cpufreq_freq_attr_ro(scaling_driver);
879 cpufreq_freq_attr_ro(scaling_cur_freq);
880 cpufreq_freq_attr_ro(bios_limit);
881 cpufreq_freq_attr_ro(related_cpus);
882 cpufreq_freq_attr_ro(affected_cpus);
883 cpufreq_freq_attr_rw(scaling_min_freq);
884 cpufreq_freq_attr_rw(scaling_max_freq);
885 cpufreq_freq_attr_rw(scaling_governor);
886 cpufreq_freq_attr_rw(scaling_setspeed);
887
888 static struct attribute *default_attrs[] = {
889         &cpuinfo_min_freq.attr,
890         &cpuinfo_max_freq.attr,
891         &cpuinfo_transition_latency.attr,
892         &scaling_min_freq.attr,
893         &scaling_max_freq.attr,
894         &affected_cpus.attr,
895         &related_cpus.attr,
896         &scaling_governor.attr,
897         &scaling_driver.attr,
898         &scaling_available_governors.attr,
899         &scaling_setspeed.attr,
900         NULL
901 };
902
903 #define to_policy(k) container_of(k, struct cpufreq_policy, kobj)
904 #define to_attr(a) container_of(a, struct freq_attr, attr)
905
906 static ssize_t show(struct kobject *kobj, struct attribute *attr, char *buf)
907 {
908         struct cpufreq_policy *policy = to_policy(kobj);
909         struct freq_attr *fattr = to_attr(attr);
910         ssize_t ret;
911
912         down_read(&policy->rwsem);
913         ret = fattr->show(policy, buf);
914         up_read(&policy->rwsem);
915
916         return ret;
917 }
918
919 static ssize_t store(struct kobject *kobj, struct attribute *attr,
920                      const char *buf, size_t count)
921 {
922         struct cpufreq_policy *policy = to_policy(kobj);
923         struct freq_attr *fattr = to_attr(attr);
924         ssize_t ret = -EINVAL;
925
926         cpus_read_lock();
927
928         if (cpu_online(policy->cpu)) {
929                 down_write(&policy->rwsem);
930                 ret = fattr->store(policy, buf, count);
931                 up_write(&policy->rwsem);
932         }
933
934         cpus_read_unlock();
935
936         return ret;
937 }
938
939 static void cpufreq_sysfs_release(struct kobject *kobj)
940 {
941         struct cpufreq_policy *policy = to_policy(kobj);
942         pr_debug("last reference is dropped\n");
943         complete(&policy->kobj_unregister);
944 }
945
946 static const struct sysfs_ops sysfs_ops = {
947         .show   = show,
948         .store  = store,
949 };
950
951 static struct kobj_type ktype_cpufreq = {
952         .sysfs_ops      = &sysfs_ops,
953         .default_attrs  = default_attrs,
954         .release        = cpufreq_sysfs_release,
955 };
956
957 static void add_cpu_dev_symlink(struct cpufreq_policy *policy, unsigned int cpu)
958 {
959         struct device *dev = get_cpu_device(cpu);
960
961         if (!dev)
962                 return;
963
964         if (cpumask_test_and_set_cpu(cpu, policy->real_cpus))
965                 return;
966
967         dev_dbg(dev, "%s: Adding symlink\n", __func__);
968         if (sysfs_create_link(&dev->kobj, &policy->kobj, "cpufreq"))
969                 dev_err(dev, "cpufreq symlink creation failed\n");
970 }
971
972 static void remove_cpu_dev_symlink(struct cpufreq_policy *policy,
973                                    struct device *dev)
974 {
975         dev_dbg(dev, "%s: Removing symlink\n", __func__);
976         sysfs_remove_link(&dev->kobj, "cpufreq");
977 }
978
979 static int cpufreq_add_dev_interface(struct cpufreq_policy *policy)
980 {
981         struct freq_attr **drv_attr;
982         int ret = 0;
983
984         /* set up files for this cpu device */
985         drv_attr = cpufreq_driver->attr;
986         while (drv_attr && *drv_attr) {
987                 ret = sysfs_create_file(&policy->kobj, &((*drv_attr)->attr));
988                 if (ret)
989                         return ret;
990                 drv_attr++;
991         }
992         if (cpufreq_driver->get) {
993                 ret = sysfs_create_file(&policy->kobj, &cpuinfo_cur_freq.attr);
994                 if (ret)
995                         return ret;
996         }
997
998         ret = sysfs_create_file(&policy->kobj, &scaling_cur_freq.attr);
999         if (ret)
1000                 return ret;
1001
1002         if (cpufreq_driver->bios_limit) {
1003                 ret = sysfs_create_file(&policy->kobj, &bios_limit.attr);
1004                 if (ret)
1005                         return ret;
1006         }
1007
1008         return 0;
1009 }
1010
1011 __weak struct cpufreq_governor *cpufreq_default_governor(void)
1012 {
1013         return NULL;
1014 }
1015
1016 static int cpufreq_init_policy(struct cpufreq_policy *policy)
1017 {
1018         struct cpufreq_governor *gov = NULL;
1019         struct cpufreq_policy new_policy;
1020
1021         memcpy(&new_policy, policy, sizeof(*policy));
1022
1023         /* Update governor of new_policy to the governor used before hotplug */
1024         gov = find_governor(policy->last_governor);
1025         if (gov) {
1026                 pr_debug("Restoring governor %s for cpu %d\n",
1027                                 policy->governor->name, policy->cpu);
1028         } else {
1029                 gov = cpufreq_default_governor();
1030                 if (!gov)
1031                         return -ENODATA;
1032         }
1033
1034         new_policy.governor = gov;
1035
1036         /* Use the default policy if there is no last_policy. */
1037         if (cpufreq_driver->setpolicy) {
1038                 if (policy->last_policy)
1039                         new_policy.policy = policy->last_policy;
1040                 else
1041                         cpufreq_parse_governor(gov->name, &new_policy.policy,
1042                                                NULL);
1043         }
1044         /* set default policy */
1045         return cpufreq_set_policy(policy, &new_policy);
1046 }
1047
1048 static int cpufreq_add_policy_cpu(struct cpufreq_policy *policy, unsigned int cpu)
1049 {
1050         int ret = 0;
1051
1052         /* Has this CPU been taken care of already? */
1053         if (cpumask_test_cpu(cpu, policy->cpus))
1054                 return 0;
1055
1056         down_write(&policy->rwsem);
1057         if (has_target())
1058                 cpufreq_stop_governor(policy);
1059
1060         cpumask_set_cpu(cpu, policy->cpus);
1061
1062         if (has_target()) {
1063                 ret = cpufreq_start_governor(policy);
1064                 if (ret)
1065                         pr_err("%s: Failed to start governor\n", __func__);
1066         }
1067         up_write(&policy->rwsem);
1068         return ret;
1069 }
1070
1071 static void handle_update(struct work_struct *work)
1072 {
1073         struct cpufreq_policy *policy =
1074                 container_of(work, struct cpufreq_policy, update);
1075         unsigned int cpu = policy->cpu;
1076         pr_debug("handle_update for cpu %u called\n", cpu);
1077         cpufreq_update_policy(cpu);
1078 }
1079
1080 static struct cpufreq_policy *cpufreq_policy_alloc(unsigned int cpu)
1081 {
1082         struct cpufreq_policy *policy;
1083         int ret;
1084
1085         policy = kzalloc(sizeof(*policy), GFP_KERNEL);
1086         if (!policy)
1087                 return NULL;
1088
1089         if (!alloc_cpumask_var(&policy->cpus, GFP_KERNEL))
1090                 goto err_free_policy;
1091
1092         if (!zalloc_cpumask_var(&policy->related_cpus, GFP_KERNEL))
1093                 goto err_free_cpumask;
1094
1095         if (!zalloc_cpumask_var(&policy->real_cpus, GFP_KERNEL))
1096                 goto err_free_rcpumask;
1097
1098         ret = kobject_init_and_add(&policy->kobj, &ktype_cpufreq,
1099                                    cpufreq_global_kobject, "policy%u", cpu);
1100         if (ret) {
1101                 pr_err("%s: failed to init policy->kobj: %d\n", __func__, ret);
1102                 goto err_free_real_cpus;
1103         }
1104
1105         INIT_LIST_HEAD(&policy->policy_list);
1106         init_rwsem(&policy->rwsem);
1107         spin_lock_init(&policy->transition_lock);
1108         init_waitqueue_head(&policy->transition_wait);
1109         init_completion(&policy->kobj_unregister);
1110         INIT_WORK(&policy->update, handle_update);
1111
1112         policy->cpu = cpu;
1113         return policy;
1114
1115 err_free_real_cpus:
1116         free_cpumask_var(policy->real_cpus);
1117 err_free_rcpumask:
1118         free_cpumask_var(policy->related_cpus);
1119 err_free_cpumask:
1120         free_cpumask_var(policy->cpus);
1121 err_free_policy:
1122         kfree(policy);
1123
1124         return NULL;
1125 }
1126
1127 static void cpufreq_policy_put_kobj(struct cpufreq_policy *policy)
1128 {
1129         struct kobject *kobj;
1130         struct completion *cmp;
1131
1132         down_write(&policy->rwsem);
1133         cpufreq_stats_free_table(policy);
1134         kobj = &policy->kobj;
1135         cmp = &policy->kobj_unregister;
1136         up_write(&policy->rwsem);
1137         kobject_put(kobj);
1138
1139         /*
1140          * We need to make sure that the underlying kobj is
1141          * actually not referenced anymore by anybody before we
1142          * proceed with unloading.
