Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / clocksource / sh_cmt.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * SuperH Timer Support - CMT
4  *
5  *  Copyright (C) 2008 Magnus Damm
6  */
7
8 #include <linux/clk.h>
9 #include <linux/clockchips.h>
10 #include <linux/clocksource.h>
11 #include <linux/delay.h>
12 #include <linux/err.h>
13 #include <linux/init.h>
14 #include <linux/interrupt.h>
15 #include <linux/io.h>
16 #include <linux/ioport.h>
17 #include <linux/irq.h>
18 #include <linux/module.h>
19 #include <linux/of.h>
20 #include <linux/of_device.h>
21 #include <linux/platform_device.h>
22 #include <linux/pm_domain.h>
23 #include <linux/pm_runtime.h>
24 #include <linux/sh_timer.h>
25 #include <linux/slab.h>
26 #include <linux/spinlock.h>
27
28 struct sh_cmt_device;
29
30 /*
31  * The CMT comes in 5 different identified flavours, depending not only on the
32  * SoC but also on the particular instance. The following table lists the main
33  * characteristics of those flavours.
34  *
35  *                      16B     32B     32B-F   48B     R-Car Gen2
36  * -----------------------------------------------------------------------------
37  * Channels             2       1/4     1       6       2/8
38  * Control Width        16      16      16      16      32
39  * Counter Width        16      32      32      32/48   32/48
40  * Shared Start/Stop    Y       Y       Y       Y       N
41  *
42  * The r8a73a4 / R-Car Gen2 version has a per-channel start/stop register
43  * located in the channel registers block. All other versions have a shared
44  * start/stop register located in the global space.
45  *
46  * Channels are indexed from 0 to N-1 in the documentation. The channel index
47  * infers the start/stop bit position in the control register and the channel
48  * registers block address. Some CMT instances have a subset of channels
49  * available, in which case the index in the documentation doesn't match the
50  * "real" index as implemented in hardware. This is for instance the case with
51  * CMT0 on r8a7740, which is a 32-bit variant with a single channel numbered 0
52  * in the documentation but using start/stop bit 5 and having its registers
53  * block at 0x60.
54  *
55  * Similarly CMT0 on r8a73a4, r8a7790 and r8a7791, while implementing 32-bit
56  * channels only, is a 48-bit gen2 CMT with the 48-bit channels unavailable.
57  */
58
59 enum sh_cmt_model {
60         SH_CMT_16BIT,
61         SH_CMT_32BIT,
62         SH_CMT_48BIT,
63         SH_CMT0_RCAR_GEN2,
64         SH_CMT1_RCAR_GEN2,
65 };
66
67 struct sh_cmt_info {
68         enum sh_cmt_model model;
69
70         unsigned int channels_mask;
71
72         unsigned long width; /* 16 or 32 bit version of hardware block */
73         u32 overflow_bit;
74         u32 clear_bits;
75
76         /* callbacks for CMSTR and CMCSR access */
77         u32 (*read_control)(void __iomem *base, unsigned long offs);
78         void (*write_control)(void __iomem *base, unsigned long offs,
79                               u32 value);
80
81         /* callbacks for CMCNT and CMCOR access */
82         u32 (*read_count)(void __iomem *base, unsigned long offs);
83         void (*write_count)(void __iomem *base, unsigned long offs, u32 value);
84 };
85
86 struct sh_cmt_channel {
87         struct sh_cmt_device *cmt;
88
89         unsigned int index;     /* Index in the documentation */
90         unsigned int hwidx;     /* Real hardware index */
91
92         void __iomem *iostart;
93         void __iomem *ioctrl;
94
95         unsigned int timer_bit;
96         unsigned long flags;
97         u32 match_value;
98         u32 next_match_value;
99         u32 max_match_value;
100         raw_spinlock_t lock;
101         struct clock_event_device ced;
102         struct clocksource cs;
103         u64 total_cycles;
104         bool cs_enabled;
105 };
106
107 struct sh_cmt_device {
108         struct platform_device *pdev;
109
110         const struct sh_cmt_info *info;
111
112         void __iomem *mapbase;
113         struct clk *clk;
114         unsigned long rate;
115
116         raw_spinlock_t lock; /* Protect the shared start/stop register */
117
118         struct sh_cmt_channel *channels;
119         unsigned int num_channels;
120         unsigned int hw_channels;
121
122         bool has_clockevent;
123         bool has_clocksource;
124 };
125
126 #define SH_CMT16_CMCSR_CMF              (1 << 7)
127 #define SH_CMT16_CMCSR_CMIE             (1 << 6)
