Linux-libre 4.14.132-gnu
[librecmc/linux-libre.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include "ipmi_dmi.h"
65 #include <linux/dmi.h>
66 #include <linux/string.h>
67 #include <linux/ctype.h>
68 #include <linux/of_device.h>
69 #include <linux/of_platform.h>
70 #include <linux/of_address.h>
71 #include <linux/of_irq.h>
72 #include <linux/acpi.h>
73
74 #ifdef CONFIG_PARISC
75 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
76 #include <asm/parisc-device.h>
77 #endif
78
79 #define PFX "ipmi_si: "
80
81 /* Measure times between events in the driver. */
82 #undef DEBUG_TIMING
83
84 /* Call every 10 ms. */
85 #define SI_TIMEOUT_TIME_USEC    10000
86 #define SI_USEC_PER_JIFFY       (1000000/HZ)
87 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
88 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
89                                       short timeout */
90
91 enum si_intf_state {
92         SI_NORMAL,
93         SI_GETTING_FLAGS,
94         SI_GETTING_EVENTS,
95         SI_CLEARING_FLAGS,
96         SI_GETTING_MESSAGES,
97         SI_CHECKING_ENABLES,
98         SI_SETTING_ENABLES
99         /* FIXME - add watchdog stuff. */
100 };
101
102 /* Some BT-specific defines we need here. */
103 #define IPMI_BT_INTMASK_REG             2
104 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
105 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
106
107 enum si_type {
108         SI_KCS, SI_SMIC, SI_BT
109 };
110
111 static const char * const si_to_str[] = { "kcs", "smic", "bt" };
112
113 #define DEVICE_NAME "ipmi_si"
114
115 static struct platform_driver ipmi_driver;
116
117 /*
118  * Indexes into stats[] in smi_info below.
119  */
120 enum si_stat_indexes {
121         /*
122          * Number of times the driver requested a timer while an operation
123          * was in progress.
124          */
125         SI_STAT_short_timeouts = 0,
126
127         /*
128          * Number of times the driver requested a timer while nothing was in
129          * progress.
130          */
131         SI_STAT_long_timeouts,
132
133         /* Number of times the interface was idle while being polled. */
134         SI_STAT_idles,
135
136         /* Number of interrupts the driver handled. */
137         SI_STAT_interrupts,
138
139         /* Number of time the driver got an ATTN from the hardware. */
140         SI_STAT_attentions,
141
142         /* Number of times the driver requested flags from the hardware. */
143         SI_STAT_flag_fetches,
144
145         /* Number of times the hardware didn't follow the state machine. */
146         SI_STAT_hosed_count,
147
148         /* Number of completed messages. */
149         SI_STAT_complete_transactions,
150
151         /* Number of IPMI events received from the hardware. */
152         SI_STAT_events,
153
154         /* Number of watchdog pretimeouts. */
155         SI_STAT_watchdog_pretimeouts,
156
157         /* Number of asynchronous messages received. */
158         SI_STAT_incoming_messages,
159
160
161         /* This *must* remain last, add new values above this. */
162         SI_NUM_STATS
163 };
164
165 struct smi_info {
166         int                    intf_num;
167         ipmi_smi_t             intf;
168         struct si_sm_data      *si_sm;
169         const struct si_sm_handlers *handlers;
170         enum si_type           si_type;
171         spinlock_t             si_lock;
172         struct ipmi_smi_msg    *waiting_msg;
173         struct ipmi_smi_msg    *curr_msg;
174         enum si_intf_state     si_state;
175
176         /*
177          * Used to handle the various types of I/O that can occur with
178          * IPMI
179          */
180         struct si_sm_io io;
181         int (*io_setup)(struct smi_info *info);
182         void (*io_cleanup)(struct smi_info *info);
183         int (*irq_setup)(struct smi_info *info);
184         void (*irq_cleanup)(struct smi_info *info);
185         unsigned int io_size;
186         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
187         void (*addr_source_cleanup)(struct smi_info *info);
188         void *addr_source_data;
189
190         /*
191          * Per-OEM handler, called from handle_flags().  Returns 1
192          * when handle_flags() needs to be re-run or 0 indicating it
193          * set si_state itself.
194          */
195         int (*oem_data_avail_handler)(struct smi_info *smi_info);
196
197         /*
198          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
199          * is set to hold the flags until we are done handling everything
200          * from the flags.
201          */
202 #define RECEIVE_MSG_AVAIL       0x01
203 #define EVENT_MSG_BUFFER_FULL   0x02
204 #define WDT_PRE_TIMEOUT_INT     0x08
205 #define OEM0_DATA_AVAIL     0x20
206 #define OEM1_DATA_AVAIL     0x40
207 #define OEM2_DATA_AVAIL     0x80
208 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
209                              OEM1_DATA_AVAIL | \
210                              OEM2_DATA_AVAIL)
211         unsigned char       msg_flags;
212
213         /* Does the BMC have an event buffer? */
214         bool                has_event_buffer;
215
216         /*
217          * If set to true, this will request events the next time the
218          * state machine is idle.
219          */
220         atomic_t            req_events;
221
222         /*
223          * If true, run the state machine to completion on every send
224          * call.  Generally used after a panic to make sure stuff goes
225          * out.
226          */
227         bool                run_to_completion;
228
229         /* The I/O port of an SI interface. */
230         int                 port;
231
232         /*
233          * The space between start addresses of the two ports.  For
234          * instance, if the first port is 0xca2 and the spacing is 4, then
235          * the second port is 0xca6.
236          */
237         unsigned int        spacing;
238
239         /* zero if no irq; */
240         int                 irq;
241
242         /* The timer for this si. */
243         struct timer_list   si_timer;
244
245         /* This flag is set, if the timer can be set */
246         bool                timer_can_start;
247
248         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
249         bool                timer_running;
250
251         /* The time (in jiffies) the last timeout occurred at. */
252         unsigned long       last_timeout_jiffies;
253
254         /* Are we waiting for the events, pretimeouts, received msgs? */
255         atomic_t            need_watch;
256
257         /*
258          * The driver will disable interrupts when it gets into a
259          * situation where it cannot handle messages due to lack of
260          * memory.  Once that situation clears up, it will re-enable
261          * interrupts.
262          */
263         bool interrupt_disabled;
264
265         /*
266          * Does the BMC support events?
267          */
268         bool supports_event_msg_buff;
269
270         /*
271          * Can we disable interrupts the global enables receive irq
272          * bit?  There are currently two forms of brokenness, some
273          * systems cannot disable the bit (which is technically within
274          * the spec but a bad idea) and some systems have the bit
275          * forced to zero even though interrupts work (which is
276          * clearly outside the spec).  The next bool tells which form
277          * of brokenness is present.
278          */
279         bool cannot_disable_irq;
280
281         /*
282          * Some systems are broken and cannot set the irq enable
283          * bit, even if they support interrupts.
284          */
285         bool irq_enable_broken;
286
287         /*
288          * Did we get an attention that we did not handle?
289          */
290         bool got_attn;
291
292         /* From the get device id response... */
293         struct ipmi_device_id device_id;
294
295         /* Driver model stuff. */
296         struct device *dev;
297         struct platform_device *pdev;
298
299         /*
300          * True if we allocated the device, false if it came from
301          * someplace else (like PCI).
302          */
303         bool dev_registered;
304
305         /* Slave address, could be reported from DMI. */
306         unsigned char slave_addr;
307
308         /* Counters and things for the proc filesystem. */
309         atomic_t stats[SI_NUM_STATS];
310
311         struct task_struct *thread;
312
313         struct list_head link;
314         union ipmi_smi_info_union addr_info;
315 };
316
317 #define smi_inc_stat(smi, stat) \
318         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
319 #define smi_get_stat(smi, stat) \
320         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
321
322 #define SI_MAX_PARMS 4
323
324 static int force_kipmid[SI_MAX_PARMS];
325 static int num_force_kipmid;
326 #ifdef CONFIG_PCI
327 static bool pci_registered;
328 #endif
329 #ifdef CONFIG_PARISC
330 static bool parisc_registered;
331 #endif
332
333 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
334 static int num_max_busy_us;
335
336 static bool unload_when_empty = true;
337
338 static int add_smi(struct smi_info *smi);
339 static int try_smi_init(struct smi_info *smi);
340 static void cleanup_one_si(struct smi_info *to_clean);
341 static void cleanup_ipmi_si(void);
342
343 #ifdef DEBUG_TIMING
344 void debug_timestamp(char *msg)
345 {
346         struct timespec64 t;
347
348         getnstimeofday64(&t);
349         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
350 }
351 #else
352 #define debug_timestamp(x)
353 #endif
354
355 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
356 static int register_xaction_notifier(struct notifier_block *nb)
357 {
358         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
359 }
360
361 static void deliver_recv_msg(struct smi_info *smi_info,
362                              struct ipmi_smi_msg *msg)
363 {
364         /* Deliver the message to the upper layer. */
365         if (smi_info->intf)
366                 ipmi_smi_msg_received(smi_info->intf, msg);
367         else
368                 ipmi_free_smi_msg(msg);
369 }
370
371 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
372 {
373         struct ipmi_smi_msg *msg = smi_info->curr_msg;
374
375         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
376                 cCode = IPMI_ERR_UNSPECIFIED;
377         /* else use it as is */
378
379         /* Make it a response */
380         msg->rsp[0] = msg->data[0] | 4;
381         msg->rsp[1] = msg->data[1];
382         msg->rsp[2] = cCode;
383         msg->rsp_size = 3;
384
385         smi_info->curr_msg = NULL;
386         deliver_recv_msg(smi_info, msg);
387 }
388
389 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
390 {
391         int              rv;
392
393         if (!smi_info->waiting_msg) {
394                 smi_info->curr_msg = NULL;
395                 rv = SI_SM_IDLE;
396         } else {
397                 int err;
398
399                 smi_info->curr_msg = smi_info->waiting_msg;
400                 smi_info->waiting_msg = NULL;
401                 debug_timestamp("Start2");
402                 err = atomic_notifier_call_chain(&xaction_notifier_list,
403                                 0, smi_info);
404                 if (err & NOTIFY_STOP_MASK) {
405                         rv = SI_SM_CALL_WITHOUT_DELAY;
406                         goto out;
407                 }
408                 err = smi_info->handlers->start_transaction(
409                         smi_info->si_sm,
410                         smi_info->curr_msg->data,
411                         smi_info->curr_msg->data_size);
412                 if (err)
413                         return_hosed_msg(smi_info, err);
414
415                 rv = SI_SM_CALL_WITHOUT_DELAY;
416         }
417 out:
418         return rv;
419 }
420
421 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
422 {
423         if (!smi_info->timer_can_start)
424                 return;
425         smi_info->last_timeout_jiffies = jiffies;
426         mod_timer(&smi_info->si_timer, new_val);
427         smi_info->timer_running = true;
428 }
429
430 /*
431  * Start a new message and (re)start the timer and thread.
432  */
433 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
434                           unsigned int size)
435 {
436         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
437
438         if (smi_info->thread)
439                 wake_up_process(smi_info->thread);
440
441         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
442 }
443
444 static void start_check_enables(struct smi_info *smi_info)
445 {
446         unsigned char msg[2];
447
448         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
449         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
450
451         start_new_msg(smi_info, msg, 2);
452         smi_info->si_state = SI_CHECKING_ENABLES;
453 }
454
455 static void start_clear_flags(struct smi_info *smi_info)
456 {
457         unsigned char msg[3];
458
459         /* Make sure the watchdog pre-timeout flag is not set at startup. */
460         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
461         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
462         msg[2] = WDT_PRE_TIMEOUT_INT;
463
464         start_new_msg(smi_info, msg, 3);
465         smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472         smi_info->curr_msg->data_size = 2;
473
474         start_new_msg(smi_info, smi_info->curr_msg->data,
475                       smi_info->curr_msg->data_size);
476         smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483         smi_info->curr_msg->data_size = 2;
484
485         start_new_msg(smi_info, smi_info->curr_msg->data,
486                       smi_info->curr_msg->data_size);
487         smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info)
500 {
501         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502                 smi_info->interrupt_disabled = true;
503                 start_check_enables(smi_info);
504                 return true;
505         }
506         return false;
507 }
508
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512                 smi_info->interrupt_disabled = false;
513                 start_check_enables(smi_info);
514                 return true;
515         }
516         return false;
517 }
518
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527         struct ipmi_smi_msg *msg;
528
529         msg = ipmi_alloc_smi_msg();
530         if (!msg) {
531                 if (!disable_si_irq(smi_info))
532                         smi_info->si_state = SI_NORMAL;
533         } else if (enable_si_irq(smi_info)) {
534                 ipmi_free_smi_msg(msg);
535                 msg = NULL;
536         }
537         return msg;
538 }
539
540 static void handle_flags(struct smi_info *smi_info)
541 {
542 retry:
543         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544                 /* Watchdog pre-timeout */
545                 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547                 start_clear_flags(smi_info);
548                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549                 if (smi_info->intf)
550                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
551         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552                 /* Messages available. */
553                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554                 if (!smi_info->curr_msg)
555                         return;
556
557                 start_getting_msg_queue(smi_info);
558         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559                 /* Events available. */
560                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561                 if (!smi_info->curr_msg)
562                         return;
563
564                 start_getting_events(smi_info);
565         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566                    smi_info->oem_data_avail_handler) {
567                 if (smi_info->oem_data_avail_handler(smi_info))
568                         goto retry;
569         } else
570                 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577                              IPMI_BMC_EVT_MSG_INTR)
578
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580                                  bool *irq_on)
581 {
582         u8 enables = 0;
583
584         if (smi_info->supports_event_msg_buff)
585                 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588              smi_info->cannot_disable_irq) &&
589             !smi_info->irq_enable_broken)
590                 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592         if (smi_info->supports_event_msg_buff &&
593             smi_info->irq && !smi_info->interrupt_disabled &&
594             !smi_info->irq_enable_broken)
595                 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599         return enables;
600 }
601
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608         if ((bool)irqstate == irq_on)
609                 return;
610
611         if (irq_on)
612                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614         else
615                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620         struct ipmi_smi_msg *msg;
621
622         debug_timestamp("Done");
623         switch (smi_info->si_state) {
624         case SI_NORMAL:
625                 if (!smi_info->curr_msg)
626                         break;
627
628                 smi_info->curr_msg->rsp_size
629                         = smi_info->handlers->get_result(
630                                 smi_info->si_sm,
631                                 smi_info->curr_msg->rsp,
632                                 IPMI_MAX_MSG_LENGTH);
633
634                 /*
635                  * Do this here becase deliver_recv_msg() releases the
636                  * lock, and a new message can be put in during the
637                  * time the lock is released.
