Linux-libre 4.4.228-gnu
[librecmc/linux-libre.git] / drivers / char / ipmi / ipmi_si_intf.c
1 /*
2  * ipmi_si.c
3  *
4  * The interface to the IPMI driver for the system interfaces (KCS, SMIC,
5  * BT).
6  *
7  * Author: MontaVista Software, Inc.
8  *         Corey Minyard <minyard@mvista.com>
9  *         source@mvista.com
10  *
11  * Copyright 2002 MontaVista Software Inc.
12  * Copyright 2006 IBM Corp., Christian Krafft <krafft@de.ibm.com>
13  *
14  *  This program is free software; you can redistribute it and/or modify it
15  *  under the terms of the GNU General Public License as published by the
16  *  Free Software Foundation; either version 2 of the License, or (at your
17  *  option) any later version.
18  *
19  *
20  *  THIS SOFTWARE IS PROVIDED ``AS IS'' AND ANY EXPRESS OR IMPLIED
21  *  WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
22  *  MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.
23  *  IN NO EVENT SHALL THE AUTHOR BE LIABLE FOR ANY DIRECT, INDIRECT,
24  *  INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
25  *  BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS
26  *  OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
27  *  ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR
28  *  TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE
29  *  USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
30  *
31  *  You should have received a copy of the GNU General Public License along
32  *  with this program; if not, write to the Free Software Foundation, Inc.,
33  *  675 Mass Ave, Cambridge, MA 02139, USA.
34  */
35
36 /*
37  * This file holds the "policy" for the interface to the SMI state
38  * machine.  It does the configuration, handles timers and interrupts,
39  * and drives the real SMI state machine.
40  */
41
42 #include <linux/module.h>
43 #include <linux/moduleparam.h>
44 #include <linux/sched.h>
45 #include <linux/seq_file.h>
46 #include <linux/timer.h>
47 #include <linux/errno.h>
48 #include <linux/spinlock.h>
49 #include <linux/slab.h>
50 #include <linux/delay.h>
51 #include <linux/list.h>
52 #include <linux/pci.h>
53 #include <linux/ioport.h>
54 #include <linux/notifier.h>
55 #include <linux/mutex.h>
56 #include <linux/kthread.h>
57 #include <asm/irq.h>
58 #include <linux/interrupt.h>
59 #include <linux/rcupdate.h>
60 #include <linux/ipmi.h>
61 #include <linux/ipmi_smi.h>
62 #include <asm/io.h>
63 #include "ipmi_si_sm.h"
64 #include <linux/dmi.h>
65 #include <linux/string.h>
66 #include <linux/ctype.h>
67 #include <linux/of_device.h>
68 #include <linux/of_platform.h>
69 #include <linux/of_address.h>
70 #include <linux/of_irq.h>
71
72 #ifdef CONFIG_PARISC
73 #include <asm/hardware.h>       /* for register_parisc_driver() stuff */
74 #include <asm/parisc-device.h>
75 #endif
76
77 #define PFX "ipmi_si: "
78
79 /* Measure times between events in the driver. */
80 #undef DEBUG_TIMING
81
82 /* Call every 10 ms. */
83 #define SI_TIMEOUT_TIME_USEC    10000
84 #define SI_USEC_PER_JIFFY       (1000000/HZ)
85 #define SI_TIMEOUT_JIFFIES      (SI_TIMEOUT_TIME_USEC/SI_USEC_PER_JIFFY)
86 #define SI_SHORT_TIMEOUT_USEC  250 /* .25ms when the SM request a
87                                       short timeout */
88
89 enum si_intf_state {
90         SI_NORMAL,
91         SI_GETTING_FLAGS,
92         SI_GETTING_EVENTS,
93         SI_CLEARING_FLAGS,
94         SI_GETTING_MESSAGES,
95         SI_CHECKING_ENABLES,
96         SI_SETTING_ENABLES
97         /* FIXME - add watchdog stuff. */
98 };
99
100 /* Some BT-specific defines we need here. */
101 #define IPMI_BT_INTMASK_REG             2
102 #define IPMI_BT_INTMASK_CLEAR_IRQ_BIT   2
103 #define IPMI_BT_INTMASK_ENABLE_IRQ_BIT  1
104
105 enum si_type {
106     SI_KCS, SI_SMIC, SI_BT
107 };
108 static char *si_to_str[] = { "kcs", "smic", "bt" };
109
110 #define DEVICE_NAME "ipmi_si"
111
112 static struct platform_driver ipmi_driver;
113
114 /*
115  * Indexes into stats[] in smi_info below.
116  */
117 enum si_stat_indexes {
118         /*
119          * Number of times the driver requested a timer while an operation
120          * was in progress.
121          */
122         SI_STAT_short_timeouts = 0,
123
124         /*
125          * Number of times the driver requested a timer while nothing was in
126          * progress.
127          */
128         SI_STAT_long_timeouts,
129
130         /* Number of times the interface was idle while being polled. */
131         SI_STAT_idles,
132
133         /* Number of interrupts the driver handled. */
134         SI_STAT_interrupts,
135
136         /* Number of time the driver got an ATTN from the hardware. */
137         SI_STAT_attentions,
138
139         /* Number of times the driver requested flags from the hardware. */
140         SI_STAT_flag_fetches,
141
142         /* Number of times the hardware didn't follow the state machine. */
143         SI_STAT_hosed_count,
144
145         /* Number of completed messages. */
146         SI_STAT_complete_transactions,
147
148         /* Number of IPMI events received from the hardware. */
149         SI_STAT_events,
150
151         /* Number of watchdog pretimeouts. */
152         SI_STAT_watchdog_pretimeouts,
153
154         /* Number of asynchronous messages received. */
155         SI_STAT_incoming_messages,
156
157
158         /* This *must* remain last, add new values above this. */
159         SI_NUM_STATS
160 };
161
162 struct smi_info {
163         int                    intf_num;
164         ipmi_smi_t             intf;
165         struct si_sm_data      *si_sm;
166         const struct si_sm_handlers *handlers;
167         enum si_type           si_type;
168         spinlock_t             si_lock;
169         struct ipmi_smi_msg    *waiting_msg;
170         struct ipmi_smi_msg    *curr_msg;
171         enum si_intf_state     si_state;
172
173         /*
174          * Used to handle the various types of I/O that can occur with
175          * IPMI
176          */
177         struct si_sm_io io;
178         int (*io_setup)(struct smi_info *info);
179         void (*io_cleanup)(struct smi_info *info);
180         int (*irq_setup)(struct smi_info *info);
181         void (*irq_cleanup)(struct smi_info *info);
182         unsigned int io_size;
183         enum ipmi_addr_src addr_source; /* ACPI, PCI, SMBIOS, hardcode, etc. */
184         void (*addr_source_cleanup)(struct smi_info *info);
185         void *addr_source_data;
186
187         /*
188          * Per-OEM handler, called from handle_flags().  Returns 1
189          * when handle_flags() needs to be re-run or 0 indicating it
190          * set si_state itself.
191          */
192         int (*oem_data_avail_handler)(struct smi_info *smi_info);
193
194         /*
195          * Flags from the last GET_MSG_FLAGS command, used when an ATTN
196          * is set to hold the flags until we are done handling everything
197          * from the flags.
198          */
199 #define RECEIVE_MSG_AVAIL       0x01
200 #define EVENT_MSG_BUFFER_FULL   0x02
201 #define WDT_PRE_TIMEOUT_INT     0x08
202 #define OEM0_DATA_AVAIL     0x20
203 #define OEM1_DATA_AVAIL     0x40
204 #define OEM2_DATA_AVAIL     0x80
205 #define OEM_DATA_AVAIL      (OEM0_DATA_AVAIL | \
206                              OEM1_DATA_AVAIL | \
207                              OEM2_DATA_AVAIL)
208         unsigned char       msg_flags;
209
210         /* Does the BMC have an event buffer? */
211         bool                has_event_buffer;
212
213         /*
214          * If set to true, this will request events the next time the
215          * state machine is idle.
216          */
217         atomic_t            req_events;
218
219         /*
220          * If true, run the state machine to completion on every send
221          * call.  Generally used after a panic to make sure stuff goes
222          * out.
223          */
224         bool                run_to_completion;
225
226         /* The I/O port of an SI interface. */
227         int                 port;
228
229         /*
230          * The space between start addresses of the two ports.  For
231          * instance, if the first port is 0xca2 and the spacing is 4, then
232          * the second port is 0xca6.
233          */
234         unsigned int        spacing;
235
236         /* zero if no irq; */
237         int                 irq;
238
239         /* The timer for this si. */
240         struct timer_list   si_timer;
241
242         /* This flag is set, if the timer can be set */
243         bool                timer_can_start;
244
245         /* This flag is set, if the timer is running (timer_pending() isn't enough) */
246         bool                timer_running;
247
248         /* The time (in jiffies) the last timeout occurred at. */
249         unsigned long       last_timeout_jiffies;
250
251         /* Are we waiting for the events, pretimeouts, received msgs? */
252         atomic_t            need_watch;
253
254         /*
255          * The driver will disable interrupts when it gets into a
256          * situation where it cannot handle messages due to lack of
257          * memory.  Once that situation clears up, it will re-enable
258          * interrupts.
259          */
260         bool interrupt_disabled;
261
262         /*
263          * Does the BMC support events?
264          */
265         bool supports_event_msg_buff;
266
267         /*
268          * Can we disable interrupts the global enables receive irq
269          * bit?  There are currently two forms of brokenness, some
270          * systems cannot disable the bit (which is technically within
271          * the spec but a bad idea) and some systems have the bit
272          * forced to zero even though interrupts work (which is
273          * clearly outside the spec).  The next bool tells which form
274          * of brokenness is present.
275          */
276         bool cannot_disable_irq;
277
278         /*
279          * Some systems are broken and cannot set the irq enable
280          * bit, even if they support interrupts.
281          */
282         bool irq_enable_broken;
283
284         /* Is the driver in maintenance mode? */
285         bool in_maintenance_mode;
286
287         /*
288          * Did we get an attention that we did not handle?
289          */
290         bool got_attn;
291
292         /* From the get device id response... */
293         struct ipmi_device_id device_id;
294
295         /* Driver model stuff. */
296         struct device *dev;
297         struct platform_device *pdev;
298
299         /*
300          * True if we allocated the device, false if it came from
301          * someplace else (like PCI).
302          */
303         bool dev_registered;
304
305         /* Slave address, could be reported from DMI. */
306         unsigned char slave_addr;
307
308         /* Counters and things for the proc filesystem. */
309         atomic_t stats[SI_NUM_STATS];
310
311         struct task_struct *thread;
312
313         struct list_head link;
314         union ipmi_smi_info_union addr_info;
315 };
316
317 #define smi_inc_stat(smi, stat) \
318         atomic_inc(&(smi)->stats[SI_STAT_ ## stat])
319 #define smi_get_stat(smi, stat) \
320         ((unsigned int) atomic_read(&(smi)->stats[SI_STAT_ ## stat]))
321
322 #define SI_MAX_PARMS 4
323
324 static int force_kipmid[SI_MAX_PARMS];
325 static int num_force_kipmid;
326 #ifdef CONFIG_PCI
327 static bool pci_registered;
328 #endif
329 #ifdef CONFIG_PARISC
330 static bool parisc_registered;
331 #endif
332
333 static unsigned int kipmid_max_busy_us[SI_MAX_PARMS];
334 static int num_max_busy_us;
335
336 static bool unload_when_empty = true;
337
338 static int add_smi(struct smi_info *smi);
339 static int try_smi_init(struct smi_info *smi);
340 static void cleanup_one_si(struct smi_info *to_clean);
341 static void cleanup_ipmi_si(void);
342
343 #ifdef DEBUG_TIMING
344 void debug_timestamp(char *msg)
345 {
346         struct timespec64 t;
347
348         getnstimeofday64(&t);
349         pr_debug("**%s: %lld.%9.9ld\n", msg, (long long) t.tv_sec, t.tv_nsec);
350 }
351 #else
352 #define debug_timestamp(x)
353 #endif
354
355 static ATOMIC_NOTIFIER_HEAD(xaction_notifier_list);
356 static int register_xaction_notifier(struct notifier_block *nb)
357 {
358         return atomic_notifier_chain_register(&xaction_notifier_list, nb);
359 }
360
361 static void deliver_recv_msg(struct smi_info *smi_info,
362                              struct ipmi_smi_msg *msg)
363 {
364         /* Deliver the message to the upper layer. */
365         if (smi_info->intf)
366                 ipmi_smi_msg_received(smi_info->intf, msg);
367         else
368                 ipmi_free_smi_msg(msg);
369 }
370
371 static void return_hosed_msg(struct smi_info *smi_info, int cCode)
372 {
373         struct ipmi_smi_msg *msg = smi_info->curr_msg;
374
375         if (cCode < 0 || cCode > IPMI_ERR_UNSPECIFIED)
376                 cCode = IPMI_ERR_UNSPECIFIED;
377         /* else use it as is */
378
379         /* Make it a response */
380         msg->rsp[0] = msg->data[0] | 4;
381         msg->rsp[1] = msg->data[1];
382         msg->rsp[2] = cCode;
383         msg->rsp_size = 3;
384
385         smi_info->curr_msg = NULL;
386         deliver_recv_msg(smi_info, msg);
387 }
388
389 static enum si_sm_result start_next_msg(struct smi_info *smi_info)
390 {
391         int              rv;
392
393         if (!smi_info->waiting_msg) {
394                 smi_info->curr_msg = NULL;
395                 rv = SI_SM_IDLE;
396         } else {
397                 int err;
398
399                 smi_info->curr_msg = smi_info->waiting_msg;
400                 smi_info->waiting_msg = NULL;
401                 debug_timestamp("Start2");
402                 err = atomic_notifier_call_chain(&xaction_notifier_list,
403                                 0, smi_info);
404                 if (err & NOTIFY_STOP_MASK) {
405                         rv = SI_SM_CALL_WITHOUT_DELAY;
406                         goto out;
407                 }
408                 err = smi_info->handlers->start_transaction(
409                         smi_info->si_sm,
410                         smi_info->curr_msg->data,
411                         smi_info->curr_msg->data_size);
412                 if (err)
413                         return_hosed_msg(smi_info, err);
414
415                 rv = SI_SM_CALL_WITHOUT_DELAY;
416         }
417  out:
418         return rv;
419 }
420
421 static void smi_mod_timer(struct smi_info *smi_info, unsigned long new_val)
422 {
423         if (!smi_info->timer_can_start)
424                 return;
425         smi_info->last_timeout_jiffies = jiffies;
426         mod_timer(&smi_info->si_timer, new_val);
427         smi_info->timer_running = true;
428 }
429
430 /*
431  * Start a new message and (re)start the timer and thread.
432  */
433 static void start_new_msg(struct smi_info *smi_info, unsigned char *msg,
434                           unsigned int size)
435 {
436         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
437
438         if (smi_info->thread)
439                 wake_up_process(smi_info->thread);
440
441         smi_info->handlers->start_transaction(smi_info->si_sm, msg, size);
442 }
443
444 static void start_check_enables(struct smi_info *smi_info)
445 {
446         unsigned char msg[2];
447
448         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
449         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
450
451         start_new_msg(smi_info, msg, 2);
452         smi_info->si_state = SI_CHECKING_ENABLES;
453 }
454
455 static void start_clear_flags(struct smi_info *smi_info)
456 {
457         unsigned char msg[3];
458
459         /* Make sure the watchdog pre-timeout flag is not set at startup. */
460         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
461         msg[1] = IPMI_CLEAR_MSG_FLAGS_CMD;
462         msg[2] = WDT_PRE_TIMEOUT_INT;
463
464         start_new_msg(smi_info, msg, 3);
465         smi_info->si_state = SI_CLEARING_FLAGS;
466 }
467
468 static void start_getting_msg_queue(struct smi_info *smi_info)
469 {
470         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
471         smi_info->curr_msg->data[1] = IPMI_GET_MSG_CMD;
472         smi_info->curr_msg->data_size = 2;
473
474         start_new_msg(smi_info, smi_info->curr_msg->data,
475                       smi_info->curr_msg->data_size);
476         smi_info->si_state = SI_GETTING_MESSAGES;
477 }
478
479 static void start_getting_events(struct smi_info *smi_info)
480 {
481         smi_info->curr_msg->data[0] = (IPMI_NETFN_APP_REQUEST << 2);
482         smi_info->curr_msg->data[1] = IPMI_READ_EVENT_MSG_BUFFER_CMD;
483         smi_info->curr_msg->data_size = 2;
484
485         start_new_msg(smi_info, smi_info->curr_msg->data,
486                       smi_info->curr_msg->data_size);
487         smi_info->si_state = SI_GETTING_EVENTS;
488 }
489
490 /*
491  * When we have a situtaion where we run out of memory and cannot
492  * allocate messages, we just leave them in the BMC and run the system
493  * polled until we can allocate some memory.  Once we have some
494  * memory, we will re-enable the interrupt.
495  *
496  * Note that we cannot just use disable_irq(), since the interrupt may
497  * be shared.
498  */
499 static inline bool disable_si_irq(struct smi_info *smi_info)
500 {
501         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
502                 smi_info->interrupt_disabled = true;
503                 start_check_enables(smi_info);
504                 return true;
505         }
506         return false;
507 }
508
509 static inline bool enable_si_irq(struct smi_info *smi_info)
510 {
511         if ((smi_info->irq) && (smi_info->interrupt_disabled)) {
512                 smi_info->interrupt_disabled = false;
513                 start_check_enables(smi_info);
514                 return true;
515         }
516         return false;
517 }
518
519 /*
520  * Allocate a message.  If unable to allocate, start the interrupt
521  * disable process and return NULL.  If able to allocate but
522  * interrupts are disabled, free the message and return NULL after
523  * starting the interrupt enable process.