128 #define SH_CMT16_CMCSR_CKS8             (0 << 0)
129 #define SH_CMT16_CMCSR_CKS32            (1 << 0)
130 #define SH_CMT16_CMCSR_CKS128           (2 << 0)
131 #define SH_CMT16_CMCSR_CKS512           (3 << 0)
132 #define SH_CMT16_CMCSR_CKS_MASK         (3 << 0)
133
134 #define SH_CMT32_CMCSR_CMF              (1 << 15)
135 #define SH_CMT32_CMCSR_OVF              (1 << 14)
136 #define SH_CMT32_CMCSR_WRFLG            (1 << 13)
137 #define SH_CMT32_CMCSR_STTF             (1 << 12)
138 #define SH_CMT32_CMCSR_STPF             (1 << 11)
139 #define SH_CMT32_CMCSR_SSIE             (1 << 10)
140 #define SH_CMT32_CMCSR_CMS              (1 << 9)
141 #define SH_CMT32_CMCSR_CMM              (1 << 8)
142 #define SH_CMT32_CMCSR_CMTOUT_IE        (1 << 7)
143 #define SH_CMT32_CMCSR_CMR_NONE         (0 << 4)
144 #define SH_CMT32_CMCSR_CMR_DMA          (1 << 4)
145 #define SH_CMT32_CMCSR_CMR_IRQ          (2 << 4)
146 #define SH_CMT32_CMCSR_CMR_MASK         (3 << 4)
147 #define SH_CMT32_CMCSR_DBGIVD           (1 << 3)
148 #define SH_CMT32_CMCSR_CKS_RCLK8        (4 << 0)
149 #define SH_CMT32_CMCSR_CKS_RCLK32       (5 << 0)
150 #define SH_CMT32_CMCSR_CKS_RCLK128      (6 << 0)
151 #define SH_CMT32_CMCSR_CKS_RCLK1        (7 << 0)
152 #define SH_CMT32_CMCSR_CKS_MASK         (7 << 0)
153
154 static u32 sh_cmt_read16(void __iomem *base, unsigned long offs)
155 {
156         return ioread16(base + (offs << 1));
157 }
158
159 static u32 sh_cmt_read32(void __iomem *base, unsigned long offs)
160 {
161         return ioread32(base + (offs << 2));
162 }
163
164 static void sh_cmt_write16(void __iomem *base, unsigned long offs, u32 value)
165 {
166         iowrite16(value, base + (offs << 1));
167 }
168
169 static void sh_cmt_write32(void __iomem *base, unsigned long offs, u32 value)
170 {
171         iowrite32(value, base + (offs << 2));
172 }
173
174 static const struct sh_cmt_info sh_cmt_info[] = {
175         [SH_CMT_16BIT] = {
176                 .model = SH_CMT_16BIT,
177                 .width = 16,
178                 .overflow_bit = SH_CMT16_CMCSR_CMF,
179                 .clear_bits = ~SH_CMT16_CMCSR_CMF,
180                 .read_control = sh_cmt_read16,
181                 .write_control = sh_cmt_write16,
182                 .read_count = sh_cmt_read16,
183                 .write_count = sh_cmt_write16,
184         },
185         [SH_CMT_32BIT] = {
186                 .model = SH_CMT_32BIT,
187                 .width = 32,
188                 .overflow_bit = SH_CMT32_CMCSR_CMF,
189                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
190                 .read_control = sh_cmt_read16,
191                 .write_control = sh_cmt_write16,
192                 .read_count = sh_cmt_read32,
193                 .write_count = sh_cmt_write32,
194         },
195         [SH_CMT_48BIT] = {
196                 .model = SH_CMT_48BIT,
197                 .channels_mask = 0x3f,
198                 .width = 32,
199                 .overflow_bit = SH_CMT32_CMCSR_CMF,
200                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
201                 .read_control = sh_cmt_read32,
202                 .write_control = sh_cmt_write32,
203                 .read_count = sh_cmt_read32,
204                 .write_count = sh_cmt_write32,
205         },
206         [SH_CMT0_RCAR_GEN2] = {
207                 .model = SH_CMT0_RCAR_GEN2,
208                 .channels_mask = 0x60,
209                 .width = 32,
210                 .overflow_bit = SH_CMT32_CMCSR_CMF,
211                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
212                 .read_control = sh_cmt_read32,
213                 .write_control = sh_cmt_write32,
214                 .read_count = sh_cmt_read32,
215                 .write_count = sh_cmt_write32,
216         },
217         [SH_CMT1_RCAR_GEN2] = {
218                 .model = SH_CMT1_RCAR_GEN2,
219                 .channels_mask = 0xff,
220                 .width = 32,
221                 .overflow_bit = SH_CMT32_CMCSR_CMF,
222                 .clear_bits = ~(SH_CMT32_CMCSR_CMF | SH_CMT32_CMCSR_OVF),
223                 .read_control = sh_cmt_read32,
224                 .write_control = sh_cmt_write32,
225                 .read_count = sh_cmt_read32,
226                 .write_count = sh_cmt_write32,
227         },
228 };
229
230 #define CMCSR 0 /* channel register */
231 #define CMCNT 1 /* channel register */
232 #define CMCOR 2 /* channel register */
233