638                  */
639                 msg = smi_info->curr_msg;
640                 smi_info->curr_msg = NULL;
641                 deliver_recv_msg(smi_info, msg);
642                 break;
643
644         case SI_GETTING_FLAGS:
645         {
646                 unsigned char msg[4];
647                 unsigned int  len;
648
649                 /* We got the flags from the SMI, now handle them. */
650                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651                 if (msg[2] != 0) {
652                         /* Error fetching flags, just give up for now. */
653                         smi_info->si_state = SI_NORMAL;
654                 } else if (len < 4) {
655                         /*
656                          * Hmm, no flags.  That's technically illegal, but
657                          * don't use uninitialized data.
658                          */
659                         smi_info->si_state = SI_NORMAL;
660                 } else {
661                         smi_info->msg_flags = msg[3];
662                         handle_flags(smi_info);
663                 }
664                 break;
665         }
666
667         case SI_CLEARING_FLAGS:
668         {
669                 unsigned char msg[3];
670
671                 /* We cleared the flags. */
672                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673                 if (msg[2] != 0) {
674                         /* Error clearing flags */
675                         dev_warn(smi_info->dev,
676                                  "Error clearing flags: %2.2x\n", msg[2]);
677                 }
678                 smi_info->si_state = SI_NORMAL;
679                 break;
680         }
681
682         case SI_GETTING_EVENTS:
683         {
684                 smi_info->curr_msg->rsp_size
685                         = smi_info->handlers->get_result(
686                                 smi_info->si_sm,
687                                 smi_info->curr_msg->rsp,
688                                 IPMI_MAX_MSG_LENGTH);
689
690                 /*
691                  * Do this here becase deliver_recv_msg() releases the
692                  * lock, and a new message can be put in during the
693                  * time the lock is released.
694                  */
695                 msg = smi_info->curr_msg;
696                 smi_info->curr_msg = NULL;
697                 if (msg->rsp[2] != 0) {
698                         /* Error getting event, probably done. */
699                         msg->done(msg);
700
701                         /* Take off the event flag. */
702                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703                         handle_flags(smi_info);
704                 } else {
705                         smi_inc_stat(smi_info, events);
706
707                         /*
708                          * Do this before we deliver the message
709                          * because delivering the message releases the
710                          * lock and something else can mess with the
711                          * state.
712                          */
713                         handle_flags(smi_info);
714
715                         deliver_recv_msg(smi_info, msg);
716                 }
717                 break;
718         }
719
720         case SI_GETTING_MESSAGES:
721         {
722                 smi_info->curr_msg->rsp_size
723                         = smi_info->handlers->get_result(
724                                 smi_info->si_sm,
725                                 smi_info->curr_msg->rsp,
726                                 IPMI_MAX_MSG_LENGTH);
727
728                 /*
729                  * Do this here becase deliver_recv_msg() releases the
730                  * lock, and a new message can be put in during the
731                  * time the lock is released.
732                  */
733                 msg = smi_info->curr_msg;
734                 smi_info->curr_msg = NULL;
735                 if (msg->rsp[2] != 0) {
736                         /* Error getting event, probably done. */
737                         msg->done(msg);
738
739                         /* Take off the msg flag. */
740                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741                         handle_flags(smi_info);
742                 } else {
743                         smi_inc_stat(smi_info, incoming_messages);
744
745                         /*
746                          * Do this before we deliver the message
747                          * because delivering the message releases the
748                          * lock and something else can mess with the
749                          * state.
750                          */
751                         handle_flags(smi_info);
752
753                         deliver_recv_msg(smi_info, msg);
754                 }
755                 break;
756         }
757
758         case SI_CHECKING_ENABLES:
759         {
760                 unsigned char msg[4];
761                 u8 enables;
762                 bool irq_on;
763
764                 /* We got the flags from the SMI, now handle them. */
765                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766                 if (msg[2] != 0) {
767                         dev_warn(smi_info->dev,
768                                  "Couldn't get irq info: %x.\n", msg[2]);
769                         dev_warn(smi_info->dev,
770                                  "Maybe ok, but ipmi might run very slowly.\n");
771                         smi_info->si_state = SI_NORMAL;
772                         break;
773                 }
774                 enables = current_global_enables(smi_info, 0, &irq_on);
775                 if (smi_info->si_type == SI_BT)
776                         /* BT has its own interrupt enable bit. */
777                         check_bt_irq(smi_info, irq_on);
778                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779                         /* Enables are not correct, fix them. */
780                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783                         smi_info->handlers->start_transaction(
784                                 smi_info->si_sm, msg, 3);
785                         smi_info->si_state = SI_SETTING_ENABLES;
786                 } else if (smi_info->supports_event_msg_buff) {
787                         smi_info->curr_msg = ipmi_alloc_smi_msg();
788                         if (!smi_info->curr_msg) {
789                                 smi_info->si_state = SI_NORMAL;
790                                 break;
791                         }
792                         start_getting_events(smi_info);
793                 } else {
794                         smi_info->si_state = SI_NORMAL;
795                 }
796                 break;
797         }
798
799         case SI_SETTING_ENABLES:
800         {
801                 unsigned char msg[4];
802
803                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804                 if (msg[2] != 0)
805                         dev_warn(smi_info->dev,
806                                  "Could not set the global enables: 0x%x.\n",
807                                  msg[2]);
808
809                 if (smi_info->supports_event_msg_buff) {
810                         smi_info->curr_msg = ipmi_alloc_smi_msg();
811                         if (!smi_info->curr_msg) {
812                                 smi_info->si_state = SI_NORMAL;
813                                 break;
814                         }
815                         start_getting_events(smi_info);
816                 } else {
817                         smi_info->si_state = SI_NORMAL;
818                 }
819                 break;
820         }
821         }
822 }
823
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830                                            int time)
831 {
832         enum si_sm_result si_sm_result;
833
834 restart:
835         /*
836          * There used to be a loop here that waited a little while
837          * (around 25us) before giving up.  That turned out to be
838          * pointless, the minimum delays I was seeing were in the 300us
839          * range, which is far too long to wait in an interrupt.  So
840          * we just run until the state machine tells us something
841          * happened or it needs a delay.
842          */
843         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844         time = 0;
845         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849                 smi_inc_stat(smi_info, complete_transactions);
850
851                 handle_transaction_done(smi_info);
852                 goto restart;
853         } else if (si_sm_result == SI_SM_HOSED) {
854                 smi_inc_stat(smi_info, hosed_count);
855
856                 /*
857                  * Do the before return_hosed_msg, because that
858                  * releases the lock.
859                  */
860                 smi_info->si_state = SI_NORMAL;
861                 if (smi_info->curr_msg != NULL) {
862                         /*
863                          * If we were handling a user message, format
864                          * a response to send to the upper layer to
865                          * tell it about the error.
866                          */
867                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868                 }
869                 goto restart;
870         }
871
872         /*
873          * We prefer handling attn over new messages.  But don't do
874          * this if there is not yet an upper layer to handle anything.
875          */
876         if (likely(smi_info->intf) &&
877             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878                 unsigned char msg[2];
879
880                 if (smi_info->si_state != SI_NORMAL) {
881                         /*
882                          * We got an ATTN, but we are doing something else.
883                          * Handle the ATTN later.
884                          */
885                         smi_info->got_attn = true;
886                 } else {
887                         smi_info->got_attn = false;
888                         smi_inc_stat(smi_info, attentions);
889
890                         /*
891                          * Got a attn, send down a get message flags to see
892                          * what's causing it.  It would be better to handle
893                          * this in the upper layer, but due to the way
894                          * interrupts work with the SMI, that's not really
895                          * possible.
896                          */
897                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900                         start_new_msg(smi_info, msg, 2);
901                         smi_info->si_state = SI_GETTING_FLAGS;
902                         goto restart;
903                 }
904         }
905
906         /* If we are currently idle, try to start the next message. */
907         if (si_sm_result == SI_SM_IDLE) {
908                 smi_inc_stat(smi_info, idles);
909
910                 si_sm_result = start_next_msg(smi_info);
911                 if (si_sm_result != SI_SM_IDLE)
912                         goto restart;
913         }
914
915         if ((si_sm_result == SI_SM_IDLE)
916             && (atomic_read(&smi_info->req_events))) {
917                 /*
918                  * We are idle and the upper layer requested that I fetch
919                  * events, so do so.
920                  */
921                 atomic_set(&smi_info->req_events, 0);
922
923                 /*
924                  * Take this opportunity to check the interrupt and
925                  * message enable state for the BMC.  The BMC can be
926                  * asynchronously reset, and may thus get interrupts
927                  * disable and messages disabled.
928                  */
929                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930                         start_check_enables(smi_info);
931                 } else {
932                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933                         if (!smi_info->curr_msg)
934                                 goto out;
935
936                         start_getting_events(smi_info);
937                 }
938                 goto restart;
939         }
940
941         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942                 /* Ok it if fails, the timer will just go off. */
943                 if (del_timer(&smi_info->si_timer))
944                         smi_info->timer_running = false;
945         }
946
947 out:
948         return si_sm_result;
949 }
950
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956                 if (smi_info->thread)
957                         wake_up_process(smi_info->thread);
958
959                 start_next_msg(smi_info);
960                 smi_event_handler(smi_info, 0);
961         }
962 }
963
964 static void flush_messages(void *send_info)
965 {
966         struct smi_info *smi_info = send_info;
967         enum si_sm_result result;
968
969         /*
970          * Currently, this function is called only in run-to-completion
971          * mode.  This means we are single-threaded, no need for locks.
972          */
973         result = smi_event_handler(smi_info, 0);
974         while (result != SI_SM_IDLE) {
975                 udelay(SI_SHORT_TIMEOUT_USEC);
976                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977         }
978 }
979
980 static void sender(void                *send_info,
981                    struct ipmi_smi_msg *msg)
982 {
983         struct smi_info   *smi_info = send_info;
984         unsigned long     flags;
985
986         debug_timestamp("Enqueue");
987
988         if (smi_info->run_to_completion) {
989                 /*
990                  * If we are running to completion, start it.  Upper
991                  * layer will call flush_messages to clear it out.
992                  */
993                 smi_info->waiting_msg = msg;
994                 return;
995         }
996
997         spin_lock_irqsave(&smi_info->si_lock, flags);
998         /*
999          * The following two lines don't need to be under the lock for
1000          * the lock's sake, but they do need SMP memory barriers to
1001          * avoid getting things out of order.  We are already claiming
1002          * the lock, anyway, so just do it under the lock to avoid the
1003          * ordering problem.
1004          */
1005         BUG_ON(smi_info->waiting_msg);
1006         smi_info->waiting_msg = msg;
1007         check_start_timer_thread(smi_info);
1008         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013         struct smi_info   *smi_info = send_info;
1014
1015         smi_info->run_to_completion = i_run_to_completion;
1016         if (i_run_to_completion)
1017                 flush_messages(smi_info);
1018 }
1019
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027         ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031         return ts->tv_nsec != -1;
1032 }
1033
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035                                         const struct smi_info *smi_info,
1036                                         struct timespec64 *busy_until)
1037 {
1038         unsigned int max_busy_us = 0;
1039
1040         if (smi_info->intf_num < num_max_busy_us)
1041                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043                 ipmi_si_set_not_busy(busy_until);
1044         else if (!ipmi_si_is_busy(busy_until)) {
1045                 getnstimeofday64(busy_until);
1046                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047         } else {
1048                 struct timespec64 now;
1049
1050                 getnstimeofday64(&now);
1051                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052                         ipmi_si_set_not_busy(busy_until);
1053                         return 0;
1054                 }
1055         }
1056         return 1;
1057 }
1058
1059
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071         struct smi_info *smi_info = data;
1072         unsigned long flags;
1073         enum si_sm_result smi_result;
1074         struct timespec64 busy_until;
1075
1076         ipmi_si_set_not_busy(&busy_until);
1077         set_user_nice(current, MAX_NICE);
1078         while (!kthread_should_stop()) {
1079                 int busy_wait;
1080
1081                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082                 smi_result = smi_event_handler(smi_info, 0);
1083
1084                 /*
1085                  * If the driver is doing something, there is a possible
1086                  * race with the timer.  If the timer handler see idle,
1087                  * and the thread here sees something else, the timer
1088                  * handler won't restart the timer even though it is
1089                  * required.  So start it here if necessary.
1090                  */
1091                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096                                                   &busy_until);
1097                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY)
1098                         ; /* do nothing */
1099                 else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait)
1100                         schedule();
1101                 else if (smi_result == SI_SM_IDLE) {
1102                         if (atomic_read(&smi_info->need_watch)) {
1103                                 schedule_timeout_interruptible(100);
1104                         } else {
1105                                 /* Wait to be woken up when we are needed. */
1106                                 __set_current_state(TASK_INTERRUPTIBLE);
1107                                 schedule();
1108                         }
1109                 } else
1110                         schedule_timeout_interruptible(1);
1111         }
1112         return 0;
1113 }
1114
1115
1116 static void poll(void *send_info)
1117 {
1118         struct smi_info *smi_info = send_info;
1119         unsigned long flags = 0;
1120         bool run_to_completion = smi_info->run_to_completion;
1121
1122         /*
1123          * Make sure there is some delay in the poll loop so we can
1124          * drive time forward and timeout things.