524  */
525 static struct ipmi_smi_msg *alloc_msg_handle_irq(struct smi_info *smi_info)
526 {
527         struct ipmi_smi_msg *msg;
528
529         msg = ipmi_alloc_smi_msg();
530         if (!msg) {
531                 if (!disable_si_irq(smi_info))
532                         smi_info->si_state = SI_NORMAL;
533         } else if (enable_si_irq(smi_info)) {
534                 ipmi_free_smi_msg(msg);
535                 msg = NULL;
536         }
537         return msg;
538 }
539
540 static void handle_flags(struct smi_info *smi_info)
541 {
542  retry:
543         if (smi_info->msg_flags & WDT_PRE_TIMEOUT_INT) {
544                 /* Watchdog pre-timeout */
545                 smi_inc_stat(smi_info, watchdog_pretimeouts);
546
547                 start_clear_flags(smi_info);
548                 smi_info->msg_flags &= ~WDT_PRE_TIMEOUT_INT;
549                 if (smi_info->intf)
550                         ipmi_smi_watchdog_pretimeout(smi_info->intf);
551         } else if (smi_info->msg_flags & RECEIVE_MSG_AVAIL) {
552                 /* Messages available. */
553                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
554                 if (!smi_info->curr_msg)
555                         return;
556
557                 start_getting_msg_queue(smi_info);
558         } else if (smi_info->msg_flags & EVENT_MSG_BUFFER_FULL) {
559                 /* Events available. */
560                 smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
561                 if (!smi_info->curr_msg)
562                         return;
563
564                 start_getting_events(smi_info);
565         } else if (smi_info->msg_flags & OEM_DATA_AVAIL &&
566                    smi_info->oem_data_avail_handler) {
567                 if (smi_info->oem_data_avail_handler(smi_info))
568                         goto retry;
569         } else
570                 smi_info->si_state = SI_NORMAL;
571 }
572
573 /*
574  * Global enables we care about.
575  */
576 #define GLOBAL_ENABLES_MASK (IPMI_BMC_EVT_MSG_BUFF | IPMI_BMC_RCV_MSG_INTR | \
577                              IPMI_BMC_EVT_MSG_INTR)
578
579 static u8 current_global_enables(struct smi_info *smi_info, u8 base,
580                                  bool *irq_on)
581 {
582         u8 enables = 0;
583
584         if (smi_info->supports_event_msg_buff)
585                 enables |= IPMI_BMC_EVT_MSG_BUFF;
586
587         if (((smi_info->irq && !smi_info->interrupt_disabled) ||
588              smi_info->cannot_disable_irq) &&
589             !smi_info->irq_enable_broken)
590                 enables |= IPMI_BMC_RCV_MSG_INTR;
591
592         if (smi_info->supports_event_msg_buff &&
593             smi_info->irq && !smi_info->interrupt_disabled &&
594             !smi_info->irq_enable_broken)
595                 enables |= IPMI_BMC_EVT_MSG_INTR;
596
597         *irq_on = enables & (IPMI_BMC_EVT_MSG_INTR | IPMI_BMC_RCV_MSG_INTR);
598
599         return enables;
600 }
601
602 static void check_bt_irq(struct smi_info *smi_info, bool irq_on)
603 {
604         u8 irqstate = smi_info->io.inputb(&smi_info->io, IPMI_BT_INTMASK_REG);
605
606         irqstate &= IPMI_BT_INTMASK_ENABLE_IRQ_BIT;
607
608         if ((bool)irqstate == irq_on)
609                 return;
610
611         if (irq_on)
612                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
613                                      IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
614         else
615                 smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG, 0);
616 }
617
618 static void handle_transaction_done(struct smi_info *smi_info)
619 {
620         struct ipmi_smi_msg *msg;
621
622         debug_timestamp("Done");
623         switch (smi_info->si_state) {
624         case SI_NORMAL:
625                 if (!smi_info->curr_msg)
626                         break;
627
628                 smi_info->curr_msg->rsp_size
629                         = smi_info->handlers->get_result(
630                                 smi_info->si_sm,
631                                 smi_info->curr_msg->rsp,
632                                 IPMI_MAX_MSG_LENGTH);
633
634                 /*
635                  * Do this here becase deliver_recv_msg() releases the
636                  * lock, and a new message can be put in during the
637                  * time the lock is released.
638                  */
639                 msg = smi_info->curr_msg;
640                 smi_info->curr_msg = NULL;
641                 deliver_recv_msg(smi_info, msg);
642                 break;
643
644         case SI_GETTING_FLAGS:
645         {
646                 unsigned char msg[4];
647                 unsigned int  len;
648
649                 /* We got the flags from the SMI, now handle them. */
650                 len = smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
651                 if (msg[2] != 0) {
652                         /* Error fetching flags, just give up for now. */
653                         smi_info->si_state = SI_NORMAL;
654                 } else if (len < 4) {
655                         /*
656                          * Hmm, no flags.  That's technically illegal, but
657                          * don't use uninitialized data.
658                          */
659                         smi_info->si_state = SI_NORMAL;
660                 } else {
661                         smi_info->msg_flags = msg[3];
662                         handle_flags(smi_info);
663                 }
664                 break;
665         }
666
667         case SI_CLEARING_FLAGS:
668         {
669                 unsigned char msg[3];
670
671                 /* We cleared the flags. */
672                 smi_info->handlers->get_result(smi_info->si_sm, msg, 3);
673                 if (msg[2] != 0) {
674                         /* Error clearing flags */
675                         dev_warn(smi_info->dev,
676                                  "Error clearing flags: %2.2x\n", msg[2]);
677                 }
678                 smi_info->si_state = SI_NORMAL;
679                 break;
680         }
681
682         case SI_GETTING_EVENTS:
683         {
684                 smi_info->curr_msg->rsp_size
685                         = smi_info->handlers->get_result(
686                                 smi_info->si_sm,
687                                 smi_info->curr_msg->rsp,
688                                 IPMI_MAX_MSG_LENGTH);
689
690                 /*
691                  * Do this here becase deliver_recv_msg() releases the
692                  * lock, and a new message can be put in during the
693                  * time the lock is released.
694                  */
695                 msg = smi_info->curr_msg;
696                 smi_info->curr_msg = NULL;
697                 if (msg->rsp[2] != 0) {
698                         /* Error getting event, probably done. */
699                         msg->done(msg);
700
701                         /* Take off the event flag. */
702                         smi_info->msg_flags &= ~EVENT_MSG_BUFFER_FULL;
703                         handle_flags(smi_info);
704                 } else {
705                         smi_inc_stat(smi_info, events);
706
707                         /*
708                          * Do this before we deliver the message
709                          * because delivering the message releases the
710                          * lock and something else can mess with the
711                          * state.
712                          */
713                         handle_flags(smi_info);
714
715                         deliver_recv_msg(smi_info, msg);
716                 }
717                 break;
718         }
719
720         case SI_GETTING_MESSAGES:
721         {
722                 smi_info->curr_msg->rsp_size
723                         = smi_info->handlers->get_result(
724                                 smi_info->si_sm,
725                                 smi_info->curr_msg->rsp,
726                                 IPMI_MAX_MSG_LENGTH);
727
728                 /*
729                  * Do this here becase deliver_recv_msg() releases the
730                  * lock, and a new message can be put in during the
731                  * time the lock is released.
732                  */
733                 msg = smi_info->curr_msg;
734                 smi_info->curr_msg = NULL;
735                 if (msg->rsp[2] != 0) {
736                         /* Error getting event, probably done. */
737                         msg->done(msg);
738
739                         /* Take off the msg flag. */
740                         smi_info->msg_flags &= ~RECEIVE_MSG_AVAIL;
741                         handle_flags(smi_info);
742                 } else {
743                         smi_inc_stat(smi_info, incoming_messages);
744
745                         /*
746                          * Do this before we deliver the message
747                          * because delivering the message releases the
748                          * lock and something else can mess with the
749                          * state.
750                          */
751                         handle_flags(smi_info);
752
753                         deliver_recv_msg(smi_info, msg);
754                 }
755                 break;
756         }
757
758         case SI_CHECKING_ENABLES:
759         {
760                 unsigned char msg[4];
761                 u8 enables;
762                 bool irq_on;
763
764                 /* We got the flags from the SMI, now handle them. */
765                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
766                 if (msg[2] != 0) {
767                         dev_warn(smi_info->dev,
768                                  "Couldn't get irq info: %x.\n", msg[2]);
769                         dev_warn(smi_info->dev,
770                                  "Maybe ok, but ipmi might run very slowly.\n");
771                         smi_info->si_state = SI_NORMAL;
772                         break;
773                 }
774                 enables = current_global_enables(smi_info, 0, &irq_on);
775                 if (smi_info->si_type == SI_BT)
776                         /* BT has its own interrupt enable bit. */
777                         check_bt_irq(smi_info, irq_on);
778                 if (enables != (msg[3] & GLOBAL_ENABLES_MASK)) {
779                         /* Enables are not correct, fix them. */
780                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
781                         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
782                         msg[2] = enables | (msg[3] & ~GLOBAL_ENABLES_MASK);
783                         smi_info->handlers->start_transaction(
784                                 smi_info->si_sm, msg, 3);
785                         smi_info->si_state = SI_SETTING_ENABLES;
786                 } else if (smi_info->supports_event_msg_buff) {
787                         smi_info->curr_msg = ipmi_alloc_smi_msg();
788                         if (!smi_info->curr_msg) {
789                                 smi_info->si_state = SI_NORMAL;
790                                 break;
791                         }
792                         start_getting_msg_queue(smi_info);
793                 } else {
794                         smi_info->si_state = SI_NORMAL;
795                 }
796                 break;
797         }
798
799         case SI_SETTING_ENABLES:
800         {
801                 unsigned char msg[4];
802
803                 smi_info->handlers->get_result(smi_info->si_sm, msg, 4);
804                 if (msg[2] != 0)
805                         dev_warn(smi_info->dev,
806                                  "Could not set the global enables: 0x%x.\n",
807                                  msg[2]);
808
809                 if (smi_info->supports_event_msg_buff) {
810                         smi_info->curr_msg = ipmi_alloc_smi_msg();
811                         if (!smi_info->curr_msg) {
812                                 smi_info->si_state = SI_NORMAL;
813                                 break;
814                         }
815                         start_getting_msg_queue(smi_info);
816                 } else {
817                         smi_info->si_state = SI_NORMAL;
818                 }
819                 break;
820         }
821         }
822 }
823
824 /*
825  * Called on timeouts and events.  Timeouts should pass the elapsed
826  * time, interrupts should pass in zero.  Must be called with
827  * si_lock held and interrupts disabled.
828  */
829 static enum si_sm_result smi_event_handler(struct smi_info *smi_info,
830                                            int time)
831 {
832         enum si_sm_result si_sm_result;
833
834  restart:
835         /*
836          * There used to be a loop here that waited a little while
837          * (around 25us) before giving up.  That turned out to be
838          * pointless, the minimum delays I was seeing were in the 300us
839          * range, which is far too long to wait in an interrupt.  So
840          * we just run until the state machine tells us something
841          * happened or it needs a delay.
842          */
843         si_sm_result = smi_info->handlers->event(smi_info->si_sm, time);
844         time = 0;
845         while (si_sm_result == SI_SM_CALL_WITHOUT_DELAY)
846                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
847
848         if (si_sm_result == SI_SM_TRANSACTION_COMPLETE) {
849                 smi_inc_stat(smi_info, complete_transactions);
850
851                 handle_transaction_done(smi_info);
852                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
853         } else if (si_sm_result == SI_SM_HOSED) {
854                 smi_inc_stat(smi_info, hosed_count);
855
856                 /*
857                  * Do the before return_hosed_msg, because that
858                  * releases the lock.
859                  */
860                 smi_info->si_state = SI_NORMAL;
861                 if (smi_info->curr_msg != NULL) {
862                         /*
863                          * If we were handling a user message, format
864                          * a response to send to the upper layer to
865                          * tell it about the error.
866                          */
867                         return_hosed_msg(smi_info, IPMI_ERR_UNSPECIFIED);
868                 }
869                 si_sm_result = smi_info->handlers->event(smi_info->si_sm, 0);
870         }
871
872         /*
873          * We prefer handling attn over new messages.  But don't do
874          * this if there is not yet an upper layer to handle anything.
875          */
876         if (likely(smi_info->intf) &&
877             (si_sm_result == SI_SM_ATTN || smi_info->got_attn)) {
878                 unsigned char msg[2];
879
880                 if (smi_info->si_state != SI_NORMAL) {
881                         /*
882                          * We got an ATTN, but we are doing something else.
883                          * Handle the ATTN later.
884                          */
885                         smi_info->got_attn = true;
886                 } else {
887                         smi_info->got_attn = false;
888                         smi_inc_stat(smi_info, attentions);
889
890                         /*
891                          * Got a attn, send down a get message flags to see
892                          * what's causing it.  It would be better to handle
893                          * this in the upper layer, but due to the way
894                          * interrupts work with the SMI, that's not really
895                          * possible.
896                          */
897                         msg[0] = (IPMI_NETFN_APP_REQUEST << 2);
898                         msg[1] = IPMI_GET_MSG_FLAGS_CMD;
899
900                         start_new_msg(smi_info, msg, 2);
901                         smi_info->si_state = SI_GETTING_FLAGS;
902                         goto restart;
903                 }
904         }
905
906         /* If we are currently idle, try to start the next message. */
907         if (si_sm_result == SI_SM_IDLE) {
908                 smi_inc_stat(smi_info, idles);
909
910                 si_sm_result = start_next_msg(smi_info);
911                 if (si_sm_result != SI_SM_IDLE)
912                         goto restart;
913         }
914
915         if ((si_sm_result == SI_SM_IDLE)
916             && (atomic_read(&smi_info->req_events))) {
917                 /*
918                  * We are idle and the upper layer requested that I fetch
919                  * events, so do so.
920                  */
921                 atomic_set(&smi_info->req_events, 0);
922
923                 /*
924                  * Take this opportunity to check the interrupt and
925                  * message enable state for the BMC.  The BMC can be
926                  * asynchronously reset, and may thus get interrupts
927                  * disable and messages disabled.
928                  */
929                 if (smi_info->supports_event_msg_buff || smi_info->irq) {
930                         start_check_enables(smi_info);
931                 } else {
932                         smi_info->curr_msg = alloc_msg_handle_irq(smi_info);
933                         if (!smi_info->curr_msg)
934                                 goto out;
935
936                         start_getting_events(smi_info);
937                 }
938                 goto restart;
939         }
940
941         if (si_sm_result == SI_SM_IDLE && smi_info->timer_running) {
942                 /* Ok it if fails, the timer will just go off. */
943                 if (del_timer(&smi_info->si_timer))
944                         smi_info->timer_running = false;
945         }
946
947  out:
948         return si_sm_result;
949 }
950
951 static void check_start_timer_thread(struct smi_info *smi_info)
952 {
953         if (smi_info->si_state == SI_NORMAL && smi_info->curr_msg == NULL) {
954                 smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
955
956                 if (smi_info->thread)
957                         wake_up_process(smi_info->thread);
958
959                 start_next_msg(smi_info);
960                 smi_event_handler(smi_info, 0);
961         }
962 }
963
964 static void flush_messages(void *send_info)
965 {
966         struct smi_info *smi_info = send_info;
967         enum si_sm_result result;
968
969         /*
970          * Currently, this function is called only in run-to-completion
971          * mode.  This means we are single-threaded, no need for locks.
972          */
973         result = smi_event_handler(smi_info, 0);
974         while (result != SI_SM_IDLE) {
975                 udelay(SI_SHORT_TIMEOUT_USEC);
976                 result = smi_event_handler(smi_info, SI_SHORT_TIMEOUT_USEC);
977         }
978 }
979
980 static void sender(void                *send_info,
981                    struct ipmi_smi_msg *msg)
982 {
983         struct smi_info   *smi_info = send_info;
984         unsigned long     flags;
985
986         debug_timestamp("Enqueue");
987
988         if (smi_info->run_to_completion) {
989                 /*
990                  * If we are running to completion, start it.  Upper
991                  * layer will call flush_messages to clear it out.
992                  */
993                 smi_info->waiting_msg = msg;
994                 return;
995         }
996
997         spin_lock_irqsave(&smi_info->si_lock, flags);
998         /*
999          * The following two lines don't need to be under the lock for
1000          * the lock's sake, but they do need SMP memory barriers to
1001          * avoid getting things out of order.  We are already claiming
1002          * the lock, anyway, so just do it under the lock to avoid the
1003          * ordering problem.
1004          */
1005         BUG_ON(smi_info->waiting_msg);
1006         smi_info->waiting_msg = msg;
1007         check_start_timer_thread(smi_info);
1008         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1009 }
1010
1011 static void set_run_to_completion(void *send_info, bool i_run_to_completion)
1012 {
1013         struct smi_info   *smi_info = send_info;
1014
1015         smi_info->run_to_completion = i_run_to_completion;
1016         if (i_run_to_completion)
1017                 flush_messages(smi_info);
1018 }
1019
1020 /*
1021  * Use -1 in the nsec value of the busy waiting timespec to tell that
1022  * we are spinning in kipmid looking for something and not delaying
1023  * between checks
1024  */
1025 static inline void ipmi_si_set_not_busy(struct timespec64 *ts)
1026 {
1027         ts->tv_nsec = -1;
1028 }
1029 static inline int ipmi_si_is_busy(struct timespec64 *ts)
1030 {
1031         return ts->tv_nsec != -1;
1032 }
1033
1034 static inline int ipmi_thread_busy_wait(enum si_sm_result smi_result,
1035                                         const struct smi_info *smi_info,
1036                                         struct timespec64 *busy_until)
1037 {
1038         unsigned int max_busy_us = 0;
1039
1040         if (smi_info->intf_num < num_max_busy_us)
1041                 max_busy_us = kipmid_max_busy_us[smi_info->intf_num];
1042         if (max_busy_us == 0 || smi_result != SI_SM_CALL_WITH_DELAY)
1043                 ipmi_si_set_not_busy(busy_until);
1044         else if (!ipmi_si_is_busy(busy_until)) {
1045                 getnstimeofday64(busy_until);
1046                 timespec64_add_ns(busy_until, max_busy_us*NSEC_PER_USEC);
1047         } else {
1048                 struct timespec64 now;
1049
1050                 getnstimeofday64(&now);
1051                 if (unlikely(timespec64_compare(&now, busy_until) > 0)) {
1052                         ipmi_si_set_not_busy(busy_until);
1053                         return 0;
1054                 }
1055         }
1056         return 1;
1057 }
1058
1059
1060 /*
1061  * A busy-waiting loop for speeding up IPMI operation.