234 static inline u32 sh_cmt_read_cmstr(struct sh_cmt_channel *ch)
235 {
236         if (ch->iostart)
237                 return ch->cmt->info->read_control(ch->iostart, 0);
238         else
239                 return ch->cmt->info->read_control(ch->cmt->mapbase, 0);
240 }
241
242 static inline void sh_cmt_write_cmstr(struct sh_cmt_channel *ch, u32 value)
243 {
244         if (ch->iostart)
245                 ch->cmt->info->write_control(ch->iostart, 0, value);
246         else
247                 ch->cmt->info->write_control(ch->cmt->mapbase, 0, value);
248 }
249
250 static inline u32 sh_cmt_read_cmcsr(struct sh_cmt_channel *ch)
251 {
252         return ch->cmt->info->read_control(ch->ioctrl, CMCSR);
253 }
254
255 static inline void sh_cmt_write_cmcsr(struct sh_cmt_channel *ch, u32 value)
256 {
257         ch->cmt->info->write_control(ch->ioctrl, CMCSR, value);
258 }
259
260 static inline u32 sh_cmt_read_cmcnt(struct sh_cmt_channel *ch)
261 {
262         return ch->cmt->info->read_count(ch->ioctrl, CMCNT);
263 }
264
265 static inline void sh_cmt_write_cmcnt(struct sh_cmt_channel *ch, u32 value)
266 {
267         ch->cmt->info->write_count(ch->ioctrl, CMCNT, value);
268 }
269
270 static inline void sh_cmt_write_cmcor(struct sh_cmt_channel *ch, u32 value)
271 {
272         ch->cmt->info->write_count(ch->ioctrl, CMCOR, value);
273 }
274
275 static u32 sh_cmt_get_counter(struct sh_cmt_channel *ch, u32 *has_wrapped)
276 {
277         u32 v1, v2, v3;
278         u32 o1, o2;
279
280         o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
281
282         /* Make sure the timer value is stable. Stolen from acpi_pm.c */
283         do {
284                 o2 = o1;
285                 v1 = sh_cmt_read_cmcnt(ch);
286                 v2 = sh_cmt_read_cmcnt(ch);
287                 v3 = sh_cmt_read_cmcnt(ch);
288                 o1 = sh_cmt_read_cmcsr(ch) & ch->cmt->info->overflow_bit;
289         } while (unlikely((o1 != o2) || (v1 > v2 && v1 < v3)
290                           || (v2 > v3 && v2 < v1) || (v3 > v1 && v3 < v2)));
291
292         *has_wrapped = o1;
293         return v2;
294 }
295
296 static void sh_cmt_start_stop_ch(struct sh_cmt_channel *ch, int start)
297 {
298         unsigned long flags;
299         u32 value;
300
301         /* start stop register shared by multiple timer channels */
302         raw_spin_lock_irqsave(&ch->cmt->lock, flags);
303         value = sh_cmt_read_cmstr(ch);
304
305         if (start)
306                 value |= 1 << ch->timer_bit;
307         else
308                 value &= ~(1 << ch->timer_bit);
309
310         sh_cmt_write_cmstr(ch, value);
311         raw_spin_unlock_irqrestore(&ch->cmt->lock, flags);
312 }
313
314 static int sh_cmt_enable(struct sh_cmt_channel *ch)
315 {
316         int k, ret;
317
318         pm_runtime_get_sync(&ch->cmt->pdev->dev);
319         dev_pm_syscore_device(&ch->cmt->pdev->dev, true);
320
321         /* enable clock */
322         ret = clk_enable(ch->cmt->clk);
323         if (ret) {
324                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot enable clock\n",
325                         ch->index);
326                 goto err0;
327         }
328
329         /* make sure channel is disabled */
330         sh_cmt_start_stop_ch(ch, 0);
331
332         /* configure channel, periodic mode and maximum timeout */
333         if (ch->cmt->info->width == 16) {
334                 sh_cmt_write_cmcsr(ch, SH_CMT16_CMCSR_CMIE |
335                                    SH_CMT16_CMCSR_CKS512);
336         } else {
337                 sh_cmt_write_cmcsr(ch, SH_CMT32_CMCSR_CMM |
338                                    SH_CMT32_CMCSR_CMTOUT_IE |
339                                    SH_CMT32_CMCSR_CMR_IRQ |
340                                    SH_CMT32_CMCSR_CKS_RCLK8);
341         }
342
343         sh_cmt_write_cmcor(ch, 0xffffffff);
344         sh_cmt_write_cmcnt(ch, 0);
345
346         /*
347          * According to the sh73a0 user's manual, as CMCNT can be operated
348          * only by the RCLK (Pseudo 32 KHz), there's one restriction on
349          * modifying CMCNT register; two RCLK cycles are necessary before
350          * this register is either read or any modification of the value
351          * it holds is reflected in the LSI's actual operation.
352          *
353          * While at it, we're supposed to clear out the CMCNT as of this
354          * moment, so make sure it's processed properly here.  This will
355          * take RCLKx2 at maximum.