1125          */
1126         udelay(10);
1127         if (!run_to_completion)
1128                 spin_lock_irqsave(&smi_info->si_lock, flags);
1129         smi_event_handler(smi_info, 10);
1130         if (!run_to_completion)
1131                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1132 }
1133
1134 static void request_events(void *send_info)
1135 {
1136         struct smi_info *smi_info = send_info;
1137
1138         if (!smi_info->has_event_buffer)
1139                 return;
1140
1141         atomic_set(&smi_info->req_events, 1);
1142 }
1143
1144 static void set_need_watch(void *send_info, bool enable)
1145 {
1146         struct smi_info *smi_info = send_info;
1147         unsigned long flags;
1148
1149         atomic_set(&smi_info->need_watch, enable);
1150         spin_lock_irqsave(&smi_info->si_lock, flags);
1151         check_start_timer_thread(smi_info);
1152         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1153 }
1154
1155 static int initialized;
1156
1157 static void smi_timeout(unsigned long data)
1158 {
1159         struct smi_info   *smi_info = (struct smi_info *) data;
1160         enum si_sm_result smi_result;
1161         unsigned long     flags;
1162         unsigned long     jiffies_now;
1163         long              time_diff;
1164         long              timeout;
1165
1166         spin_lock_irqsave(&(smi_info->si_lock), flags);
1167         debug_timestamp("Timer");
1168
1169         jiffies_now = jiffies;
1170         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1171                      * SI_USEC_PER_JIFFY);
1172         smi_result = smi_event_handler(smi_info, time_diff);
1173
1174         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1175                 /* Running with interrupts, only do long timeouts. */
1176                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1177                 smi_inc_stat(smi_info, long_timeouts);
1178                 goto do_mod_timer;
1179         }
1180
1181         /*
1182          * If the state machine asks for a short delay, then shorten
1183          * the timer timeout.
1184          */
1185         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1186                 smi_inc_stat(smi_info, short_timeouts);
1187                 timeout = jiffies + 1;
1188         } else {
1189                 smi_inc_stat(smi_info, long_timeouts);
1190                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1191         }
1192
1193 do_mod_timer:
1194         if (smi_result != SI_SM_IDLE)
1195                 smi_mod_timer(smi_info, timeout);
1196         else
1197                 smi_info->timer_running = false;
1198         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1199 }
1200
1201 static irqreturn_t si_irq_handler(int irq, void *data)
1202 {
1203         struct smi_info *smi_info = data;
1204         unsigned long   flags;
1205
1206         spin_lock_irqsave(&(smi_info->si_lock), flags);
1207
1208         smi_inc_stat(smi_info, interrupts);
1209
1210         debug_timestamp("Interrupt");
1211
1212         smi_event_handler(smi_info, 0);
1213         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1214         return IRQ_HANDLED;
1215 }
1216
1217 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1218 {
1219         struct smi_info *smi_info = data;
1220         /* We need to clear the IRQ flag for the BT interface. */
1221         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1222                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1223                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1224         return si_irq_handler(irq, data);
1225 }
1226
1227 static int smi_start_processing(void       *send_info,
1228                                 ipmi_smi_t intf)
1229 {
1230         struct smi_info *new_smi = send_info;
1231         int             enable = 0;
1232
1233         new_smi->intf = intf;
1234
1235         /* Set up the timer that drives the interface. */
1236         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1237         new_smi->timer_can_start = true;
1238         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1239
1240         /* Try to claim any interrupts. */
1241         if (new_smi->irq_setup)
1242                 new_smi->irq_setup(new_smi);
1243
1244         /*
1245          * Check if the user forcefully enabled the daemon.
1246          */
1247         if (new_smi->intf_num < num_force_kipmid)
1248                 enable = force_kipmid[new_smi->intf_num];
1249         /*
1250          * The BT interface is efficient enough to not need a thread,
1251          * and there is no need for a thread if we have interrupts.
1252          */
1253         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1254                 enable = 1;
1255
1256         if (enable) {
1257                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1258                                               "kipmi%d", new_smi->intf_num);
1259                 if (IS_ERR(new_smi->thread)) {
1260                         dev_notice(new_smi->dev, "Could not start"
1261                                    " kernel thread due to error %ld, only using"
1262                                    " timers to drive the interface\n",
1263                                    PTR_ERR(new_smi->thread));
1264                         new_smi->thread = NULL;
1265                 }
1266         }
1267
1268         return 0;
1269 }
1270
1271 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1272 {
1273         struct smi_info *smi = send_info;
1274
1275         data->addr_src = smi->addr_source;
1276         data->dev = smi->dev;
1277         data->addr_info = smi->addr_info;
1278         get_device(smi->dev);
1279
1280         return 0;
1281 }
1282
1283 static void set_maintenance_mode(void *send_info, bool enable)
1284 {
1285         struct smi_info   *smi_info = send_info;
1286
1287         if (!enable)
1288                 atomic_set(&smi_info->req_events, 0);
1289 }
1290
1291 static const struct ipmi_smi_handlers handlers = {
1292         .owner                  = THIS_MODULE,
1293         .start_processing       = smi_start_processing,
1294         .get_smi_info           = get_smi_info,
1295         .sender                 = sender,
1296         .request_events         = request_events,
1297         .set_need_watch         = set_need_watch,
1298         .set_maintenance_mode   = set_maintenance_mode,
1299         .set_run_to_completion  = set_run_to_completion,
1300         .flush_messages         = flush_messages,
1301         .poll                   = poll,
1302 };
1303
1304 /*
1305  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1306  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1307  */
1308
1309 static LIST_HEAD(smi_infos);
1310 static DEFINE_MUTEX(smi_infos_lock);
1311 static int smi_num; /* Used to sequence the SMIs */
1312
1313 #define DEFAULT_REGSPACING      1
1314 #define DEFAULT_REGSIZE         1
1315
1316 #ifdef CONFIG_ACPI
1317 static bool          si_tryacpi = true;
1318 #endif
1319 #ifdef CONFIG_DMI
1320 static bool          si_trydmi = true;
1321 #endif
1322 static bool          si_tryplatform = true;
1323 #ifdef CONFIG_PCI
1324 static bool          si_trypci = true;
1325 #endif
1326 static char          *si_type[SI_MAX_PARMS];
1327 #define MAX_SI_TYPE_STR 30
1328 static char          si_type_str[MAX_SI_TYPE_STR];
1329 static unsigned long addrs[SI_MAX_PARMS];
1330 static unsigned int num_addrs;
1331 static unsigned int  ports[SI_MAX_PARMS];
1332 static unsigned int num_ports;
1333 static int           irqs[SI_MAX_PARMS];
1334 static unsigned int num_irqs;
1335 static int           regspacings[SI_MAX_PARMS];
1336 static unsigned int num_regspacings;
1337 static int           regsizes[SI_MAX_PARMS];
1338 static unsigned int num_regsizes;
1339 static int           regshifts[SI_MAX_PARMS];
1340 static unsigned int num_regshifts;
1341 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1342 static unsigned int num_slave_addrs;
1343
1344 #define IPMI_IO_ADDR_SPACE  0
1345 #define IPMI_MEM_ADDR_SPACE 1
1346 static const char * const addr_space_to_str[] = { "i/o", "mem" };
1347
1348 static int hotmod_handler(const char *val, struct kernel_param *kp);
1349
1350 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1351 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1352                  " Documentation/IPMI.txt in the kernel sources for the"
1353                  " gory details.");
1354
1355 #ifdef CONFIG_ACPI
1356 module_param_named(tryacpi, si_tryacpi, bool, 0);
1357 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1358                  " default scan of the interfaces identified via ACPI");
1359 #endif
1360 #ifdef CONFIG_DMI
1361 module_param_named(trydmi, si_trydmi, bool, 0);
1362 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1363                  " default scan of the interfaces identified via DMI");
1364 #endif
1365 module_param_named(tryplatform, si_tryplatform, bool, 0);
1366 MODULE_PARM_DESC(tryplatform, "Setting this to zero will disable the"
1367                  " default scan of the interfaces identified via platform"
1368                  " interfaces like openfirmware");
1369 #ifdef CONFIG_PCI
1370 module_param_named(trypci, si_trypci, bool, 0);
1371 MODULE_PARM_DESC(trypci, "Setting this to zero will disable the"
1372                  " default scan of the interfaces identified via pci");
1373 #endif
1374 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1375 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1376                  " interface separated by commas.  The types are 'kcs',"
1377                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1378                  " the first interface to kcs and the second to bt");
1379 module_param_hw_array(addrs, ulong, iomem, &num_addrs, 0);
1380 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1381                  " addresses separated by commas.  Only use if an interface"
1382                  " is in memory.  Otherwise, set it to zero or leave"
1383                  " it blank.");
1384 module_param_hw_array(ports, uint, ioport, &num_ports, 0);
1385 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1386                  " addresses separated by commas.  Only use if an interface"
1387                  " is a port.  Otherwise, set it to zero or leave"
1388                  " it blank.");
1389 module_param_hw_array(irqs, int, irq, &num_irqs, 0);
1390 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1391                  " addresses separated by commas.  Only use if an interface"
1392                  " has an interrupt.  Otherwise, set it to zero or leave"
1393                  " it blank.");
1394 module_param_hw_array(regspacings, int, other, &num_regspacings, 0);
1395 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1396                  " and each successive register used by the interface.  For"
1397                  " instance, if the start address is 0xca2 and the spacing"
1398                  " is 2, then the second address is at 0xca4.  Defaults"
1399                  " to 1.");
1400 module_param_hw_array(regsizes, int, other, &num_regsizes, 0);
1401 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1402                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1403                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1404                  " the 8-bit IPMI register has to be read from a larger"
1405                  " register.");
1406 module_param_hw_array(regshifts, int, other, &num_regshifts, 0);
1407 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1408                  " IPMI register, in bits.  For instance, if the data"
1409                  " is read from a 32-bit word and the IPMI data is in"
1410                  " bit 8-15, then the shift would be 8");
1411 module_param_hw_array(slave_addrs, int, other, &num_slave_addrs, 0);
1412 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1413                  " the controller.  Normally this is 0x20, but can be"
1414                  " overridden by this parm.  This is an array indexed"
1415                  " by interface number.");
1416 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1417 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1418                  " disabled(0).  Normally the IPMI driver auto-detects"
1419                  " this, but the value may be overridden by this parm.");
1420 module_param(unload_when_empty, bool, 0);
1421 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1422                  " specified or found, default is 1.  Setting to 0"
1423                  " is useful for hot add of devices using hotmod.");
1424 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1425 MODULE_PARM_DESC(kipmid_max_busy_us,
1426                  "Max time (in microseconds) to busy-wait for IPMI data before"
1427                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1428                  " if kipmid is using up a lot of CPU time.");
1429
1430
1431 static void std_irq_cleanup(struct smi_info *info)
1432 {
1433         if (info->si_type == SI_BT)
1434                 /* Disable the interrupt in the BT interface. */
1435                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1436         free_irq(info->irq, info);
1437 }
1438
1439 static int std_irq_setup(struct smi_info *info)
1440 {
1441         int rv;
1442
1443         if (!info->irq)
1444                 return 0;
1445
1446         if (info->si_type == SI_BT) {
1447                 rv = request_irq(info->irq,
1448                                  si_bt_irq_handler,
1449                                  IRQF_SHARED,
1450                                  DEVICE_NAME,
1451                                  info);
1452                 if (!rv)
1453                         /* Enable the interrupt in the BT interface. */
1454                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1455                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1456         } else
1457                 rv = request_irq(info->irq,
1458                                  si_irq_handler,
1459                                  IRQF_SHARED,
1460                                  DEVICE_NAME,
1461                                  info);
1462         if (rv) {
1463                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1464                          " running polled\n",
1465                          DEVICE_NAME, info->irq);
1466                 info->irq = 0;
1467         } else {
1468                 info->irq_cleanup = std_irq_cleanup;
1469                 dev_info(info->dev, "Using irq %d\n", info->irq);
1470         }
1471
1472         return rv;
1473 }
1474
1475 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1476 {
1477         unsigned int addr = io->addr_data;
1478
1479         return inb(addr + (offset * io->regspacing));
1480 }
1481
1482 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1483                       unsigned char b)
1484 {
1485         unsigned int addr = io->addr_data;
1486
1487         outb(b, addr + (offset * io->regspacing));
1488 }
1489
1490 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1491 {
1492         unsigned int addr = io->addr_data;
1493
1494         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1495 }
1496
1497 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1498                       unsigned char b)
1499 {
1500         unsigned int addr = io->addr_data;
1501
1502         outw(b << io->regshift, addr + (offset * io->regspacing));
1503 }
1504
1505 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1506 {
1507         unsigned int addr = io->addr_data;
1508
1509         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1510 }
1511
1512 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1513                       unsigned char b)
1514 {
1515         unsigned int addr = io->addr_data;
1516
1517         outl(b << io->regshift, addr+(offset * io->regspacing));
1518 }
1519
1520 static void port_cleanup(struct smi_info *info)
1521 {
1522         unsigned int addr = info->io.addr_data;
1523         int          idx;
1524
1525         if (addr) {
1526                 for (idx = 0; idx < info->io_size; idx++)
1527                         release_region(addr + idx * info->io.regspacing,
1528                                        info->io.regsize);
1529         }
1530 }
1531
1532 static int port_setup(struct smi_info *info)
1533 {
1534         unsigned int addr = info->io.addr_data;
1535         int          idx;
1536
1537         if (!addr)
1538                 return -ENODEV;
1539
1540         info->io_cleanup = port_cleanup;
1541
1542         /*
1543          * Figure out the actual inb/inw/inl/etc routine to use based
1544          * upon the register size.
1545          */
1546         switch (info->io.regsize) {
1547         case 1:
1548                 info->io.inputb = port_inb;
1549                 info->io.outputb = port_outb;
1550                 break;
1551         case 2:
1552                 info->io.inputb = port_inw;
1553                 info->io.outputb = port_outw;
1554                 break;
1555         case 4:
1556                 info->io.inputb = port_inl;
1557                 info->io.outputb = port_outl;
1558                 break;
1559         default:
1560                 dev_warn(info->dev, "Invalid register size: %d\n",
1561                          info->io.regsize);
1562                 return -EINVAL;
1563         }
1564
1565         /*
1566          * Some BIOSes reserve disjoint I/O regions in their ACPI
1567          * tables.  This causes problems when trying to register the
1568          * entire I/O region.  Therefore we must register each I/O
1569          * port separately.
