Linux-libre 5.7.5-gnu
[librecmc/linux-libre.git] / drivers / cpufreq / cppc_cpufreq.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * CPPC (Collaborative Processor Performance Control) driver for
4  * interfacing with the CPUfreq layer and governors. See
5  * cppc_acpi.c for CPPC specific methods.
6  *
7  * (C) Copyright 2014, 2015 Linaro Ltd.
8  * Author: Ashwin Chaugule <ashwin.chaugule@linaro.org>
9  */
10
11 #define pr_fmt(fmt)     "CPPC Cpufreq:" fmt
12
13 #include <linux/kernel.h>
14 #include <linux/module.h>
15 #include <linux/delay.h>
16 #include <linux/cpu.h>
17 #include <linux/cpufreq.h>
18 #include <linux/dmi.h>
19 #include <linux/time.h>
20 #include <linux/vmalloc.h>
21
22 #include <asm/unaligned.h>
23
24 #include <acpi/cppc_acpi.h>
25
26 /* Minimum struct length needed for the DMI processor entry we want */
27 #define DMI_ENTRY_PROCESSOR_MIN_LENGTH  48
28
29 /* Offest in the DMI processor structure for the max frequency */
30 #define DMI_PROCESSOR_MAX_SPEED  0x14
31
32 /*
33  * These structs contain information parsed from per CPU
34  * ACPI _CPC structures.
35  * e.g. For each CPU the highest, lowest supported
36  * performance capabilities, desired performance level
37  * requested etc.
38  */
39 static struct cppc_cpudata **all_cpu_data;
40
41 struct cppc_workaround_oem_info {
42         char oem_id[ACPI_OEM_ID_SIZE + 1];
43         char oem_table_id[ACPI_OEM_TABLE_ID_SIZE + 1];
44         u32 oem_revision;
45 };
46
47 static bool apply_hisi_workaround;
48
49 static struct cppc_workaround_oem_info wa_info[] = {
50         {
51                 .oem_id         = "HISI  ",
52                 .oem_table_id   = "HIP07   ",
53                 .oem_revision   = 0,
54         }, {
55                 .oem_id         = "HISI  ",
56                 .oem_table_id   = "HIP08   ",
57                 .oem_revision   = 0,
58         }
59 };
60
61 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
62                                         unsigned int perf);
63
64 /*
65  * HISI platform does not support delivered performance counter and
66  * reference performance counter. It can calculate the performance using the
67  * platform specific mechanism. We reuse the desired performance register to
68  * store the real performance calculated by the platform.
69  */
70 static unsigned int hisi_cppc_cpufreq_get_rate(unsigned int cpunum)
71 {
72         struct cppc_cpudata *cpudata = all_cpu_data[cpunum];
73         u64 desired_perf;
74         int ret;
75
76         ret = cppc_get_desired_perf(cpunum, &desired_perf);
77         if (ret < 0)
78                 return -EIO;
79
80         return cppc_cpufreq_perf_to_khz(cpudata, desired_perf);
81 }
82
83 static void cppc_check_hisi_workaround(void)
84 {
85         struct acpi_table_header *tbl;
86         acpi_status status = AE_OK;
87         int i;
88
89         status = acpi_get_table(ACPI_SIG_PCCT, 0, &tbl);
90         if (ACPI_FAILURE(status) || !tbl)
91                 return;
92
93         for (i = 0; i < ARRAY_SIZE(wa_info); i++) {
94                 if (!memcmp(wa_info[i].oem_id, tbl->oem_id, ACPI_OEM_ID_SIZE) &&
95                     !memcmp(wa_info[i].oem_table_id, tbl->oem_table_id, ACPI_OEM_TABLE_ID_SIZE) &&
96                     wa_info[i].oem_revision == tbl->oem_revision) {
97                         apply_hisi_workaround = true;
98                         break;
99                 }
100         }
101
102         acpi_put_table(tbl);
103 }
104
105 /* Callback function used to retrieve the max frequency from DMI */
106 static void cppc_find_dmi_mhz(const struct dmi_header *dm, void *private)
107 {
108         const u8 *dmi_data = (const u8 *)dm;
109         u16 *mhz = (u16 *)private;
110
111         if (dm->type == DMI_ENTRY_PROCESSOR &&
112             dm->length >= DMI_ENTRY_PROCESSOR_MIN_LENGTH) {
113                 u16 val = (u16)get_unaligned((const u16 *)
114                                 (dmi_data + DMI_PROCESSOR_MAX_SPEED));
115                 *mhz = val > *mhz ? val : *mhz;
116         }
117 }
118
119 /* Look up the max frequency in DMI */
120 static u64 cppc_get_dmi_max_khz(void)
121 {
122         u16 mhz = 0;
123
124         dmi_walk(cppc_find_dmi_mhz, &mhz);
125
126         /*
127          * Real stupid fallback value, just in case there is no
128          * actual value set.
