Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / clocksource / renesas-ostm.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Renesas Timer Support - OSTM
4  *
5  * Copyright (C) 2017 Renesas Electronics America, Inc.
6  * Copyright (C) 2017 Chris Brandt
7  */
8
9 #include <linux/of_address.h>
10 #include <linux/of_irq.h>
11 #include <linux/clk.h>
12 #include <linux/clockchips.h>
13 #include <linux/interrupt.h>
14 #include <linux/sched_clock.h>
15 #include <linux/slab.h>
16
17 /*
18  * The OSTM contains independent channels.
19  * The first OSTM channel probed will be set up as a free running
20  * clocksource. Additionally we will use this clocksource for the system
21  * schedule timer sched_clock().
22  *
23  * The second (or more) channel probed will be set up as an interrupt
24  * driven clock event.
25  */
26
27 struct ostm_device {
28         void __iomem *base;
29         unsigned long ticks_per_jiffy;
30         struct clock_event_device ced;
31 };
32
33 static void __iomem *system_clock;      /* For sched_clock() */
34
35 /* OSTM REGISTERS */
36 #define OSTM_CMP                0x000   /* RW,32 */
37 #define OSTM_CNT                0x004   /* R,32 */
38 #define OSTM_TE                 0x010   /* R,8 */
39 #define OSTM_TS                 0x014   /* W,8 */
40 #define OSTM_TT                 0x018   /* W,8 */
41 #define OSTM_CTL                0x020   /* RW,8 */
42
43 #define TE                      0x01
44 #define TS                      0x01
45 #define TT                      0x01
46 #define CTL_PERIODIC            0x00
47 #define CTL_ONESHOT             0x02
48 #define CTL_FREERUN             0x02
49
50 static struct ostm_device *ced_to_ostm(struct clock_event_device *ced)
51 {
52         return container_of(ced, struct ostm_device, ced);
53 }
54
55 static void ostm_timer_stop(struct ostm_device *ostm)
56 {
57         if (readb(ostm->base + OSTM_TE) & TE) {
58                 writeb(TT, ostm->base + OSTM_TT);
59
60                 /*
61                  * Read back the register simply to confirm the write operation
62                  * has completed since I/O writes can sometimes get queued by
63                  * the bus architecture.
64                  */
65                 while (readb(ostm->base + OSTM_TE) & TE)
66                         ;
67         }
68 }
69
70 static int __init ostm_init_clksrc(struct ostm_device *ostm, unsigned long rate)
71 {
72         /*
73          * irq not used (clock sources don't use interrupts)
74          */
75
76         ostm_timer_stop(ostm);
77
78         writel(0, ostm->base + OSTM_CMP);
79         writeb(CTL_FREERUN, ostm->base + OSTM_CTL);
80         writeb(TS, ostm->base + OSTM_TS);
81
82         return clocksource_mmio_init(ostm->base + OSTM_CNT,
83                         "ostm", rate,
84                         300, 32, clocksource_mmio_readl_up);
85 }
86
87 static u64 notrace ostm_read_sched_clock(void)
88 {
89         return readl(system_clock);
90 }
91
92 static void __init ostm_init_sched_clock(struct ostm_device *ostm,
93                         unsigned long rate)
94 {
95         system_clock = ostm->base + OSTM_CNT;
96         sched_clock_register(ostm_read_sched_clock, 32, rate);
97 }
98
99 static int ostm_clock_event_next(unsigned long delta,
100                                      struct clock_event_device *ced)
101 {
102         struct ostm_device *ostm = ced_to_ostm(ced);
103
104         ostm_timer_stop(ostm);
105
106         writel(delta, ostm->base + OSTM_CMP);
107         writeb(CTL_ONESHOT, ostm->base + OSTM_CTL);
108         writeb(TS, ostm->base + OSTM_TS);
109
110         return 0;
111 }
112
113 static int ostm_shutdown(struct clock_event_device *ced)
114 {
115         struct ostm_device *ostm = ced_to_ostm(ced);
116
117         ostm_timer_stop(ostm);
118
119         return 0;
120 }
121 static int ostm_set_periodic(struct clock_event_device *ced)
122 {
123         struct ostm_device *ostm = ced_to_ostm(ced);
124
125         if (clockevent_state_oneshot(ced) || clockevent_state_periodic(ced))
126                 ostm_timer_stop(ostm);