1143          */
1144         pr_debug("waiting for dropping of refcount\n");
1145         wait_for_completion(cmp);
1146         pr_debug("wait complete\n");
1147 }
1148
1149 static void cpufreq_policy_free(struct cpufreq_policy *policy)
1150 {
1151         unsigned long flags;
1152         int cpu;
1153
1154         /* Remove policy from list */
1155         write_lock_irqsave(&cpufreq_driver_lock, flags);
1156         list_del(&policy->policy_list);
1157
1158         for_each_cpu(cpu, policy->related_cpus)
1159                 per_cpu(cpufreq_cpu_data, cpu) = NULL;
1160         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1161
1162         cpufreq_policy_put_kobj(policy);
1163         free_cpumask_var(policy->real_cpus);
1164         free_cpumask_var(policy->related_cpus);
1165         free_cpumask_var(policy->cpus);
1166         kfree(policy);
1167 }
1168
1169 static int cpufreq_online(unsigned int cpu)
1170 {
1171         struct cpufreq_policy *policy;
1172         bool new_policy;
1173         unsigned long flags;
1174         unsigned int j;
1175         int ret;
1176
1177         pr_debug("%s: bringing CPU%u online\n", __func__, cpu);
1178
1179         /* Check if this CPU already has a policy to manage it */
1180         policy = per_cpu(cpufreq_cpu_data, cpu);
1181         if (policy) {
1182                 WARN_ON(!cpumask_test_cpu(cpu, policy->related_cpus));
1183                 if (!policy_is_inactive(policy))
1184                         return cpufreq_add_policy_cpu(policy, cpu);
1185
1186                 /* This is the only online CPU for the policy.  Start over. */
1187                 new_policy = false;
1188                 down_write(&policy->rwsem);
1189                 policy->cpu = cpu;
1190                 policy->governor = NULL;
1191                 up_write(&policy->rwsem);
1192         } else {
1193                 new_policy = true;
1194                 policy = cpufreq_policy_alloc(cpu);
1195                 if (!policy)
1196                         return -ENOMEM;
1197         }
1198
1199         cpumask_copy(policy->cpus, cpumask_of(cpu));
1200
1201         /* call driver. From then on the cpufreq must be able
1202          * to accept all calls to ->verify and ->setpolicy for this CPU
1203          */
1204         ret = cpufreq_driver->init(policy);
1205         if (ret) {
1206                 pr_debug("initialization failed\n");
1207                 goto out_free_policy;
1208         }
1209
1210         down_write(&policy->rwsem);
1211
1212         if (new_policy) {
1213                 /* related_cpus should at least include policy->cpus. */
1214                 cpumask_copy(policy->related_cpus, policy->cpus);
1215         }
1216
1217         /*
1218          * affected cpus must always be the one, which are online. We aren't
1219          * managing offline cpus here.
1220          */
1221         cpumask_and(policy->cpus, policy->cpus, cpu_online_mask);
1222
1223         if (new_policy) {
1224                 policy->user_policy.min = policy->min;
1225                 policy->user_policy.max = policy->max;
1226
1227                 for_each_cpu(j, policy->related_cpus) {
1228                         per_cpu(cpufreq_cpu_data, j) = policy;
1229                         add_cpu_dev_symlink(policy, j);
1230                 }
1231         } else {
1232                 policy->min = policy->user_policy.min;
1233                 policy->max = policy->user_policy.max;
1234         }
1235
1236         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
1237                 policy->cur = cpufreq_driver->get(policy->cpu);
1238                 if (!policy->cur) {
1239                         pr_err("%s: ->get() failed\n", __func__);
1240                         goto out_exit_policy;
1241                 }
1242         }
1243
1244         /*
1245          * Sometimes boot loaders set CPU frequency to a value outside of
1246          * frequency table present with cpufreq core. In such cases CPU might be
1247          * unstable if it has to run on that frequency for long duration of time
1248          * and so its better to set it to a frequency which is specified in
1249          * freq-table. This also makes cpufreq stats inconsistent as
1250          * cpufreq-stats would fail to register because current frequency of CPU
1251          * isn't found in freq-table.
1252          *
1253          * Because we don't want this change to effect boot process badly, we go
1254          * for the next freq which is >= policy->cur ('cur' must be set by now,
1255          * otherwise we will end up setting freq to lowest of the table as 'cur'
1256          * is initialized to zero).
1257          *
1258          * We are passing target-freq as "policy->cur - 1" otherwise
1259          * __cpufreq_driver_target() would simply fail, as policy->cur will be
1260          * equal to target-freq.
1261          */
1262         if ((cpufreq_driver->flags & CPUFREQ_NEED_INITIAL_FREQ_CHECK)
1263             && has_target()) {
1264                 /* Are we running at unknown frequency ? */
1265                 ret = cpufreq_frequency_table_get_index(policy, policy->cur);
1266                 if (ret == -EINVAL) {
1267                         /* Warn user and fix it */
1268                         pr_warn("%s: CPU%d: Running at unlisted freq: %u KHz\n",
1269                                 __func__, policy->cpu, policy->cur);
1270                         ret = __cpufreq_driver_target(policy, policy->cur - 1,
1271                                 CPUFREQ_RELATION_L);
1272
1273                         /*
1274                          * Reaching here after boot in a few seconds may not
1275                          * mean that system will remain stable at "unknown"
1276                          * frequency for longer duration. Hence, a BUG_ON().