129          */
130         mhz = mhz ? mhz : 1;
131
132         return (1000 * mhz);
133 }
134
135 /*
136  * If CPPC lowest_freq and nominal_freq registers are exposed then we can
137  * use them to convert perf to freq and vice versa
138  *
139  * If the perf/freq point lies between Nominal and Lowest, we can treat
140  * (Low perf, Low freq) and (Nom Perf, Nom freq) as 2D co-ordinates of a line
141  * and extrapolate the rest
142  * For perf/freq > Nominal, we use the ratio perf:freq at Nominal for conversion
143  */
144 static unsigned int cppc_cpufreq_perf_to_khz(struct cppc_cpudata *cpu,
145                                         unsigned int perf)
146 {
147         static u64 max_khz;
148         struct cppc_perf_caps *caps = &cpu->perf_caps;
149         u64 mul, div;
150
151         if (caps->lowest_freq && caps->nominal_freq) {
152                 if (perf >= caps->nominal_perf) {
153                         mul = caps->nominal_freq;
154                         div = caps->nominal_perf;
155                 } else {
156                         mul = caps->nominal_freq - caps->lowest_freq;
157                         div = caps->nominal_perf - caps->lowest_perf;
158                 }
159         } else {
160                 if (!max_khz)
161                         max_khz = cppc_get_dmi_max_khz();
162                 mul = max_khz;
163                 div = cpu->perf_caps.highest_perf;
164         }
165         return (u64)perf * mul / div;
166 }
167
168 static unsigned int cppc_cpufreq_khz_to_perf(struct cppc_cpudata *cpu,
169                                         unsigned int freq)
170 {
171         static u64 max_khz;
172         struct cppc_perf_caps *caps = &cpu->perf_caps;
173         u64  mul, div;
174
175         if (caps->lowest_freq && caps->nominal_freq) {
176                 if (freq >= caps->nominal_freq) {
177                         mul = caps->nominal_perf;
178                         div = caps->nominal_freq;
179                 } else {
180                         mul = caps->lowest_perf;
181                         div = caps->lowest_freq;
182                 }
183         } else {
184                 if (!max_khz)
185                         max_khz = cppc_get_dmi_max_khz();
186                 mul = cpu->perf_caps.highest_perf;
187                 div = max_khz;
188         }
189
190         return (u64)freq * mul / div;
191 }
192
193 static int cppc_cpufreq_set_target(struct cpufreq_policy *policy,
194                 unsigned int target_freq,
195                 unsigned int relation)
196 {
197         struct cppc_cpudata *cpu;
198         struct cpufreq_freqs freqs;
199         u32 desired_perf;
200         int ret = 0;
201
202         cpu = all_cpu_data[policy->cpu];
203
204         desired_perf = cppc_cpufreq_khz_to_perf(cpu, target_freq);
205         /* Return if it is exactly the same perf */
206         if (desired_perf == cpu->perf_ctrls.desired_perf)
207                 return ret;
208
209         cpu->perf_ctrls.desired_perf = desired_perf;
210         freqs.old = policy->cur;
211         freqs.new = target_freq;
212
213         cpufreq_freq_transition_begin(policy, &freqs);
214         ret = cppc_set_perf(cpu->cpu, &cpu->perf_ctrls);
215         cpufreq_freq_transition_end(policy, &freqs, ret != 0);
216
217         if (ret)
218                 pr_debug("Failed to set target on CPU:%d. ret:%d\n",
219                                 cpu->cpu, ret);
220
221         return ret;
222 }
223
224 static int cppc_verify_policy(struct cpufreq_policy_data *policy)
225 {
226         cpufreq_verify_within_cpu_limits(policy);
227         return 0;
228 }
229
230 static void cppc_cpufreq_stop_cpu(struct cpufreq_policy *policy)
231 {
232         int cpu_num = policy->cpu;
233         struct cppc_cpudata *cpu = all_cpu_data[cpu_num];
234         int ret;
235
236         cpu->perf_ctrls.desired_perf = cpu->perf_caps.lowest_perf;
237
238         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
239         if (ret)
240                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
241                                 cpu->perf_caps.lowest_perf, cpu_num, ret);
242 }
243
244 /*
245  * The PCC subspace describes the rate at which platform can accept commands
246  * on the shared PCC channel (including READs which do not count towards freq
247  * trasition requests), so ideally we need to use the PCC values as a fallback