127
128         writel(ostm->ticks_per_jiffy - 1, ostm->base + OSTM_CMP);
129         writeb(CTL_PERIODIC, ostm->base + OSTM_CTL);
130         writeb(TS, ostm->base + OSTM_TS);
131
132         return 0;
133 }
134
135 static int ostm_set_oneshot(struct clock_event_device *ced)
136 {
137         struct ostm_device *ostm = ced_to_ostm(ced);
138
139         ostm_timer_stop(ostm);
140
141         return 0;
142 }
143
144 static irqreturn_t ostm_timer_interrupt(int irq, void *dev_id)
145 {
146         struct ostm_device *ostm = dev_id;
147
148         if (clockevent_state_oneshot(&ostm->ced))
149                 ostm_timer_stop(ostm);
150
151         /* notify clockevent layer */
152         if (ostm->ced.event_handler)
153                 ostm->ced.event_handler(&ostm->ced);
154
155         return IRQ_HANDLED;
156 }
157
158 static int __init ostm_init_clkevt(struct ostm_device *ostm, int irq,
159                         unsigned long rate)
160 {
161         struct clock_event_device *ced = &ostm->ced;
162         int ret = -ENXIO;
163
164         ret = request_irq(irq, ostm_timer_interrupt,
165                           IRQF_TIMER | IRQF_IRQPOLL,
166                           "ostm", ostm);
167         if (ret) {
168                 pr_err("ostm: failed to request irq\n");
169                 return ret;
170         }
171
172         ced->name = "ostm";
173         ced->features = CLOCK_EVT_FEAT_ONESHOT | CLOCK_EVT_FEAT_PERIODIC;
174         ced->set_state_shutdown = ostm_shutdown;
175         ced->set_state_periodic = ostm_set_periodic;
176         ced->set_state_oneshot = ostm_set_oneshot;
177         ced->set_next_event = ostm_clock_event_next;
178         ced->shift = 32;
179         ced->rating = 300;
180         ced->cpumask = cpumask_of(0);
181         clockevents_config_and_register(ced, rate, 0xf, 0xffffffff);
182
183         return 0;
184 }
185
186 static int __init ostm_init(struct device_node *np)
187 {
188         struct ostm_device *ostm;
189         int ret = -EFAULT;
190         struct clk *ostm_clk = NULL;
191         int irq;
192         unsigned long rate;
193
194         ostm = kzalloc(sizeof(*ostm), GFP_KERNEL);
195         if (!ostm)
196                 return -ENOMEM;
197
198         ostm->base = of_iomap(np, 0);
199         if (!ostm->base) {
200                 pr_err("ostm: failed to remap I/O memory\n");
201                 goto err;
202         }
203
204         irq = irq_of_parse_and_map(np, 0);
205         if (irq < 0) {
206                 pr_err("ostm: Failed to get irq\n");
207                 goto err;
208         }
209
210         ostm_clk = of_clk_get(np, 0);
211         if (IS_ERR(ostm_clk)) {
212                 pr_err("ostm: Failed to get clock\n");
213                 ostm_clk = NULL;
214                 goto err;
215         }
216
217         ret = clk_prepare_enable(ostm_clk);
218         if (ret) {
219                 pr_err("ostm: Failed to enable clock\n");
220                 goto err;
221         }
222
223         rate = clk_get_rate(ostm_clk);
224         ostm->ticks_per_jiffy = DIV_ROUND_CLOSEST(rate, HZ);
225
226         /*
227          * First probed device will be used as system clocksource. Any
228          * additional devices will be used as clock events.
229          */
230         if (!system_clock) {
231                 ret = ostm_init_clksrc(ostm, rate);
232
233                 if (!ret) {
234                         ostm_init_sched_clock(ostm, rate);
235                         pr_info("ostm: used for clocksource\n");
236                 }
237
238         } else {
239                 ret = ostm_init_clkevt(ostm, irq, rate);
240
241                 if (!ret)
242                         pr_info("ostm: used for clock events\n");
243         }
244
245 err:
246         if (ret) {
247                 clk_disable_unprepare(ostm_clk);
248                 iounmap(ostm->base);
249                 kfree(ostm);
250                 return ret;
251         }
252
253         return 0;
254 }
255
256 TIMER_OF_DECLARE(ostm, "renesas,ostm", ostm_init);