1277                          */
1278                         BUG_ON(ret);
1279                         pr_warn("%s: CPU%d: Unlisted initial frequency changed to: %u KHz\n",
1280                                 __func__, policy->cpu, policy->cur);
1281                 }
1282         }
1283
1284         if (new_policy) {
1285                 ret = cpufreq_add_dev_interface(policy);
1286                 if (ret)
1287                         goto out_exit_policy;
1288
1289                 cpufreq_stats_create_table(policy);
1290
1291                 write_lock_irqsave(&cpufreq_driver_lock, flags);
1292                 list_add(&policy->policy_list, &cpufreq_policy_list);
1293                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
1294         }
1295
1296         ret = cpufreq_init_policy(policy);
1297         if (ret) {
1298                 pr_err("%s: Failed to initialize policy for cpu: %d (%d)\n",
1299                        __func__, cpu, ret);
1300                 /* cpufreq_policy_free() will notify based on this */
1301                 new_policy = false;
1302                 goto out_exit_policy;
1303         }
1304
1305         up_write(&policy->rwsem);
1306
1307         kobject_uevent(&policy->kobj, KOBJ_ADD);
1308
1309         /* Callback for handling stuff after policy is ready */
1310         if (cpufreq_driver->ready)
1311                 cpufreq_driver->ready(policy);
1312
1313         pr_debug("initialization complete\n");
1314
1315         return 0;
1316
1317 out_exit_policy:
1318         up_write(&policy->rwsem);
1319
1320         if (cpufreq_driver->exit)
1321                 cpufreq_driver->exit(policy);
1322
1323         for_each_cpu(j, policy->real_cpus)
1324                 remove_cpu_dev_symlink(policy, get_cpu_device(j));
1325
1326 out_free_policy:
1327         cpufreq_policy_free(policy);
1328         return ret;
1329 }
1330
1331 /**
1332  * cpufreq_add_dev - the cpufreq interface for a CPU device.
1333  * @dev: CPU device.
1334  * @sif: Subsystem interface structure pointer (not used)
1335  */
1336 static int cpufreq_add_dev(struct device *dev, struct subsys_interface *sif)
1337 {
1338         struct cpufreq_policy *policy;
1339         unsigned cpu = dev->id;
1340         int ret;
1341
1342         dev_dbg(dev, "%s: adding CPU%u\n", __func__, cpu);
1343
1344         if (cpu_online(cpu)) {
1345                 ret = cpufreq_online(cpu);
1346                 if (ret)
1347                         return ret;
1348         }
1349
1350         /* Create sysfs link on CPU registration */
1351         policy = per_cpu(cpufreq_cpu_data, cpu);
1352         if (policy)
1353                 add_cpu_dev_symlink(policy, cpu);
1354
1355         return 0;
1356 }
1357
1358 static int cpufreq_offline(unsigned int cpu)
1359 {
1360         struct cpufreq_policy *policy;
1361         int ret;
1362
1363         pr_debug("%s: unregistering CPU %u\n", __func__, cpu);
1364
1365         policy = cpufreq_cpu_get_raw(cpu);
1366         if (!policy) {
1367                 pr_debug("%s: No cpu_data found\n", __func__);
1368                 return 0;
1369         }
1370
1371         down_write(&policy->rwsem);
1372         if (has_target())
1373                 cpufreq_stop_governor(policy);
1374
1375         cpumask_clear_cpu(cpu, policy->cpus);
1376
1377         if (policy_is_inactive(policy)) {
1378                 if (has_target())
1379                         strncpy(policy->last_governor, policy->governor->name,
1380                                 CPUFREQ_NAME_LEN);
1381                 else
1382                         policy->last_policy = policy->policy;
1383         } else if (cpu == policy->cpu) {
1384                 /* Nominate new CPU */
1385                 policy->cpu = cpumask_any(policy->cpus);
1386         }
1387
1388         /* Start governor again for active policy */
1389         if (!policy_is_inactive(policy)) {
1390                 if (has_target()) {
1391                         ret = cpufreq_start_governor(policy);
1392                         if (ret)
1393                                 pr_err("%s: Failed to start governor\n", __func__);
1394                 }
1395
1396                 goto unlock;
1397         }
1398
1399         if (cpufreq_driver->stop_cpu)
1400                 cpufreq_driver->stop_cpu(policy);
1401
1402         if (has_target())
1403                 cpufreq_exit_governor(policy);
1404
1405         /*
1406          * Perform the ->exit() even during light-weight tear-down,
1407          * since this is a core component, and is essential for the
1408          * subsequent light-weight ->init() to succeed.
1409          */
1410         if (cpufreq_driver->exit) {
1411                 cpufreq_driver->exit(policy);
1412                 policy->freq_table = NULL;
1413         }
1414
1415 unlock:
1416         up_write(&policy->rwsem);
1417         return 0;
1418 }
1419
1420 /**
1421  * cpufreq_remove_dev - remove a CPU device
1422  *
1423  * Removes the cpufreq interface for a CPU device.
1424  */
1425 static void cpufreq_remove_dev(struct device *dev, struct subsys_interface *sif)
1426 {
1427         unsigned int cpu = dev->id;
1428         struct cpufreq_policy *policy = per_cpu(cpufreq_cpu_data, cpu);
1429
1430         if (!policy)
1431                 return;
1432
1433         if (cpu_online(cpu))
1434                 cpufreq_offline(cpu);
1435
1436         cpumask_clear_cpu(cpu, policy->real_cpus);
1437         remove_cpu_dev_symlink(policy, dev);
1438
1439         if (cpumask_empty(policy->real_cpus))
1440                 cpufreq_policy_free(policy);
1441 }
1442
1443 /**
1444  *      cpufreq_out_of_sync - If actual and saved CPU frequency differs, we're
1445  *      in deep trouble.
1446  *      @policy: policy managing CPUs
1447  *      @new_freq: CPU frequency the CPU actually runs at
1448  *
1449  *      We adjust to current frequency first, and need to clean up later.
1450  *      So either call to cpufreq_update_policy() or schedule handle_update()).
1451  */
1452 static void cpufreq_out_of_sync(struct cpufreq_policy *policy,
1453                                 unsigned int new_freq)
1454 {
1455         struct cpufreq_freqs freqs;
1456
1457         pr_debug("Warning: CPU frequency out of sync: cpufreq and timing core thinks of %u, is %u kHz\n",
1458                  policy->cur, new_freq);
1459
1460         freqs.old = policy->cur;
1461         freqs.new = new_freq;
1462
1463         cpufreq_freq_transition_begin(policy, &freqs);
1464         cpufreq_freq_transition_end(policy, &freqs, 0);
1465 }
1466
1467 /**
1468  * cpufreq_quick_get - get the CPU frequency (in kHz) from policy->cur
1469  * @cpu: CPU number
1470  *
1471  * This is the last known freq, without actually getting it from the driver.
1472  * Return value will be same as what is shown in scaling_cur_freq in sysfs.
1473  */
1474 unsigned int cpufreq_quick_get(unsigned int cpu)
1475 {
1476         struct cpufreq_policy *policy;
1477         unsigned int ret_freq = 0;
1478         unsigned long flags;
1479
1480         read_lock_irqsave(&cpufreq_driver_lock, flags);
1481
1482         if (cpufreq_driver && cpufreq_driver->setpolicy && cpufreq_driver->get) {
1483                 ret_freq = cpufreq_driver->get(cpu);
1484                 read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1485                 return ret_freq;
1486         }
1487
1488         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
1489
1490         policy = cpufreq_cpu_get(cpu);
1491         if (policy) {
1492                 ret_freq = policy->cur;
1493                 cpufreq_cpu_put(policy);
1494         }
1495
1496         return ret_freq;
1497 }
1498 EXPORT_SYMBOL(cpufreq_quick_get);
1499
1500 /**
1501  * cpufreq_quick_get_max - get the max reported CPU frequency for this CPU
1502  * @cpu: CPU number
1503  *
1504  * Just return the max possible frequency for a given CPU.