248  * if we don't have a platform specific transition_delay_us
249  */
250 #ifdef CONFIG_ARM64
251 #include <asm/cputype.h>
252
253 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
254 {
255         unsigned long implementor = read_cpuid_implementor();
256         unsigned long part_num = read_cpuid_part_number();
257         unsigned int delay_us = 0;
258
259         switch (implementor) {
260         case ARM_CPU_IMP_QCOM:
261                 switch (part_num) {
262                 case QCOM_CPU_PART_FALKOR_V1:
263                 case QCOM_CPU_PART_FALKOR:
264                         delay_us = 10000;
265                         break;
266                 default:
267                         delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
268                         break;
269                 }
270                 break;
271         default:
272                 delay_us = cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
273                 break;
274         }
275
276         return delay_us;
277 }
278
279 #else
280
281 static unsigned int cppc_cpufreq_get_transition_delay_us(int cpu)
282 {
283         return cppc_get_transition_latency(cpu) / NSEC_PER_USEC;
284 }
285 #endif
286
287 static int cppc_cpufreq_cpu_init(struct cpufreq_policy *policy)
288 {
289         struct cppc_cpudata *cpu;
290         unsigned int cpu_num = policy->cpu;
291         int ret = 0;
292
293         cpu = all_cpu_data[policy->cpu];
294
295         cpu->cpu = cpu_num;
296         ret = cppc_get_perf_caps(policy->cpu, &cpu->perf_caps);
297
298         if (ret) {
299                 pr_debug("Err reading CPU%d perf capabilities. ret:%d\n",
300                                 cpu_num, ret);
301                 return ret;
302         }
303
304         /* Convert the lowest and nominal freq from MHz to KHz */
305         cpu->perf_caps.lowest_freq *= 1000;
306         cpu->perf_caps.nominal_freq *= 1000;
307
308         /*
309          * Set min to lowest nonlinear perf to avoid any efficiency penalty (see
310          * Section 8.4.7.1.1.5 of ACPI 6.1 spec)
311          */
312         policy->min = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_nonlinear_perf);
313         policy->max = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
314
315         /*
316          * Set cpuinfo.min_freq to Lowest to make the full range of performance
317          * available if userspace wants to use any perf between lowest & lowest
318          * nonlinear perf
319          */
320         policy->cpuinfo.min_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.lowest_perf);
321         policy->cpuinfo.max_freq = cppc_cpufreq_perf_to_khz(cpu, cpu->perf_caps.highest_perf);
322
323         policy->transition_delay_us = cppc_cpufreq_get_transition_delay_us(cpu_num);
324         policy->shared_type = cpu->shared_type;
325
326         if (policy->shared_type == CPUFREQ_SHARED_TYPE_ANY) {
327                 int i;
328
329                 cpumask_copy(policy->cpus, cpu->shared_cpu_map);
330
331                 for_each_cpu(i, policy->cpus) {
332                         if (unlikely(i == policy->cpu))
333                                 continue;
334
335                         memcpy(&all_cpu_data[i]->perf_caps, &cpu->perf_caps,
336                                sizeof(cpu->perf_caps));
337                 }
338         } else if (policy->shared_type == CPUFREQ_SHARED_TYPE_ALL) {
339                 /* Support only SW_ANY for now. */
340                 pr_debug("Unsupported CPU co-ord type\n");
341                 return -EFAULT;
342         }
343
344         cpu->cur_policy = policy;
345
346         /* Set policy->cur to max now. The governors will adjust later. */
347         policy->cur = cppc_cpufreq_perf_to_khz(cpu,
348                                         cpu->perf_caps.highest_perf);
349         cpu->perf_ctrls.desired_perf = cpu->perf_caps.highest_perf;
350
351         ret = cppc_set_perf(cpu_num, &cpu->perf_ctrls);
352         if (ret)
353                 pr_debug("Err setting perf value:%d on CPU:%d. ret:%d\n",
354                                 cpu->perf_caps.highest_perf, cpu_num, ret);
355
356         return ret;
357 }
358
359 static inline u64 get_delta(u64 t1, u64 t0)
360 {
361         if (t1 > t0 || t0 > ~(u32)0)
362                 return t1 - t0;
363
364         return (u32)t1 - (u32)t0;
365 }
366
367 static int cppc_get_rate_from_fbctrs(struct cppc_cpudata *cpu,