1062  *
1063  * Lousy hardware makes this hard.  This is only enabled for systems
1064  * that are not BT and do not have interrupts.  It starts spinning
1065  * when an operation is complete or until max_busy tells it to stop
1066  * (if that is enabled).  See the paragraph on kimid_max_busy_us in
1067  * Documentation/IPMI.txt for details.
1068  */
1069 static int ipmi_thread(void *data)
1070 {
1071         struct smi_info *smi_info = data;
1072         unsigned long flags;
1073         enum si_sm_result smi_result;
1074         struct timespec64 busy_until;
1075
1076         ipmi_si_set_not_busy(&busy_until);
1077         set_user_nice(current, MAX_NICE);
1078         while (!kthread_should_stop()) {
1079                 int busy_wait;
1080
1081                 spin_lock_irqsave(&(smi_info->si_lock), flags);
1082                 smi_result = smi_event_handler(smi_info, 0);
1083
1084                 /*
1085                  * If the driver is doing something, there is a possible
1086                  * race with the timer.  If the timer handler see idle,
1087                  * and the thread here sees something else, the timer
1088                  * handler won't restart the timer even though it is
1089                  * required.  So start it here if necessary.
1090                  */
1091                 if (smi_result != SI_SM_IDLE && !smi_info->timer_running)
1092                         smi_mod_timer(smi_info, jiffies + SI_TIMEOUT_JIFFIES);
1093
1094                 spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1095                 busy_wait = ipmi_thread_busy_wait(smi_result, smi_info,
1096                                                   &busy_until);
1097                 if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
1098                         ; /* do nothing */
1099                 } else if (smi_result == SI_SM_CALL_WITH_DELAY && busy_wait) {
1100                         /*
1101                          * In maintenance mode we run as fast as
1102                          * possible to allow firmware updates to
1103                          * complete as fast as possible, but normally
1104                          * don't bang on the scheduler.
1105                          */
1106                         if (smi_info->in_maintenance_mode)
1107                                 schedule();
1108                         else
1109                                 usleep_range(100, 200);
1110                 } else if (smi_result == SI_SM_IDLE) {
1111                         if (atomic_read(&smi_info->need_watch)) {
1112                                 schedule_timeout_interruptible(100);
1113                         } else {
1114                                 /* Wait to be woken up when we are needed. */
1115                                 __set_current_state(TASK_INTERRUPTIBLE);
1116                                 schedule();
1117                         }
1118                 } else {
1119                         schedule_timeout_interruptible(1);
1120                 }
1121         }
1122         return 0;
1123 }
1124
1125
1126 static void poll(void *send_info)
1127 {
1128         struct smi_info *smi_info = send_info;
1129         unsigned long flags = 0;
1130         bool run_to_completion = smi_info->run_to_completion;
1131
1132         /*
1133          * Make sure there is some delay in the poll loop so we can
1134          * drive time forward and timeout things.
1135          */
1136         udelay(10);
1137         if (!run_to_completion)
1138                 spin_lock_irqsave(&smi_info->si_lock, flags);
1139         smi_event_handler(smi_info, 10);
1140         if (!run_to_completion)
1141                 spin_unlock_irqrestore(&smi_info->si_lock, flags);
1142 }
1143
1144 static void request_events(void *send_info)
1145 {
1146         struct smi_info *smi_info = send_info;
1147
1148         if (!smi_info->has_event_buffer)
1149                 return;
1150
1151         atomic_set(&smi_info->req_events, 1);
1152 }
1153
1154 static void set_need_watch(void *send_info, bool enable)
1155 {
1156         struct smi_info *smi_info = send_info;
1157         unsigned long flags;
1158
1159         atomic_set(&smi_info->need_watch, enable);
1160         spin_lock_irqsave(&smi_info->si_lock, flags);
1161         check_start_timer_thread(smi_info);
1162         spin_unlock_irqrestore(&smi_info->si_lock, flags);
1163 }
1164
1165 static int initialized;
1166
1167 static void smi_timeout(unsigned long data)
1168 {
1169         struct smi_info   *smi_info = (struct smi_info *) data;
1170         enum si_sm_result smi_result;
1171         unsigned long     flags;
1172         unsigned long     jiffies_now;
1173         long              time_diff;
1174         long              timeout;
1175
1176         spin_lock_irqsave(&(smi_info->si_lock), flags);
1177         debug_timestamp("Timer");
1178
1179         jiffies_now = jiffies;
1180         time_diff = (((long)jiffies_now - (long)smi_info->last_timeout_jiffies)
1181                      * SI_USEC_PER_JIFFY);
1182         smi_result = smi_event_handler(smi_info, time_diff);
1183
1184         if ((smi_info->irq) && (!smi_info->interrupt_disabled)) {
1185                 /* Running with interrupts, only do long timeouts. */
1186                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1187                 smi_inc_stat(smi_info, long_timeouts);
1188                 goto do_mod_timer;
1189         }
1190
1191         /*
1192          * If the state machine asks for a short delay, then shorten
1193          * the timer timeout.
1194          */
1195         if (smi_result == SI_SM_CALL_WITH_DELAY) {
1196                 smi_inc_stat(smi_info, short_timeouts);
1197                 timeout = jiffies + 1;
1198         } else {
1199                 smi_inc_stat(smi_info, long_timeouts);
1200                 timeout = jiffies + SI_TIMEOUT_JIFFIES;
1201         }
1202
1203  do_mod_timer:
1204         if (smi_result != SI_SM_IDLE)
1205                 smi_mod_timer(smi_info, timeout);
1206         else
1207                 smi_info->timer_running = false;
1208         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1209 }
1210
1211 static irqreturn_t si_irq_handler(int irq, void *data)
1212 {
1213         struct smi_info *smi_info = data;
1214         unsigned long   flags;
1215
1216         spin_lock_irqsave(&(smi_info->si_lock), flags);
1217
1218         smi_inc_stat(smi_info, interrupts);
1219
1220         debug_timestamp("Interrupt");
1221
1222         smi_event_handler(smi_info, 0);
1223         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
1224         return IRQ_HANDLED;
1225 }
1226
1227 static irqreturn_t si_bt_irq_handler(int irq, void *data)
1228 {
1229         struct smi_info *smi_info = data;
1230         /* We need to clear the IRQ flag for the BT interface. */
1231         smi_info->io.outputb(&smi_info->io, IPMI_BT_INTMASK_REG,
1232                              IPMI_BT_INTMASK_CLEAR_IRQ_BIT
1233                              | IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1234         return si_irq_handler(irq, data);
1235 }
1236
1237 static int smi_start_processing(void       *send_info,
1238                                 ipmi_smi_t intf)
1239 {
1240         struct smi_info *new_smi = send_info;
1241         int             enable = 0;
1242
1243         new_smi->intf = intf;
1244
1245         /* Set up the timer that drives the interface. */
1246         setup_timer(&new_smi->si_timer, smi_timeout, (long)new_smi);
1247         new_smi->timer_can_start = true;
1248         smi_mod_timer(new_smi, jiffies + SI_TIMEOUT_JIFFIES);
1249
1250         /* Try to claim any interrupts. */
1251         if (new_smi->irq_setup)
1252                 new_smi->irq_setup(new_smi);
1253
1254         /*
1255          * Check if the user forcefully enabled the daemon.
1256          */
1257         if (new_smi->intf_num < num_force_kipmid)
1258                 enable = force_kipmid[new_smi->intf_num];
1259         /*
1260          * The BT interface is efficient enough to not need a thread,
1261          * and there is no need for a thread if we have interrupts.
1262          */
1263         else if ((new_smi->si_type != SI_BT) && (!new_smi->irq))
1264                 enable = 1;
1265
1266         if (enable) {
1267                 new_smi->thread = kthread_run(ipmi_thread, new_smi,
1268                                               "kipmi%d", new_smi->intf_num);
1269                 if (IS_ERR(new_smi->thread)) {
1270                         dev_notice(new_smi->dev, "Could not start"
1271                                    " kernel thread due to error %ld, only using"
1272                                    " timers to drive the interface\n",
1273                                    PTR_ERR(new_smi->thread));
1274                         new_smi->thread = NULL;
1275                 }
1276         }
1277
1278         return 0;
1279 }
1280
1281 static int get_smi_info(void *send_info, struct ipmi_smi_info *data)
1282 {
1283         struct smi_info *smi = send_info;
1284
1285         data->addr_src = smi->addr_source;
1286         data->dev = smi->dev;
1287         data->addr_info = smi->addr_info;
1288         get_device(smi->dev);
1289
1290         return 0;
1291 }
1292
1293 static void set_maintenance_mode(void *send_info, bool enable)
1294 {
1295         struct smi_info   *smi_info = send_info;
1296
1297         if (!enable)
1298                 atomic_set(&smi_info->req_events, 0);
1299         smi_info->in_maintenance_mode = enable;
1300 }
1301
1302 static const struct ipmi_smi_handlers handlers = {
1303         .owner                  = THIS_MODULE,
1304         .start_processing       = smi_start_processing,
1305         .get_smi_info           = get_smi_info,
1306         .sender                 = sender,
1307         .request_events         = request_events,
1308         .set_need_watch         = set_need_watch,
1309         .set_maintenance_mode   = set_maintenance_mode,
1310         .set_run_to_completion  = set_run_to_completion,
1311         .flush_messages         = flush_messages,
1312         .poll                   = poll,
1313 };
1314
1315 /*
1316  * There can be 4 IO ports passed in (with or without IRQs), 4 addresses,
1317  * a default IO port, and 1 ACPI/SPMI address.  That sets SI_MAX_DRIVERS.
1318  */
1319
1320 static LIST_HEAD(smi_infos);
1321 static DEFINE_MUTEX(smi_infos_lock);
1322 static int smi_num; /* Used to sequence the SMIs */
1323
1324 #define DEFAULT_REGSPACING      1
1325 #define DEFAULT_REGSIZE         1
1326
1327 #ifdef CONFIG_ACPI
1328 static bool          si_tryacpi = true;
1329 #endif
1330 #ifdef CONFIG_DMI
1331 static bool          si_trydmi = true;
1332 #endif
1333 static bool          si_tryplatform = true;
1334 #ifdef CONFIG_PCI
1335 static bool          si_trypci = true;
1336 #endif
1337 static bool          si_trydefaults = IS_ENABLED(CONFIG_IPMI_SI_PROBE_DEFAULTS);
1338 static char          *si_type[SI_MAX_PARMS];
1339 #define MAX_SI_TYPE_STR 30
1340 static char          si_type_str[MAX_SI_TYPE_STR];
1341 static unsigned long addrs[SI_MAX_PARMS];
1342 static unsigned int num_addrs;
1343 static unsigned int  ports[SI_MAX_PARMS];
1344 static unsigned int num_ports;
1345 static int           irqs[SI_MAX_PARMS];
1346 static unsigned int num_irqs;
1347 static int           regspacings[SI_MAX_PARMS];
1348 static unsigned int num_regspacings;
1349 static int           regsizes[SI_MAX_PARMS];
1350 static unsigned int num_regsizes;
1351 static int           regshifts[SI_MAX_PARMS];
1352 static unsigned int num_regshifts;
1353 static int slave_addrs[SI_MAX_PARMS]; /* Leaving 0 chooses the default value */
1354 static unsigned int num_slave_addrs;
1355
1356 #define IPMI_IO_ADDR_SPACE  0
1357 #define IPMI_MEM_ADDR_SPACE 1
1358 static char *addr_space_to_str[] = { "i/o", "mem" };
1359
1360 static int hotmod_handler(const char *val, struct kernel_param *kp);
1361
1362 module_param_call(hotmod, hotmod_handler, NULL, NULL, 0200);
1363 MODULE_PARM_DESC(hotmod, "Add and remove interfaces.  See"
1364                  " Documentation/IPMI.txt in the kernel sources for the"
1365                  " gory details.");
1366
1367 #ifdef CONFIG_ACPI
1368 module_param_named(tryacpi, si_tryacpi, bool, 0);
1369 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1370                  " default scan of the interfaces identified via ACPI");
1371 #endif
1372 #ifdef CONFIG_DMI
1373 module_param_named(trydmi, si_trydmi, bool, 0);
1374 MODULE_PARM_DESC(trydmi, "Setting this to zero will disable the"
1375                  " default scan of the interfaces identified via DMI");
1376 #endif
1377 module_param_named(tryplatform, si_tryplatform, bool, 0);
1378 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1379                  " default scan of the interfaces identified via platform"
1380                  " interfaces like openfirmware");
1381 #ifdef CONFIG_PCI
1382 module_param_named(trypci, si_trypci, bool, 0);
1383 MODULE_PARM_DESC(tryacpi, "Setting this to zero will disable the"
1384                  " default scan of the interfaces identified via pci");
1385 #endif
1386 module_param_named(trydefaults, si_trydefaults, bool, 0);
1387 MODULE_PARM_DESC(trydefaults, "Setting this to 'false' will disable the"
1388                  " default scan of the KCS and SMIC interface at the standard"
1389                  " address");
1390 module_param_string(type, si_type_str, MAX_SI_TYPE_STR, 0);
1391 MODULE_PARM_DESC(type, "Defines the type of each interface, each"
1392                  " interface separated by commas.  The types are 'kcs',"
1393                  " 'smic', and 'bt'.  For example si_type=kcs,bt will set"
1394                  " the first interface to kcs and the second to bt");
1395 module_param_array(addrs, ulong, &num_addrs, 0);
1396 MODULE_PARM_DESC(addrs, "Sets the memory address of each interface, the"
1397                  " addresses separated by commas.  Only use if an interface"
1398                  " is in memory.  Otherwise, set it to zero or leave"
1399                  " it blank.");
1400 module_param_array(ports, uint, &num_ports, 0);
1401 MODULE_PARM_DESC(ports, "Sets the port address of each interface, the"
1402                  " addresses separated by commas.  Only use if an interface"
1403                  " is a port.  Otherwise, set it to zero or leave"
1404                  " it blank.");
1405 module_param_array(irqs, int, &num_irqs, 0);
1406 MODULE_PARM_DESC(irqs, "Sets the interrupt of each interface, the"
1407                  " addresses separated by commas.  Only use if an interface"
1408                  " has an interrupt.  Otherwise, set it to zero or leave"
1409                  " it blank.");
1410 module_param_array(regspacings, int, &num_regspacings, 0);
1411 MODULE_PARM_DESC(regspacings, "The number of bytes between the start address"
1412                  " and each successive register used by the interface.  For"
1413                  " instance, if the start address is 0xca2 and the spacing"
1414                  " is 2, then the second address is at 0xca4.  Defaults"
1415                  " to 1.");
1416 module_param_array(regsizes, int, &num_regsizes, 0);
1417 MODULE_PARM_DESC(regsizes, "The size of the specific IPMI register in bytes."
1418                  " This should generally be 1, 2, 4, or 8 for an 8-bit,"
1419                  " 16-bit, 32-bit, or 64-bit register.  Use this if you"
1420                  " the 8-bit IPMI register has to be read from a larger"
1421                  " register.");
1422 module_param_array(regshifts, int, &num_regshifts, 0);