1505  */
1506 unsigned int cpufreq_quick_get_max(unsigned int cpu)
1507 {
1508         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1509         unsigned int ret_freq = 0;
1510
1511         if (policy) {
1512                 ret_freq = policy->max;
1513                 cpufreq_cpu_put(policy);
1514         }
1515
1516         return ret_freq;
1517 }
1518 EXPORT_SYMBOL(cpufreq_quick_get_max);
1519
1520 static unsigned int __cpufreq_get(struct cpufreq_policy *policy)
1521 {
1522         unsigned int ret_freq = 0;
1523
1524         if (!cpufreq_driver->get)
1525                 return ret_freq;
1526
1527         ret_freq = cpufreq_driver->get(policy->cpu);
1528
1529         /*
1530          * Updating inactive policies is invalid, so avoid doing that.  Also
1531          * if fast frequency switching is used with the given policy, the check
1532          * against policy->cur is pointless, so skip it in that case too.
1533          */
1534         if (unlikely(policy_is_inactive(policy)) || policy->fast_switch_enabled)
1535                 return ret_freq;
1536
1537         if (ret_freq && policy->cur &&
1538                 !(cpufreq_driver->flags & CPUFREQ_CONST_LOOPS)) {
1539                 /* verify no discrepancy between actual and
1540                                         saved value exists */
1541                 if (unlikely(ret_freq != policy->cur)) {
1542                         cpufreq_out_of_sync(policy, ret_freq);
1543                         schedule_work(&policy->update);
1544                 }
1545         }
1546
1547         return ret_freq;
1548 }
1549
1550 /**
1551  * cpufreq_get - get the current CPU frequency (in kHz)
1552  * @cpu: CPU number
1553  *
1554  * Get the CPU current (static) CPU frequency
1555  */
1556 unsigned int cpufreq_get(unsigned int cpu)
1557 {
1558         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
1559         unsigned int ret_freq = 0;
1560
1561         if (policy) {
1562                 down_read(&policy->rwsem);
1563
1564                 if (!policy_is_inactive(policy))
1565                         ret_freq = __cpufreq_get(policy);
1566
1567                 up_read(&policy->rwsem);
1568
1569                 cpufreq_cpu_put(policy);
1570         }
1571
1572         return ret_freq;
1573 }
1574 EXPORT_SYMBOL(cpufreq_get);
1575
1576 static unsigned int cpufreq_update_current_freq(struct cpufreq_policy *policy)
1577 {
1578         unsigned int new_freq;
1579
1580         new_freq = cpufreq_driver->get(policy->cpu);
1581         if (!new_freq)
1582                 return 0;
1583
1584         if (!policy->cur) {
1585                 pr_debug("cpufreq: Driver did not initialize current freq\n");
1586                 policy->cur = new_freq;
1587         } else if (policy->cur != new_freq && has_target()) {
1588                 cpufreq_out_of_sync(policy, new_freq);
1589         }
1590
1591         return new_freq;
1592 }
1593
1594 static struct subsys_interface cpufreq_interface = {
1595         .name           = "cpufreq",
1596         .subsys         = &cpu_subsys,
1597         .add_dev        = cpufreq_add_dev,
1598         .remove_dev     = cpufreq_remove_dev,
1599 };
1600
1601 /*
1602  * In case platform wants some specific frequency to be configured
1603  * during suspend..
1604  */
1605 int cpufreq_generic_suspend(struct cpufreq_policy *policy)
1606 {
1607         int ret;
1608
1609         if (!policy->suspend_freq) {
1610                 pr_debug("%s: suspend_freq not defined\n", __func__);
1611                 return 0;
1612         }
1613
1614         pr_debug("%s: Setting suspend-freq: %u\n", __func__,
1615                         policy->suspend_freq);
1616
1617         ret = __cpufreq_driver_target(policy, policy->suspend_freq,
1618                         CPUFREQ_RELATION_H);
1619         if (ret)
1620                 pr_err("%s: unable to set suspend-freq: %u. err: %d\n",
1621                                 __func__, policy->suspend_freq, ret);
1622
1623         return ret;
1624 }
1625 EXPORT_SYMBOL(cpufreq_generic_suspend);
1626
1627 /**
1628  * cpufreq_suspend() - Suspend CPUFreq governors
1629  *
1630  * Called during system wide Suspend/Hibernate cycles for suspending governors
1631  * as some platforms can't change frequency after this point in suspend cycle.
1632  * Because some of the devices (like: i2c, regulators, etc) they use for
1633  * changing frequency are suspended quickly after this point.
1634  */
1635 void cpufreq_suspend(void)
1636 {
1637         struct cpufreq_policy *policy;
1638
1639         if (!cpufreq_driver)
1640                 return;
1641
1642         if (!has_target() && !cpufreq_driver->suspend)
1643                 goto suspend;
1644
1645         pr_debug("%s: Suspending Governors\n", __func__);
1646
1647         for_each_active_policy(policy) {
1648                 if (has_target()) {
1649                         down_write(&policy->rwsem);
1650                         cpufreq_stop_governor(policy);
1651                         up_write(&policy->rwsem);
1652                 }
1653
1654                 if (cpufreq_driver->suspend && cpufreq_driver->suspend(policy))
1655                         pr_err("%s: Failed to suspend driver: %p\n", __func__,
1656                                 policy);
1657         }
1658
1659 suspend:
1660         cpufreq_suspended = true;
1661 }
1662
1663 /**
1664  * cpufreq_resume() - Resume CPUFreq governors
1665  *
1666  * Called during system wide Suspend/Hibernate cycle for resuming governors that
1667  * are suspended with cpufreq_suspend().
1668  */
1669 void cpufreq_resume(void)
1670 {
1671         struct cpufreq_policy *policy;
1672         int ret;
1673
1674         if (!cpufreq_driver)
1675                 return;
1676
1677         cpufreq_suspended = false;
1678
1679         if (!has_target() && !cpufreq_driver->resume)
1680                 return;
1681
1682         pr_debug("%s: Resuming Governors\n", __func__);
1683
1684         for_each_active_policy(policy) {
1685                 if (cpufreq_driver->resume && cpufreq_driver->resume(policy)) {
1686                         pr_err("%s: Failed to resume driver: %p\n", __func__,
1687                                 policy);
1688                 } else if (has_target()) {
1689                         down_write(&policy->rwsem);
1690                         ret = cpufreq_start_governor(policy);
1691                         up_write(&policy->rwsem);
1692
1693                         if (ret)
1694                                 pr_err("%s: Failed to start governor for policy: %p\n",
1695                                        __func__, policy);
1696                 }
1697         }
1698 }
1699
1700 /**
1701  *      cpufreq_get_current_driver - return current driver's name
1702  *
1703  *      Return the name string of the currently loaded cpufreq driver
1704  *      or NULL, if none.
1705  */
1706 const char *cpufreq_get_current_driver(void)
1707 {
1708         if (cpufreq_driver)
1709                 return cpufreq_driver->name;
1710
1711         return NULL;
1712 }
1713 EXPORT_SYMBOL_GPL(cpufreq_get_current_driver);
1714
1715 /**
1716  *      cpufreq_get_driver_data - return current driver data
1717  *
1718  *      Return the private data of the currently loaded cpufreq
1719  *      driver, or NULL if no cpufreq driver is loaded.