356          */
357         for (k = 0; k < 100; k++) {
358                 if (!sh_cmt_read_cmcnt(ch))
359                         break;
360                 udelay(1);
361         }
362
363         if (sh_cmt_read_cmcnt(ch)) {
364                 dev_err(&ch->cmt->pdev->dev, "ch%u: cannot clear CMCNT\n",
365                         ch->index);
366                 ret = -ETIMEDOUT;
367                 goto err1;
368         }
369
370         /* enable channel */
371         sh_cmt_start_stop_ch(ch, 1);
372         return 0;
373  err1:
374         /* stop clock */
375         clk_disable(ch->cmt->clk);
376
377  err0:
378         return ret;
379 }
380
381 static void sh_cmt_disable(struct sh_cmt_channel *ch)
382 {
383         /* disable channel */
384         sh_cmt_start_stop_ch(ch, 0);
385
386         /* disable interrupts in CMT block */
387         sh_cmt_write_cmcsr(ch, 0);
388
389         /* stop clock */
390         clk_disable(ch->cmt->clk);
391
392         dev_pm_syscore_device(&ch->cmt->pdev->dev, false);
393         pm_runtime_put(&ch->cmt->pdev->dev);
394 }
395
396 /* private flags */
397 #define FLAG_CLOCKEVENT (1 << 0)
398 #define FLAG_CLOCKSOURCE (1 << 1)
399 #define FLAG_REPROGRAM (1 << 2)
400 #define FLAG_SKIPEVENT (1 << 3)
401 #define FLAG_IRQCONTEXT (1 << 4)
402
403 static void sh_cmt_clock_event_program_verify(struct sh_cmt_channel *ch,
404                                               int absolute)
405 {
406         u32 value = ch->next_match_value;
407         u32 new_match;
408         u32 delay = 0;
409         u32 now = 0;
410         u32 has_wrapped;
411
412         now = sh_cmt_get_counter(ch, &has_wrapped);
413         ch->flags |= FLAG_REPROGRAM; /* force reprogram */
414
415         if (has_wrapped) {
416                 /* we're competing with the interrupt handler.
417                  *  -> let the interrupt handler reprogram the timer.
418                  *  -> interrupt number two handles the event.
419                  */
420                 ch->flags |= FLAG_SKIPEVENT;
421                 return;
422         }
423
424         if (absolute)
425                 now = 0;
426
427         do {
428                 /* reprogram the timer hardware,
429                  * but don't save the new match value yet.
430                  */
431                 new_match = now + value + delay;
432                 if (new_match > ch->max_match_value)
433                         new_match = ch->max_match_value;
434
435                 sh_cmt_write_cmcor(ch, new_match);
436
437                 now = sh_cmt_get_counter(ch, &has_wrapped);
438                 if (has_wrapped && (new_match > ch->match_value)) {
439                         /* we are changing to a greater match value,
440                          * so this wrap must be caused by the counter
441                          * matching the old value.
442                          * -> first interrupt reprograms the timer.
443                          * -> interrupt number two handles the event.
444                          */
445                         ch->flags |= FLAG_SKIPEVENT;
446                         break;
447                 }
448
449                 if (has_wrapped) {
450                         /* we are changing to a smaller match value,
451                          * so the wrap must be caused by the counter
452                          * matching the new value.
453                          * -> save programmed match value.
454                          * -> let isr handle the event.
455                          */
456                         ch->match_value = new_match;
457                         break;
458                 }
459
460                 /* be safe: verify hardware settings */
461                 if (now < new_match) {
462                         /* timer value is below match value, all good.
463                          * this makes sure we won't miss any match events.
464                          * -> save programmed match value.
465                          * -> let isr handle the event.
466                          */
467                         ch->match_value = new_match;
468                         break;
469                 }
470
471                 /* the counter has reached a value greater
472                  * than our new match value. and since the
473                  * has_wrapped flag isn't set we must have
474                  * programmed a too close event.
475                  * -> increase delay and retry.
476                  */
477                 if (delay)
478                         delay <<= 1;
479                 else
480                         delay = 1;
481
482                 if (!delay)
483                         dev_warn(&ch->cmt->pdev->dev, "ch%u: too long delay\n",
484                                  ch->index);
485
486         } while (delay);
487 }
488
489 static void __sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
490 {
491         if (delta > ch->max_match_value)
492                 dev_warn(&ch->cmt->pdev->dev, "ch%u: delta out of range\n",
493                          ch->index);
494
495         ch->next_match_value = delta;
496         sh_cmt_clock_event_program_verify(ch, 0);
497 }
498
499 static void sh_cmt_set_next(struct sh_cmt_channel *ch, unsigned long delta)
500 {
501         unsigned long flags;
502
503         raw_spin_lock_irqsave(&ch->lock, flags);
504         __sh_cmt_set_next(ch, delta);
505         raw_spin_unlock_irqrestore(&ch->lock, flags);
506 }
507
508 static irqreturn_t sh_cmt_interrupt(int irq, void *dev_id)
509 {
510         struct sh_cmt_channel *ch = dev_id;
511
512         /* clear flags */
513         sh_cmt_write_cmcsr(ch, sh_cmt_read_cmcsr(ch) &
514                            ch->cmt->info->clear_bits);
515
516         /* update clock source counter to begin with if enabled
517          * the wrap flag should be cleared by the timer specific
518          * isr before we end up here.