1423 MODULE_PARM_DESC(regshifts, "The amount to shift the data read from the."
1424                  " IPMI register, in bits.  For instance, if the data"
1425                  " is read from a 32-bit word and the IPMI data is in"
1426                  " bit 8-15, then the shift would be 8");
1427 module_param_array(slave_addrs, int, &num_slave_addrs, 0);
1428 MODULE_PARM_DESC(slave_addrs, "Set the default IPMB slave address for"
1429                  " the controller.  Normally this is 0x20, but can be"
1430                  " overridden by this parm.  This is an array indexed"
1431                  " by interface number.");
1432 module_param_array(force_kipmid, int, &num_force_kipmid, 0);
1433 MODULE_PARM_DESC(force_kipmid, "Force the kipmi daemon to be enabled (1) or"
1434                  " disabled(0).  Normally the IPMI driver auto-detects"
1435                  " this, but the value may be overridden by this parm.");
1436 module_param(unload_when_empty, bool, 0);
1437 MODULE_PARM_DESC(unload_when_empty, "Unload the module if no interfaces are"
1438                  " specified or found, default is 1.  Setting to 0"
1439                  " is useful for hot add of devices using hotmod.");
1440 module_param_array(kipmid_max_busy_us, uint, &num_max_busy_us, 0644);
1441 MODULE_PARM_DESC(kipmid_max_busy_us,
1442                  "Max time (in microseconds) to busy-wait for IPMI data before"
1443                  " sleeping. 0 (default) means to wait forever. Set to 100-500"
1444                  " if kipmid is using up a lot of CPU time.");
1445
1446
1447 static void std_irq_cleanup(struct smi_info *info)
1448 {
1449         if (info->si_type == SI_BT)
1450                 /* Disable the interrupt in the BT interface. */
1451                 info->io.outputb(&info->io, IPMI_BT_INTMASK_REG, 0);
1452         free_irq(info->irq, info);
1453 }
1454
1455 static int std_irq_setup(struct smi_info *info)
1456 {
1457         int rv;
1458
1459         if (!info->irq)
1460                 return 0;
1461
1462         if (info->si_type == SI_BT) {
1463                 rv = request_irq(info->irq,
1464                                  si_bt_irq_handler,
1465                                  IRQF_SHARED,
1466                                  DEVICE_NAME,
1467                                  info);
1468                 if (!rv)
1469                         /* Enable the interrupt in the BT interface. */
1470                         info->io.outputb(&info->io, IPMI_BT_INTMASK_REG,
1471                                          IPMI_BT_INTMASK_ENABLE_IRQ_BIT);
1472         } else
1473                 rv = request_irq(info->irq,
1474                                  si_irq_handler,
1475                                  IRQF_SHARED,
1476                                  DEVICE_NAME,
1477                                  info);
1478         if (rv) {
1479                 dev_warn(info->dev, "%s unable to claim interrupt %d,"
1480                          " running polled\n",
1481                          DEVICE_NAME, info->irq);
1482                 info->irq = 0;
1483         } else {
1484                 info->irq_cleanup = std_irq_cleanup;
1485                 dev_info(info->dev, "Using irq %d\n", info->irq);
1486         }
1487
1488         return rv;
1489 }
1490
1491 static unsigned char port_inb(const struct si_sm_io *io, unsigned int offset)
1492 {
1493         unsigned int addr = io->addr_data;
1494
1495         return inb(addr + (offset * io->regspacing));
1496 }
1497
1498 static void port_outb(const struct si_sm_io *io, unsigned int offset,
1499                       unsigned char b)
1500 {
1501         unsigned int addr = io->addr_data;
1502
1503         outb(b, addr + (offset * io->regspacing));
1504 }
1505
1506 static unsigned char port_inw(const struct si_sm_io *io, unsigned int offset)
1507 {
1508         unsigned int addr = io->addr_data;
1509
1510         return (inw(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1511 }
1512
1513 static void port_outw(const struct si_sm_io *io, unsigned int offset,
1514                       unsigned char b)
1515 {
1516         unsigned int addr = io->addr_data;
1517
1518         outw(b << io->regshift, addr + (offset * io->regspacing));
1519 }
1520
1521 static unsigned char port_inl(const struct si_sm_io *io, unsigned int offset)
1522 {
1523         unsigned int addr = io->addr_data;
1524
1525         return (inl(addr + (offset * io->regspacing)) >> io->regshift) & 0xff;
1526 }
1527
1528 static void port_outl(const struct si_sm_io *io, unsigned int offset,
1529                       unsigned char b)
1530 {
1531         unsigned int addr = io->addr_data;
1532
1533         outl(b << io->regshift, addr+(offset * io->regspacing));
1534 }
1535
1536 static void port_cleanup(struct smi_info *info)
1537 {
1538         unsigned int addr = info->io.addr_data;
1539         int          idx;
1540
1541         if (addr) {
1542                 for (idx = 0; idx < info->io_size; idx++)
1543                         release_region(addr + idx * info->io.regspacing,
1544                                        info->io.regsize);
1545         }
1546 }
1547
1548 static int port_setup(struct smi_info *info)
1549 {
1550         unsigned int addr = info->io.addr_data;
1551         int          idx;
1552
1553         if (!addr)
1554                 return -ENODEV;
1555
1556         info->io_cleanup = port_cleanup;
1557
1558         /*
1559          * Figure out the actual inb/inw/inl/etc routine to use based
1560          * upon the register size.
1561          */
1562         switch (info->io.regsize) {
1563         case 1:
1564                 info->io.inputb = port_inb;
1565                 info->io.outputb = port_outb;
1566                 break;
1567         case 2:
1568                 info->io.inputb = port_inw;
1569                 info->io.outputb = port_outw;
1570                 break;
1571         case 4:
1572                 info->io.inputb = port_inl;
1573                 info->io.outputb = port_outl;
1574                 break;
1575         default:
1576                 dev_warn(info->dev, "Invalid register size: %d\n",
1577                          info->io.regsize);
1578                 return -EINVAL;
1579         }
1580
1581         /*
1582          * Some BIOSes reserve disjoint I/O regions in their ACPI
1583          * tables.  This causes problems when trying to register the
1584          * entire I/O region.  Therefore we must register each I/O
1585          * port separately.
1586          */
1587         for (idx = 0; idx < info->io_size; idx++) {
1588                 if (request_region(addr + idx * info->io.regspacing,
1589                                    info->io.regsize, DEVICE_NAME) == NULL) {
1590                         /* Undo allocations */
1591                         while (idx--) {
1592                                 release_region(addr + idx * info->io.regspacing,
1593                                                info->io.regsize);
1594                         }
1595                         return -EIO;
1596                 }
1597         }
1598         return 0;
1599 }
1600
1601 static unsigned char intf_mem_inb(const struct si_sm_io *io,
1602                                   unsigned int offset)
1603 {
1604         return readb((io->addr)+(offset * io->regspacing));
1605 }
1606
1607 static void intf_mem_outb(const struct si_sm_io *io, unsigned int offset,
1608                           unsigned char b)
1609 {
1610         writeb(b, (io->addr)+(offset * io->regspacing));
1611 }
1612
1613 static unsigned char intf_mem_inw(const struct si_sm_io *io,
1614                                   unsigned int offset)
1615 {
1616         return (readw((io->addr)+(offset * io->regspacing)) >> io->regshift)
1617                 & 0xff;
1618 }
1619
1620 static void intf_mem_outw(const struct si_sm_io *io, unsigned int offset,
1621                           unsigned char b)
1622 {
1623         writeb(b << io->regshift, (io->addr)+(offset * io->regspacing));
1624 }
1625
1626 static unsigned char intf_mem_inl(const struct si_sm_io *io,
1627                                   unsigned int offset)
1628 {
1629         return (readl((io->addr)+(offset * io->regspacing)) >> io->regshift)
1630                 & 0xff;
1631 }
1632
1633 static void intf_mem_outl(const struct si_sm_io *io, unsigned int offset,
1634                           unsigned char b)
1635 {
1636         writel(b << io->regshift, (io->addr)+(offset * io->regspacing));
1637 }
1638
1639 #ifdef readq
1640 static unsigned char mem_inq(const struct si_sm_io *io, unsigned int offset)
1641 {
1642         return (readq((io->addr)+(offset * io->regspacing)) >> io->regshift)
1643                 & 0xff;
1644 }
1645
1646 static void mem_outq(const struct si_sm_io *io, unsigned int offset,
1647                      unsigned char b)
1648 {
1649         writeq(b << io->regshift, (io->addr)+(offset * io->regspacing));
1650 }
1651 #endif
1652
1653 static void mem_cleanup(struct smi_info *info)
1654 {
1655         unsigned long addr = info->io.addr_data;
1656         int           mapsize;
1657
1658         if (info->io.addr) {
1659                 iounmap(info->io.addr);
1660
1661                 mapsize = ((info->io_size * info->io.regspacing)
1662                            - (info->io.regspacing - info->io.regsize));
1663
1664                 release_mem_region(addr, mapsize);
1665         }
1666 }
1667
1668 static int mem_setup(struct smi_info *info)
1669 {
1670         unsigned long addr = info->io.addr_data;
1671         int           mapsize;
1672
1673         if (!addr)
1674                 return -ENODEV;
1675
1676         info->io_cleanup = mem_cleanup;
1677
1678         /*
1679          * Figure out the actual readb/readw/readl/etc routine to use based
1680          * upon the register size.
1681          */
1682         switch (info->io.regsize) {
1683         case 1:
1684                 info->io.inputb = intf_mem_inb;
1685                 info->io.outputb = intf_mem_outb;
1686                 break;
1687         case 2:
1688                 info->io.inputb = intf_mem_inw;
1689                 info->io.outputb = intf_mem_outw;
1690                 break;
1691         case 4:
1692                 info->io.inputb = intf_mem_inl;
1693                 info->io.outputb = intf_mem_outl;
1694                 break;
1695 #ifdef readq
1696         case 8:
1697                 info->io.inputb = mem_inq;
1698                 info->io.outputb = mem_outq;
1699                 break;
1700 #endif
1701         default:
1702                 dev_warn(info->dev, "Invalid register size: %d\n",
1703                          info->io.regsize);
1704                 return -EINVAL;
1705         }
1706
1707         /*
1708          * Calculate the total amount of memory to claim.  This is an
1709          * unusual looking calculation, but it avoids claiming any
1710          * more memory than it has to.  It will claim everything
1711          * between the first address to the end of the last full
1712          * register.
1713          */
1714         mapsize = ((info->io_size * info->io.regspacing)
1715                    - (info->io.regspacing - info->io.regsize));
1716
1717         if (request_mem_region(addr, mapsize, DEVICE_NAME) == NULL)
1718                 return -EIO;
1719
1720         info->io.addr = ioremap(addr, mapsize);
1721         if (info->io.addr == NULL) {
1722                 release_mem_region(addr, mapsize);
1723                 return -EIO;
1724         }
1725         return 0;
1726 }
1727
1728 /*
1729  * Parms come in as <op1>[:op2[:op3...]].  ops are:
1730  *   add|remove,kcs|bt|smic,mem|i/o,<address>[,<opt1>[,<opt2>[,...]]]
1731  * Options are:
1732  *   rsp=<regspacing>
1733  *   rsi=<regsize>
1734  *   rsh=<regshift>
1735  *   irq=<irq>
1736  *   ipmb=<ipmb addr>
1737  */
1738 enum hotmod_op { HM_ADD, HM_REMOVE };
1739 struct hotmod_vals {
1740         char *name;
1741         int  val;
1742 };
1743 static struct hotmod_vals hotmod_ops[] = {
1744         { "add",        HM_ADD },
1745         { "remove",     HM_REMOVE },
1746         { NULL }
1747 };
1748 static struct hotmod_vals hotmod_si[] = {
1749         { "kcs",        SI_KCS },
1750         { "smic",       SI_SMIC },
1751         { "bt",         SI_BT },
1752         { NULL }
1753 };
1754 static struct hotmod_vals hotmod_as[] = {
1755         { "mem",        IPMI_MEM_ADDR_SPACE },
1756         { "i/o",        IPMI_IO_ADDR_SPACE },
1757         { NULL }
1758 };
1759
1760 static int parse_str(struct hotmod_vals *v, int *val, char *name, char **curr)
1761 {
1762         char *s;
1763         int  i;
1764
1765         s = strchr(*curr, ',');
1766         if (!s) {
1767                 printk(KERN_WARNING PFX "No hotmod %s given.\n", name);
1768                 return -EINVAL;
1769         }
1770         *s = '\0';
1771         s++;
1772         for (i = 0; v[i].name; i++) {
1773                 if (strcmp(*curr, v[i].name) == 0) {
1774                         *val = v[i].val;
1775                         *curr = s;
1776                         return 0;
1777                 }
1778         }
1779
1780         printk(KERN_WARNING PFX "Invalid hotmod %s '%s'\n", name, *curr);
1781         return -EINVAL;
1782 }
1783
1784 static int check_hotmod_int_op(const char *curr, const char *option,
1785                                const char *name, int *val)
1786 {
1787         char *n;
1788
1789         if (strcmp(curr, name) == 0) {
1790                 if (!option) {
1791                         printk(KERN_WARNING PFX
1792                                "No option given for '%s'\n",
1793                                curr);
1794                         return -EINVAL;
1795                 }
1796                 *val = simple_strtoul(option, &n, 0);
1797                 if ((*n != '\0') || (*option == '\0')) {
1798                         printk(KERN_WARNING PFX
1799                                "Bad option given for '%s'\n",
1800                                curr);
1801                         return -EINVAL;
1802                 }
1803                 return 1;
1804         }
1805         return 0;
1806 }
1807
1808 static struct smi_info *smi_info_alloc(void)
1809 {
1810         struct smi_info *info = kzalloc(sizeof(*info), GFP_KERNEL);
1811
1812         if (info)
1813                 spin_lock_init(&info->si_lock);
1814         return info;
1815 }
1816
1817 static int hotmod_handler(const char *val, struct kernel_param *kp)
1818 {
1819         char *str = kstrdup(val, GFP_KERNEL);
1820         int  rv;
1821         char *next, *curr, *s, *n, *o;
1822         enum hotmod_op op;
1823         enum si_type si_type;
1824         int  addr_space;
1825         unsigned long addr;
1826         int regspacing;
1827         int regsize;
1828         int regshift;
1829         int irq;
1830         int ipmb;
1831         int ival;
1832         int len;
1833         struct smi_info *info;
1834
1835         if (!str)
1836                 return -ENOMEM;
1837
1838         /* Kill any trailing spaces, as we can get a "\n" from echo. */
1839         len = strlen(str);
1840         ival = len - 1;
1841         while ((ival >= 0) && isspace(str[ival])) {
1842                 str[ival] = '\0';
1843                 ival--;
1844         }
1845
1846         for (curr = str; curr; curr = next) {
1847                 regspacing = 1;
1848                 regsize = 1;
1849                 regshift = 0;
1850                 irq = 0;
1851                 ipmb = 0; /* Choose the default if not specified */
1852
1853                 next = strchr(curr, ':');
1854                 if (next) {
1855                         *next = '\0';
1856                         next++;
1857                 }
1858
1859                 rv = parse_str(hotmod_ops, &ival, "operation", &curr);
1860                 if (rv)
1861                         break;
1862                 op = ival;
1863
1864                 rv = parse_str(hotmod_si, &ival, "interface type", &curr);
1865                 if (rv)
1866                         break;
1867                 si_type = ival;
1868
1869                 rv = parse_str(hotmod_as, &addr_space, "address space", &curr);
1870                 if (rv)
1871                         break;
1872
1873                 s = strchr(curr, ',');
1874                 if (s) {
1875                         *s = '\0';
1876                         s++;
1877                 }
1878                 addr = simple_strtoul(curr, &n, 0);
1879                 if ((*n != '\0') || (*curr == '\0')) {
1880                         printk(KERN_WARNING PFX "Invalid hotmod address"
1881                                " '%s'\n", curr);
1882                         break;
1883                 }
1884
1885                 while (s) {
1886                         curr = s;
1887                         s = strchr(curr, ',');
1888                         if (s) {
1889                                 *s = '\0';
1890                                 s++;
1891                         }
1892                         o = strchr(curr, '=');
1893                         if (o) {
1894                                 *o = '\0';
1895                                 o++;
1896                         }
1897                         rv = check_hotmod_int_op(curr, o, "rsp", &regspacing);
1898                         if (rv < 0)
1899                                 goto out;
1900                         else if (rv)
1901                                 continue;
1902                         rv = check_hotmod_int_op(curr, o, "rsi", &regsize);
1903                         if (rv < 0)
1904                                 goto out;
1905                         else if (rv)
1906                                 continue;
1907                         rv = check_hotmod_int_op(curr, o, "rsh", &regshift);
1908                         if (rv < 0)
1909                                 goto out;
1910                         else if (rv)
1911                                 continue;
1912                         rv = check_hotmod_int_op(curr, o, "irq", &irq);
1913                         if (rv < 0)
1914                                 goto out;
1915                         else if (rv)
1916                                 continue;
1917                         rv = check_hotmod_int_op(curr, o, "ipmb", &ipmb);
1918                         if (rv < 0)
1919                                 goto out;
1920                         else if (rv)
1921                                 continue;
1922
1923                         rv = -EINVAL;
1924                         printk(KERN_WARNING PFX
1925                                "Invalid hotmod option '%s'\n",
1926                                curr);
1927                         goto out;
1928                 }
1929
1930                 if (op == HM_ADD) {
1931                         info = smi_info_alloc();
1932                         if (!info) {
1933                                 rv = -ENOMEM;
1934                                 goto out;
1935                         }
1936
1937                         info->addr_source = SI_HOTMOD;
1938                         info->si_type = si_type;
1939                         info->io.addr_data = addr;
1940                         info->io.addr_type = addr_space;
1941                         if (addr_space == IPMI_MEM_ADDR_SPACE)
1942                                 info->io_setup = mem_setup;
1943                         else
1944                                 info->io_setup = port_setup;
1945
1946                         info->io.addr = NULL;
1947                         info->io.regspacing = regspacing;
1948                         if (!info->io.regspacing)
1949                                 info->io.regspacing = DEFAULT_REGSPACING;
1950                         info->io.regsize = regsize;
1951                         if (!info->io.regsize)
1952                                 info->io.regsize = DEFAULT_REGSPACING;
1953                         info->io.regshift = regshift;
1954                         info->irq = irq;
1955                         if (info->irq)
1956                                 info->irq_setup = std_irq_setup;
1957                         info->slave_addr = ipmb;
1958
1959                         rv = add_smi(info);
1960                         if (rv) {
1961                                 kfree(info);
1962                                 goto out;
1963                         }
1964                         rv = try_smi_init(info);
1965                         if (rv) {
1966                                 cleanup_one_si(info);
1967                                 goto out;
1968                         }
1969                 } else {
1970                         /* remove */
1971                         struct smi_info *e, *tmp_e;
1972
1973                         mutex_lock(&smi_infos_lock);
1974                         list_for_each_entry_safe(e, tmp_e, &smi_infos, link) {
1975                                 if (e->io.addr_type != addr_space)
1976                                         continue;
1977                                 if (e->si_type != si_type)
1978                                         continue;
1979                                 if (e->io.addr_data == addr)
1980                                         cleanup_one_si(e);
1981                         }
1982                         mutex_unlock(&smi_infos_lock);
1983                 }
1984         }
1985         rv = len;
1986  out:
1987         kfree(str);
1988         return rv;
1989 }
1990
1991 static int hardcode_find_bmc(void)
1992 {
1993         int ret = -ENODEV;
1994         int             i;
1995         struct smi_info *info;
1996
1997         for (i = 0; i < SI_MAX_PARMS; i++) {
1998                 if (!ports[i] && !addrs[i])
1999                         continue;
2000
2001                 info = smi_info_alloc();
2002                 if (!info)
2003                         return -ENOMEM;
2004
2005                 info->addr_source = SI_HARDCODED;
2006                 printk(KERN_INFO PFX "probing via hardcoded address\n");
2007
2008                 if (!si_type[i] || strcmp(si_type[i], "kcs") == 0) {
2009                         info->si_type = SI_KCS;
2010                 } else if (strcmp(si_type[i], "smic") == 0) {
2011                         info->si_type = SI_SMIC;
2012                 } else if (strcmp(si_type[i], "bt") == 0) {
2013                         info->si_type = SI_BT;
2014                 } else {
2015                         printk(KERN_WARNING PFX "Interface type specified "
2016                                "for interface %d, was invalid: %s\n",
2017                                i, si_type[i]);
2018                         kfree(info);
2019                         continue;
2020                 }
2021
2022                 if (ports[i]) {
2023                         /* An I/O port */
2024                         info->io_setup = port_setup;
2025                         info->io.addr_data = ports[i];
2026                         info->io.addr_type = IPMI_IO_ADDR_SPACE;
2027                 } else if (addrs[i]) {
2028                         /* A memory port */
2029                         info->io_setup = mem_setup;
2030                         info->io.addr_data = addrs[i];
2031                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2032                 } else {
2033                         printk(KERN_WARNING PFX "Interface type specified "
2034                                "for interface %d, but port and address were "
2035                                "not set or set to zero.\n", i);
2036                         kfree(info);
2037                         continue;
2038                 }
2039
2040                 info->io.addr = NULL;
2041                 info->io.regspacing = regspacings[i];
2042                 if (!info->io.regspacing)
2043                         info->io.regspacing = DEFAULT_REGSPACING;
2044                 info->io.regsize = regsizes[i];
2045                 if (!info->io.regsize)
2046                         info->io.regsize = DEFAULT_REGSPACING;
2047                 info->io.regshift = regshifts[i];
2048                 info->irq = irqs[i];
2049                 if (info->irq)
2050                         info->irq_setup = std_irq_setup;
2051                 info->slave_addr = slave_addrs[i];
2052
2053                 if (!add_smi(info)) {
2054                         if (try_smi_init(info))
2055                                 cleanup_one_si(info);
2056                         ret = 0;
2057                 } else {
2058                         kfree(info);
2059                 }
2060         }
2061         return ret;
2062 }
2063
2064 #ifdef CONFIG_ACPI
2065
2066 #include <linux/acpi.h>
2067
2068 /*
2069  * Once we get an ACPI failure, we don't try any more, because we go
2070  * through the tables sequentially.  Once we don't find a table, there
2071  * are no more.