1720  */
1721 void *cpufreq_get_driver_data(void)
1722 {
1723         if (cpufreq_driver)
1724                 return cpufreq_driver->driver_data;
1725
1726         return NULL;
1727 }
1728 EXPORT_SYMBOL_GPL(cpufreq_get_driver_data);
1729
1730 /*********************************************************************
1731  *                     NOTIFIER LISTS INTERFACE                      *
1732  *********************************************************************/
1733
1734 /**
1735  *      cpufreq_register_notifier - register a driver with cpufreq
1736  *      @nb: notifier function to register
1737  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1738  *
1739  *      Add a driver to one of two lists: either a list of drivers that
1740  *      are notified about clock rate changes (once before and once after
1741  *      the transition), or a list of drivers that are notified about
1742  *      changes in cpufreq policy.
1743  *
1744  *      This function may sleep, and has the same return conditions as
1745  *      blocking_notifier_chain_register.
1746  */
1747 int cpufreq_register_notifier(struct notifier_block *nb, unsigned int list)
1748 {
1749         int ret;
1750
1751         if (cpufreq_disabled())
1752                 return -EINVAL;
1753
1754         WARN_ON(!init_cpufreq_transition_notifier_list_called);
1755
1756         switch (list) {
1757         case CPUFREQ_TRANSITION_NOTIFIER:
1758                 mutex_lock(&cpufreq_fast_switch_lock);
1759
1760                 if (cpufreq_fast_switch_count > 0) {
1761                         mutex_unlock(&cpufreq_fast_switch_lock);
1762                         return -EBUSY;
1763                 }
1764                 ret = srcu_notifier_chain_register(
1765                                 &cpufreq_transition_notifier_list, nb);
1766                 if (!ret)
1767                         cpufreq_fast_switch_count--;
1768
1769                 mutex_unlock(&cpufreq_fast_switch_lock);
1770                 break;
1771         case CPUFREQ_POLICY_NOTIFIER:
1772                 ret = blocking_notifier_chain_register(
1773                                 &cpufreq_policy_notifier_list, nb);
1774                 break;
1775         default:
1776                 ret = -EINVAL;
1777         }
1778
1779         return ret;
1780 }
1781 EXPORT_SYMBOL(cpufreq_register_notifier);
1782
1783 /**
1784  *      cpufreq_unregister_notifier - unregister a driver with cpufreq
1785  *      @nb: notifier block to be unregistered
1786  *      @list: CPUFREQ_TRANSITION_NOTIFIER or CPUFREQ_POLICY_NOTIFIER
1787  *
1788  *      Remove a driver from the CPU frequency notifier list.
1789  *
1790  *      This function may sleep, and has the same return conditions as
1791  *      blocking_notifier_chain_unregister.
1792  */
1793 int cpufreq_unregister_notifier(struct notifier_block *nb, unsigned int list)
1794 {
1795         int ret;
1796
1797         if (cpufreq_disabled())
1798                 return -EINVAL;
1799
1800         switch (list) {
1801         case CPUFREQ_TRANSITION_NOTIFIER:
1802                 mutex_lock(&cpufreq_fast_switch_lock);
1803
1804                 ret = srcu_notifier_chain_unregister(
1805                                 &cpufreq_transition_notifier_list, nb);
1806                 if (!ret && !WARN_ON(cpufreq_fast_switch_count >= 0))
1807                         cpufreq_fast_switch_count++;
1808
1809                 mutex_unlock(&cpufreq_fast_switch_lock);
1810                 break;
1811         case CPUFREQ_POLICY_NOTIFIER:
1812                 ret = blocking_notifier_chain_unregister(
1813                                 &cpufreq_policy_notifier_list, nb);
1814                 break;
1815         default:
1816                 ret = -EINVAL;
1817         }
1818
1819         return ret;
1820 }
1821 EXPORT_SYMBOL(cpufreq_unregister_notifier);
1822
1823
1824 /*********************************************************************
1825  *                              GOVERNORS                            *
1826  *********************************************************************/
1827
1828 /**
1829  * cpufreq_driver_fast_switch - Carry out a fast CPU frequency switch.
1830  * @policy: cpufreq policy to switch the frequency for.
1831  * @target_freq: New frequency to set (may be approximate).
1832  *
1833  * Carry out a fast frequency switch without sleeping.
1834  *
1835  * The driver's ->fast_switch() callback invoked by this function must be
1836  * suitable for being called from within RCU-sched read-side critical sections
1837  * and it is expected to select the minimum available frequency greater than or
1838  * equal to @target_freq (CPUFREQ_RELATION_L).
1839  *
1840  * This function must not be called if policy->fast_switch_enabled is unset.
1841  *
1842  * Governors calling this function must guarantee that it will never be invoked
1843  * twice in parallel for the same policy and that it will never be called in
1844  * parallel with either ->target() or ->target_index() for the same policy.
1845  *
1846  * Returns the actual frequency set for the CPU.
1847  *
1848  * If 0 is returned by the driver's ->fast_switch() callback to indicate an
1849  * error condition, the hardware configuration must be preserved.
1850  */
1851 unsigned int cpufreq_driver_fast_switch(struct cpufreq_policy *policy,
1852                                         unsigned int target_freq)
1853 {
1854         target_freq = clamp_val(target_freq, policy->min, policy->max);
1855
1856         return cpufreq_driver->fast_switch(policy, target_freq);
1857 }
1858 EXPORT_SYMBOL_GPL(cpufreq_driver_fast_switch);
1859
1860 /* Must set freqs->new to intermediate frequency */
1861 static int __target_intermediate(struct cpufreq_policy *policy,
1862                                  struct cpufreq_freqs *freqs, int index)
1863 {
1864         int ret;
1865
1866         freqs->new = cpufreq_driver->get_intermediate(policy, index);
1867
1868         /* We don't need to switch to intermediate freq */
1869         if (!freqs->new)
1870                 return 0;
1871
1872         pr_debug("%s: cpu: %d, switching to intermediate freq: oldfreq: %u, intermediate freq: %u\n",
1873                  __func__, policy->cpu, freqs->old, freqs->new);
1874
1875         cpufreq_freq_transition_begin(policy, freqs);
1876         ret = cpufreq_driver->target_intermediate(policy, index);
1877         cpufreq_freq_transition_end(policy, freqs, ret);
1878
1879         if (ret)
1880                 pr_err("%s: Failed to change to intermediate frequency: %d\n",
1881                        __func__, ret);
1882
1883         return ret;
1884 }
1885
1886 static int __target_index(struct cpufreq_policy *policy, int index)
1887 {
1888         struct cpufreq_freqs freqs = {.old = policy->cur, .flags = 0};
1889         unsigned int intermediate_freq = 0;
1890         unsigned int newfreq = policy->freq_table[index].frequency;
1891         int retval = -EINVAL;
1892         bool notify;
1893
1894         if (newfreq == policy->cur)
1895                 return 0;
1896
1897         notify = !(cpufreq_driver->flags & CPUFREQ_ASYNC_NOTIFICATION);
1898         if (notify) {
1899                 /* Handle switching to intermediate frequency */
1900                 if (cpufreq_driver->get_intermediate) {
1901                         retval = __target_intermediate(policy, &freqs, index);
1902                         if (retval)
1903                                 return retval;
1904
1905                         intermediate_freq = freqs.new;
1906                         /* Set old freq to intermediate */
1907                         if (intermediate_freq)
1908                                 freqs.old = freqs.new;
1909                 }
1910
1911                 freqs.new = newfreq;
1912                 pr_debug("%s: cpu: %d, oldfreq: %u, new freq: %u\n",
1913                          __func__, policy->cpu, freqs.old, freqs.new);
1914
1915                 cpufreq_freq_transition_begin(policy, &freqs);
1916         }
1917
1918         retval = cpufreq_driver->target_index(policy, index);
1919         if (retval)
1920                 pr_err("%s: Failed to change cpu frequency: %d\n", __func__,
1921                        retval);
1922
1923         if (notify) {
1924                 cpufreq_freq_transition_end(policy, &freqs, retval);
1925
1926                 /*
1927                  * Failed after setting to intermediate freq? Driver should have
1928                  * reverted back to initial frequency and so should we. Check
1929                  * here for intermediate_freq instead of get_intermediate, in
1930                  * case we haven't switched to intermediate freq at all.