519          */
520         if (ch->flags & FLAG_CLOCKSOURCE)
521                 ch->total_cycles += ch->match_value + 1;
522
523         if (!(ch->flags & FLAG_REPROGRAM))
524                 ch->next_match_value = ch->max_match_value;
525
526         ch->flags |= FLAG_IRQCONTEXT;
527
528         if (ch->flags & FLAG_CLOCKEVENT) {
529                 if (!(ch->flags & FLAG_SKIPEVENT)) {
530                         if (clockevent_state_oneshot(&ch->ced)) {
531                                 ch->next_match_value = ch->max_match_value;
532                                 ch->flags |= FLAG_REPROGRAM;
533                         }
534
535                         ch->ced.event_handler(&ch->ced);
536                 }
537         }
538
539         ch->flags &= ~FLAG_SKIPEVENT;
540
541         if (ch->flags & FLAG_REPROGRAM) {
542                 ch->flags &= ~FLAG_REPROGRAM;
543                 sh_cmt_clock_event_program_verify(ch, 1);
544
545                 if (ch->flags & FLAG_CLOCKEVENT)
546                         if ((clockevent_state_shutdown(&ch->ced))
547                             || (ch->match_value == ch->next_match_value))
548                                 ch->flags &= ~FLAG_REPROGRAM;
549         }
550
551         ch->flags &= ~FLAG_IRQCONTEXT;
552
553         return IRQ_HANDLED;
554 }
555
556 static int sh_cmt_start(struct sh_cmt_channel *ch, unsigned long flag)
557 {
558         int ret = 0;
559         unsigned long flags;
560
561         raw_spin_lock_irqsave(&ch->lock, flags);
562
563         if (!(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
564                 ret = sh_cmt_enable(ch);
565
566         if (ret)
567                 goto out;
568         ch->flags |= flag;
569
570         /* setup timeout if no clockevent */
571         if ((flag == FLAG_CLOCKSOURCE) && (!(ch->flags & FLAG_CLOCKEVENT)))
572                 __sh_cmt_set_next(ch, ch->max_match_value);
573  out:
574         raw_spin_unlock_irqrestore(&ch->lock, flags);
575
576         return ret;
577 }
578
579 static void sh_cmt_stop(struct sh_cmt_channel *ch, unsigned long flag)
580 {
581         unsigned long flags;
582         unsigned long f;
583
584         raw_spin_lock_irqsave(&ch->lock, flags);
585
586         f = ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE);
587         ch->flags &= ~flag;
588
589         if (f && !(ch->flags & (FLAG_CLOCKEVENT | FLAG_CLOCKSOURCE)))
590                 sh_cmt_disable(ch);
591
592         /* adjust the timeout to maximum if only clocksource left */
593         if ((flag == FLAG_CLOCKEVENT) && (ch->flags & FLAG_CLOCKSOURCE))
594                 __sh_cmt_set_next(ch, ch->max_match_value);
595
596         raw_spin_unlock_irqrestore(&ch->lock, flags);
597 }
598
599 static struct sh_cmt_channel *cs_to_sh_cmt(struct clocksource *cs)
600 {
601         return container_of(cs, struct sh_cmt_channel, cs);
602 }
603
604 static u64 sh_cmt_clocksource_read(struct clocksource *cs)
605 {
606         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
607         unsigned long flags;
608         u32 has_wrapped;
609         u64 value;
610         u32 raw;
611
612         raw_spin_lock_irqsave(&ch->lock, flags);
613         value = ch->total_cycles;
614         raw = sh_cmt_get_counter(ch, &has_wrapped);
615
616         if (unlikely(has_wrapped))
617                 raw += ch->match_value + 1;
618         raw_spin_unlock_irqrestore(&ch->lock, flags);
619
620         return value + raw;
621 }
622
623 static int sh_cmt_clocksource_enable(struct clocksource *cs)
624 {
625         int ret;
626         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
627
628         WARN_ON(ch->cs_enabled);
629
630         ch->total_cycles = 0;
631
632         ret = sh_cmt_start(ch, FLAG_CLOCKSOURCE);
633         if (!ret)
634                 ch->cs_enabled = true;
635
636         return ret;
637 }
638
639 static void sh_cmt_clocksource_disable(struct clocksource *cs)
640 {
641         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
642
643         WARN_ON(!ch->cs_enabled);
644
645         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
646         ch->cs_enabled = false;
647 }
648
649 static void sh_cmt_clocksource_suspend(struct clocksource *cs)
650 {
651         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
652
653         if (!ch->cs_enabled)
654                 return;
655
656         sh_cmt_stop(ch, FLAG_CLOCKSOURCE);
657         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
658 }
659
660 static void sh_cmt_clocksource_resume(struct clocksource *cs)
661 {
662         struct sh_cmt_channel *ch = cs_to_sh_cmt(cs);
663
664         if (!ch->cs_enabled)
665                 return;
666
667         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
668         sh_cmt_start(ch, FLAG_CLOCKSOURCE);
669 }
670
671 static int sh_cmt_register_clocksource(struct sh_cmt_channel *ch,
672                                        const char *name)
673 {
674         struct clocksource *cs = &ch->cs;
675
676         cs->name = name;
677         cs->rating = 125;
678         cs->read = sh_cmt_clocksource_read;
679         cs->enable = sh_cmt_clocksource_enable;
680         cs->disable = sh_cmt_clocksource_disable;
681         cs->suspend = sh_cmt_clocksource_suspend;
682         cs->resume = sh_cmt_clocksource_resume;
683         cs->mask = CLOCKSOURCE_MASK(sizeof(u64) * 8);
684         cs->flags = CLOCK_SOURCE_IS_CONTINUOUS;
685
686         dev_info(&ch->cmt->pdev->dev, "ch%u: used as clock source\n",
687                  ch->index);
688
689         clocksource_register_hz(cs, ch->cmt->rate);
690         return 0;
691 }
692
693 static struct sh_cmt_channel *ced_to_sh_cmt(struct clock_event_device *ced)
694 {
695         return container_of(ced, struct sh_cmt_channel, ced);