1570          */
1571         for (idx = 0; idx < info->io_size; idx++) {
1572                 if (request_region(addr + idx * info->io.regspacing,
1573                                    info->io.regsize, DEVICE_NAME) == NULL) {
1574                         /* Undo allocations */
1575                         while (idx--)
1576                                 release_region(addr + idx * info->io.regspacing,
1577                                                info->io.regsize);
1578                         return -EIO;
1579                 }
1580         }
1581         return 0;
1582 }
1583
1584 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1585                                   unsigned int offset)
1586 {
1587         return readb((io->addr)+(offset * io->regspacing));
1588 }
1589
1590 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1591                           unsigned char b)
1592 {
1593         writeb(b, (io->addr)+(offset * io->regspacing));
1594 }
1595
1596 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1597                                   unsigned int offset)
1598 {
1599         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1600                 & 0xff;
1601 }
1602
1603 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1604                           unsigned char b)
1605 {
1606         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1607 }
1608
1609 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1610                                   unsigned int offset)
1611 {
1612         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1613                 & 0xff;
1614 }
1615
1616 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1617                           unsigned char b)
1618 {
1619         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1620 }
1621
1622 #ifdef readq
1623 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1624 {
1625         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1626                 & 0xff;
1627 }
1628
1629 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1630                      unsigned char b)
1631 {
1632         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1633 }
1634 #endif
1635
1636 static void mem_region_cleanup(struct smi_info *info, int num)
1637 {
1638         unsigned long addr = info->io.addr_data;
1639         int idx;
1640
1641         for (idx = 0; idx < num; idx++)
1642                 release_mem_region(addr + idx * info->io.regspacing,
1643                                    info->io.regsize);
1644 }
1645
1646 static void mem_cleanup(struct smi_info *info)
1647 {
1648         if (info->io.addr) {
1649                 iounmap(info->io.addr);
1650                 mem_region_cleanup(info, info->io_size);
1651         }
1652 }
1653
1654 static int mem_setup(struct smi_info *info)
1655 {
1656         unsigned long addr = info->io.addr_data;
1657         int           mapsize, idx;
1658
1659         if (!addr)
1660                 return -ENODEV;
1661
1662         info->io_cleanup = mem_cleanup;
1663
1664         /*
1665          * Figure out the actual readb/readw/readl/etc routine to use based
1666          * upon the register size.
1667          */
1668         switch (info->io.regsize) {
1669         case 1:
1670                 info->io.inputb = intf_mem_inb;
1671                 info->io.outputb = intf_mem_outb;
1672                 break;
1673         case 2:
1674                 info->io.inputb = intf_mem_inw;
1675                 info->io.outputb = intf_mem_outw;
1676                 break;
1677         case 4:
1678                 info->io.inputb = intf_mem_inl;
1679                 info->io.outputb = intf_mem_outl;
1680                 break;
1681 #ifdef readq
1682         case 8:
1683                 info->io.inputb = mem_inq;
1684                 info->io.outputb = mem_outq;
1685                 break;
1686 #endif
1687         default:
1688                 dev_warn(info->dev, "Invalid register size: %d\n",
1689                          info->io.regsize);
1690                 return -EINVAL;
1691         }
1692
1693         /*
1694          * Some BIOSes reserve disjoint memory regions in their ACPI
1695          * tables.  This causes problems when trying to request the
1696          * entire region.  Therefore we must request each register
1697          * separately.
1698          */
1699         for (idx = 0; idx < info->io_size; idx++) {
1700                 if (request_mem_region(addr + idx * info->io.regspacing,
1701                                        info->io.regsize, DEVICE_NAME) == NULL) {
1702                         /* Undo allocations */
1703                         mem_region_cleanup(info, idx);
1704                         return -EIO;
1705                 }
1706         }
1707
1708         /*
1709          * Calculate the total amount of memory to claim.  This is an
1710          * unusual looking calculation, but it avoids claiming any
1711          * more memory than it has to.  It will claim everything
1712          * between the first address to the end of the last full
1713          * register.
1714          */
1715         mapsize = ((info->io_size * info->io.regspacing)
1716                    - (info->io.regspacing - info->io.regsize));
1717         info->io.addr = ioremap(addr, mapsize);
1718         if (info->io.addr == NULL) {
1719                 mem_region_cleanup(info, info->io_size);
1720                 return -EIO;
1721         }
1722         return 0;
1723 }
1724
1725 /*
1726  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1727  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1728  * Options are:
1729  *   rsp=<regspacing>
1730  *   rsi=<regsize>
1731  *   rsh=<regshift>
1732  *   irq=<irq>
1733  *   ipmb=<ipmb addr>
1734  */
1735 enum hotmod_op { HM_ADD, HM_REMOVE };
1736 struct hotmod_vals {
1737         const char *name;
1738         const int  val;
1739 };
1740
1741 static const struct hotmod_vals hotmod_ops[] = {
1742         { "add",        HM_ADD },
1743         { "remove",     HM_REMOVE },
1744         { NULL }
1745 };
1746
1747 static const struct hotmod_vals hotmod_si[] = {
1748         { "kcs",        SI_KCS },
1749         { "smic",       SI_SMIC },
1750         { "bt",         SI_BT },
1751         { NULL }
1752 };
1753
1754 static const struct hotmod_vals hotmod_as[] = {
1755         { "mem",        IPMI_MEM_ADDR_SPACE },
1756         { "i/o",        IPMI_IO_ADDR_SPACE },
1757         { NULL }
1758 };
1759
1760 static int parse_str(const struct hotmod_vals *v, int *val, char *name,
1761                      char **curr)
1762 {
1763         char *s;
1764         int  i;
1765
1766         s = strchr(*curr, ',');
1767         if (!s) {
1768                 pr_warn(PFX "No hotmod %s given.\n", name);
1769                 return -EINVAL;
1770         }
1771         *s = '\0';
1772         s++;
1773         for (i = 0; v[i].name; i++) {
1774                 if (strcmp(*curr, v[i].name) == 0) {
1775                         *val = v[i].val;
1776                         *curr = s;
1777                         return 0;
1778                 }
1779         }
1780
1781         pr_warn(PFX "Invalid hotmod %s '%s'\n", name, *curr);
1782         return -EINVAL;
1783 }
1784
1785 static int check_hotmod_int_op(const char *curr, const char *option,
1786                                const char *name, int *val)
1787 {
1788         char *n;
1789
1790         if (strcmp(curr, name) == 0) {
1791                 if (!option) {
1792                         pr_warn(PFX "No option given for '%s'\n", curr);
1793                         return -EINVAL;
1794                 }
1795                 *val = simple_strtoul(option, &n, 0);
1796                 if ((*n != '\0') || (*option == '\0')) {
1797                         pr_warn(PFX "Bad option given for '%s'\n", curr);
1798                         return -EINVAL;
1799                 }
1800                 return 1;
1801         }
1802         return 0;
1803 }
1804
1805 static struct smi_info *smi_info_alloc(void)
1806 {
1807         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1808
1809         if (info)
1810                 spin_lock_init(&info->si_lock);
1811         return info;
1812 }
1813
1814 static int hotmod_handler(const char *val, struct kernel_param *kp)
1815 {
1816         char *str = kstrdup(val, GFP_KERNEL);
1817         int  rv;
1818         char *next, *curr, *s, *n, *o;
1819         enum hotmod_op op;
1820         enum si_type si_type;
1821         int  addr_space;
1822         unsigned long addr;
1823         int regspacing;
1824         int regsize;
1825         int regshift;
1826         int irq;
1827         int ipmb;
1828         int ival;
1829         int len;
1830         struct smi_info *info;
1831
1832         if (!str)
1833                 return -ENOMEM;
1834
1835         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1836         len = strlen(str);
1837         ival = len - 1;
1838         while ((ival >= 0) && isspace(str[ival])) {
1839                 str[ival] = '\0';
1840                 ival--;
1841         }
1842
1843         for (curr = str; curr; curr = next) {
1844                 regspacing = 1;
1845                 regsize = 1;
1846                 regshift = 0;
1847                 irq = 0;
1848                 ipmb = 0; /* Choose the default if not specified */
1849
1850                 next = strchr(curr, ':');
1851                 if (next) {
1852                         *next = '\0';
1853                         next++;
1854                 }
1855
1856                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1857                 if (rv)
1858                         break;
1859                 op = ival;
1860
1861                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1862                 if (rv)
1863                         break;
1864                 si_type = ival;
1865
1866                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1867                 if (rv)
1868                         break;
1869
1870                 s = strchr(curr, ',');
1871                 if (s) {
1872                         *s = '\0';
1873                         s++;
1874                 }
1875                 addr = simple_strtoul(curr, &n, 0);
1876                 if ((*n != '\0') || (*curr == '\0')) {
1877                         pr_warn(PFX "Invalid hotmod address '%s'\n", curr);
1878                         break;
1879                 }
1880
1881                 while (s) {
1882                         curr = s;
1883                         s = strchr(curr, ',');
1884                         if (s) {
1885                                 *s = '\0';
1886                                 s++;
1887                         }
1888                         o = strchr(curr, '=');
1889                         if (o) {
1890                                 *o = '\0';
1891                                 o++;
1892                         }
1893                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1894                         if (rv < 0)
1895                                 goto out;
1896                         else if (rv)
1897                                 continue;
1898                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1899                         if (rv < 0)
1900                                 goto out;
1901                         else if (rv)
1902                                 continue;
1903                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1904                         if (rv < 0)
1905                                 goto out;
1906                         else if (rv)
1907                                 continue;
1908                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1909                         if (rv < 0)
1910                                 goto out;
1911                         else if (rv)
1912                                 continue;
1913                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1914                         if (rv < 0)
1915                                 goto out;
1916                         else if (rv)
1917                                 continue;
1918
1919                         rv = -EINVAL;
1920                         pr_warn(PFX "Invalid hotmod option '%s'\n", curr);
1921                         goto out;
1922                 }
1923
1924                 if (op == HM_ADD) {
1925                         info = smi_info_alloc();
1926                         if (!info) {
1927                                 rv = -ENOMEM;
1928                                 goto out;
1929                         }
1930
1931                         info->addr_source = SI_HOTMOD;
1932                         info->si_type = si_type;
1933                         info->io.addr_data = addr;
1934                         info->io.addr_type = addr_space;
1935                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1936                                 info->io_setup = mem_setup;
1937                         else
1938                                 info->io_setup = port_setup;
1939
1940                         info->io.addr = NULL;
1941                         info->io.regspacing = regspacing;
1942                         if (!info->io.regspacing)
1943                                 info->io.regspacing = DEFAULT_REGSPACING;
1944                         info->io.regsize = regsize;
1945                         if (!info->io.regsize)
1946                                 info->io.regsize = DEFAULT_REGSIZE;
1947                         info->io.regshift = regshift;
1948                         info->irq = irq;
1949                         if (info->irq)
1950                                 info->irq_setup = std_irq_setup;
1951                         info->slave_addr = ipmb;
1952
1953                         rv = add_smi(info);
1954                         if (rv) {
1955                                 kfree(info);
1956                                 goto out;
1957                         }
1958                         mutex_lock(&smi_infos_lock);
1959                         rv = try_smi_init(info);
1960                         mutex_unlock(&smi_infos_lock);
1961                         if (rv) {
1962                                 cleanup_one_si(info);
1963                                 goto out;
1964                         }
1965                 } else {
1966                         /* remove */
1967                         struct smi_info *e, *tmp_e;
1968
1969                         mutex_lock(&smi_infos_lock);
1970                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1971                                 if (e->io.addr_type != addr_space)
1972                                         continue;
1973                                 if (e->si_type != si_type)
1974                                         continue;
1975                                 if (e->io.addr_data == addr)
1976                                         cleanup_one_si(e);
1977                         }
1978                         mutex_unlock(&smi_infos_lock);
1979                 }
1980         }
1981         rv = len;
1982 out:
1983         kfree(str);
1984         return rv;
1985 }
1986
1987 static int hardcode_find_bmc(void)
1988 {
1989         int ret = -ENODEV;
1990         int             i;
1991         struct smi_info *info;
1992
1993         for (i = 0; i < SI_MAX_PARMS; i++) {
1994                 if (!ports[i] && !addrs[i])
1995                         continue;
1996
1997                 info = smi_info_alloc();
1998                 if (!info)
1999                         return -ENOMEM;
2000
2001                 info->addr_source = SI_HARDCODED;
2002                 pr_info(PFX "probing via hardcoded address\n");
2003
2004                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2005                         info->si_type = SI_KCS;
2006                 } else if (strcmp(si_type[i], "smic") == 0) {
2007                         info->si_type = SI_SMIC;
2008                 } else if (strcmp(si_type[i], "bt") == 0) {
2009                         info->si_type = SI_BT;
2010                 } else {
2011                         pr_warn(PFX "Interface type specified for interface %d, was invalid: %s\n",
2012                                 i, si_type[i]);
2013                         kfree(info);
2014                         continue;
2015                 }
2016
2017                 if (ports[i]) {
2018                         /* An I/O port */
2019                         info->io_setup = port_setup;
2020                         info->io.addr_data = ports[i];
2021                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2022                 } else if (addrs[i]) {
2023                         /* A memory port */
2024                         info->io_setup = mem_setup;
2025                         info->io.addr_data = addrs[i];
2026                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2027                 } else {
2028                         pr_warn(PFX "Interface type specified for interface %d, but port and address were not set or set to zero.\n",
2029                                 i);
2030                         kfree(info);
2031                         continue;
2032                 }
2033
2034                 info->io.addr = NULL;
2035                 info->io.regspacing = regspacings[i];
2036                 if (!info->io.regspacing)
2037                         info->io.regspacing = DEFAULT_REGSPACING;
2038                 info->io.regsize = regsizes[i];
2039                 if (!info->io.regsize)
2040                         info->io.regsize = DEFAULT_REGSIZE;
2041                 info->io.regshift = regshifts[i];
2042                 info->irq = irqs[i];
2043                 if (info->irq)
2044                         info->irq_setup = std_irq_setup;
2045                 info->slave_addr = slave_addrs[i];
2046
2047                 if (!add_smi(info)) {
2048                         mutex_lock(&smi_infos_lock);
2049                         if (try_smi_init(info))
2050                                 cleanup_one_si(info);
2051                         mutex_unlock(&smi_infos_lock);
2052                         ret = 0;
2053                 } else {
2054                         kfree(info);
2055                 }
2056         }
2057         return ret;
2058 }
2059
2060 #ifdef CONFIG_ACPI
2061
2062 /*
2063  * Once we get an ACPI failure, we don't try any more, because we go
2064  * through the tables sequentially.  Once we don't find a table, there
2065  * are no more.