1931                  */
1932                 if (unlikely(retval && intermediate_freq)) {
1933                         freqs.old = intermediate_freq;
1934                         freqs.new = policy->restore_freq;
1935                         cpufreq_freq_transition_begin(policy, &freqs);
1936                         cpufreq_freq_transition_end(policy, &freqs, 0);
1937                 }
1938         }
1939
1940         return retval;
1941 }
1942
1943 int __cpufreq_driver_target(struct cpufreq_policy *policy,
1944                             unsigned int target_freq,
1945                             unsigned int relation)
1946 {
1947         unsigned int old_target_freq = target_freq;
1948         int index;
1949
1950         if (cpufreq_disabled())
1951                 return -ENODEV;
1952
1953         /* Make sure that target_freq is within supported range */
1954         target_freq = clamp_val(target_freq, policy->min, policy->max);
1955
1956         pr_debug("target for CPU %u: %u kHz, relation %u, requested %u kHz\n",
1957                  policy->cpu, target_freq, relation, old_target_freq);
1958
1959         /*
1960          * This might look like a redundant call as we are checking it again
1961          * after finding index. But it is left intentionally for cases where
1962          * exactly same freq is called again and so we can save on few function
1963          * calls.
1964          */
1965         if (target_freq == policy->cur)
1966                 return 0;
1967
1968         /* Save last value to restore later on errors */
1969         policy->restore_freq = policy->cur;
1970
1971         if (cpufreq_driver->target)
1972                 return cpufreq_driver->target(policy, target_freq, relation);
1973
1974         if (!cpufreq_driver->target_index)
1975                 return -EINVAL;
1976
1977         index = cpufreq_frequency_table_target(policy, target_freq, relation);
1978
1979         return __target_index(policy, index);
1980 }
1981 EXPORT_SYMBOL_GPL(__cpufreq_driver_target);
1982
1983 int cpufreq_driver_target(struct cpufreq_policy *policy,
1984                           unsigned int target_freq,
1985                           unsigned int relation)
1986 {
1987         int ret = -EINVAL;
1988
1989         down_write(&policy->rwsem);
1990
1991         ret = __cpufreq_driver_target(policy, target_freq, relation);
1992
1993         up_write(&policy->rwsem);
1994
1995         return ret;
1996 }
1997 EXPORT_SYMBOL_GPL(cpufreq_driver_target);
1998
1999 __weak struct cpufreq_governor *cpufreq_fallback_governor(void)
2000 {
2001         return NULL;
2002 }
2003
2004 static int cpufreq_init_governor(struct cpufreq_policy *policy)
2005 {
2006         int ret;
2007
2008         /* Don't start any governor operations if we are entering suspend */
2009         if (cpufreq_suspended)
2010                 return 0;
2011         /*
2012          * Governor might not be initiated here if ACPI _PPC changed
2013          * notification happened, so check it.
2014          */
2015         if (!policy->governor)
2016                 return -EINVAL;
2017
2018         /* Platform doesn't want dynamic frequency switching ? */
2019         if (policy->governor->dynamic_switching &&
2020             cpufreq_driver->flags & CPUFREQ_NO_AUTO_DYNAMIC_SWITCHING) {
2021                 struct cpufreq_governor *gov = cpufreq_fallback_governor();
2022
2023                 if (gov) {
2024                         pr_warn("Can't use %s governor as dynamic switching is disallowed. Fallback to %s governor\n",
2025                                 policy->governor->name, gov->name);
2026                         policy->governor = gov;
2027                 } else {
2028                         return -EINVAL;
2029                 }
2030         }
2031
2032         if (!try_module_get(policy->governor->owner))
2033                 return -EINVAL;
2034
2035         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2036
2037         if (policy->governor->init) {
2038                 ret = policy->governor->init(policy);
2039                 if (ret) {
2040                         module_put(policy->governor->owner);
2041                         return ret;
2042                 }
2043         }
2044
2045         return 0;
2046 }
2047
2048 static void cpufreq_exit_governor(struct cpufreq_policy *policy)
2049 {
2050         if (cpufreq_suspended || !policy->governor)
2051                 return;
2052
2053         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2054
2055         if (policy->governor->exit)
2056                 policy->governor->exit(policy);
2057
2058         module_put(policy->governor->owner);
2059 }
2060
2061 static int cpufreq_start_governor(struct cpufreq_policy *policy)
2062 {
2063         int ret;
2064
2065         if (cpufreq_suspended)
2066                 return 0;
2067
2068         if (!policy->governor)
2069                 return -EINVAL;
2070
2071         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2072
2073         if (cpufreq_driver->get && !cpufreq_driver->setpolicy)
2074                 cpufreq_update_current_freq(policy);
2075
2076         if (policy->governor->start) {
2077                 ret = policy->governor->start(policy);
2078                 if (ret)
2079                         return ret;
2080         }
2081
2082         if (policy->governor->limits)
2083                 policy->governor->limits(policy);
2084
2085         return 0;
2086 }
2087
2088 static void cpufreq_stop_governor(struct cpufreq_policy *policy)
2089 {
2090         if (cpufreq_suspended || !policy->governor)
2091                 return;
2092
2093         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2094
2095         if (policy->governor->stop)
2096                 policy->governor->stop(policy);
2097 }
2098
2099 static void cpufreq_governor_limits(struct cpufreq_policy *policy)
2100 {
2101         if (cpufreq_suspended || !policy->governor)
2102                 return;
2103
2104         pr_debug("%s: for CPU %u\n", __func__, policy->cpu);
2105
2106         if (policy->governor->limits)
2107                 policy->governor->limits(policy);
2108 }
2109
2110 int cpufreq_register_governor(struct cpufreq_governor *governor)
2111 {
2112         int err;
2113
2114         if (!governor)
2115                 return -EINVAL;
2116
2117         if (cpufreq_disabled())
2118                 return -ENODEV;
2119
2120         mutex_lock(&cpufreq_governor_mutex);
2121
2122         err = -EBUSY;
2123         if (!find_governor(governor->name)) {
2124                 err = 0;
2125                 list_add(&governor->governor_list, &cpufreq_governor_list);
2126         }
2127
2128         mutex_unlock(&cpufreq_governor_mutex);
2129         return err;
2130 }
2131 EXPORT_SYMBOL_GPL(cpufreq_register_governor);
2132
2133 void cpufreq_unregister_governor(struct cpufreq_governor *governor)
2134 {
2135         struct cpufreq_policy *policy;
2136         unsigned long flags;
2137
2138         if (!governor)
2139                 return;
2140
2141         if (cpufreq_disabled())
2142                 return;
2143
2144         /* clear last_governor for all inactive policies */
2145         read_lock_irqsave(&cpufreq_driver_lock, flags);
2146         for_each_inactive_policy(policy) {
2147                 if (!strcmp(policy->last_governor, governor->name)) {
2148                         policy->governor = NULL;
2149                         strcpy(policy->last_governor, "\0");
2150                 }
2151         }
2152         read_unlock_irqrestore(&cpufreq_driver_lock, flags);
2153
2154         mutex_lock(&cpufreq_governor_mutex);
2155         list_del(&governor->governor_list);
2156         mutex_unlock(&cpufreq_governor_mutex);
2157         return;
2158 }
2159 EXPORT_SYMBOL_GPL(cpufreq_unregister_governor);
2160
2161
2162 /*********************************************************************
2163  *                          POLICY INTERFACE                         *
2164  *********************************************************************/
2165
2166 /**
2167  * cpufreq_get_policy - get the current cpufreq_policy
2168  * @policy: struct cpufreq_policy into which the current cpufreq_policy
2169  *      is written
2170  *
2171  * Reads the current cpufreq policy.