696 }
697
698 static void sh_cmt_clock_event_start(struct sh_cmt_channel *ch, int periodic)
699 {
700         sh_cmt_start(ch, FLAG_CLOCKEVENT);
701
702         if (periodic)
703                 sh_cmt_set_next(ch, ((ch->cmt->rate + HZ/2) / HZ) - 1);
704         else
705                 sh_cmt_set_next(ch, ch->max_match_value);
706 }
707
708 static int sh_cmt_clock_event_shutdown(struct clock_event_device *ced)
709 {
710         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
711
712         sh_cmt_stop(ch, FLAG_CLOCKEVENT);
713         return 0;
714 }
715
716 static int sh_cmt_clock_event_set_state(struct clock_event_device *ced,
717                                         int periodic)
718 {
719         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
720
721         /* deal with old setting first */
722         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
723                 sh_cmt_stop(ch, FLAG_CLOCKEVENT);
724
725         dev_info(&ch->cmt->pdev->dev, "ch%u: used for %s clock events\n",
726                  ch->index, periodic ? "periodic" : "oneshot");
727         sh_cmt_clock_event_start(ch, periodic);
728         return 0;
729 }
730
731 static int sh_cmt_clock_event_set_oneshot(struct clock_event_device *ced)
732 {
733         return sh_cmt_clock_event_set_state(ced, 0);
734 }
735
736 static int sh_cmt_clock_event_set_periodic(struct clock_event_device *ced)
737 {
738         return sh_cmt_clock_event_set_state(ced, 1);
739 }
740
741 static int sh_cmt_clock_event_next(unsigned long delta,
742                                    struct clock_event_device *ced)
743 {
744         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
745
746         BUG_ON(!clockevent_state_oneshot(ced));
747         if (likely(ch->flags & FLAG_IRQCONTEXT))
748                 ch->next_match_value = delta - 1;
749         else
750                 sh_cmt_set_next(ch, delta - 1);
751
752         return 0;
753 }
754
755 static void sh_cmt_clock_event_suspend(struct clock_event_device *ced)
756 {
757         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
758
759         pm_genpd_syscore_poweroff(&ch->cmt->pdev->dev);
760         clk_unprepare(ch->cmt->clk);
761 }
762
763 static void sh_cmt_clock_event_resume(struct clock_event_device *ced)
764 {
765         struct sh_cmt_channel *ch = ced_to_sh_cmt(ced);
766
767         clk_prepare(ch->cmt->clk);
768         pm_genpd_syscore_poweron(&ch->cmt->pdev->dev);
769 }
770
771 static int sh_cmt_register_clockevent(struct sh_cmt_channel *ch,
772                                       const char *name)
773 {
774         struct clock_event_device *ced = &ch->ced;
775         int irq;
776         int ret;
777
778         irq = platform_get_irq(ch->cmt->pdev, ch->index);
779         if (irq < 0)
780                 return irq;
781
782         ret = request_irq(irq, sh_cmt_interrupt,
783                           IRQF_TIMER | IRQF_IRQPOLL | IRQF_NOBALANCING,
784                           dev_name(&ch->cmt->pdev->dev), ch);
785         if (ret) {
786                 dev_err(&ch->cmt->pdev->dev, "ch%u: failed to request irq %d\n",
787                         ch->index, irq);
788                 return ret;
789         }
790
791         ced->name = name;
792         ced->features = CLOCK_EVT_FEAT_PERIODIC;
793         ced->features |= CLOCK_EVT_FEAT_ONESHOT;
794         ced->rating = 125;
795         ced->cpumask = cpu_possible_mask;
796         ced->set_next_event = sh_cmt_clock_event_next;
797         ced->set_state_shutdown = sh_cmt_clock_event_shutdown;
798         ced->set_state_periodic = sh_cmt_clock_event_set_periodic;
799         ced->set_state_oneshot = sh_cmt_clock_event_set_oneshot;
800         ced->suspend = sh_cmt_clock_event_suspend;
801         ced->resume = sh_cmt_clock_event_resume;
802
803         /* TODO: calculate good shift from rate and counter bit width */
804         ced->shift = 32;
805         ced->mult = div_sc(ch->cmt->rate, NSEC_PER_SEC, ced->shift);
806         ced->max_delta_ns = clockevent_delta2ns(ch->max_match_value, ced);
807         ced->max_delta_ticks = ch->max_match_value;
808         ced->min_delta_ns = clockevent_delta2ns(0x1f, ced);
809         ced->min_delta_ticks = 0x1f;
810
811         dev_info(&ch->cmt->pdev->dev, "ch%u: used for clock events\n",
812                  ch->index);
813         clockevents_register_device(ced);
814
815         return 0;
816 }
817
818 static int sh_cmt_register(struct sh_cmt_channel *ch, const char *name,
819                            bool clockevent, bool clocksource)
820 {
821         int ret;
822
823         if (clockevent) {
824                 ch->cmt->has_clockevent = true;
825                 ret = sh_cmt_register_clockevent(ch, name);
826                 if (ret < 0)
827                         return ret;
828         }
829
830         if (clocksource) {
831                 ch->cmt->has_clocksource = true;
832                 sh_cmt_register_clocksource(ch, name);
833         }
834
835         return 0;
836 }
837
838 static int sh_cmt_setup_channel(struct sh_cmt_channel *ch, unsigned int index,
839                                 unsigned int hwidx, bool clockevent,
840                                 bool clocksource, struct sh_cmt_device *cmt)
841 {
842         int ret;
843
844         /* Skip unused channels. */
845         if (!clockevent && !clocksource)
846                 return 0;
847
848         ch->cmt = cmt;
849         ch->index = index;
850         ch->hwidx = hwidx;
851         ch->timer_bit = hwidx;
852
853         /*
854          * Compute the address of the channel control register block. For the
855          * timers with a per-channel start/stop register, compute its address
856          * as well.