2072  */
2073 static int acpi_failure;
2074
2075 /* For GPE-type interrupts. */
2076 static u32 ipmi_acpi_gpe(acpi_handle gpe_device,
2077         u32 gpe_number, void *context)
2078 {
2079         struct smi_info *smi_info = context;
2080         unsigned long   flags;
2081
2082         spin_lock_irqsave(&(smi_info->si_lock), flags);
2083
2084         smi_inc_stat(smi_info, interrupts);
2085
2086         debug_timestamp("ACPI_GPE");
2087
2088         smi_event_handler(smi_info, 0);
2089         spin_unlock_irqrestore(&(smi_info->si_lock), flags);
2090
2091         return ACPI_INTERRUPT_HANDLED;
2092 }
2093
2094 static void acpi_gpe_irq_cleanup(struct smi_info *info)
2095 {
2096         if (!info->irq)
2097                 return;
2098
2099         acpi_remove_gpe_handler(NULL, info->irq, &ipmi_acpi_gpe);
2100 }
2101
2102 static int acpi_gpe_irq_setup(struct smi_info *info)
2103 {
2104         acpi_status status;
2105
2106         if (!info->irq)
2107                 return 0;
2108
2109         status = acpi_install_gpe_handler(NULL,
2110                                           info->irq,
2111                                           ACPI_GPE_LEVEL_TRIGGERED,
2112                                           &ipmi_acpi_gpe,
2113                                           info);
2114         if (status != AE_OK) {
2115                 dev_warn(info->dev, "%s unable to claim ACPI GPE %d,"
2116                          " running polled\n", DEVICE_NAME, info->irq);
2117                 info->irq = 0;
2118                 return -EINVAL;
2119         } else {
2120                 info->irq_cleanup = acpi_gpe_irq_cleanup;
2121                 dev_info(info->dev, "Using ACPI GPE %d\n", info->irq);
2122                 return 0;
2123         }
2124 }
2125
2126 /*
2127  * Defined at
2128  * http://h21007.www2.hp.com/portal/download/files/unprot/hpspmi.pdf
2129  */
2130 struct SPMITable {
2131         s8      Signature[4];
2132         u32     Length;
2133         u8      Revision;
2134         u8      Checksum;
2135         s8      OEMID[6];
2136         s8      OEMTableID[8];
2137         s8      OEMRevision[4];
2138         s8      CreatorID[4];
2139         s8      CreatorRevision[4];
2140         u8      InterfaceType;
2141         u8      IPMIlegacy;
2142         s16     SpecificationRevision;
2143
2144         /*
2145          * Bit 0 - SCI interrupt supported
2146          * Bit 1 - I/O APIC/SAPIC
2147          */
2148         u8      InterruptType;
2149
2150         /*
2151          * If bit 0 of InterruptType is set, then this is the SCI
2152          * interrupt in the GPEx_STS register.
2153          */
2154         u8      GPE;
2155
2156         s16     Reserved;
2157
2158         /*
2159          * If bit 1 of InterruptType is set, then this is the I/O
2160          * APIC/SAPIC interrupt.
2161          */
2162         u32     GlobalSystemInterrupt;
2163
2164         /* The actual register address. */
2165         struct acpi_generic_address addr;
2166
2167         u8      UID[4];
2168
2169         s8      spmi_id[1]; /* A '\0' terminated array starts here. */
2170 };
2171
2172 static int try_init_spmi(struct SPMITable *spmi)
2173 {
2174         struct smi_info  *info;
2175         int rv;
2176
2177         if (spmi->IPMIlegacy != 1) {
2178                 printk(KERN_INFO PFX "Bad SPMI legacy %d\n", spmi->IPMIlegacy);
2179                 return -ENODEV;
2180         }
2181
2182         info = smi_info_alloc();
2183         if (!info) {
2184                 printk(KERN_ERR PFX "Could not allocate SI data (3)\n");
2185                 return -ENOMEM;
2186         }
2187
2188         info->addr_source = SI_SPMI;
2189         printk(KERN_INFO PFX "probing via SPMI\n");
2190
2191         /* Figure out the interface type. */
2192         switch (spmi->InterfaceType) {
2193         case 1: /* KCS */
2194                 info->si_type = SI_KCS;
2195                 break;
2196         case 2: /* SMIC */
2197                 info->si_type = SI_SMIC;
2198                 break;
2199         case 3: /* BT */
2200                 info->si_type = SI_BT;
2201                 break;
2202         case 4: /* SSIF, just ignore */
2203                 kfree(info);
2204                 return -EIO;
2205         default:
2206                 printk(KERN_INFO PFX "Unknown ACPI/SPMI SI type %d\n",
2207                        spmi->InterfaceType);
2208                 kfree(info);
2209                 return -EIO;
2210         }
2211
2212         if (spmi->InterruptType & 1) {
2213                 /* We've got a GPE interrupt. */
2214                 info->irq = spmi->GPE;
2215                 info->irq_setup = acpi_gpe_irq_setup;
2216         } else if (spmi->InterruptType & 2) {
2217                 /* We've got an APIC/SAPIC interrupt. */
2218                 info->irq = spmi->GlobalSystemInterrupt;
2219                 info->irq_setup = std_irq_setup;
2220         } else {
2221                 /* Use the default interrupt setting. */
2222                 info->irq = 0;
2223                 info->irq_setup = NULL;
2224         }
2225
2226         if (spmi->addr.bit_width) {
2227                 /* A (hopefully) properly formed register bit width. */
2228                 info->io.regspacing = spmi->addr.bit_width / 8;
2229         } else {
2230                 info->io.regspacing = DEFAULT_REGSPACING;
2231         }
2232         info->io.regsize = info->io.regspacing;
2233         info->io.regshift = spmi->addr.bit_offset;
2234
2235         if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY) {
2236                 info->io_setup = mem_setup;
2237                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2238         } else if (spmi->addr.space_id == ACPI_ADR_SPACE_SYSTEM_IO) {
2239                 info->io_setup = port_setup;
2240                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2241         } else {
2242                 kfree(info);
2243                 printk(KERN_WARNING PFX "Unknown ACPI I/O Address type\n");
2244                 return -EIO;
2245         }
2246         info->io.addr_data = spmi->addr.address;
2247
2248         pr_info("ipmi_si: SPMI: %s %#lx regsize %d spacing %d irq %d\n",
2249                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2250                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2251                  info->irq);
2252
2253         rv = add_smi(info);
2254         if (rv)
2255                 kfree(info);
2256
2257         return rv;
2258 }
2259
2260 static void spmi_find_bmc(void)
2261 {
2262         acpi_status      status;
2263         struct SPMITable *spmi;
2264         int              i;
2265
2266         if (acpi_disabled)
2267                 return;
2268
2269         if (acpi_failure)
2270                 return;
2271
2272         for (i = 0; ; i++) {
2273                 status = acpi_get_table(ACPI_SIG_SPMI, i+1,
2274                                         (struct acpi_table_header **)&spmi);
2275                 if (status != AE_OK)
2276                         return;
2277
2278                 try_init_spmi(spmi);
2279         }
2280 }
2281 #endif
2282
2283 #ifdef CONFIG_DMI
2284 struct dmi_ipmi_data {
2285         u8              type;
2286         u8              addr_space;
2287         unsigned long   base_addr;
2288         u8              irq;
2289         u8              offset;
2290         u8              slave_addr;
2291 };
2292
2293 static int decode_dmi(const struct dmi_header *dm,
2294                                 struct dmi_ipmi_data *dmi)
2295 {
2296         const u8        *data = (const u8 *)dm;
2297         unsigned long   base_addr;
2298         u8              reg_spacing;
2299         u8              len = dm->length;
2300
2301         dmi->type = data[4];
2302
2303         memcpy(&base_addr, data+8, sizeof(unsigned long));
2304         if (len >= 0x11) {
2305                 if (base_addr & 1) {
2306                         /* I/O */
2307                         base_addr &= 0xFFFE;
2308                         dmi->addr_space = IPMI_IO_ADDR_SPACE;
2309                 } else
2310                         /* Memory */
2311                         dmi->addr_space = IPMI_MEM_ADDR_SPACE;
2312
2313                 /* If bit 4 of byte 0x10 is set, then the lsb for the address
2314                    is odd. */
2315                 dmi->base_addr = base_addr | ((data[0x10] & 0x10) >> 4);
2316
2317                 dmi->irq = data[0x11];
2318
2319                 /* The top two bits of byte 0x10 hold the register spacing. */
2320                 reg_spacing = (data[0x10] & 0xC0) >> 6;
2321                 switch (reg_spacing) {
2322                 case 0x00: /* Byte boundaries */
2323                     dmi->offset = 1;
2324                     break;
2325                 case 0x01: /* 32-bit boundaries */
2326                     dmi->offset = 4;
2327                     break;
2328                 case 0x02: /* 16-byte boundaries */
2329                     dmi->offset = 16;
2330                     break;
2331                 default:
2332                     /* Some other interface, just ignore it. */
2333                     return -EIO;
2334                 }
2335         } else {
2336                 /* Old DMI spec. */
2337                 /*
2338                  * Note that technically, the lower bit of the base
2339                  * address should be 1 if the address is I/O and 0 if
2340                  * the address is in memory.  So many systems get that
2341                  * wrong (and all that I have seen are I/O) so we just
2342                  * ignore that bit and assume I/O.  Systems that use
2343                  * memory should use the newer spec, anyway.
2344                  */
2345                 dmi->base_addr = base_addr & 0xfffe;
2346                 dmi->addr_space = IPMI_IO_ADDR_SPACE;
2347                 dmi->offset = 1;
2348         }
2349
2350         dmi->slave_addr = data[6];
2351
2352         return 0;
2353 }
2354
2355 static void try_init_dmi(struct dmi_ipmi_data *ipmi_data)
2356 {
2357         struct smi_info *info;
2358
2359         info = smi_info_alloc();
2360         if (!info) {
2361                 printk(KERN_ERR PFX "Could not allocate SI data\n");
2362                 return;
2363         }
2364
2365         info->addr_source = SI_SMBIOS;
2366         printk(KERN_INFO PFX "probing via SMBIOS\n");
2367
2368         switch (ipmi_data->type) {
2369         case 0x01: /* KCS */
2370                 info->si_type = SI_KCS;
2371                 break;
2372         case 0x02: /* SMIC */
2373                 info->si_type = SI_SMIC;
2374                 break;
2375         case 0x03: /* BT */
2376                 info->si_type = SI_BT;
2377                 break;
2378         default:
2379                 kfree(info);
2380                 return;
2381         }
2382
2383         switch (ipmi_data->addr_space) {
2384         case IPMI_MEM_ADDR_SPACE:
2385                 info->io_setup = mem_setup;
2386                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2387                 break;
2388
2389         case IPMI_IO_ADDR_SPACE:
2390                 info->io_setup = port_setup;
2391                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2392                 break;
2393
2394         default:
2395                 kfree(info);
2396                 printk(KERN_WARNING PFX "Unknown SMBIOS I/O Address type: %d\n",
2397                        ipmi_data->addr_space);
2398                 return;
2399         }
2400         info->io.addr_data = ipmi_data->base_addr;
2401
2402         info->io.regspacing = ipmi_data->offset;
2403         if (!info->io.regspacing)
2404                 info->io.regspacing = DEFAULT_REGSPACING;
2405         info->io.regsize = DEFAULT_REGSPACING;
2406         info->io.regshift = 0;
2407
2408         info->slave_addr = ipmi_data->slave_addr;
2409
2410         info->irq = ipmi_data->irq;
2411         if (info->irq)
2412                 info->irq_setup = std_irq_setup;
2413
2414         pr_info("ipmi_si: SMBIOS: %s %#lx regsize %d spacing %d irq %d\n",
2415                  (info->io.addr_type == IPMI_IO_ADDR_SPACE) ? "io" : "mem",
2416                  info->io.addr_data, info->io.regsize, info->io.regspacing,
2417                  info->irq);
2418
2419         if (add_smi(info))
2420                 kfree(info);
2421 }
2422
2423 static void dmi_find_bmc(void)
2424 {
2425         const struct dmi_device *dev = NULL;
2426         struct dmi_ipmi_data data;
2427         int                  rv;
2428
2429         while ((dev = dmi_find_device(DMI_DEV_TYPE_IPMI, NULL, dev))) {
2430                 memset(&data, 0, sizeof(data));
2431                 rv = decode_dmi((const struct dmi_header *) dev->device_data,
2432                                 &data);
2433                 if (!rv)
2434                         try_init_dmi(&data);
2435         }
2436 }
2437 #endif /* CONFIG_DMI */
2438
2439 #ifdef CONFIG_PCI
2440
2441 #define PCI_ERMC_CLASSCODE              0x0C0700
2442 #define PCI_ERMC_CLASSCODE_MASK         0xffffff00
2443 #define PCI_ERMC_CLASSCODE_TYPE_MASK    0xff
2444 #define PCI_ERMC_CLASSCODE_TYPE_SMIC    0x00
2445 #define PCI_ERMC_CLASSCODE_TYPE_KCS     0x01
2446 #define PCI_ERMC_CLASSCODE_TYPE_BT      0x02
2447
2448 #define PCI_HP_VENDOR_ID    0x103C
2449 #define PCI_MMC_DEVICE_ID   0x121A
2450 #define PCI_MMC_ADDR_CW     0x10
2451
2452 static void ipmi_pci_cleanup(struct smi_info *info)
2453 {
2454         struct pci_dev *pdev = info->addr_source_data;
2455
2456         pci_disable_device(pdev);
2457 }
2458
2459 static int ipmi_pci_probe_regspacing(struct smi_info *info)
2460 {
2461         if (info->si_type == SI_KCS) {
2462                 unsigned char   status;
2463                 int             regspacing;
2464
2465                 info->io.regsize = DEFAULT_REGSIZE;
2466                 info->io.regshift = 0;
2467                 info->io_size = 2;
2468                 info->handlers = &kcs_smi_handlers;
2469
2470                 /* detect 1, 4, 16byte spacing */
2471                 for (regspacing = DEFAULT_REGSPACING; regspacing <= 16;) {
2472                         info->io.regspacing = regspacing;
2473                         if (info->io_setup(info)) {
2474                                 dev_err(info->dev,
2475                                         "Could not setup I/O space\n");
2476                                 return DEFAULT_REGSPACING;
2477                         }
2478                         /* write invalid cmd */
2479                         info->io.outputb(&info->io, 1, 0x10);
2480                         /* read status back */
2481                         status = info->io.inputb(&info->io, 1);
2482                         info->io_cleanup(info);
2483                         if (status)
2484                                 return regspacing;
2485                         regspacing *= 4;
2486                 }
2487         }
2488         return DEFAULT_REGSPACING;
2489 }
2490
2491 static int ipmi_pci_probe(struct pci_dev *pdev,
2492                                     const struct pci_device_id *ent)
2493 {
2494         int rv;
2495         int class_type = pdev->class & PCI_ERMC_CLASSCODE_TYPE_MASK;
2496         struct smi_info *info;
2497
2498         info = smi_info_alloc();
2499         if (!info)
2500                 return -ENOMEM;
2501
2502         info->addr_source = SI_PCI;
2503         dev_info(&pdev->dev, "probing via PCI");
2504
2505         switch (class_type) {
2506         case PCI_ERMC_CLASSCODE_TYPE_SMIC:
2507                 info->si_type = SI_SMIC;
2508                 break;
2509
2510         case PCI_ERMC_CLASSCODE_TYPE_KCS:
2511                 info->si_type = SI_KCS;
2512                 break;
2513
2514         case PCI_ERMC_CLASSCODE_TYPE_BT:
2515                 info->si_type = SI_BT;
2516                 break;
2517
2518         default:
2519                 kfree(info);
2520                 dev_info(&pdev->dev, "Unknown IPMI type: %d\n", class_type);
2521                 return -ENOMEM;
2522         }
2523
2524         rv = pci_enable_device(pdev);
2525         if (rv) {
2526                 dev_err(&pdev->dev, "couldn't enable PCI device\n");
2527                 kfree(info);
2528                 return rv;
2529         }
2530
2531         info->addr_source_cleanup = ipmi_pci_cleanup;
2532         info->addr_source_data = pdev;
2533
2534         if (pci_resource_flags(pdev, 0) & IORESOURCE_IO) {
2535                 info->io_setup = port_setup;
2536                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2537         } else {