2172  */
2173 int cpufreq_get_policy(struct cpufreq_policy *policy, unsigned int cpu)
2174 {
2175         struct cpufreq_policy *cpu_policy;
2176         if (!policy)
2177                 return -EINVAL;
2178
2179         cpu_policy = cpufreq_cpu_get(cpu);
2180         if (!cpu_policy)
2181                 return -EINVAL;
2182
2183         memcpy(policy, cpu_policy, sizeof(*policy));
2184
2185         cpufreq_cpu_put(cpu_policy);
2186         return 0;
2187 }
2188 EXPORT_SYMBOL(cpufreq_get_policy);
2189
2190 /*
2191  * policy : current policy.
2192  * new_policy: policy to be set.
2193  */
2194 static int cpufreq_set_policy(struct cpufreq_policy *policy,
2195                                 struct cpufreq_policy *new_policy)
2196 {
2197         struct cpufreq_governor *old_gov;
2198         int ret;
2199
2200         pr_debug("setting new policy for CPU %u: %u - %u kHz\n",
2201                  new_policy->cpu, new_policy->min, new_policy->max);
2202
2203         memcpy(&new_policy->cpuinfo, &policy->cpuinfo, sizeof(policy->cpuinfo));
2204
2205         /*
2206         * This check works well when we store new min/max freq attributes,
2207         * because new_policy is a copy of policy with one field updated.
2208         */
2209         if (new_policy->min > new_policy->max)
2210                 return -EINVAL;
2211
2212         /* verify the cpu speed can be set within this limit */
2213         ret = cpufreq_driver->verify(new_policy);
2214         if (ret)
2215                 return ret;
2216
2217         /* adjust if necessary - all reasons */
2218         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2219                         CPUFREQ_ADJUST, new_policy);
2220
2221         /*
2222          * verify the cpu speed can be set within this limit, which might be
2223          * different to the first one
2224          */
2225         ret = cpufreq_driver->verify(new_policy);
2226         if (ret)
2227                 return ret;
2228
2229         /* notification of the new policy */
2230         blocking_notifier_call_chain(&cpufreq_policy_notifier_list,
2231                         CPUFREQ_NOTIFY, new_policy);
2232
2233         policy->min = new_policy->min;
2234         policy->max = new_policy->max;
2235
2236         policy->cached_target_freq = UINT_MAX;
2237
2238         pr_debug("new min and max freqs are %u - %u kHz\n",
2239                  policy->min, policy->max);
2240
2241         if (cpufreq_driver->setpolicy) {
2242                 policy->policy = new_policy->policy;
2243                 pr_debug("setting range\n");
2244                 return cpufreq_driver->setpolicy(new_policy);
2245         }
2246
2247         if (new_policy->governor == policy->governor) {
2248                 pr_debug("cpufreq: governor limits update\n");
2249                 cpufreq_governor_limits(policy);
2250                 return 0;
2251         }
2252
2253         pr_debug("governor switch\n");
2254
2255         /* save old, working values */
2256         old_gov = policy->governor;
2257         /* end old governor */
2258         if (old_gov) {
2259                 cpufreq_stop_governor(policy);
2260                 cpufreq_exit_governor(policy);
2261         }
2262
2263         /* start new governor */
2264         policy->governor = new_policy->governor;
2265         ret = cpufreq_init_governor(policy);
2266         if (!ret) {
2267                 ret = cpufreq_start_governor(policy);
2268                 if (!ret) {
2269                         pr_debug("cpufreq: governor change\n");
2270                         return 0;
2271                 }
2272                 cpufreq_exit_governor(policy);
2273         }
2274
2275         /* new governor failed, so re-start old one */
2276         pr_debug("starting governor %s failed\n", policy->governor->name);
2277         if (old_gov) {
2278                 policy->governor = old_gov;
2279                 if (cpufreq_init_governor(policy))
2280                         policy->governor = NULL;
2281                 else
2282                         cpufreq_start_governor(policy);
2283         }
2284
2285         return ret;
2286 }
2287
2288 /**
2289  *      cpufreq_update_policy - re-evaluate an existing cpufreq policy
2290  *      @cpu: CPU which shall be re-evaluated
2291  *
2292  *      Useful for policy notifiers which have different necessities
2293  *      at different times.
2294  */
2295 void cpufreq_update_policy(unsigned int cpu)
2296 {
2297         struct cpufreq_policy *policy = cpufreq_cpu_get(cpu);
2298         struct cpufreq_policy new_policy;
2299
2300         if (!policy)
2301                 return;
2302
2303         down_write(&policy->rwsem);
2304
2305         if (policy_is_inactive(policy))
2306                 goto unlock;
2307
2308         pr_debug("updating policy for CPU %u\n", cpu);
2309         memcpy(&new_policy, policy, sizeof(*policy));
2310         new_policy.min = policy->user_policy.min;
2311         new_policy.max = policy->user_policy.max;
2312
2313         /*
2314          * BIOS might change freq behind our back
2315          * -> ask driver for current freq and notify governors about a change
2316          */
2317         if (cpufreq_driver->get && !cpufreq_driver->setpolicy) {
2318                 if (cpufreq_suspended)
2319                         goto unlock;
2320
2321                 new_policy.cur = cpufreq_update_current_freq(policy);
2322                 if (WARN_ON(!new_policy.cur))
2323                         goto unlock;
2324         }
2325
2326         cpufreq_set_policy(policy, &new_policy);
2327
2328 unlock:
2329         up_write(&policy->rwsem);
2330
2331         cpufreq_cpu_put(policy);
2332 }
2333 EXPORT_SYMBOL(cpufreq_update_policy);
2334
2335 /*********************************************************************
2336  *               BOOST                                               *
2337  *********************************************************************/
2338 static int cpufreq_boost_set_sw(int state)
2339 {
2340         struct cpufreq_policy *policy;
2341         int ret = -EINVAL;
2342
2343         for_each_active_policy(policy) {
2344                 if (!policy->freq_table)
2345                         continue;
2346
2347                 ret = cpufreq_frequency_table_cpuinfo(policy,
2348                                                       policy->freq_table);
2349                 if (ret) {
2350                         pr_err("%s: Policy frequency update failed\n",
2351                                __func__);
2352                         break;
2353                 }
2354
2355                 down_write(&policy->rwsem);
2356                 policy->user_policy.max = policy->max;
2357                 cpufreq_governor_limits(policy);
2358                 up_write(&policy->rwsem);
2359         }
2360
2361         return ret;
2362 }
2363
2364 int cpufreq_boost_trigger_state(int state)
2365 {
2366         unsigned long flags;
2367         int ret = 0;
2368
2369         if (cpufreq_driver->boost_enabled == state)
2370                 return 0;
2371
2372         write_lock_irqsave(&cpufreq_driver_lock, flags);
2373         cpufreq_driver->boost_enabled = state;
2374         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2375
2376         ret = cpufreq_driver->set_boost(state);
2377         if (ret) {
2378                 write_lock_irqsave(&cpufreq_driver_lock, flags);
2379                 cpufreq_driver->boost_enabled = !state;
2380                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2381
2382                 pr_err("%s: Cannot %s BOOST\n",
2383                        __func__, state ? "enable" : "disable");
2384         }
2385
2386         return ret;
2387 }
2388
2389 static bool cpufreq_boost_supported(void)
2390 {
2391         return likely(cpufreq_driver) && cpufreq_driver->set_boost;
2392 }
2393
2394 static int create_boost_sysfs_file(void)
2395 {
2396         int ret;
2397
2398         ret = sysfs_create_file(cpufreq_global_kobject, &boost.attr);
2399         if (ret)
2400                 pr_err("%s: cannot register global BOOST sysfs file\n",
2401                        __func__);
2402
2403         return ret;
2404 }
2405
2406 static void remove_boost_sysfs_file(void)
2407 {
2408         if (cpufreq_boost_supported())
2409                 sysfs_remove_file(cpufreq_global_kobject, &boost.attr);
2410 }
2411
2412 int cpufreq_enable_boost_support(void)
2413 {
2414         if (!cpufreq_driver)
2415                 return -EINVAL;
2416
2417         if (cpufreq_boost_supported())
2418                 return 0;
2419
2420         cpufreq_driver->set_boost = cpufreq_boost_set_sw;
2421
2422         /* This will get removed on driver unregister */
2423         return create_boost_sysfs_file();
2424 }
2425 EXPORT_SYMBOL_GPL(cpufreq_enable_boost_support);
2426
2427 int cpufreq_boost_enabled(void)
2428 {
2429         return cpufreq_driver->boost_enabled;
2430 }
2431 EXPORT_SYMBOL_GPL(cpufreq_boost_enabled);
2432
2433 /*********************************************************************
2434  *               REGISTER / UNREGISTER CPUFREQ DRIVER                *
2435  *********************************************************************/
2436 static enum cpuhp_state hp_online;
2437
2438 static int cpuhp_cpufreq_online(unsigned int cpu)
2439 {
2440         cpufreq_online(cpu);
2441
2442         return 0;
2443 }
2444
2445 static int cpuhp_cpufreq_offline(unsigned int cpu)
2446 {
2447         cpufreq_offline(cpu);
2448
2449         return 0;
2450 }
2451
2452 /**
2453  * cpufreq_register_driver - register a CPU Frequency driver
2454  * @driver_data: A struct cpufreq_driver containing the values#
2455  * submitted by the CPU Frequency driver.