2066  */
2067 static int acpi_failure;
2068
2069 /* For GPE-type interrupts. */
2070 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2071         u32 gpe_number, void *context)
2072 {
2073         struct smi_info *smi_info = context;
2074         unsigned long   flags;
2075
2076         spin_lock_irqsave(&(smi_info->si_lock), flags);
2077
2078         smi_inc_stat(smi_info, interrupts);
2079
2080         debug_timestamp("ACPI_GPE");
2081
2082         smi_event_handler(smi_info, 0);
2083         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2084
2085         return ACPI_INTERRUPT_HANDLED;
2086 }
2087
2088 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2089 {
2090         if (!info->irq)
2091                 return;
2092
2093         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2094 }
2095
2096 static int acpi_gpe_irq_setup(struct smi_info *info)
2097 {
2098         acpi_status status;
2099
2100         if (!info->irq)
2101                 return 0;
2102
2103         status = acpi_install_gpe_handler(NULL,
2104                                           info->irq,
2105                                           ACPI_GPE_LEVEL_TRIGGERED,
2106                                           &ipmi_acpi_gpe,
2107                                           info);
2108         if (status != AE_OK) {
2109                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2110                          " running polled\n", DEVICE_NAME, info->irq);
2111                 info->irq = 0;
2112                 return -EINVAL;
2113         } else {
2114                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2115                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2116                 return 0;
2117         }
2118 }
2119
2120 /*
2121  * Defined at
2122  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2123  */
2124 struct SPMITable {
2125         s8      Signature[4];
2126         u32     Length;
2127         u8      Revision;
2128         u8      Checksum;
2129         s8      OEMID[6];
2130         s8      OEMTableID[8];
2131         s8      OEMRevision[4];
2132         s8      CreatorID[4];
2133         s8      CreatorRevision[4];
2134         u8      InterfaceType;
2135         u8      IPMIlegacy;
2136         s16     SpecificationRevision;
2137
2138         /*
2139          * Bit 0 - SCI interrupt supported
2140          * Bit 1 - I/O APIC/SAPIC
2141          */
2142         u8      InterruptType;
2143
2144         /*
2145          * If bit 0 of InterruptType is set, then this is the SCI
2146          * interrupt in the GPEx_STS register.
2147          */
2148         u8      GPE;
2149
2150         s16     Reserved;
2151
2152         /*
2153          * If bit 1 of InterruptType is set, then this is the I/O
2154          * APIC/SAPIC interrupt.
2155          */
2156         u32     GlobalSystemInterrupt;
2157
2158         /* The actual register address. */
2159         struct acpi_generic_address addr;
2160
2161         u8      UID[4];
2162
2163         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2164 };
2165
2166 static int try_init_spmi(struct SPMITable *spmi)
2167 {
2168         struct smi_info  *info;
2169         int rv;
2170
2171         if (spmi->IPMIlegacy != 1) {
2172                 pr_info(PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2173                 return -ENODEV;
2174         }
2175
2176         info = smi_info_alloc();
2177         if (!info) {
2178                 pr_err(PFX "Could not allocate SI data (3)\n");
2179                 return -ENOMEM;
2180         }
2181
2182         info->addr_source = SI_SPMI;
2183         pr_info(PFX "probing via SPMI\n");
2184
2185         /* Figure out the interface type. */
2186         switch (spmi->InterfaceType) {
2187         case 1: /* KCS */
2188                 info->si_type = SI_KCS;
2189                 break;
2190         case 2: /* SMIC */
2191                 info->si_type = SI_SMIC;
2192                 break;
2193         case 3: /* BT */
2194                 info->si_type = SI_BT;
2195                 break;
2196         case 4: /* SSIF, just ignore */
2197                 kfree(info);
2198                 return -EIO;
2199         default:
2200                 pr_info(PFX "Unknown ACPI/SPMI SI type %d\n",
2201                         spmi->InterfaceType);
2202                 kfree(info);
2203                 return -EIO;
2204         }
2205
2206         if (spmi->InterruptType & 1) {
2207                 /* We've got a GPE interrupt. */
2208                 info->irq = spmi->GPE;
2209                 info->irq_setup = acpi_gpe_irq_setup;
2210         } else if (spmi->InterruptType & 2) {
2211                 /* We've got an APIC/SAPIC interrupt. */
2212                 info->irq = spmi->GlobalSystemInterrupt;
2213                 info->irq_setup = std_irq_setup;
2214         } else {
2215                 /* Use the default interrupt setting. */
2216                 info->irq = 0;
2217                 info->irq_setup = NULL;
2218         }
2219
2220         if (spmi->addr.bit_width) {
2221                 /* A (hopefully) properly formed register bit width. */
2222                 info->io.regspacing = spmi->addr.bit_width / 8;
2223         } else {
2224                 info->io.regspacing = DEFAULT_REGSPACING;
2225         }
2226         info->io.regsize = info->io.regspacing;
2227         info->io.regshift = spmi->addr.bit_offset;
2228
2229         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2230                 info->io_setup = mem_setup;
2231                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2232         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2233                 info->io_setup = port_setup;
2234                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2235         } else {
2236                 kfree(info);
2237                 pr_warn(PFX "Unknown ACPI I/O Address type\n");
2238                 return -EIO;
2239         }
2240         info->io.addr_data = spmi->addr.address;
2241
2242         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2243                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2244                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2245                 info->irq);
2246
2247         rv = add_smi(info);
2248         if (rv)
2249                 kfree(info);
2250
2251         return rv;
2252 }
2253
2254 static void spmi_find_bmc(void)
2255 {
2256         acpi_status      status;
2257         struct SPMITable *spmi;
2258         int              i;
2259
2260         if (acpi_disabled)
2261                 return;
2262
2263         if (acpi_failure)
2264                 return;
2265
2266         for (i = 0; ; i++) {
2267                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2268                                         (struct acpi_table_header **)&spmi);
2269                 if (status != AE_OK)
2270                         return;
2271
2272                 try_init_spmi(spmi);
2273         }
2274 }
2275 #endif
2276
2277 #if defined(CONFIG_DMI) || defined(CONFIG_ACPI)
2278 struct resource *ipmi_get_info_from_resources(struct platform_device *pdev,
2279                                               struct smi_info *info)
2280 {
2281         struct resource *res, *res_second;
2282
2283         res = platform_get_resource(pdev, IORESOURCE_IO, 0);
2284         if (res) {
2285                 info->io_setup = port_setup;
2286                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2287         } else {
2288                 res = platform_get_resource(pdev, IORESOURCE_MEM, 0);
2289                 if (res) {
2290                         info->io_setup = mem_setup;
2291                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2292                 }
2293         }
2294         if (!res) {
2295                 dev_err(&pdev->dev, "no I/O or memory address\n");
2296                 return NULL;
2297         }
2298         info->io.addr_data = res->start;
2299
2300         info->io.regspacing = DEFAULT_REGSPACING;
2301         res_second = platform_get_resource(pdev,
2302                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2303                                         IORESOURCE_IO : IORESOURCE_MEM,
2304                                1);
2305         if (res_second) {
2306                 if (res_second->start > info->io.addr_data)
2307                         info->io.regspacing =
2308                                 res_second->start - info->io.addr_data;
2309         }
2310         info->io.regsize = DEFAULT_REGSIZE;
2311         info->io.regshift = 0;
2312
2313         return res;
2314 }
2315
2316 #endif
2317
2318 #ifdef CONFIG_DMI
2319 static int dmi_ipmi_probe(struct platform_device *pdev)
2320 {
2321         struct smi_info *info;
2322         u8 type, slave_addr;
2323         int rv;
2324
2325         if (!si_trydmi)
2326                 return -ENODEV;
2327
2328         rv = device_property_read_u8(&pdev->dev, "ipmi-type", &type);
2329         if (rv)
2330                 return -ENODEV;
2331
2332         info = smi_info_alloc();
2333         if (!info) {
2334                 pr_err(PFX "Could not allocate SI data\n");
2335                 return -ENOMEM;
2336         }
2337
2338         info->addr_source = SI_SMBIOS;
2339         pr_info(PFX "probing via SMBIOS\n");
2340
2341         switch (type) {
2342         case IPMI_DMI_TYPE_KCS:
2343                 info->si_type = SI_KCS;
2344                 break;
2345         case IPMI_DMI_TYPE_SMIC:
2346                 info->si_type = SI_SMIC;
2347                 break;
2348         case IPMI_DMI_TYPE_BT:
2349                 info->si_type = SI_BT;
2350                 break;
2351         default:
2352                 kfree(info);
2353                 return -EINVAL;
2354         }
2355
2356         if (!ipmi_get_info_from_resources(pdev, info)) {
2357                 rv = -EINVAL;
2358                 goto err_free;
2359         }
2360
2361         rv = device_property_read_u8(&pdev->dev, "slave-addr", &slave_addr);
2362         if (rv) {
2363                 dev_warn(&pdev->dev, "device has no slave-addr property");
2364                 info->slave_addr = 0x20;
2365         } else {
2366                 info->slave_addr = slave_addr;
2367         }
2368
2369         info->irq = platform_get_irq(pdev, 0);
2370         if (info->irq > 0)
2371                 info->irq_setup = std_irq_setup;
2372         else
2373                 info->irq = 0;
2374
2375         info->dev = &pdev->dev;
2376
2377         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2378                 (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2379                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2380                 info->irq);
2381
2382         if (add_smi(info))
2383                 kfree(info);
2384
2385         return 0;
2386
2387 err_free:
2388         kfree(info);
2389         return rv;
2390 }
2391 #else
2392 static int dmi_ipmi_probe(struct platform_device *pdev)
2393 {
2394         return -ENODEV;
2395 }
2396 #endif /* CONFIG_DMI */
2397
2398 #ifdef CONFIG_PCI
2399
2400 #define PCI_ERMC_CLASSCODE              0x0C0700
2401 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2402 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2403 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2404 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2405 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2406
2407 #define PCI_HP_VENDOR_ID    0x103C
2408 #define PCI_MMC_DEVICE_ID   0x121A
2409 #define PCI_MMC_ADDR_CW     0x10
2410
2411 static void ipmi_pci_cleanup(struct smi_info *info)
2412 {
2413         struct pci_dev *pdev = info->addr_source_data;
2414
2415         pci_disable_device(pdev);
2416 }
2417
2418 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2419 {
2420         if (info->si_type == SI_KCS) {
2421                 unsigned char   status;
2422                 int             regspacing;
2423
2424                 info->io.regsize = DEFAULT_REGSIZE;
2425                 info->io.regshift = 0;
2426                 info->io_size = 2;
2427                 info->handlers = &kcs_smi_handlers;
2428
2429                 /* detect 1, 4, 16byte spacing */
2430                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2431                         info->io.regspacing = regspacing;
2432                         if (info->io_setup(info)) {
2433                                 dev_err(info->dev,
2434                                         "Could not setup I/O space\n");
2435                                 return DEFAULT_REGSPACING;
2436                         }
2437                         /* write invalid cmd */
2438                         info->io.outputb(&info->io, 1, 0x10);
2439                         /* read status back */
2440                         status = info->io.inputb(&info->io, 1);
2441                         info->io_cleanup(info);
2442                         if (status)
2443                                 return regspacing;
2444                         regspacing *= 4;
2445                 }
2446         }
2447         return DEFAULT_REGSPACING;
2448 }
2449
2450 static struct pci_device_id ipmi_pci_blacklist[] = {
2451         /*
2452          * This is a "Virtual IPMI device", whatever that is.  It appears
2453          * as a KCS device by the class, but it is not one.