2538                 info->io_setup = mem_setup;
2539                 info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2540         }
2541         info->io.addr_data = pci_resource_start(pdev, 0);
2542
2543         info->io.regspacing = ipmi_pci_probe_regspacing(info);
2544         info->io.regsize = DEFAULT_REGSIZE;
2545         info->io.regshift = 0;
2546
2547         info->irq = pdev->irq;
2548         if (info->irq)
2549                 info->irq_setup = std_irq_setup;
2550
2551         info->dev = &pdev->dev;
2552         pci_set_drvdata(pdev, info);
2553
2554         dev_info(&pdev->dev, "%pR regsize %d spacing %d irq %d\n",
2555                 &pdev->resource[0], info->io.regsize, info->io.regspacing,
2556                 info->irq);
2557
2558         rv = add_smi(info);
2559         if (rv) {
2560                 kfree(info);
2561                 pci_disable_device(pdev);
2562         }
2563
2564         return rv;
2565 }
2566
2567 static void ipmi_pci_remove(struct pci_dev *pdev)
2568 {
2569         struct smi_info *info = pci_get_drvdata(pdev);
2570         cleanup_one_si(info);
2571         pci_disable_device(pdev);
2572 }
2573
2574 static const struct pci_device_id ipmi_pci_devices[] = {
2575         { PCI_DEVICE(PCI_HP_VENDOR_ID, PCI_MMC_DEVICE_ID) },
2576         { PCI_DEVICE_CLASS(PCI_ERMC_CLASSCODE, PCI_ERMC_CLASSCODE_MASK) },
2577         { 0, }
2578 };
2579 MODULE_DEVICE_TABLE(pci, ipmi_pci_devices);
2580
2581 static struct pci_driver ipmi_pci_driver = {
2582         .name =         DEVICE_NAME,
2583         .id_table =     ipmi_pci_devices,
2584         .probe =        ipmi_pci_probe,
2585         .remove =       ipmi_pci_remove,
2586 };
2587 #endif /* CONFIG_PCI */
2588
2589 #ifdef CONFIG_OF
2590 static const struct of_device_id of_ipmi_match[] = {
2591         { .type = "ipmi", .compatible = "ipmi-kcs",
2592           .data = (void *)(unsigned long) SI_KCS },
2593         { .type = "ipmi", .compatible = "ipmi-smic",
2594           .data = (void *)(unsigned long) SI_SMIC },
2595         { .type = "ipmi", .compatible = "ipmi-bt",
2596           .data = (void *)(unsigned long) SI_BT },
2597         {},
2598 };
2599 MODULE_DEVICE_TABLE(of, of_ipmi_match);
2600
2601 static int of_ipmi_probe(struct platform_device *dev)
2602 {
2603         const struct of_device_id *match;
2604         struct smi_info *info;
2605         struct resource resource;
2606         const __be32 *regsize, *regspacing, *regshift;
2607         struct device_node *np = dev->dev.of_node;
2608         int ret;
2609         int proplen;
2610
2611         dev_info(&dev->dev, "probing via device tree\n");
2612
2613         match = of_match_device(of_ipmi_match, &dev->dev);
2614         if (!match)
2615                 return -ENODEV;
2616
2617         if (!of_device_is_available(np))
2618                 return -EINVAL;
2619
2620         ret = of_address_to_resource(np, 0, &resource);
2621         if (ret) {
2622                 dev_warn(&dev->dev, PFX "invalid address from OF\n");
2623                 return ret;
2624         }
2625
2626         regsize = of_get_property(np, "reg-size", &proplen);
2627         if (regsize && proplen != 4) {
2628                 dev_warn(&dev->dev, PFX "invalid regsize from OF\n");
2629                 return -EINVAL;
2630         }
2631
2632         regspacing = of_get_property(np, "reg-spacing", &proplen);
2633         if (regspacing && proplen != 4) {
2634                 dev_warn(&dev->dev, PFX "invalid regspacing from OF\n");
2635                 return -EINVAL;
2636         }
2637
2638         regshift = of_get_property(np, "reg-shift", &proplen);
2639         if (regshift && proplen != 4) {
2640                 dev_warn(&dev->dev, PFX "invalid regshift from OF\n");
2641                 return -EINVAL;
2642         }
2643
2644         info = smi_info_alloc();
2645
2646         if (!info) {
2647                 dev_err(&dev->dev,
2648                         "could not allocate memory for OF probe\n");
2649                 return -ENOMEM;
2650         }
2651
2652         info->si_type           = (enum si_type) match->data;
2653         info->addr_source       = SI_DEVICETREE;
2654         info->irq_setup         = std_irq_setup;
2655
2656         if (resource.flags & IORESOURCE_IO) {
2657                 info->io_setup          = port_setup;
2658                 info->io.addr_type      = IPMI_IO_ADDR_SPACE;
2659         } else {
2660                 info->io_setup          = mem_setup;
2661                 info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2662         }
2663
2664         info->io.addr_data      = resource.start;
2665
2666         info->io.regsize        = regsize ? be32_to_cpup(regsize) : DEFAULT_REGSIZE;
2667         info->io.regspacing     = regspacing ? be32_to_cpup(regspacing) : DEFAULT_REGSPACING;
2668         info->io.regshift       = regshift ? be32_to_cpup(regshift) : 0;
2669
2670         info->irq               = irq_of_parse_and_map(dev->dev.of_node, 0);
2671         info->dev               = &dev->dev;
2672
2673         dev_dbg(&dev->dev, "addr 0x%lx regsize %d spacing %d irq %d\n",
2674                 info->io.addr_data, info->io.regsize, info->io.regspacing,
2675                 info->irq);
2676
2677         dev_set_drvdata(&dev->dev, info);
2678
2679         ret = add_smi(info);
2680         if (ret) {
2681                 kfree(info);
2682                 return ret;
2683         }
2684         return 0;
2685 }
2686 #else
2687 #define of_ipmi_match NULL
2688 static int of_ipmi_probe(struct platform_device *dev)
2689 {
2690         return -ENODEV;
2691 }
2692 #endif
2693
2694 #ifdef CONFIG_ACPI
2695 static int acpi_ipmi_probe(struct platform_device *dev)
2696 {
2697         struct smi_info *info;
2698         struct resource *res, *res_second;
2699         acpi_handle handle;
2700         acpi_status status;
2701         unsigned long long tmp;
2702         int rv = -EINVAL;
2703
2704         handle = ACPI_HANDLE(&dev->dev);
2705         if (!handle)
2706                 return -ENODEV;
2707
2708         info = smi_info_alloc();
2709         if (!info)
2710                 return -ENOMEM;
2711
2712         info->addr_source = SI_ACPI;
2713         dev_info(&dev->dev, PFX "probing via ACPI\n");
2714
2715         info->addr_info.acpi_info.acpi_handle = handle;
2716
2717         /* _IFT tells us the interface type: KCS, BT, etc */
2718         status = acpi_evaluate_integer(handle, "_IFT", NULL, &tmp);
2719         if (ACPI_FAILURE(status)) {
2720                 dev_err(&dev->dev, "Could not find ACPI IPMI interface type\n");
2721                 goto err_free;
2722         }
2723
2724         switch (tmp) {
2725         case 1:
2726                 info->si_type = SI_KCS;
2727                 break;
2728         case 2:
2729                 info->si_type = SI_SMIC;
2730                 break;
2731         case 3:
2732                 info->si_type = SI_BT;
2733                 break;
2734         case 4: /* SSIF, just ignore */
2735                 rv = -ENODEV;
2736                 goto err_free;
2737         default:
2738                 dev_info(&dev->dev, "unknown IPMI type %lld\n", tmp);
2739                 goto err_free;
2740         }
2741
2742         res = platform_get_resource(dev, IORESOURCE_IO, 0);
2743         if (res) {
2744                 info->io_setup = port_setup;
2745                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
2746         } else {
2747                 res = platform_get_resource(dev, IORESOURCE_MEM, 0);
2748                 if (res) {
2749                         info->io_setup = mem_setup;
2750                         info->io.addr_type = IPMI_MEM_ADDR_SPACE;
2751                 }
2752         }
2753         if (!res) {
2754                 dev_err(&dev->dev, "no I/O or memory address\n");
2755                 goto err_free;
2756         }
2757         info->io.addr_data = res->start;
2758
2759         info->io.regspacing = DEFAULT_REGSPACING;
2760         res_second = platform_get_resource(dev,
2761                                (info->io.addr_type == IPMI_IO_ADDR_SPACE) ?
2762                                         IORESOURCE_IO : IORESOURCE_MEM,
2763                                1);
2764         if (res_second) {
2765                 if (res_second->start > info->io.addr_data)
2766                         info->io.regspacing =
2767                                 res_second->start - info->io.addr_data;
2768         }
2769         info->io.regsize = DEFAULT_REGSPACING;
2770         info->io.regshift = 0;
2771
2772         /* If _GPE exists, use it; otherwise use standard interrupts */
2773         status = acpi_evaluate_integer(handle, "_GPE", NULL, &tmp);
2774         if (ACPI_SUCCESS(status)) {
2775                 info->irq = tmp;
2776                 info->irq_setup = acpi_gpe_irq_setup;
2777         } else {
2778                 int irq = platform_get_irq(dev, 0);
2779
2780                 if (irq > 0) {
2781                         info->irq = irq;
2782                         info->irq_setup = std_irq_setup;
2783                 }
2784         }
2785
2786         info->dev = &dev->dev;
2787         platform_set_drvdata(dev, info);
2788
2789         dev_info(info->dev, "%pR regsize %d spacing %d irq %d\n",
2790                  res, info->io.regsize, info->io.regspacing,
2791                  info->irq);
2792
2793         rv = add_smi(info);
2794         if (rv)
2795                 kfree(info);
2796
2797         return rv;
2798
2799 err_free:
2800         kfree(info);
2801         return rv;
2802 }
2803
2804 static const struct acpi_device_id acpi_ipmi_match[] = {
2805         { "IPI0001", 0 },
2806         { },
2807 };
2808 MODULE_DEVICE_TABLE(acpi, acpi_ipmi_match);
2809 #else
2810 static int acpi_ipmi_probe(struct platform_device *dev)
2811 {
2812         return -ENODEV;
2813 }
2814 #endif
2815
2816 static int ipmi_probe(struct platform_device *dev)
2817 {
2818         if (of_ipmi_probe(dev) == 0)
2819                 return 0;
2820
2821         return acpi_ipmi_probe(dev);
2822 }
2823
2824 static int ipmi_remove(struct platform_device *dev)
2825 {
2826         struct smi_info *info = dev_get_drvdata(&dev->dev);
2827
2828         cleanup_one_si(info);
2829         return 0;
2830 }
2831
2832 static struct platform_driver ipmi_driver = {
2833         .driver = {
2834                 .name = DEVICE_NAME,
2835                 .of_match_table = of_ipmi_match,
2836                 .acpi_match_table = ACPI_PTR(acpi_ipmi_match),
2837         },
2838         .probe          = ipmi_probe,
2839         .remove         = ipmi_remove,
2840 };
2841
2842 #ifdef CONFIG_PARISC
2843 static int ipmi_parisc_probe(struct parisc_device *dev)
2844 {
2845         struct smi_info *info;
2846         int rv;
2847
2848         info = smi_info_alloc();
2849
2850         if (!info) {
2851                 dev_err(&dev->dev,
2852                         "could not allocate memory for PARISC probe\n");
2853                 return -ENOMEM;
2854         }
2855
2856         info->si_type           = SI_KCS;
2857         info->addr_source       = SI_DEVICETREE;
2858         info->io_setup          = mem_setup;
2859         info->io.addr_type      = IPMI_MEM_ADDR_SPACE;
2860         info->io.addr_data      = dev->hpa.start;
2861         info->io.regsize        = 1;
2862         info->io.regspacing     = 1;
2863         info->io.regshift       = 0;
2864         info->irq               = 0; /* no interrupt */
2865         info->irq_setup         = NULL;
2866         info->dev               = &dev->dev;
2867
2868         dev_dbg(&dev->dev, "addr 0x%lx\n", info->io.addr_data);
2869
2870         dev_set_drvdata(&dev->dev, info);
2871
2872         rv = add_smi(info);
2873         if (rv) {
2874                 kfree(info);
2875                 return rv;
2876         }
2877
2878         return 0;
2879 }
2880
2881 static int ipmi_parisc_remove(struct parisc_device *dev)
2882 {
2883         cleanup_one_si(dev_get_drvdata(&dev->dev));
2884         return 0;
2885 }
2886
2887 static struct parisc_device_id ipmi_parisc_tbl[] = {
2888         { HPHW_MC, HVERSION_REV_ANY_ID, 0x004, 0xC0 },
2889         { 0, }
2890 };
2891
2892 static struct parisc_driver ipmi_parisc_driver = {
2893         .name =         "ipmi",
2894         .id_table =     ipmi_parisc_tbl,
2895         .probe =        ipmi_parisc_probe,
2896         .remove =       ipmi_parisc_remove,
2897 };
2898 #endif /* CONFIG_PARISC */
2899
2900 static int wait_for_msg_done(struct smi_info *smi_info)
2901 {
2902         enum si_sm_result     smi_result;
2903
2904         smi_result = smi_info->handlers->event(smi_info->si_sm, 0);
2905         for (;;) {
2906                 if (smi_result == SI_SM_CALL_WITH_DELAY ||
2907                     smi_result == SI_SM_CALL_WITH_TICK_DELAY) {
2908                         schedule_timeout_uninterruptible(1);
2909                         smi_result = smi_info->handlers->event(
2910                                 smi_info->si_sm, jiffies_to_usecs(1));
2911                 } else if (smi_result == SI_SM_CALL_WITHOUT_DELAY) {
2912                         smi_result = smi_info->handlers->event(
2913                                 smi_info->si_sm, 0);
2914                 } else
2915                         break;
2916         }
2917         if (smi_result == SI_SM_HOSED)
2918                 /*
2919                  * We couldn't get the state machine to run, so whatever's at
2920                  * the port is probably not an IPMI SMI interface.
2921                  */
2922                 return -ENODEV;
2923
2924         return 0;
2925 }
2926
2927 static int try_get_dev_id(struct smi_info *smi_info)
2928 {
2929         unsigned char         msg[2];
2930         unsigned char         *resp;
2931         unsigned long         resp_len;
2932         int                   rv = 0;
2933
2934         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2935         if (!resp)
2936                 return -ENOMEM;
2937
2938         /*
2939          * Do a Get Device ID command, since it comes back with some
2940          * useful info.
2941          */
2942         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2943         msg[1] = IPMI_GET_DEVICE_ID_CMD;
2944         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2945
2946         rv = wait_for_msg_done(smi_info);
2947         if (rv)
2948                 goto out;
2949
2950         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2951                                                   resp, IPMI_MAX_MSG_LENGTH);
2952
2953         /* Check and record info from the get device id, in case we need it. */
2954         rv = ipmi_demangle_device_id(resp, resp_len, &smi_info->device_id);
2955
2956  out:
2957         kfree(resp);
2958         return rv;
2959 }
2960
2961 static int get_global_enables(struct smi_info *smi_info, u8 *enables)
2962 {
2963         unsigned char         msg[3];
2964         unsigned char         *resp;
2965         unsigned long         resp_len;
2966         int                   rv;
2967
2968         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
2969         if (!resp)
2970                 return -ENOMEM;
2971
2972         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
2973         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
2974         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
2975
2976         rv = wait_for_msg_done(smi_info);
2977         if (rv) {
2978                 dev_warn(smi_info->dev,
2979                          "Error getting response from get global enables command: %d\n",
2980                          rv);
2981                 goto out;
2982         }
2983
2984         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
2985                                                   resp, IPMI_MAX_MSG_LENGTH);
2986
2987         if (resp_len < 4 ||
2988                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
2989                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
2990                         resp[2] != 0) {
2991                 dev_warn(smi_info->dev,
2992                          "Invalid return from get global enables command: %ld %x %x %x\n",
2993                          resp_len, resp[0], resp[1], resp[2]);
2994                 rv = -EINVAL;
2995                 goto out;
2996         } else {
2997                 *enables = resp[3];
2998         }
2999
3000 out:
3001         kfree(resp);
3002         return rv;
3003 }
3004
3005 /*
3006  * Returns 1 if it gets an error from the command.