2456  *
2457  * Registers a CPU Frequency driver to this core code. This code
2458  * returns zero on success, -EEXIST when another driver got here first
2459  * (and isn't unregistered in the meantime).
2460  *
2461  */
2462 int cpufreq_register_driver(struct cpufreq_driver *driver_data)
2463 {
2464         unsigned long flags;
2465         int ret;
2466
2467         if (cpufreq_disabled())
2468                 return -ENODEV;
2469
2470         if (!driver_data || !driver_data->verify || !driver_data->init ||
2471             !(driver_data->setpolicy || driver_data->target_index ||
2472                     driver_data->target) ||
2473              (driver_data->setpolicy && (driver_data->target_index ||
2474                     driver_data->target)) ||
2475              (!!driver_data->get_intermediate != !!driver_data->target_intermediate))
2476                 return -EINVAL;
2477
2478         pr_debug("trying to register driver %s\n", driver_data->name);
2479
2480         /* Protect against concurrent CPU online/offline. */
2481         cpus_read_lock();
2482
2483         write_lock_irqsave(&cpufreq_driver_lock, flags);
2484         if (cpufreq_driver) {
2485                 write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2486                 ret = -EEXIST;
2487                 goto out;
2488         }
2489         cpufreq_driver = driver_data;
2490         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2491
2492         if (driver_data->setpolicy)
2493                 driver_data->flags |= CPUFREQ_CONST_LOOPS;
2494
2495         if (cpufreq_boost_supported()) {
2496                 ret = create_boost_sysfs_file();
2497                 if (ret)
2498                         goto err_null_driver;
2499         }
2500
2501         ret = subsys_interface_register(&cpufreq_interface);
2502         if (ret)
2503                 goto err_boost_unreg;
2504
2505         if (!(cpufreq_driver->flags & CPUFREQ_STICKY) &&
2506             list_empty(&cpufreq_policy_list)) {
2507                 /* if all ->init() calls failed, unregister */
2508                 ret = -ENODEV;
2509                 pr_debug("%s: No CPU initialized for driver %s\n", __func__,
2510                          driver_data->name);
2511                 goto err_if_unreg;
2512         }
2513
2514         ret = cpuhp_setup_state_nocalls_cpuslocked(CPUHP_AP_ONLINE_DYN,
2515                                                    "cpufreq:online",
2516                                                    cpuhp_cpufreq_online,
2517                                                    cpuhp_cpufreq_offline);
2518         if (ret < 0)
2519                 goto err_if_unreg;
2520         hp_online = ret;
2521         ret = 0;
2522
2523         pr_debug("driver %s up and running\n", driver_data->name);
2524         goto out;
2525
2526 err_if_unreg:
2527         subsys_interface_unregister(&cpufreq_interface);
2528 err_boost_unreg:
2529         remove_boost_sysfs_file();
2530 err_null_driver:
2531         write_lock_irqsave(&cpufreq_driver_lock, flags);
2532         cpufreq_driver = NULL;
2533         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2534 out:
2535         cpus_read_unlock();
2536         return ret;
2537 }
2538 EXPORT_SYMBOL_GPL(cpufreq_register_driver);
2539
2540 /**
2541  * cpufreq_unregister_driver - unregister the current CPUFreq driver
2542  *
2543  * Unregister the current CPUFreq driver. Only call this if you have
2544  * the right to do so, i.e. if you have succeeded in initialising before!
2545  * Returns zero if successful, and -EINVAL if the cpufreq_driver is
2546  * currently not initialised.
2547  */
2548 int cpufreq_unregister_driver(struct cpufreq_driver *driver)
2549 {
2550         unsigned long flags;
2551
2552         if (!cpufreq_driver || (driver != cpufreq_driver))
2553                 return -EINVAL;
2554
2555         pr_debug("unregistering driver %s\n", driver->name);
2556
2557         /* Protect against concurrent cpu hotplug */
2558         cpus_read_lock();
2559         subsys_interface_unregister(&cpufreq_interface);
2560         remove_boost_sysfs_file();
2561         cpuhp_remove_state_nocalls_cpuslocked(hp_online);
2562
2563         write_lock_irqsave(&cpufreq_driver_lock, flags);
2564
2565         cpufreq_driver = NULL;
2566
2567         write_unlock_irqrestore(&cpufreq_driver_lock, flags);
2568         cpus_read_unlock();
2569
2570         return 0;
2571 }
2572 EXPORT_SYMBOL_GPL(cpufreq_unregister_driver);
2573
2574 /*
2575  * Stop cpufreq at shutdown to make sure it isn't holding any locks
2576  * or mutexes when secondary CPUs are halted.
2577  */
2578 static struct syscore_ops cpufreq_syscore_ops = {
2579         .shutdown = cpufreq_suspend,
2580 };
2581
2582 struct kobject *cpufreq_global_kobject;
2583 EXPORT_SYMBOL(cpufreq_global_kobject);
2584
2585 static int __init cpufreq_core_init(void)
2586 {
2587         if (cpufreq_disabled())
2588                 return -ENODEV;
2589
2590         cpufreq_global_kobject = kobject_create_and_add("cpufreq", &cpu_subsys.dev_root->kobj);
2591         BUG_ON(!cpufreq_global_kobject);
2592
2593         register_syscore_ops(&cpufreq_syscore_ops);
2594
2595         return 0;
2596 }
2597 module_param(off, int, 0444);
2598 core_initcall(cpufreq_core_init);