2454          */
2455         { PCI_VDEVICE(REALTEK, 0x816c) },
2456         { 0, }
2457 };
2458
2459 static int ipmi_pci_probe(struct pci_dev *pdev,
2460                                     const struct pci_device_id *ent)
2461 {
2462         int rv;
2463         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2464         struct smi_info *info;
2465
2466         if (pci_match_id(ipmi_pci_blacklist, pdev))
2467                 return -ENODEV;
2468
2469         info = smi_info_alloc();
2470         if (!info)
2471                 return -ENOMEM;
2472
2473         info->addr_source = SI_PCI;
2474         dev_info(&pdev->dev, "probing via PCI");
2475
2476         switch (class_type) {
2477         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2478                 info->si_type = SI_SMIC;
2479                 break;
2480
2481         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2482                 info->si_type = SI_KCS;
2483                 break;
2484
2485         case PCI_ERMC_CLASSCODE_TYPE_BT:
2486                 info->si_type = SI_BT;
2487                 break;
2488
2489         default:
2490                 kfree(info);
2491                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2492                 return -ENOMEM;
2493         }
2494
2495         rv = pci_enable_device(pdev);
2496         if (rv) {
2497                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2498                 kfree(info);
2499                 return rv;
2500         }
2501
2502         info->addr_source_cleanup = ipmi_pci_cleanup;
2503         info->addr_source_data = pdev;
2504
2505         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2506                 info->io_setup = port_setup;
2507                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2508         } else {
2509                 info->io_setup = mem_setup;
2510                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2511         }
2512         info->io.addr_data = pci_resource_start(pdev, 0);
2513
2514         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2515         info->io.regsize = DEFAULT_REGSIZE;
2516         info->io.regshift = 0;
2517
2518         info->irq = pdev->irq;
2519         if (info->irq)
2520                 info->irq_setup = std_irq_setup;
2521
2522         info->dev = &pdev->dev;
2523         pci_set_drvdata(pdev, info);
2524
2525         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2526                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2527                 info->irq);
2528
2529         rv = add_smi(info);
2530         if (rv) {
2531                 kfree(info);
2532                 pci_disable_device(pdev);
2533         }
2534
2535         return rv;
2536 }
2537
2538 static void ipmi_pci_remove(struct pci_dev *pdev)
2539 {
2540         struct smi_info *info = pci_get_drvdata(pdev);
2541         cleanup_one_si(info);
2542 }
2543
2544 static const struct pci_device_id ipmi_pci_devices[] = {
2545         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2546         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2547         { 0, }
2548 };
2549 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2550
2551 static struct pci_driver ipmi_pci_driver = {
2552         .name =         DEVICE_NAME,
2553         .id_table =     ipmi_pci_devices,
2554         .probe =        ipmi_pci_probe,
2555         .remove =       ipmi_pci_remove,
2556 };
2557 #endif /* CONFIG_PCI */
2558
2559 #ifdef CONFIG_OF
2560 static const struct of_device_id of_ipmi_match[] = {
2561         { .type = "ipmi", .compatible = "ipmi-kcs",
2562           .data = (void *)(unsigned long) SI_KCS },
2563         { .type = "ipmi", .compatible = "ipmi-smic",
2564           .data = (void *)(unsigned long) SI_SMIC },
2565         { .type = "ipmi", .compatible = "ipmi-bt",
2566           .data = (void *)(unsigned long) SI_BT },
2567         {},
2568 };
2569 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2570
2571 static int of_ipmi_probe(struct platform_device *dev)
2572 {
2573         const struct of_device_id *match;
2574         struct smi_info *info;
2575         struct resource resource;
2576         const __be32 *regsize, *regspacing, *regshift;
2577         struct device_node *np = dev->dev.of_node;
2578         int ret;
2579         int proplen;
2580
2581         dev_info(&dev->dev, "probing via device tree\n");
2582
2583         match = of_match_device(of_ipmi_match, &dev->dev);
2584         if (!match)
2585                 return -ENODEV;
2586
2587         if (!of_device_is_available(np))
2588                 return -EINVAL;
2589
2590         ret = of_address_to_resource(np, 0, &resource);
2591         if (ret) {
2592                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2593                 return ret;
2594         }
2595
2596         regsize = of_get_property(np, "reg-size", &proplen);
2597         if (regsize && proplen != 4) {
2598                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2599                 return -EINVAL;
2600         }
2601
2602         regspacing = of_get_property(np, "reg-spacing", &proplen);
2603         if (regspacing && proplen != 4) {
2604                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2605                 return -EINVAL;
2606         }
2607
2608         regshift = of_get_property(np, "reg-shift", &proplen);
2609         if (regshift && proplen != 4) {
2610                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2611                 return -EINVAL;
2612         }
2613
2614         info = smi_info_alloc();
2615
2616         if (!info) {
2617                 dev_err(&dev->dev,
2618                         "could not allocate memory for OF probe\n");
2619                 return -ENOMEM;
2620         }
2621
2622         info->si_type           = (enum si_type) match->data;
2623         info->addr_source       = SI_DEVICETREE;
2624         info->irq_setup         = std_irq_setup;
2625
2626         if (resource.flags & IORESOURCE_IO) {
2627                 info->io_setup          = port_setup;
2628                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2629         } else {
2630                 info->io_setup          = mem_setup;
2631                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2632         }
2633
2634         info->io.addr_data      = resource.start;
2635
2636         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2637         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2638         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2639
2640         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2641         info->dev               = &dev->dev;
2642
2643         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2644                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2645                 info->irq);
2646
2647         dev_set_drvdata(&dev->dev, info);
2648
2649         ret = add_smi(info);
2650         if (ret) {
2651                 kfree(info);
2652                 return ret;
2653         }
2654         return 0;
2655 }
2656 #else
2657 #define of_ipmi_match NULL
2658 static int of_ipmi_probe(struct platform_device *dev)
2659 {
2660         return -ENODEV;
2661 }
2662 #endif
2663
2664 #ifdef CONFIG_ACPI
2665 static int find_slave_address(struct smi_info *info, int slave_addr)
2666 {
2667 #ifdef CONFIG_IPMI_DMI_DECODE
2668         if (!slave_addr) {
2669                 int type = -1;
2670                 u32 flags = IORESOURCE_IO;
2671
2672                 switch (info->si_type) {
2673                 case SI_KCS:
2674                         type = IPMI_DMI_TYPE_KCS;
2675                         break;
2676                 case SI_BT:
2677                         type = IPMI_DMI_TYPE_BT;
2678                         break;
2679                 case SI_SMIC:
2680                         type = IPMI_DMI_TYPE_SMIC;
2681                         break;
2682                 }
2683
2684                 if (info->io.addr_type == IPMI_MEM_ADDR_SPACE)
2685                         flags = IORESOURCE_MEM;
2686
2687                 slave_addr = ipmi_dmi_get_slave_addr(type, flags,
2688                                                      info->io.addr_data);
2689         }
2690 #endif
2691
2692         return slave_addr;
2693 }
2694
2695 static int acpi_ipmi_probe(struct platform_device *dev)
2696 {
2697         struct smi_info *info;
2698         acpi_handle handle;
2699         acpi_status status;
2700         unsigned long long tmp;
2701         struct resource *res;
2702         int rv = -EINVAL;
2703
2704         if (!si_tryacpi)
2705                 return -ENODEV;
2706
2707         handle = ACPI_HANDLE(&dev->dev);
2708         if (!handle)
2709                 return -ENODEV;
2710
2711         info = smi_info_alloc();
2712         if (!info)
2713                 return -ENOMEM;
2714
2715         info->addr_source = SI_ACPI;
2716         dev_info(&dev->dev, PFX "probing via ACPI\n");
2717
2718         info->addr_info.acpi_info.acpi_handle = handle;
2719
2720         /* _IFT tells us the interface type: KCS, BT, etc */
2721         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2722         if (ACPI_FAILURE(status)) {
2723                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2724                 goto err_free;
2725         }
2726
2727         switch (tmp) {
2728         case 1:
2729                 info->si_type = SI_KCS;
2730                 break;
2731         case 2:
2732                 info->si_type = SI_SMIC;
2733                 break;
2734         case 3:
2735                 info->si_type = SI_BT;
2736                 break;
2737         case 4: /* SSIF, just ignore */
2738                 rv = -ENODEV;
2739                 goto err_free;
2740         default:
2741                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2742                 goto err_free;
2743         }
2744
2745         res = ipmi_get_info_from_resources(dev, info);
2746         if (!res) {
2747                 rv = -EINVAL;
2748                 goto err_free;
2749         }
2750
2751         /* If _GPE exists, use it; otherwise use standard interrupts */
2752         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2753         if (ACPI_SUCCESS(status)) {
2754                 info->irq = tmp;
2755                 info->irq_setup = acpi_gpe_irq_setup;
2756         } else {
2757                 int irq = platform_get_irq(dev, 0);
2758
2759                 if (irq > 0) {
2760                         info->irq = irq;
2761                         info->irq_setup = std_irq_setup;
2762                 }
2763         }
2764
2765         info->slave_addr = find_slave_address(info, info->slave_addr);
2766
2767         info->dev = &dev->dev;
2768         platform_set_drvdata(dev, info);
2769
2770         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2771                  res, info->io.regsize, info->io.regspacing,
2772                  info->irq);
2773
2774         rv = add_smi(info);
2775         if (rv)
2776                 kfree(info);
2777
2778         return rv;
2779
2780 err_free:
2781         kfree(info);
2782         return rv;
2783 }
2784
2785 static const struct acpi_device_id acpi_ipmi_match[] = {
2786         { "IPI0001", 0 },
2787         { },
2788 };
2789 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2790 #else
2791 static int acpi_ipmi_probe(struct platform_device *dev)
2792 {
2793         return -ENODEV;
2794 }
2795 #endif
2796
2797 static int ipmi_probe(struct platform_device *dev)
2798 {
2799         if (of_ipmi_probe(dev) == 0)
2800                 return 0;
2801
2802         if (acpi_ipmi_probe(dev) == 0)
2803                 return 0;
2804
2805         return dmi_ipmi_probe(dev);
2806 }
2807
2808 static int ipmi_remove(struct platform_device *dev)
2809 {
2810         struct smi_info *info = dev_get_drvdata(&dev->dev);
2811
2812         cleanup_one_si(info);
2813         return 0;
2814 }
2815
2816 static struct platform_driver ipmi_driver = {
2817         .driver = {
2818                 .name = DEVICE_NAME,
2819                 .of_match_table = of_ipmi_match,
2820                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2821         },
2822         .probe          = ipmi_probe,
2823         .remove         = ipmi_remove,
2824 };
2825
2826 #ifdef CONFIG_PARISC
2827 static int __init ipmi_parisc_probe(struct parisc_device *dev)
2828 {
2829         struct smi_info *info;
2830         int rv;
2831
2832         info = smi_info_alloc();
2833
2834         if (!info) {
2835                 dev_err(&dev->dev,
2836                         "could not allocate memory for PARISC probe\n");
2837                 return -ENOMEM;
2838         }
2839
2840         info->si_type           = SI_KCS;
2841         info->addr_source       = SI_DEVICETREE;
2842         info->io_setup          = mem_setup;
2843         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2844         info->io.addr_data      = dev->hpa.start;
2845         info->io.regsize        = 1;
2846         info->io.regspacing     = 1;
2847         info->io.regshift       = 0;
2848         info->irq               = 0; /* no interrupt */
2849         info->irq_setup         = NULL;
2850         info->dev               = &dev->dev;
2851
2852         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2853
2854         dev_set_drvdata(&dev->dev, info);
2855
2856         rv = add_smi(info);
2857         if (rv) {
2858                 kfree(info);
2859                 return rv;
2860         }
2861
2862         return 0;
2863 }
2864
2865 static int __exit ipmi_parisc_remove(struct parisc_device *dev)
2866 {
2867         cleanup_one_si(dev_get_drvdata(&dev->dev));
2868         return 0;
2869 }
2870
2871 static const struct parisc_device_id ipmi_parisc_tbl[] __initconst = {
2872         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2873         { 0, }
2874 };
2875
2876 MODULE_DEVICE_TABLE(parisc, ipmi_parisc_tbl);
2877
2878 static struct parisc_driver ipmi_parisc_driver __refdata = {
2879         .name =         "ipmi",
2880         .id_table =     ipmi_parisc_tbl,
2881         .probe =        ipmi_parisc_probe,
2882         .remove =       __exit_p(ipmi_parisc_remove),
2883 };
2884 #endif /* CONFIG_PARISC */
2885
2886 static int wait_for_msg_done(struct smi_info *smi_info)
2887 {
2888         enum si_sm_result     smi_result;
2889
2890         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2891         for (;;) {
2892                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2893                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2894                         schedule_timeout_uninterruptible(1);
2895                         smi_result = smi_info->handlers->event(
2896                                 smi_info->si_sm, jiffies_to_usecs(1));
2897                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2898                         smi_result = smi_info->handlers->event(
2899                                 smi_info->si_sm, 0);
2900                 } else
2901                         break;
2902         }
2903         if (smi_result == SI_SM_HOSED)
2904                 /*
2905                  * We couldn't get the state machine to run, so whatever's at
2906                  * the port is probably not an IPMI SMI interface.
2907                  */
2908                 return -ENODEV;
2909
2910         return 0;
2911 }
2912
2913 static int try_get_dev_id(struct smi_info *smi_info)
2914 {
2915         unsigned char         msg[2];
2916         unsigned char         *resp;
2917         unsigned long         resp_len;
2918         int                   rv = 0;
2919
2920         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2921         if (!resp)
2922                 return -ENOMEM;
2923
2924         /*
2925          * Do a Get Device ID command, since it comes back with some
2926          * useful info.
2927          */
2928         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2929         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2930         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2931
2932         rv = wait_for_msg_done(smi_info);
2933         if (rv)
2934                 goto out;
2935
2936         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2937                                                   resp, IPMI_MAX_MSG_LENGTH);
2938
2939         /* Check and record info from the get device id, in case we need it. */
2940         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2941
2942 out:
2943         kfree(resp);
2944         return rv;
2945 }
2946
2947 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2948 {
2949         unsigned char         msg[3];
2950         unsigned char         *resp;
2951         unsigned long         resp_len;
2952         int                   rv;
2953
2954         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2955         if (!resp)
2956                 return -ENOMEM;
2957
2958         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2959         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2960         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2961
2962         rv = wait_for_msg_done(smi_info);
2963         if (rv) {
2964                 dev_warn(smi_info->dev,
2965                          "Error getting response from get global enables command: %d\n",
2966                          rv);
2967                 goto out;
2968         }
2969
2970         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2971                                                   resp, IPMI_MAX_MSG_LENGTH);
2972
2973         if (resp_len < 4 ||
2974                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2975                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2976                         resp[2] != 0) {
2977                 dev_warn(smi_info->dev,
2978                          "Invalid return from get global enables command: %ld %x %x %x\n",
2979                          resp_len, resp[0], resp[1], resp[2]);
2980                 rv = -EINVAL;
2981                 goto out;
2982         } else {
2983                 *enables = resp[3];
2984         }
2985
2986 out:
2987         kfree(resp);
2988         return rv;
2989 }
2990
2991 /*
2992  * Returns 1 if it gets an error from the command.
2993  */
2994 static int set_global_enables(struct smi_info *smi_info, u8 enables)
2995 {
2996         unsigned char         msg[3];
2997         unsigned char         *resp;
2998         unsigned long         resp_len;
2999         int                   rv;
3000
3001         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3002         if (!resp)
3003                 return -ENOMEM;
3004
3005         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3006         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3007         msg[2] = enables;
3008         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3009
3010         rv = wait_for_msg_done(smi_info);
3011         if (rv) {
3012                 dev_warn(smi_info->dev,
3013                          "Error getting response from set global enables command: %d\n",
3014                          rv);
3015                 goto out;
3016         }
3017
3018         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3019                                                   resp, IPMI_MAX_MSG_LENGTH);
3020
3021         if (resp_len < 3 ||
3022                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3023                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3024                 dev_warn(smi_info->dev,
3025                          "Invalid return from set global enables command: %ld %x %x\n",
3026                          resp_len, resp[0], resp[1]);
3027                 rv = -EINVAL;
3028                 goto out;
3029         }
3030
3031         if (resp[2] != 0)
3032                 rv = 1;
3033
3034 out:
3035         kfree(resp);
3036         return rv;
3037 }
3038
3039 /*
3040  * Some BMCs do not support clearing the receive irq bit in the global
3041  * enables (even if they don't support interrupts on the BMC).  Check
3042  * for this and handle it properly.