3007  */
3008 static int set_global_enables(struct smi_info *smi_info, u8 enables)
3009 {
3010         unsigned char         msg[3];
3011         unsigned char         *resp;
3012         unsigned long         resp_len;
3013         int                   rv;
3014
3015         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3016         if (!resp)
3017                 return -ENOMEM;
3018
3019         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3020         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3021         msg[2] = enables;
3022         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3023
3024         rv = wait_for_msg_done(smi_info);
3025         if (rv) {
3026                 dev_warn(smi_info->dev,
3027                          "Error getting response from set global enables command: %d\n",
3028                          rv);
3029                 goto out;
3030         }
3031
3032         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3033                                                   resp, IPMI_MAX_MSG_LENGTH);
3034
3035         if (resp_len < 3 ||
3036                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3037                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3038                 dev_warn(smi_info->dev,
3039                          "Invalid return from set global enables command: %ld %x %x\n",
3040                          resp_len, resp[0], resp[1]);
3041                 rv = -EINVAL;
3042                 goto out;
3043         }
3044
3045         if (resp[2] != 0)
3046                 rv = 1;
3047
3048 out:
3049         kfree(resp);
3050         return rv;
3051 }
3052
3053 /*
3054  * Some BMCs do not support clearing the receive irq bit in the global
3055  * enables (even if they don't support interrupts on the BMC).  Check
3056  * for this and handle it properly.
3057  */
3058 static void check_clr_rcv_irq(struct smi_info *smi_info)
3059 {
3060         u8 enables = 0;
3061         int rv;
3062
3063         rv = get_global_enables(smi_info, &enables);
3064         if (!rv) {
3065                 if ((enables & IPMI_BMC_RCV_MSG_INTR) == 0)
3066                         /* Already clear, should work ok. */
3067                         return;
3068
3069                 enables &= ~IPMI_BMC_RCV_MSG_INTR;
3070                 rv = set_global_enables(smi_info, enables);
3071         }
3072
3073         if (rv < 0) {
3074                 dev_err(smi_info->dev,
3075                         "Cannot check clearing the rcv irq: %d\n", rv);
3076                 return;
3077         }
3078
3079         if (rv) {
3080                 /*
3081                  * An error when setting the event buffer bit means
3082                  * clearing the bit is not supported.
3083                  */
3084                 dev_warn(smi_info->dev,
3085                          "The BMC does not support clearing the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3086                 smi_info->cannot_disable_irq = true;
3087         }
3088 }
3089
3090 /*
3091  * Some BMCs do not support setting the interrupt bits in the global
3092  * enables even if they support interrupts.  Clearly bad, but we can
3093  * compensate.
3094  */
3095 static void check_set_rcv_irq(struct smi_info *smi_info)
3096 {
3097         u8 enables = 0;
3098         int rv;
3099
3100         if (!smi_info->irq)
3101                 return;
3102
3103         rv = get_global_enables(smi_info, &enables);
3104         if (!rv) {
3105                 enables |= IPMI_BMC_RCV_MSG_INTR;
3106                 rv = set_global_enables(smi_info, enables);
3107         }
3108
3109         if (rv < 0) {
3110                 dev_err(smi_info->dev,
3111                         "Cannot check setting the rcv irq: %d\n", rv);
3112                 return;
3113         }
3114
3115         if (rv) {
3116                 /*
3117                  * An error when setting the event buffer bit means
3118                  * setting the bit is not supported.
3119                  */
3120                 dev_warn(smi_info->dev,
3121                          "The BMC does not support setting the recv irq bit, compensating, but the BMC needs to be fixed.\n");
3122                 smi_info->cannot_disable_irq = true;
3123                 smi_info->irq_enable_broken = true;
3124         }
3125 }
3126
3127 static int try_enable_event_buffer(struct smi_info *smi_info)
3128 {
3129         unsigned char         msg[3];
3130         unsigned char         *resp;
3131         unsigned long         resp_len;
3132         int                   rv = 0;
3133
3134         resp = kmalloc(IPMI_MAX_MSG_LENGTH, GFP_KERNEL);
3135         if (!resp)
3136                 return -ENOMEM;
3137
3138         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3139         msg[1] = IPMI_GET_BMC_GLOBAL_ENABLES_CMD;
3140         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 2);
3141
3142         rv = wait_for_msg_done(smi_info);
3143         if (rv) {
3144                 printk(KERN_WARNING PFX "Error getting response from get"
3145                        " global enables command, the event buffer is not"
3146                        " enabled.\n");
3147                 goto out;
3148         }
3149
3150         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3151                                                   resp, IPMI_MAX_MSG_LENGTH);
3152
3153         if (resp_len < 4 ||
3154                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3155                         resp[1] != IPMI_GET_BMC_GLOBAL_ENABLES_CMD   ||
3156                         resp[2] != 0) {
3157                 printk(KERN_WARNING PFX "Invalid return from get global"
3158                        " enables command, cannot enable the event buffer.\n");
3159                 rv = -EINVAL;
3160                 goto out;
3161         }
3162
3163         if (resp[3] & IPMI_BMC_EVT_MSG_BUFF) {
3164                 /* buffer is already enabled, nothing to do. */
3165                 smi_info->supports_event_msg_buff = true;
3166                 goto out;
3167         }
3168
3169         msg[0] = IPMI_NETFN_APP_REQUEST << 2;
3170         msg[1] = IPMI_SET_BMC_GLOBAL_ENABLES_CMD;
3171         msg[2] = resp[3] | IPMI_BMC_EVT_MSG_BUFF;
3172         smi_info->handlers->start_transaction(smi_info->si_sm, msg, 3);
3173
3174         rv = wait_for_msg_done(smi_info);
3175         if (rv) {
3176                 printk(KERN_WARNING PFX "Error getting response from set"
3177                        " global, enables command, the event buffer is not"
3178                        " enabled.\n");
3179                 goto out;
3180         }
3181
3182         resp_len = smi_info->handlers->get_result(smi_info->si_sm,
3183                                                   resp, IPMI_MAX_MSG_LENGTH);
3184
3185         if (resp_len < 3 ||
3186                         resp[0] != (IPMI_NETFN_APP_REQUEST | 1) << 2 ||
3187                         resp[1] != IPMI_SET_BMC_GLOBAL_ENABLES_CMD) {
3188                 printk(KERN_WARNING PFX "Invalid return from get global,"
3189                        "enables command, not enable the event buffer.\n");
3190                 rv = -EINVAL;
3191                 goto out;
3192         }
3193
3194         if (resp[2] != 0)
3195                 /*
3196                  * An error when setting the event buffer bit means
3197                  * that the event buffer is not supported.
3198                  */
3199                 rv = -ENOENT;
3200         else
3201                 smi_info->supports_event_msg_buff = true;
3202
3203  out:
3204         kfree(resp);
3205         return rv;
3206 }
3207
3208 static int smi_type_proc_show(struct seq_file *m, void *v)
3209 {
3210         struct smi_info *smi = m->private;
3211
3212         seq_printf(m, "%s\n", si_to_str[smi->si_type]);
3213
3214         return 0;
3215 }
3216
3217 static int smi_type_proc_open(struct inode *inode, struct file *file)
3218 {
3219         return single_open(file, smi_type_proc_show, PDE_DATA(inode));
3220 }
3221
3222 static const struct file_operations smi_type_proc_ops = {
3223         .open           = smi_type_proc_open,
3224         .read           = seq_read,
3225         .llseek         = seq_lseek,
3226         .release        = single_release,
3227 };
3228
3229 static int smi_si_stats_proc_show(struct seq_file *m, void *v)
3230 {
3231         struct smi_info *smi = m->private;
3232
3233         seq_printf(m, "interrupts_enabled:    %d\n",
3234                        smi->irq && !smi->interrupt_disabled);
3235         seq_printf(m, "short_timeouts:        %u\n",
3236                        smi_get_stat(smi, short_timeouts));
3237         seq_printf(m, "long_timeouts:         %u\n",
3238                        smi_get_stat(smi, long_timeouts));
3239         seq_printf(m, "idles:                 %u\n",
3240                        smi_get_stat(smi, idles));
3241         seq_printf(m, "interrupts:            %u\n",
3242                        smi_get_stat(smi, interrupts));
3243         seq_printf(m, "attentions:            %u\n",
3244                        smi_get_stat(smi, attentions));
3245         seq_printf(m, "flag_fetches:          %u\n",
3246                        smi_get_stat(smi, flag_fetches));
3247         seq_printf(m, "hosed_count:           %u\n",
3248                        smi_get_stat(smi, hosed_count));
3249         seq_printf(m, "complete_transactions: %u\n",
3250                        smi_get_stat(smi, complete_transactions));
3251         seq_printf(m, "events:                %u\n",
3252                        smi_get_stat(smi, events));
3253         seq_printf(m, "watchdog_pretimeouts:  %u\n",
3254                        smi_get_stat(smi, watchdog_pretimeouts));
3255         seq_printf(m, "incoming_messages:     %u\n",
3256                        smi_get_stat(smi, incoming_messages));
3257         return 0;
3258 }
3259
3260 static int smi_si_stats_proc_open(struct inode *inode, struct file *file)
3261 {
3262         return single_open(file, smi_si_stats_proc_show, PDE_DATA(inode));
3263 }
3264
3265 static const struct file_operations smi_si_stats_proc_ops = {
3266         .open           = smi_si_stats_proc_open,
3267         .read           = seq_read,
3268         .llseek         = seq_lseek,
3269         .release        = single_release,
3270 };
3271
3272 static int smi_params_proc_show(struct seq_file *m, void *v)
3273 {
3274         struct smi_info *smi = m->private;
3275
3276         seq_printf(m,
3277                    "%s,%s,0x%lx,rsp=%d,rsi=%d,rsh=%d,irq=%d,ipmb=%d\n",
3278                    si_to_str[smi->si_type],
3279                    addr_space_to_str[smi->io.addr_type],
3280                    smi->io.addr_data,
3281                    smi->io.regspacing,
3282                    smi->io.regsize,
3283                    smi->io.regshift,
3284                    smi->irq,
3285                    smi->slave_addr);
3286
3287         return 0;
3288 }
3289
3290 static int smi_params_proc_open(struct inode *inode, struct file *file)
3291 {
3292         return single_open(file, smi_params_proc_show, PDE_DATA(inode));
3293 }
3294
3295 static const struct file_operations smi_params_proc_ops = {
3296         .open           = smi_params_proc_open,
3297         .read           = seq_read,
3298         .llseek         = seq_lseek,
3299         .release        = single_release,
3300 };
3301
3302 /*
3303  * oem_data_avail_to_receive_msg_avail
3304  * @info - smi_info structure with msg_flags set
3305  *
3306  * Converts flags from OEM_DATA_AVAIL to RECEIVE_MSG_AVAIL
3307  * Returns 1 indicating need to re-run handle_flags().
3308  */
3309 static int oem_data_avail_to_receive_msg_avail(struct smi_info *smi_info)
3310 {
3311         smi_info->msg_flags = ((smi_info->msg_flags & ~OEM_DATA_AVAIL) |
3312                                RECEIVE_MSG_AVAIL);
3313         return 1;
3314 }
3315
3316 /*
3317  * setup_dell_poweredge_oem_data_handler
3318  * @info - smi_info.device_id must be populated
3319  *
3320  * Systems that match, but have firmware version < 1.40 may assert
3321  * OEM0_DATA_AVAIL on their own, without being told via Set Flags that
3322  * it's safe to do so.  Such systems will de-assert OEM1_DATA_AVAIL
3323  * upon receipt of IPMI_GET_MSG_CMD, so we should treat these flags
3324  * as RECEIVE_MSG_AVAIL instead.
3325  *
3326  * As Dell has no plans to release IPMI 1.5 firmware that *ever*
3327  * assert the OEM[012] bits, and if it did, the driver would have to
3328  * change to handle that properly, we don't actually check for the
3329  * firmware version.
3330  * Device ID = 0x20                BMC on PowerEdge 8G servers
3331  * Device Revision = 0x80
3332  * Firmware Revision1 = 0x01       BMC version 1.40
3333  * Firmware Revision2 = 0x40       BCD encoded
3334  * IPMI Version = 0x51             IPMI 1.5
3335  * Manufacturer ID = A2 02 00      Dell IANA
3336  *
3337  * Additionally, PowerEdge systems with IPMI < 1.5 may also assert
3338  * OEM0_DATA_AVAIL and needs to be treated as RECEIVE_MSG_AVAIL.
3339  *
3340  */
3341 #define DELL_POWEREDGE_8G_BMC_DEVICE_ID  0x20
3342 #define DELL_POWEREDGE_8G_BMC_DEVICE_REV 0x80
3343 #define DELL_POWEREDGE_8G_BMC_IPMI_VERSION 0x51
3344 #define DELL_IANA_MFR_ID 0x0002a2
3345 static void setup_dell_poweredge_oem_data_handler(struct smi_info *smi_info)
3346 {
3347         struct ipmi_device_id *id = &smi_info->device_id;
3348         if (id->manufacturer_id == DELL_IANA_MFR_ID) {
3349                 if (id->device_id       == DELL_POWEREDGE_8G_BMC_DEVICE_ID  &&
3350                     id->device_revision == DELL_POWEREDGE_8G_BMC_DEVICE_REV &&
3351                     id->ipmi_version   == DELL_POWEREDGE_8G_BMC_IPMI_VERSION) {
3352                         smi_info->oem_data_avail_handler =
3353                                 oem_data_avail_to_receive_msg_avail;
3354                 } else if (ipmi_version_major(id) < 1 ||
3355                            (ipmi_version_major(id) == 1 &&
3356                             ipmi_version_minor(id) < 5)) {
3357                         smi_info->oem_data_avail_handler =
3358                                 oem_data_avail_to_receive_msg_avail;
3359                 }
3360         }
3361 }
3362
3363 #define CANNOT_RETURN_REQUESTED_LENGTH 0xCA
3364 static void return_hosed_msg_badsize(struct smi_info *smi_info)
3365 {
3366         struct ipmi_smi_msg *msg = smi_info->curr_msg;
3367
3368         /* Make it a response */
3369         msg->rsp[0] = msg->data[0] | 4;
3370         msg->rsp[1] = msg->data[1];
3371         msg->rsp[2] = CANNOT_RETURN_REQUESTED_LENGTH;
3372         msg->rsp_size = 3;
3373         smi_info->curr_msg = NULL;
3374         deliver_recv_msg(smi_info, msg);
3375 }
3376
3377 /*
3378  * dell_poweredge_bt_xaction_handler
3379  * @info - smi_info.device_id must be populated
3380  *
3381  * Dell PowerEdge servers with the BT interface (x6xx and 1750) will
3382  * not respond to a Get SDR command if the length of the data
3383  * requested is exactly 0x3A, which leads to command timeouts and no
3384  * data returned.  This intercepts such commands, and causes userspace
3385  * callers to try again with a different-sized buffer, which succeeds.
3386  */
3387
3388 #define STORAGE_NETFN 0x0A
3389 #define STORAGE_CMD_GET_SDR 0x23
3390 static int dell_poweredge_bt_xaction_handler(struct notifier_block *self,
3391                                              unsigned long unused,
3392                                              void *in)
3393 {
3394         struct smi_info *smi_info = in;
3395         unsigned char *data = smi_info->curr_msg->data;
3396         unsigned int size   = smi_info->curr_msg->data_size;
3397         if (size >= 8 &&
3398             (data[0]>>2) == STORAGE_NETFN &&
3399             data[1] == STORAGE_CMD_GET_SDR &&
3400             data[7] == 0x3A) {
3401                 return_hosed_msg_badsize(smi_info);
3402                 return NOTIFY_STOP;
3403         }
3404         return NOTIFY_DONE;
3405 }
3406
3407 static struct notifier_block dell_poweredge_bt_xaction_notifier = {
3408         .notifier_call  = dell_poweredge_bt_xaction_handler,
3409 };
3410
3411 /*
3412  * setup_dell_poweredge_bt_xaction_handler
3413  * @info - smi_info.device_id must be filled in already
3414  *
3415  * Fills in smi_info.device_id.start_transaction_pre_hook
3416  * when we know what function to use there.
3417  */
3418 static void
3419 setup_dell_poweredge_bt_xaction_handler(struct smi_info *smi_info)
3420 {
3421         struct ipmi_device_id *id = &smi_info->device_id;
3422         if (id->manufacturer_id == DELL_IANA_MFR_ID &&
3423             smi_info->si_type == SI_BT)
3424                 register_xaction_notifier(&dell_poweredge_bt_xaction_notifier);
3425 }
3426
3427 /*
3428  * setup_oem_data_handler
3429  * @info - smi_info.device_id must be filled in already
3430  *
3431  * Fills in smi_info.device_id.oem_data_available_handler
3432  * when we know what function to use there.