857          */
858         switch (cmt->info->model) {
859         case SH_CMT_16BIT:
860                 ch->ioctrl = cmt->mapbase + 2 + ch->hwidx * 6;
861                 break;
862         case SH_CMT_32BIT:
863         case SH_CMT_48BIT:
864                 ch->ioctrl = cmt->mapbase + 0x10 + ch->hwidx * 0x10;
865                 break;
866         case SH_CMT0_RCAR_GEN2:
867         case SH_CMT1_RCAR_GEN2:
868                 ch->iostart = cmt->mapbase + ch->hwidx * 0x100;
869                 ch->ioctrl = ch->iostart + 0x10;
870                 ch->timer_bit = 0;
871                 break;
872         }
873
874         if (cmt->info->width == (sizeof(ch->max_match_value) * 8))
875                 ch->max_match_value = ~0;
876         else
877                 ch->max_match_value = (1 << cmt->info->width) - 1;
878
879         ch->match_value = ch->max_match_value;
880         raw_spin_lock_init(&ch->lock);
881
882         ret = sh_cmt_register(ch, dev_name(&cmt->pdev->dev),
883                               clockevent, clocksource);
884         if (ret) {
885                 dev_err(&cmt->pdev->dev, "ch%u: registration failed\n",
886                         ch->index);
887                 return ret;
888         }
889         ch->cs_enabled = false;
890
891         return 0;
892 }
893
894 static int sh_cmt_map_memory(struct sh_cmt_device *cmt)
895 {
896         struct resource *mem;
897
898         mem = platform_get_resource(cmt->pdev, IORESOURCE_MEM, 0);
899         if (!mem) {
900                 dev_err(&cmt->pdev->dev, "failed to get I/O memory\n");
901                 return -ENXIO;
902         }
903
904         cmt->mapbase = ioremap_nocache(mem->start, resource_size(mem));
905         if (cmt->mapbase == NULL) {
906                 dev_err(&cmt->pdev->dev, "failed to remap I/O memory\n");
907                 return -ENXIO;
908         }
909
910         return 0;
911 }
912
913 static const struct platform_device_id sh_cmt_id_table[] = {
914         { "sh-cmt-16", (kernel_ulong_t)&sh_cmt_info[SH_CMT_16BIT] },
915         { "sh-cmt-32", (kernel_ulong_t)&sh_cmt_info[SH_CMT_32BIT] },
916         { }
917 };
918 MODULE_DEVICE_TABLE(platform, sh_cmt_id_table);
919
920 static const struct of_device_id sh_cmt_of_table[] __maybe_unused = {
921         {
922                 /* deprecated, preserved for backward compatibility */
923                 .compatible = "renesas,cmt-48",
924                 .data = &sh_cmt_info[SH_CMT_48BIT]
925         },
926         {
927                 /* deprecated, preserved for backward compatibility */
928                 .compatible = "renesas,cmt-48-gen2",
929                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
930         },
931         {
932                 .compatible = "renesas,r8a7740-cmt1",
933                 .data = &sh_cmt_info[SH_CMT_48BIT]
934         },
935         {
936                 .compatible = "renesas,sh73a0-cmt1",
937                 .data = &sh_cmt_info[SH_CMT_48BIT]
938         },
939         {
940                 .compatible = "renesas,rcar-gen2-cmt0",
941                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
942         },
943         {
944                 .compatible = "renesas,rcar-gen2-cmt1",
945                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
946         },
947         {
948                 .compatible = "renesas,rcar-gen3-cmt0",
949                 .data = &sh_cmt_info[SH_CMT0_RCAR_GEN2]
950         },
951         {
952                 .compatible = "renesas,rcar-gen3-cmt1",
953                 .data = &sh_cmt_info[SH_CMT1_RCAR_GEN2]
954         },
955         { }
956 };
957 MODULE_DEVICE_TABLE(of, sh_cmt_of_table);
958
959 static int sh_cmt_setup(struct sh_cmt_device *cmt, struct platform_device *pdev)
960 {
961         unsigned int mask;
962         unsigned int i;
963         int ret;
964
965         cmt->pdev = pdev;
966         raw_spin_lock_init(&cmt->lock);
967
968         if (IS_ENABLED(CONFIG_OF) && pdev->dev.of_node) {
969                 cmt->info = of_device_get_match_data(&pdev->dev);
970                 cmt->hw_channels = cmt->info->channels_mask;
971         } else if (pdev->dev.platform_data) {
972                 struct sh_timer_config *cfg = pdev->dev.platform_data;
973                 const struct platform_device_id *id = pdev->id_entry;
974
975                 cmt->info = (const struct sh_cmt_info *)id->driver_data;
976                 cmt->hw_channels = cfg->channels_mask;
977         } else {
978                 dev_err(&cmt->pdev->dev, "missing platform data\n");