3043  */
3044 static void check_clr_rcv_irq(struct smi_info *smi_info)
3045 {
3046         u8 enables = 0;
3047         int rv;
3048
3049         rv = get_global_enables(smi_info, &enables);
3050         if (!rv) {
3051                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3052                         /* Already clear, should work ok. */
3053                         return;
3054
3055                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3056                 rv = set_global_enables(smi_info, enables);
3057         }
3058
3059         if (rv < 0) {
3060                 dev_err(smi_info->dev,
3061                         "Cannot check clearing the rcv irq: %d\n", rv);
3062                 return;
3063         }
3064
3065         if (rv) {
3066                 /*
3067                  * An error when setting the event buffer bit means
3068                  * clearing the bit is not supported.
3069                  */
3070                 dev_warn(smi_info->dev,
3071                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3072                 smi_info->cannot_disable_irq = true;
3073         }
3074 }
3075
3076 /*
3077  * Some BMCs do not support setting the interrupt bits in the global
3078  * enables even if they support interrupts.  Clearly bad, but we can
3079  * compensate.
3080  */
3081 static void check_set_rcv_irq(struct smi_info *smi_info)
3082 {
3083         u8 enables = 0;
3084         int rv;
3085
3086         if (!smi_info->irq)
3087                 return;
3088
3089         rv = get_global_enables(smi_info, &enables);
3090         if (!rv) {
3091                 enables |= IPMI_BMC_RCV_MSG_INTR;
3092                 rv = set_global_enables(smi_info, enables);
3093         }
3094
3095         if (rv < 0) {
3096                 dev_err(smi_info->dev,
3097                         "Cannot check setting the rcv irq: %d\n", rv);
3098                 return;
3099         }
3100
3101         if (rv) {
3102                 /*
3103                  * An error when setting the event buffer bit means
3104                  * setting the bit is not supported.
3105                  */
3106                 dev_warn(smi_info->dev,
3107                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3108                 smi_info->cannot_disable_irq = true;
3109                 smi_info->irq_enable_broken = true;
3110         }
3111 }
3112
3113 static int try_enable_event_buffer(struct smi_info *smi_info)
3114 {
3115         unsigned char         msg[3];
3116         unsigned char         *resp;
3117         unsigned long         resp_len;
3118         int                   rv = 0;
3119
3120         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3121         if (!resp)
3122                 return -ENOMEM;
3123
3124         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3125         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3126         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3127
3128         rv = wait_for_msg_done(smi_info);
3129         if (rv) {
3130                 pr_warn(PFX "Error getting response from get global enables command, the event buffer is not enabled.\n");
3131                 goto out;
3132         }
3133
3134         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3135                                                   resp, IPMI_MAX_MSG_LENGTH);
3136
3137         if (resp_len < 4 ||
3138                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3139                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3140                         resp[2] != 0) {
3141                 pr_warn(PFX "Invalid return from get global enables command, cannot enable the event buffer.\n");
3142                 rv = -EINVAL;
3143                 goto out;
3144         }
3145
3146         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3147                 /* buffer is already enabled, nothing to do. */
3148                 smi_info->supports_event_msg_buff = true;
3149                 goto out;
3150         }
3151
3152         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3153         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3154         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3155         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3156
3157         rv = wait_for_msg_done(smi_info);
3158         if (rv) {
3159                 pr_warn(PFX "Error getting response from set global, enables command, the event buffer is not enabled.\n");
3160                 goto out;
3161         }
3162
3163         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3164                                                   resp, IPMI_MAX_MSG_LENGTH);
3165
3166         if (resp_len < 3 ||
3167                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3168                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3169                 pr_warn(PFX "Invalid return from get global, enables command, not enable the event buffer.\n");
3170                 rv = -EINVAL;
3171                 goto out;
3172         }
3173
3174         if (resp[2] != 0)
3175                 /*
3176                  * An error when setting the event buffer bit means
3177                  * that the event buffer is not supported.
3178                  */
3179                 rv = -ENOENT;
3180         else
3181                 smi_info->supports_event_msg_buff = true;
3182
3183 out:
3184         kfree(resp);
3185         return rv;
3186 }
3187
3188 static int smi_type_proc_show(struct seq_file *m, void *v)
3189 {
3190         struct smi_info *smi = m->private;
3191
3192         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3193
3194         return 0;
3195 }
3196
3197 static int smi_type_proc_open(struct inode *inode, struct file *file)
3198 {
3199         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3200 }
3201
3202 static const struct file_operations smi_type_proc_ops = {
3203         .open           = smi_type_proc_open,
3204         .read           = seq_read,
3205         .llseek         = seq_lseek,
3206         .release        = single_release,
3207 };
3208
3209 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3210 {
3211         struct smi_info *smi = m->private;
3212
3213         seq_printf(m, "interrupts_enabled:    %d\n",
3214                        smi->irq && !smi->interrupt_disabled);
3215         seq_printf(m, "short_timeouts:        %u\n",
3216                        smi_get_stat(smi, short_timeouts));
3217         seq_printf(m, "long_timeouts:         %u\n",
3218                        smi_get_stat(smi, long_timeouts));
3219         seq_printf(m, "idles:                 %u\n",
3220                        smi_get_stat(smi, idles));
3221         seq_printf(m, "interrupts:            %u\n",
3222                        smi_get_stat(smi, interrupts));
3223         seq_printf(m, "attentions:            %u\n",
3224                        smi_get_stat(smi, attentions));
3225         seq_printf(m, "flag_fetches:          %u\n",
3226                        smi_get_stat(smi, flag_fetches));
3227         seq_printf(m, "hosed_count:           %u\n",
3228                        smi_get_stat(smi, hosed_count));
3229         seq_printf(m, "complete_transactions: %u\n",
3230                        smi_get_stat(smi, complete_transactions));
3231         seq_printf(m, "events:                %u\n",
3232                        smi_get_stat(smi, events));
3233         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3234                        smi_get_stat(smi, watchdog_pretimeouts));
3235         seq_printf(m, "incoming_messages:     %u\n",
3236                        smi_get_stat(smi, incoming_messages));
3237         return 0;
3238 }
3239
3240 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3241 {
3242         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3243 }
3244
3245 static const struct file_operations smi_si_stats_proc_ops = {
3246         .open           = smi_si_stats_proc_open,
3247         .read           = seq_read,
3248         .llseek         = seq_lseek,
3249         .release        = single_release,
3250 };
3251
3252 static int smi_params_proc_show(struct seq_file *m, void *v)
3253 {
3254         struct smi_info *smi = m->private;
3255
3256         seq_printf(m,
3257                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3258                    si_to_str[smi->si_type],
3259                    addr_space_to_str[smi->io.addr_type],
3260                    smi->io.addr_data,
3261                    smi->io.regspacing,
3262                    smi->io.regsize,
3263                    smi->io.regshift,
3264                    smi->irq,
3265                    smi->slave_addr);
3266
3267         return 0;
3268 }
3269
3270 static int smi_params_proc_open(struct inode *inode, struct file *file)
3271 {
3272         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3273 }
3274
3275 static const struct file_operations smi_params_proc_ops = {
3276         .open           = smi_params_proc_open,
3277         .read           = seq_read,
3278         .llseek         = seq_lseek,
3279         .release        = single_release,
3280 };
3281
3282 /*
3283  * oem_data_avail_to_receive_msg_avail
3284  * @info - smi_info structure with msg_flags set
3285  *
3286  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3287  * Returns 1 indicating need to re-run handle_flags().
3288  */
3289 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3290 {
3291         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3292                                RECEIVE_MSG_AVAIL);
3293         return 1;
3294 }
3295
3296 /*
3297  * setup_dell_poweredge_oem_data_handler
3298  * @info - smi_info.device_id must be populated
3299  *
3300  * Systems that match, but have firmware version < 1.40 may assert
3301  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3302  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3303  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3304  * as RECEIVE_MSG_AVAIL instead.
3305  *
3306  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3307  * assert the OEM[012] bits, and if it did, the driver would have to
3308  * change to handle that properly, we don't actually check for the
3309  * firmware version.
3310  * Device ID = 0x20                BMC on PowerEdge 8G servers
3311  * Device Revision = 0x80
3312  * Firmware Revision1 = 0x01       BMC version 1.40
3313  * Firmware Revision2 = 0x40       BCD encoded
3314  * IPMI Version = 0x51             IPMI 1.5
3315  * Manufacturer ID = A2 02 00      Dell IANA
3316  *
3317  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3318  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3319  *
3320  */
3321 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3322 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3323 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3324 #define DELL_IANA_MFR_ID 0x0002a2
3325 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3326 {
3327         struct ipmi_device_id *id = &smi_info->device_id;
3328         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3329                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3330                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3331                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3332                         smi_info->oem_data_avail_handler =
3333                                 oem_data_avail_to_receive_msg_avail;
3334                 } else if (ipmi_version_major(id) < 1 ||
3335                            (ipmi_version_major(id) == 1 &&
3336                             ipmi_version_minor(id) < 5)) {
3337                         smi_info->oem_data_avail_handler =
3338                                 oem_data_avail_to_receive_msg_avail;
3339                 }
3340         }
3341 }
3342
3343 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3344 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3345 {
3346         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3347
3348         /* Make it a response */
3349         msg->rsp[0] = msg->data[0] | 4;
3350         msg->rsp[1] = msg->data[1];
3351         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3352         msg->rsp_size = 3;
3353         smi_info->curr_msg = NULL;
3354         deliver_recv_msg(smi_info, msg);
3355 }
3356
3357 /*
3358  * dell_poweredge_bt_xaction_handler
3359  * @info - smi_info.device_id must be populated
3360  *
3361  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3362  * not respond to a Get SDR command if the length of the data
3363  * requested is exactly 0x3A, which leads to command timeouts and no
3364  * data returned.  This intercepts such commands, and causes userspace
3365  * callers to try again with a different-sized buffer, which succeeds.
3366  */
3367
3368 #define STORAGE_NETFN 0x0A
3369 #define STORAGE_CMD_GET_SDR 0x23
3370 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3371                                              unsigned long unused,
3372                                              void *in)
3373 {
3374         struct smi_info *smi_info = in;
3375         unsigned char *data = smi_info->curr_msg->data;
3376         unsigned int size   = smi_info->curr_msg->data_size;
3377         if (size >= 8 &&
3378             (data[0]>>2) == STORAGE_NETFN &&
3379             data[1] == STORAGE_CMD_GET_SDR &&
3380             data[7] == 0x3A) {
3381                 return_hosed_msg_badsize(smi_info);
3382                 return NOTIFY_STOP;
3383         }
3384         return NOTIFY_DONE;
3385 }
3386
3387 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3388         .notifier_call  = dell_poweredge_bt_xaction_handler,
3389 };
3390
3391 /*
3392  * setup_dell_poweredge_bt_xaction_handler
3393  * @info - smi_info.device_id must be filled in already
3394  *
3395  * Fills in smi_info.device_id.start_transaction_pre_hook
3396  * when we know what function to use there.
3397  */
3398 static void
3399 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3400 {
3401         struct ipmi_device_id *id = &smi_info->device_id;
3402         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3403             smi_info->si_type == SI_BT)
3404                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3405 }
3406
3407 /*
3408  * setup_oem_data_handler
3409  * @info - smi_info.device_id must be filled in already
3410  *
3411  * Fills in smi_info.device_id.oem_data_available_handler
3412  * when we know what function to use there.
3413  */
3414
3415 static void setup_oem_data_handler(struct smi_info *smi_info)
3416 {
3417         setup_dell_poweredge_oem_data_handler(smi_info);
3418 }
3419
3420 static void setup_xaction_handlers(struct smi_info *smi_info)
3421 {
3422         setup_dell_poweredge_bt_xaction_handler(smi_info);
3423 }
3424
3425 static void check_for_broken_irqs(struct smi_info *smi_info)
3426 {
3427         check_clr_rcv_irq(smi_info);
3428         check_set_rcv_irq(smi_info);
3429 }
3430
3431 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3432 {
3433         if (smi_info->thread != NULL)
3434                 kthread_stop(smi_info->thread);
3435
3436         smi_info->timer_can_start = false;
3437         if (smi_info->timer_running)
3438                 del_timer_sync(&smi_info->si_timer);
3439 }
3440
3441 static struct smi_info *find_dup_si(struct smi_info *info)
3442 {
3443         struct smi_info *e;
3444
3445         list_for_each_entry(e, &smi_infos, link) {
3446                 if (e->io.addr_type != info->io.addr_type)
3447                         continue;
3448                 if (e->io.addr_data == info->io.addr_data) {
3449                         /*
3450                          * This is a cheap hack, ACPI doesn't have a defined
3451                          * slave address but SMBIOS does.  Pick it up from
3452                          * any source that has it available.
3453                          */
3454                         if (info->slave_addr && !e->slave_addr)
3455                                 e->slave_addr = info->slave_addr;
3456                         return e;
3457                 }
3458         }
3459
3460         return NULL;
3461 }
3462
3463 static int add_smi(struct smi_info *new_smi)
3464 {
3465         int rv = 0;
3466         struct smi_info *dup;
3467
3468         mutex_lock(&smi_infos_lock);
3469         dup = find_dup_si(new_smi);
3470         if (dup) {
3471                 if (new_smi->addr_source == SI_ACPI &&
3472                     dup->addr_source == SI_SMBIOS) {
3473                         /* We prefer ACPI over SMBIOS. */
3474                         dev_info(dup->dev,
3475                                  "Removing SMBIOS-specified %s state machine in favor of ACPI\n",
3476                                  si_to_str[new_smi->si_type]);
3477                         cleanup_one_si(dup);
3478                 } else {
3479                         dev_info(new_smi->dev,
3480                                  "%s-specified %s state machine: duplicate\n",
3481                                  ipmi_addr_src_to_str(new_smi->addr_source),
3482                                  si_to_str[new_smi->si_type]);
3483                         rv = -EBUSY;
3484                         goto out_err;
3485                 }
3486         }
3487
3488         pr_info(PFX "Adding %s-specified %s state machine\n",
3489                 ipmi_addr_src_to_str(new_smi->addr_source),
3490                 si_to_str[new_smi->si_type]);
3491
3492         /* So we know not to free it unless we have allocated one. */
3493         new_smi->intf = NULL;
3494         new_smi->si_sm = NULL;
3495         new_smi->handlers = NULL;
3496
3497         list_add_tail(&new_smi->link, &smi_infos);
3498
3499 out_err:
3500         mutex_unlock(&smi_infos_lock);
3501         return rv;
3502 }
3503
3504 /*
3505  * Try to start up an interface.  Must be called with smi_infos_lock
3506  * held, primarily to keep smi_num consistent, we only one to do these
3507  * one at a time.