3433  */
3434
3435 static void setup_oem_data_handler(struct smi_info *smi_info)
3436 {
3437         setup_dell_poweredge_oem_data_handler(smi_info);
3438 }
3439
3440 static void setup_xaction_handlers(struct smi_info *smi_info)
3441 {
3442         setup_dell_poweredge_bt_xaction_handler(smi_info);
3443 }
3444
3445 static void check_for_broken_irqs(struct smi_info *smi_info)
3446 {
3447         check_clr_rcv_irq(smi_info);
3448         check_set_rcv_irq(smi_info);
3449 }
3450
3451 static inline void stop_timer_and_thread(struct smi_info *smi_info)
3452 {
3453         if (smi_info->thread != NULL)
3454                 kthread_stop(smi_info->thread);
3455
3456         smi_info->timer_can_start = false;
3457         if (smi_info->timer_running)
3458                 del_timer_sync(&smi_info->si_timer);
3459 }
3460
3461 static const struct ipmi_default_vals
3462 {
3463         int type;
3464         int port;
3465 } ipmi_defaults[] =
3466 {
3467         { .type = SI_KCS, .port = 0xca2 },
3468         { .type = SI_SMIC, .port = 0xca9 },
3469         { .type = SI_BT, .port = 0xe4 },
3470         { .port = 0 }
3471 };
3472
3473 static void default_find_bmc(void)
3474 {
3475         struct smi_info *info;
3476         int             i;
3477
3478         for (i = 0; ; i++) {
3479                 if (!ipmi_defaults[i].port)
3480                         break;
3481 #ifdef CONFIG_PPC
3482                 if (check_legacy_ioport(ipmi_defaults[i].port))
3483                         continue;
3484 #endif
3485                 info = smi_info_alloc();
3486                 if (!info)
3487                         return;
3488
3489                 info->addr_source = SI_DEFAULT;
3490
3491                 info->si_type = ipmi_defaults[i].type;
3492                 info->io_setup = port_setup;
3493                 info->io.addr_data = ipmi_defaults[i].port;
3494                 info->io.addr_type = IPMI_IO_ADDR_SPACE;
3495
3496                 info->io.addr = NULL;
3497                 info->io.regspacing = DEFAULT_REGSPACING;
3498                 info->io.regsize = DEFAULT_REGSPACING;
3499                 info->io.regshift = 0;
3500
3501                 if (add_smi(info) == 0) {
3502                         if ((try_smi_init(info)) == 0) {
3503                                 /* Found one... */
3504                                 printk(KERN_INFO PFX "Found default %s"
3505                                 " state machine at %s address 0x%lx\n",
3506                                 si_to_str[info->si_type],
3507                                 addr_space_to_str[info->io.addr_type],
3508                                 info->io.addr_data);
3509                         } else
3510                                 cleanup_one_si(info);
3511                 } else {
3512                         kfree(info);
3513                 }
3514         }
3515 }
3516
3517 static int is_new_interface(struct smi_info *info)
3518 {
3519         struct smi_info *e;
3520
3521         list_for_each_entry(e, &smi_infos, link) {
3522                 if (e->io.addr_type != info->io.addr_type)
3523                         continue;
3524                 if (e->io.addr_data == info->io.addr_data)
3525                         return 0;
3526         }
3527
3528         return 1;
3529 }
3530
3531 static int add_smi(struct smi_info *new_smi)
3532 {
3533         int rv = 0;
3534
3535         printk(KERN_INFO PFX "Adding %s-specified %s state machine",
3536                ipmi_addr_src_to_str(new_smi->addr_source),
3537                si_to_str[new_smi->si_type]);
3538         mutex_lock(&smi_infos_lock);
3539         if (!is_new_interface(new_smi)) {
3540                 printk(KERN_CONT " duplicate interface\n");
3541                 rv = -EBUSY;
3542                 goto out_err;
3543         }
3544
3545         printk(KERN_CONT "\n");
3546
3547         /* So we know not to free it unless we have allocated one. */
3548         new_smi->intf = NULL;
3549         new_smi->si_sm = NULL;
3550         new_smi->handlers = NULL;
3551
3552         list_add_tail(&new_smi->link, &smi_infos);
3553
3554 out_err:
3555         mutex_unlock(&smi_infos_lock);
3556         return rv;
3557 }
3558
3559 static int try_smi_init(struct smi_info *new_smi)
3560 {
3561         int rv = 0;
3562         int i;
3563
3564         printk(KERN_INFO PFX "Trying %s-specified %s state"
3565                " machine at %s address 0x%lx, slave address 0x%x,"
3566                " irq %d\n",
3567                ipmi_addr_src_to_str(new_smi->addr_source),
3568                si_to_str[new_smi->si_type],
3569                addr_space_to_str[new_smi->io.addr_type],
3570                new_smi->io.addr_data,
3571                new_smi->slave_addr, new_smi->irq);
3572
3573         switch (new_smi->si_type) {
3574         case SI_KCS:
3575                 new_smi->handlers = &kcs_smi_handlers;
3576                 break;
3577
3578         case SI_SMIC:
3579                 new_smi->handlers = &smic_smi_handlers;
3580                 break;
3581
3582         case SI_BT:
3583                 new_smi->handlers = &bt_smi_handlers;
3584                 break;
3585
3586         default:
3587                 /* No support for anything else yet. */
3588                 rv = -EIO;
3589                 goto out_err;
3590         }
3591
3592         /* Allocate the state machine's data and initialize it. */
3593         new_smi->si_sm = kmalloc(new_smi->handlers->size(), GFP_KERNEL);
3594         if (!new_smi->si_sm) {
3595                 printk(KERN_ERR PFX
3596                        "Could not allocate state machine memory\n");
3597                 rv = -ENOMEM;
3598                 goto out_err;
3599         }
3600         new_smi->io_size = new_smi->handlers->init_data(new_smi->si_sm,
3601                                                         &new_smi->io);
3602
3603         /* Now that we know the I/O size, we can set up the I/O. */
3604         rv = new_smi->io_setup(new_smi);
3605         if (rv) {
3606                 printk(KERN_ERR PFX "Could not set up I/O space\n");
3607                 goto out_err;
3608         }
3609
3610         /* Do low-level detection first. */
3611         if (new_smi->handlers->detect(new_smi->si_sm)) {
3612                 if (new_smi->addr_source)
3613                         printk(KERN_INFO PFX "Interface detection failed\n");
3614                 rv = -ENODEV;
3615                 goto out_err;
3616         }
3617
3618         /*
3619          * Attempt a get device id command.  If it fails, we probably
3620          * don't have a BMC here.
3621          */
3622         rv = try_get_dev_id(new_smi);
3623         if (rv) {
3624                 if (new_smi->addr_source)
3625                         printk(KERN_INFO PFX "There appears to be no BMC"
3626                                " at this location\n");
3627                 goto out_err;
3628         }
3629
3630         setup_oem_data_handler(new_smi);
3631         setup_xaction_handlers(new_smi);
3632         check_for_broken_irqs(new_smi);
3633
3634         new_smi->waiting_msg = NULL;
3635         new_smi->curr_msg = NULL;
3636         atomic_set(&new_smi->req_events, 0);
3637         new_smi->run_to_completion = false;
3638         for (i = 0; i < SI_NUM_STATS; i++)
3639                 atomic_set(&new_smi->stats[i], 0);
3640
3641         new_smi->interrupt_disabled = true;
3642         atomic_set(&new_smi->need_watch, 0);
3643         new_smi->intf_num = smi_num;
3644         smi_num++;
3645
3646         rv = try_enable_event_buffer(new_smi);
3647         if (rv == 0)
3648                 new_smi->has_event_buffer = true;
3649
3650         /*
3651          * Start clearing the flags before we enable interrupts or the
3652          * timer to avoid racing with the timer.
3653          */
3654         start_clear_flags(new_smi);
3655
3656         /*
3657          * IRQ is defined to be set when non-zero.  req_events will
3658          * cause a global flags check that will enable interrupts.
3659          */
3660         if (new_smi->irq) {
3661                 new_smi->interrupt_disabled = false;
3662                 atomic_set(&new_smi->req_events, 1);
3663         }
3664
3665         if (!new_smi->dev) {
3666                 /*
3667                  * If we don't already have a device from something
3668                  * else (like PCI), then register a new one.
3669                  */
3670                 new_smi->pdev = platform_device_alloc("ipmi_si",
3671                                                       new_smi->intf_num);
3672                 if (!new_smi->pdev) {
3673                         printk(KERN_ERR PFX
3674                                "Unable to allocate platform device\n");
3675                         goto out_err;
3676                 }
3677                 new_smi->dev = &new_smi->pdev->dev;
3678                 new_smi->dev->driver = &ipmi_driver.driver;
3679
3680                 rv = platform_device_add(new_smi->pdev);
3681                 if (rv) {
3682                         printk(KERN_ERR PFX
3683                                "Unable to register system interface device:"
3684                                " %d\n",
3685                                rv);
3686                         goto out_err;
3687                 }
3688                 new_smi->dev_registered = true;
3689         }
3690
3691         rv = ipmi_register_smi(&handlers,
3692                                new_smi,
3693                                &new_smi->device_id,
3694                                new_smi->dev,
3695                                new_smi->slave_addr);
3696         if (rv) {
3697                 dev_err(new_smi->dev, "Unable to register device: error %d\n",
3698                         rv);
3699                 goto out_err_stop_timer;
3700         }
3701
3702         rv = ipmi_smi_add_proc_entry(new_smi->intf, "type",
3703                                      &smi_type_proc_ops,
3704                                      new_smi);
3705         if (rv) {
3706                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3707                 goto out_err_stop_timer;
3708         }
3709
3710         rv = ipmi_smi_add_proc_entry(new_smi->intf, "si_stats",
3711                                      &smi_si_stats_proc_ops,
3712                                      new_smi);
3713         if (rv) {
3714                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3715                 goto out_err_stop_timer;
3716         }
3717
3718         rv = ipmi_smi_add_proc_entry(new_smi->intf, "params",
3719                                      &smi_params_proc_ops,
3720                                      new_smi);
3721         if (rv) {
3722                 dev_err(new_smi->dev, "Unable to create proc entry: %d\n", rv);
3723                 goto out_err_stop_timer;
3724         }
3725
3726         dev_info(new_smi->dev, "IPMI %s interface initialized\n",
3727                  si_to_str[new_smi->si_type]);
3728
3729         return 0;
3730
3731  out_err_stop_timer:
3732         stop_timer_and_thread(new_smi);
3733
3734  out_err:
3735         new_smi->interrupt_disabled = true;
3736
3737         if (new_smi->intf) {
3738                 ipmi_smi_t intf = new_smi->intf;
3739                 new_smi->intf = NULL;
3740                 ipmi_unregister_smi(intf);
3741         }
3742
3743         if (new_smi->irq_cleanup) {
3744                 new_smi->irq_cleanup(new_smi);
3745                 new_smi->irq_cleanup = NULL;
3746         }
3747
3748         /*
3749          * Wait until we know that we are out of any interrupt
3750          * handlers might have been running before we freed the
3751          * interrupt.
3752          */
3753         synchronize_sched();
3754
3755         if (new_smi->si_sm) {
3756                 if (new_smi->handlers)
3757                         new_smi->handlers->cleanup(new_smi->si_sm);
3758                 kfree(new_smi->si_sm);
3759                 new_smi->si_sm = NULL;
3760         }
3761         if (new_smi->addr_source_cleanup) {
3762                 new_smi->addr_source_cleanup(new_smi);
3763                 new_smi->addr_source_cleanup = NULL;
3764         }
3765         if (new_smi->io_cleanup) {
3766                 new_smi->io_cleanup(new_smi);
3767                 new_smi->io_cleanup = NULL;
3768         }
3769
3770         if (new_smi->dev_registered) {
3771                 platform_device_unregister(new_smi->pdev);
3772                 new_smi->dev_registered = false;
3773         }
3774
3775         return rv;
3776 }
3777
3778 static int init_ipmi_si(void)
3779 {
3780         int  i;
3781         char *str;
3782         int  rv;
3783         struct smi_info *e;
3784         enum ipmi_addr_src type = SI_INVALID;
3785
3786         if (initialized)
3787                 return 0;
3788         initialized = 1;
3789
3790         if (si_tryplatform) {
3791                 rv = platform_driver_register(&ipmi_driver);
3792                 if (rv) {
3793                         printk(KERN_ERR PFX "Unable to register "
3794                                "driver: %d\n", rv);
3795                         return rv;
3796                 }
3797         }
3798
3799         /* Parse out the si_type string into its components. */
3800         str = si_type_str;
3801         if (*str != '\0') {
3802                 for (i = 0; (i < SI_MAX_PARMS) && (*str != '\0'); i++) {
3803                         si_type[i] = str;
3804                         str = strchr(str, ',');
3805                         if (str) {
3806                                 *str = '\0';
3807                                 str++;
3808                         } else {
3809                                 break;
3810                         }
3811                 }
3812         }
3813
3814         printk(KERN_INFO "IPMI System Interface driver.\n");
3815
3816         /* If the user gave us a device, they presumably want us to use it */
3817         if (!hardcode_find_bmc())
3818                 return 0;
3819
3820 #ifdef CONFIG_PCI
3821         if (si_trypci) {
3822                 rv = pci_register_driver(&ipmi_pci_driver);
3823                 if (rv)
3824                         printk(KERN_ERR PFX "Unable to register "
3825                                "PCI driver: %d\n", rv);
3826                 else
3827                         pci_registered = true;
3828         }
3829 #endif
3830
3831 #ifdef CONFIG_DMI
3832         if (si_trydmi)
3833                 dmi_find_bmc();
3834 #endif
3835
3836 #ifdef CONFIG_ACPI
3837         if (si_tryacpi)
3838                 spmi_find_bmc();
3839 #endif
3840
3841 #ifdef CONFIG_PARISC
3842         register_parisc_driver(&ipmi_parisc_driver);
3843         parisc_registered = true;
3844         /* poking PC IO addresses will crash machine, don't do it */
3845         si_trydefaults = 0;
3846 #endif
3847
3848         /* We prefer devices with interrupts, but in the case of a machine
3849            with multiple BMCs we assume that there will be several instances
3850            of a given type so if we succeed in registering a type then also
3851            try to register everything else of the same type */
3852
3853         mutex_lock(&smi_infos_lock);
3854         list_for_each_entry(e, &smi_infos, link) {
3855                 /* Try to register a device if it has an IRQ and we either
3856                    haven't successfully registered a device yet or this
3857                    device has the same type as one we successfully registered */
3858                 if (e->irq && (!type || e->addr_source == type)) {
3859                         if (!try_smi_init(e)) {
3860                                 type = e->addr_source;
3861                         }
3862                 }
3863         }
3864
3865         /* type will only have been set if we successfully registered an si */
3866         if (type) {
3867                 mutex_unlock(&smi_infos_lock);
3868                 return 0;
3869         }
3870
3871         /* Fall back to the preferred device */
3872
3873         list_for_each_entry(e, &smi_infos, link) {
3874                 if (!e->irq && (!type || e->addr_source == type)) {
3875                         if (!try_smi_init(e)) {
3876                                 type = e->addr_source;
3877                         }
3878                 }
3879         }
3880         mutex_unlock(&smi_infos_lock);
3881
3882         if (type)
3883                 return 0;
3884
3885         if (si_trydefaults) {
3886                 mutex_lock(&smi_infos_lock);
3887                 if (list_empty(&smi_infos)) {
3888                         /* No BMC was found, try defaults. */
3889                         mutex_unlock(&smi_infos_lock);
3890                         default_find_bmc();
3891                 } else
3892                         mutex_unlock(&smi_infos_lock);
3893         }
3894
3895         mutex_lock(&smi_infos_lock);
3896         if (unload_when_empty && list_empty(&smi_infos)) {
3897                 mutex_unlock(&smi_infos_lock);
3898                 cleanup_ipmi_si();
3899                 printk(KERN_WARNING PFX
3900                        "Unable to find any System Interface(s)\n");
3901                 return -ENODEV;
3902         } else {
3903                 mutex_unlock(&smi_infos_lock);
3904                 return 0;
3905         }
3906 }
3907 module_init(init_ipmi_si);
3908
3909 static void cleanup_one_si(struct smi_info *to_clean)
3910 {
3911         int           rv = 0;
3912
3913         if (!to_clean)
3914                 return;
3915
3916         if (to_clean->intf) {
3917                 ipmi_smi_t intf = to_clean->intf;
3918
3919                 to_clean->intf = NULL;
3920                 rv = ipmi_unregister_smi(intf);
3921                 if (rv) {
3922                         pr_err(PFX "Unable to unregister device: errno=%d\n",
3923                                rv);
3924                 }
3925         }
3926
3927         if (to_clean->dev)
3928                 dev_set_drvdata(to_clean->dev, NULL);
3929
3930         list_del(&to_clean->link);
3931
3932         /*
3933          * Make sure that interrupts, the timer and the thread are
3934          * stopped and will not run again.
3935          */
3936         if (to_clean->irq_cleanup)
3937                 to_clean->irq_cleanup(to_clean);
3938         stop_timer_and_thread(to_clean);
3939
3940         /*
3941          * Timeouts are stopped, now make sure the interrupts are off
3942          * in the BMC.  Note that timers and CPU interrupts are off,
3943          * so no need for locks.
3944          */
3945         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3946                 poll(to_clean);
3947                 schedule_timeout_uninterruptible(1);
3948         }
3949         disable_si_irq(to_clean);
3950         while (to_clean->curr_msg || (to_clean->si_state != SI_NORMAL)) {
3951                 poll(to_clean);
3952                 schedule_timeout_uninterruptible(1);
3953         }
3954
3955         if (to_clean->handlers)
3956                 to_clean->handlers->cleanup(to_clean->si_sm);
3957
3958         kfree(to_clean->si_sm);
3959
3960         if (to_clean->addr_source_cleanup)
3961                 to_clean->addr_source_cleanup(to_clean);
3962         if (to_clean->io_cleanup)
3963                 to_clean->io_cleanup(to_clean);
3964
3965         if (to_clean->dev_registered)
3966                 platform_device_unregister(to_clean->pdev);
3967
3968         kfree(to_clean);
3969 }
3970
3971 static void cleanup_ipmi_si(void)
3972 {
3973         struct smi_info *e, *tmp_e;
3974
3975         if (!initialized)
3976                 return;
3977
3978 #ifdef CONFIG_PCI
3979         if (pci_registered)
3980                 pci_unregister_driver(&ipmi_pci_driver);
3981 #endif
3982 #ifdef CONFIG_PARISC
3983         if (parisc_registered)
3984                 unregister_parisc_driver(&ipmi_parisc_driver);
3985 #endif
3986
3987         platform_driver_unregister(&ipmi_driver);
3988
3989         mutex_lock(&smi_infos_lock);
3990         list_for_each_entry_safe(e, tmp_e, &smi_infos, link)
3991                 cleanup_one_si(e);
3992         mutex_unlock(&smi_infos_lock);
3993 }
3994 module_exit(cleanup_ipmi_si);
3995
3996 MODULE_LICENSE("GPL");
3997 MODULE_AUTHOR("Corey Minyard <minyard@mvista.com>");
3998 MODULE_DESCRIPTION("Interface to the IPMI driver for the KCS, SMIC, and BT"
3999                    " system interfaces.");