368                                      struct cppc_perf_fb_ctrs fb_ctrs_t0,
369                                      struct cppc_perf_fb_ctrs fb_ctrs_t1)
370 {
371         u64 delta_reference, delta_delivered;
372         u64 reference_perf, delivered_perf;
373
374         reference_perf = fb_ctrs_t0.reference_perf;
375
376         delta_reference = get_delta(fb_ctrs_t1.reference,
377                                     fb_ctrs_t0.reference);
378         delta_delivered = get_delta(fb_ctrs_t1.delivered,
379                                     fb_ctrs_t0.delivered);
380
381         /* Check to avoid divide-by zero */
382         if (delta_reference || delta_delivered)
383                 delivered_perf = (reference_perf * delta_delivered) /
384                                         delta_reference;
385         else
386                 delivered_perf = cpu->perf_ctrls.desired_perf;
387
388         return cppc_cpufreq_perf_to_khz(cpu, delivered_perf);
389 }
390
391 static unsigned int cppc_cpufreq_get_rate(unsigned int cpunum)
392 {
393         struct cppc_perf_fb_ctrs fb_ctrs_t0 = {0}, fb_ctrs_t1 = {0};
394         struct cppc_cpudata *cpu = all_cpu_data[cpunum];
395         int ret;
396
397         if (apply_hisi_workaround)
398                 return hisi_cppc_cpufreq_get_rate(cpunum);
399
400         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t0);
401         if (ret)
402                 return ret;
403
404         udelay(2); /* 2usec delay between sampling */
405
406         ret = cppc_get_perf_ctrs(cpunum, &fb_ctrs_t1);
407         if (ret)
408                 return ret;
409
410         return cppc_get_rate_from_fbctrs(cpu, fb_ctrs_t0, fb_ctrs_t1);
411 }
412
413 static struct cpufreq_driver cppc_cpufreq_driver = {
414         .flags = CPUFREQ_CONST_LOOPS,
415         .verify = cppc_verify_policy,
416         .target = cppc_cpufreq_set_target,
417         .get = cppc_cpufreq_get_rate,
418         .init = cppc_cpufreq_cpu_init,
419         .stop_cpu = cppc_cpufreq_stop_cpu,
420         .name = "cppc_cpufreq",
421 };
422
423 static int __init cppc_cpufreq_init(void)
424 {
425         int i, ret = 0;
426         struct cppc_cpudata *cpu;
427
428         if (acpi_disabled)
429                 return -ENODEV;
430
431         all_cpu_data = kcalloc(num_possible_cpus(), sizeof(void *),
432                                GFP_KERNEL);
433         if (!all_cpu_data)
434                 return -ENOMEM;
435
436         for_each_possible_cpu(i) {
437                 all_cpu_data[i] = kzalloc(sizeof(struct cppc_cpudata), GFP_KERNEL);
438                 if (!all_cpu_data[i])
439                         goto out;
440
441                 cpu = all_cpu_data[i];
442                 if (!zalloc_cpumask_var(&cpu->shared_cpu_map, GFP_KERNEL))
443                         goto out;
444         }
445
446         ret = acpi_get_psd_map(all_cpu_data);
447         if (ret) {
448                 pr_debug("Error parsing PSD data. Aborting cpufreq registration.\n");
449                 goto out;
450         }
451
452         cppc_check_hisi_workaround();
453
454         ret = cpufreq_register_driver(&cppc_cpufreq_driver);
455         if (ret)
456                 goto out;
457
458         return ret;
459
460 out:
461         for_each_possible_cpu(i) {
462                 cpu = all_cpu_data[i];
463                 if (!cpu)
464                         break;
465                 free_cpumask_var(cpu->shared_cpu_map);
466                 kfree(cpu);
467         }
468
469         kfree(all_cpu_data);
470         return -ENODEV;
471 }
472
473 static void __exit cppc_cpufreq_exit(void)
474 {
475         struct cppc_cpudata *cpu;
476         int i;
477
478         cpufreq_unregister_driver(&cppc_cpufreq_driver);
479
480         for_each_possible_cpu(i) {
481                 cpu = all_cpu_data[i];
482                 free_cpumask_var(cpu->shared_cpu_map);
483                 kfree(cpu);
484         }
485
486         kfree(all_cpu_data);
487 }
488
489 module_exit(cppc_cpufreq_exit);
490 MODULE_AUTHOR("Ashwin Chaugule");
491 MODULE_DESCRIPTION("CPUFreq driver based on the ACPI CPPC v5.0+ spec");
492 MODULE_LICENSE("GPL");
493
494 late_initcall(cppc_cpufreq_init);
495
496 static const struct acpi_device_id cppc_acpi_ids[] __used = {
497         {ACPI_PROCESSOR_DEVICE_HID, },
498         {}
499 };
500
501 MODULE_DEVICE_TABLE(acpi, cppc_acpi_ids);