979                 return -ENXIO;
980         }
981
982         /* Get hold of clock. */
983         cmt->clk = clk_get(&cmt->pdev->dev, "fck");
984         if (IS_ERR(cmt->clk)) {
985                 dev_err(&cmt->pdev->dev, "cannot get clock\n");
986                 return PTR_ERR(cmt->clk);
987         }
988
989         ret = clk_prepare(cmt->clk);
990         if (ret < 0)
991                 goto err_clk_put;
992
993         /* Determine clock rate. */
994         ret = clk_enable(cmt->clk);
995         if (ret < 0)
996                 goto err_clk_unprepare;
997
998         if (cmt->info->width == 16)
999                 cmt->rate = clk_get_rate(cmt->clk) / 512;
1000         else
1001                 cmt->rate = clk_get_rate(cmt->clk) / 8;
1002
1003         clk_disable(cmt->clk);
1004
1005         /* Map the memory resource(s). */
1006         ret = sh_cmt_map_memory(cmt);
1007         if (ret < 0)
1008                 goto err_clk_unprepare;
1009
1010         /* Allocate and setup the channels. */
1011         cmt->num_channels = hweight8(cmt->hw_channels);
1012         cmt->channels = kcalloc(cmt->num_channels, sizeof(*cmt->channels),
1013                                 GFP_KERNEL);
1014         if (cmt->channels == NULL) {
1015                 ret = -ENOMEM;
1016                 goto err_unmap;
1017         }
1018
1019         /*
1020          * Use the first channel as a clock event device and the second channel
1021          * as a clock source. If only one channel is available use it for both.
1022          */
1023         for (i = 0, mask = cmt->hw_channels; i < cmt->num_channels; ++i) {
1024                 unsigned int hwidx = ffs(mask) - 1;
1025                 bool clocksource = i == 1 || cmt->num_channels == 1;
1026                 bool clockevent = i == 0;
1027
1028                 ret = sh_cmt_setup_channel(&cmt->channels[i], i, hwidx,
1029                                            clockevent, clocksource, cmt);
1030                 if (ret < 0)
1031                         goto err_unmap;
1032
1033                 mask &= ~(1 << hwidx);
1034         }
1035
1036         platform_set_drvdata(pdev, cmt);
1037
1038         return 0;
1039
1040 err_unmap:
1041         kfree(cmt->channels);
1042         iounmap(cmt->mapbase);
1043 err_clk_unprepare:
1044         clk_unprepare(cmt->clk);
1045 err_clk_put:
1046         clk_put(cmt->clk);
1047         return ret;
1048 }
1049
1050 static int sh_cmt_probe(struct platform_device *pdev)
1051 {
1052         struct sh_cmt_device *cmt = platform_get_drvdata(pdev);
1053         int ret;
1054
1055         if (!is_early_platform_device(pdev)) {
1056                 pm_runtime_set_active(&pdev->dev);
1057                 pm_runtime_enable(&pdev->dev);
1058         }
1059
1060         if (cmt) {
1061                 dev_info(&pdev->dev, "kept as earlytimer\n");
1062                 goto out;
1063         }
1064
1065         cmt = kzalloc(sizeof(*cmt), GFP_KERNEL);
1066         if (cmt == NULL)
1067                 return -ENOMEM;
1068
1069         ret = sh_cmt_setup(cmt, pdev);
1070         if (ret) {
1071                 kfree(cmt);
1072                 pm_runtime_idle(&pdev->dev);
1073                 return ret;
1074         }
1075         if (is_early_platform_device(pdev))
1076                 return 0;
1077
1078  out:
1079         if (cmt->has_clockevent || cmt->has_clocksource)
1080                 pm_runtime_irq_safe(&pdev->dev);
1081         else
1082                 pm_runtime_idle(&pdev->dev);
1083
1084         return 0;
1085 }
1086
1087 static int sh_cmt_remove(struct platform_device *pdev)
1088 {
1089         return -EBUSY; /* cannot unregister clockevent and clocksource */
1090 }
1091
1092 static struct platform_driver sh_cmt_device_driver = {
1093         .probe          = sh_cmt_probe,
1094         .remove         = sh_cmt_remove,
1095         .driver         = {
1096                 .name   = "sh_cmt",
1097                 .of_match_table = of_match_ptr(sh_cmt_of_table),
1098         },
1099         .id_table       = sh_cmt_id_table,
1100 };
1101
1102 static int __init sh_cmt_init(void)
1103 {
1104         return platform_driver_register(&sh_cmt_device_driver);
1105 }
1106
1107 static void __exit sh_cmt_exit(void)
1108 {
1109         platform_driver_unregister(&sh_cmt_device_driver);
1110 }
1111
1112 early_platform_init("earlytimer", &sh_cmt_device_driver);
1113 subsys_initcall(sh_cmt_init);
1114 module_exit(sh_cmt_exit);
1115
1116 MODULE_AUTHOR("Magnus Damm");
1117 MODULE_DESCRIPTION("SuperH CMT Timer Driver");
1118 MODULE_LICENSE("GPL v2");