3508  */
3509 static int try_smi_init(struct smi_info *new_smi)
3510 {
3511         int rv = 0;
3512         int i;
3513         char *init_name = NULL;
3514
3515         pr_info(PFX "Trying %s-specified %s state machine at %s address 0x%lx, slave address 0x%x, irq %d\n",
3516                 ipmi_addr_src_to_str(new_smi->addr_source),
3517                 si_to_str[new_smi->si_type],
3518                 addr_space_to_str[new_smi->io.addr_type],
3519                 new_smi->io.addr_data,
3520                 new_smi->slave_addr, new_smi->irq);
3521
3522         switch (new_smi->si_type) {
3523         case SI_KCS:
3524                 new_smi->handlers = &kcs_smi_handlers;
3525                 break;
3526
3527         case SI_SMIC:
3528                 new_smi->handlers = &smic_smi_handlers;
3529                 break;
3530
3531         case SI_BT:
3532                 new_smi->handlers = &bt_smi_handlers;
3533                 break;
3534
3535         default:
3536                 /* No support for anything else yet. */
3537                 rv = -EIO;
3538                 goto out_err;
3539         }
3540
3541         new_smi->intf_num = smi_num;
3542
3543         /* Do this early so it's available for logs. */
3544         if (!new_smi->dev) {
3545                 init_name = kasprintf(GFP_KERNEL, "ipmi_si.%d",
3546                                       new_smi->intf_num);
3547
3548                 /*
3549                  * If we don't already have a device from something
3550                  * else (like PCI), then register a new one.
3551                  */
3552                 new_smi->pdev = platform_device_alloc("ipmi_si",
3553                                                       new_smi->intf_num);
3554                 if (!new_smi->pdev) {
3555                         pr_err(PFX "Unable to allocate platform device\n");
3556                         goto out_err;
3557                 }
3558                 new_smi->dev = &new_smi->pdev->dev;
3559                 new_smi->dev->driver = &ipmi_driver.driver;
3560                 /* Nulled by device_add() */
3561                 new_smi->dev->init_name = init_name;
3562         }
3563
3564         /* Allocate the state machine's data and initialize it. */
3565         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3566         if (!new_smi->si_sm) {
3567                 pr_err(PFX "Could not allocate state machine memory\n");
3568                 rv = -ENOMEM;
3569                 goto out_err;
3570         }
3571         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3572                                                         &new_smi->io);
3573
3574         /* Now that we know the I/O size, we can set up the I/O. */
3575         rv = new_smi->io_setup(new_smi);
3576         if (rv) {
3577                 dev_err(new_smi->dev, "Could not set up I/O space\n");
3578                 goto out_err;
3579         }
3580
3581         /* Do low-level detection first. */
3582         if (new_smi->handlers->detect(new_smi->si_sm)) {
3583                 if (new_smi->addr_source)
3584                         dev_err(new_smi->dev, "Interface detection failed\n");
3585                 rv = -ENODEV;
3586                 goto out_err;
3587         }
3588
3589         /*
3590          * Attempt a get device id command.  If it fails, we probably
3591          * don't have a BMC here.
3592          */
3593         rv = try_get_dev_id(new_smi);
3594         if (rv) {
3595                 if (new_smi->addr_source)
3596                         dev_err(new_smi->dev, "There appears to be no BMC at this location\n");
3597                 goto out_err;
3598         }
3599
3600         setup_oem_data_handler(new_smi);
3601         setup_xaction_handlers(new_smi);
3602         check_for_broken_irqs(new_smi);
3603
3604         new_smi->waiting_msg = NULL;
3605         new_smi->curr_msg = NULL;
3606         atomic_set(&new_smi->req_events, 0);
3607         new_smi->run_to_completion = false;
3608         for (i = 0; i < SI_NUM_STATS; i++)
3609                 atomic_set(&new_smi->stats[i], 0);
3610
3611         new_smi->interrupt_disabled = true;
3612         atomic_set(&new_smi->need_watch, 0);
3613
3614         rv = try_enable_event_buffer(new_smi);
3615         if (rv == 0)
3616                 new_smi->has_event_buffer = true;
3617
3618         /*
3619          * Start clearing the flags before we enable interrupts or the
3620          * timer to avoid racing with the timer.
3621          */
3622         start_clear_flags(new_smi);
3623
3624         /*
3625          * IRQ is defined to be set when non-zero.  req_events will
3626          * cause a global flags check that will enable interrupts.
3627          */
3628         if (new_smi->irq) {
3629                 new_smi->interrupt_disabled = false;
3630                 atomic_set(&new_smi->req_events, 1);
3631         }
3632
3633         if (new_smi->pdev) {
3634                 rv = platform_device_add(new_smi->pdev);
3635                 if (rv) {
3636                         dev_err(new_smi->dev,
3637                                 "Unable to register system interface device: %d\n",
3638                                 rv);
3639                         goto out_err;
3640                 }
3641                 new_smi->dev_registered = true;
3642         }
3643
3644         rv = ipmi_register_smi(&handlers,
3645                                new_smi,
3646                                &new_smi->device_id,
3647                                new_smi->dev,
3648                                new_smi->slave_addr);
3649         if (rv) {
3650                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3651                         rv);
3652                 goto out_err_stop_timer;
3653         }
3654
3655         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3656                                      &smi_type_proc_ops,
3657                                      new_smi);
3658         if (rv) {
3659                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3660                 goto out_err_stop_timer;
3661         }
3662
3663         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3664                                      &smi_si_stats_proc_ops,
3665                                      new_smi);
3666         if (rv) {
3667                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3668                 goto out_err_stop_timer;
3669         }
3670
3671         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3672                                      &smi_params_proc_ops,
3673                                      new_smi);
3674         if (rv) {
3675                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3676                 goto out_err_stop_timer;
3677         }
3678
3679         /* Don't increment till we know we have succeeded. */
3680         smi_num++;
3681
3682         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3683                  si_to_str[new_smi->si_type]);
3684
3685         WARN_ON(new_smi->dev->init_name != NULL);
3686         kfree(init_name);
3687
3688         return 0;
3689
3690 out_err_stop_timer:
3691         stop_timer_and_thread(new_smi);
3692
3693 out_err:
3694         new_smi->interrupt_disabled = true;
3695
3696         if (new_smi->intf) {
3697                 ipmi_smi_t intf = new_smi->intf;
3698                 new_smi->intf = NULL;
3699                 ipmi_unregister_smi(intf);
3700         }
3701
3702         if (new_smi->irq_cleanup) {
3703                 new_smi->irq_cleanup(new_smi);
3704                 new_smi->irq_cleanup = NULL;
3705         }
3706
3707         /*
3708          * Wait until we know that we are out of any interrupt
3709          * handlers might have been running before we freed the
3710          * interrupt.
3711          */
3712         synchronize_sched();
3713
3714         if (new_smi->si_sm) {
3715                 if (new_smi->handlers)
3716                         new_smi->handlers->cleanup(new_smi->si_sm);
3717                 kfree(new_smi->si_sm);
3718                 new_smi->si_sm = NULL;
3719         }
3720         if (new_smi->addr_source_cleanup) {
3721                 new_smi->addr_source_cleanup(new_smi);
3722                 new_smi->addr_source_cleanup = NULL;
3723         }
3724         if (new_smi->io_cleanup) {
3725                 new_smi->io_cleanup(new_smi);
3726                 new_smi->io_cleanup = NULL;
3727         }
3728
3729         if (new_smi->dev_registered) {
3730                 platform_device_unregister(new_smi->pdev);
3731                 new_smi->dev_registered = false;
3732                 new_smi->pdev = NULL;
3733         } else if (new_smi->pdev) {
3734                 platform_device_put(new_smi->pdev);
3735                 new_smi->pdev = NULL;
3736         }
3737
3738         kfree(init_name);
3739
3740         return rv;
3741 }
3742
3743 static int init_ipmi_si(void)
3744 {
3745         int  i;
3746         char *str;
3747         int  rv;
3748         struct smi_info *e;
3749         enum ipmi_addr_src type = SI_INVALID;
3750
3751         if (initialized)
3752                 return 0;
3753         initialized = 1;
3754
3755         if (si_tryplatform) {
3756                 rv = platform_driver_register(&ipmi_driver);
3757                 if (rv) {
3758                         pr_err(PFX "Unable to register driver: %d\n", rv);
3759                         return rv;
3760                 }
3761         }
3762
3763         /* Parse out the si_type string into its components. */
3764         str = si_type_str;
3765         if (*str != '\0') {
3766                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3767                         si_type[i] = str;
3768                         str = strchr(str, ',');
3769                         if (str) {
3770                                 *str = '\0';
3771                                 str++;
3772                         } else {
3773                                 break;
3774                         }
3775                 }
3776         }
3777
3778         pr_info("IPMI System Interface driver.\n");
3779
3780         /* If the user gave us a device, they presumably want us to use it */
3781         if (!hardcode_find_bmc())
3782                 return 0;
3783
3784 #ifdef CONFIG_PCI
3785         if (si_trypci) {
3786                 rv = pci_register_driver(&ipmi_pci_driver);
3787                 if (rv)
3788                         pr_err(PFX "Unable to register PCI driver: %d\n", rv);
3789                 else
3790                         pci_registered = true;
3791         }
3792 #endif
3793
3794 #ifdef CONFIG_ACPI
3795         if (si_tryacpi)
3796                 spmi_find_bmc();
3797 #endif
3798
3799 #ifdef CONFIG_PARISC
3800         register_parisc_driver(&ipmi_parisc_driver);
3801         parisc_registered = true;
3802 #endif
3803
3804         /* We prefer devices with interrupts, but in the case of a machine
3805            with multiple BMCs we assume that there will be several instances
3806            of a given type so if we succeed in registering a type then also
3807            try to register everything else of the same type */
3808
3809         mutex_lock(&smi_infos_lock);
3810         list_for_each_entry(e, &smi_infos, link) {
3811                 /* Try to register a device if it has an IRQ and we either
3812                    haven't successfully registered a device yet or this
3813                    device has the same type as one we successfully registered */
3814                 if (e->irq && (!type || e->addr_source == type)) {
3815                         if (!try_smi_init(e)) {
3816                                 type = e->addr_source;
3817                         }
3818                 }
3819         }
3820
3821         /* type will only have been set if we successfully registered an si */
3822         if (type) {
3823                 mutex_unlock(&smi_infos_lock);
3824                 return 0;
3825         }
3826
3827         /* Fall back to the preferred device */
3828
3829         list_for_each_entry(e, &smi_infos, link) {
3830                 if (!e->irq && (!type || e->addr_source == type)) {
3831                         if (!try_smi_init(e)) {
3832                                 type = e->addr_source;
3833                         }
3834                 }
3835         }
3836         mutex_unlock(&smi_infos_lock);
3837
3838         if (type)
3839                 return 0;
3840
3841         mutex_lock(&smi_infos_lock);
3842         if (unload_when_empty && list_empty(&smi_infos)) {
3843                 mutex_unlock(&smi_infos_lock);
3844                 cleanup_ipmi_si();
3845                 pr_warn(PFX "Unable to find any System Interface(s)\n");
3846                 return -ENODEV;
3847         } else {
3848                 mutex_unlock(&smi_infos_lock);
3849                 return 0;
3850         }
3851 }
3852 module_init(init_ipmi_si);
3853
3854 static void cleanup_one_si(struct smi_info *to_clean)
3855 {
3856         int           rv = 0;
3857
3858         if (!to_clean)
3859                 return;
3860
3861         if (to_clean->intf) {
3862                 ipmi_smi_t intf = to_clean->intf;
3863
3864                 to_clean->intf = NULL;
3865                 rv = ipmi_unregister_smi(intf);
3866                 if (rv) {
3867                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3868                                rv);
3869                 }
3870         }
3871
3872         if (to_clean->dev)
3873                 dev_set_drvdata(to_clean->dev, NULL);
3874
3875         list_del(&to_clean->link);
3876
3877         /*
3878          * Make sure that interrupts, the timer and the thread are
3879          * stopped and will not run again.
3880          */
3881         if (to_clean->irq_cleanup)
3882                 to_clean->irq_cleanup(to_clean);
3883         stop_timer_and_thread(to_clean);
3884
3885         /*
3886          * Timeouts are stopped, now make sure the interrupts are off
3887          * in the BMC.  Note that timers and CPU interrupts are off,
3888          * so no need for locks.
3889          */
3890         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3891                 poll(to_clean);
3892                 schedule_timeout_uninterruptible(1);
3893         }
3894         if (to_clean->handlers)
3895                 disable_si_irq(to_clean);
3896         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3897                 poll(to_clean);
3898                 schedule_timeout_uninterruptible(1);
3899         }
3900
3901         if (to_clean->handlers)
3902                 to_clean->handlers->cleanup(to_clean->si_sm);
3903
3904         kfree(to_clean->si_sm);
3905
3906         if (to_clean->addr_source_cleanup)
3907                 to_clean->addr_source_cleanup(to_clean);
3908         if (to_clean->io_cleanup)
3909                 to_clean->io_cleanup(to_clean);
3910
3911         if (to_clean->dev_registered)
3912                 platform_device_unregister(to_clean->pdev);
3913
3914         kfree(to_clean);
3915 }
3916
3917 static void cleanup_ipmi_si(void)
3918 {
3919         struct smi_info *e, *tmp_e;
3920
3921         if (!initialized)
3922                 return;
3923
3924 #ifdef CONFIG_PCI
3925         if (pci_registered)
3926                 pci_unregister_driver(&ipmi_pci_driver);
3927 #endif
3928 #ifdef CONFIG_PARISC
3929         if (parisc_registered)
3930                 unregister_parisc_driver(&ipmi_parisc_driver);
3931 #endif
3932
3933         platform_driver_unregister(&ipmi_driver);
3934
3935         mutex_lock(&smi_infos_lock);
3936         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3937                 cleanup_one_si(e);
3938         mutex_unlock(&smi_infos_lock);
3939 }
3940 module_exit(cleanup_ipmi_si);
3941
3942 MODULE_ALIAS("platform:dmi-ipmi-si");
3943 MODULE_LICENSE("GPL");
3944 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3945 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3946                    " system interfaces.");