Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / drivers / char / hpet.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Intel & MS High Precision Event Timer Implementation.
4  *
5  * Copyright (C) 2003 Intel Corporation
6  *      Venki Pallipadi
7  * (c) Copyright 2004 Hewlett-Packard Development Company, L.P.
8  *      Bob Picco <robert.picco@hp.com>
9  */
10
11 #include <linux/interrupt.h>
12 #include <linux/kernel.h>
13 #include <linux/types.h>
14 #include <linux/miscdevice.h>
15 #include <linux/major.h>
16 #include <linux/ioport.h>
17 #include <linux/fcntl.h>
18 #include <linux/init.h>
19 #include <linux/poll.h>
20 #include <linux/mm.h>
21 #include <linux/proc_fs.h>
22 #include <linux/spinlock.h>
23 #include <linux/sysctl.h>
24 #include <linux/wait.h>
25 #include <linux/sched/signal.h>
26 #include <linux/bcd.h>
27 #include <linux/seq_file.h>
28 #include <linux/bitops.h>
29 #include <linux/compat.h>
30 #include <linux/clocksource.h>
31 #include <linux/uaccess.h>
32 #include <linux/slab.h>
33 #include <linux/io.h>
34 #include <linux/acpi.h>
35 #include <linux/hpet.h>
36 #include <asm/current.h>
37 #include <asm/irq.h>
38 #include <asm/div64.h>
39
40 /*
41  * The High Precision Event Timer driver.
42  * This driver is closely modelled after the rtc.c driver.
43  * See HPET spec revision 1.
44  */
45 #define HPET_USER_FREQ  (64)
46 #define HPET_DRIFT      (500)
47
48 #define HPET_RANGE_SIZE         1024    /* from HPET spec */
49
50
51 /* WARNING -- don't get confused.  These macros are never used
52  * to write the (single) counter, and rarely to read it.
53  * They're badly named; to fix, someday.
54  */
55 #if BITS_PER_LONG == 64
56 #define write_counter(V, MC)    writeq(V, MC)
57 #define read_counter(MC)        readq(MC)
58 #else
59 #define write_counter(V, MC)    writel(V, MC)
60 #define read_counter(MC)        readl(MC)
61 #endif
62
63 static DEFINE_MUTEX(hpet_mutex); /* replaces BKL */
64 static u32 hpet_nhpet, hpet_max_freq = HPET_USER_FREQ;
65
66 /* This clocksource driver currently only works on ia64 */
67 #ifdef CONFIG_IA64
68 static void __iomem *hpet_mctr;
69
70 static u64 read_hpet(struct clocksource *cs)
71 {
72         return (u64)read_counter((void __iomem *)hpet_mctr);
73 }
74
75 static struct clocksource clocksource_hpet = {
76         .name           = "hpet",
77         .rating         = 250,
78         .read           = read_hpet,
79         .mask           = CLOCKSOURCE_MASK(64),
80         .flags          = CLOCK_SOURCE_IS_CONTINUOUS,
81 };
82 static struct clocksource *hpet_clocksource;
83 #endif
84
85 /* A lock for concurrent access by app and isr hpet activity. */
86 static DEFINE_SPINLOCK(hpet_lock);
87
88 #define HPET_DEV_NAME   (7)
89
90 struct hpet_dev {
91         struct hpets *hd_hpets;
92         struct hpet __iomem *hd_hpet;
93         struct hpet_timer __iomem *hd_timer;
94         unsigned long hd_ireqfreq;
95         unsigned long hd_irqdata;
96         wait_queue_head_t hd_waitqueue;
97         struct fasync_struct *hd_async_queue;
98         unsigned int hd_flags;
99         unsigned int hd_irq;
100         unsigned int hd_hdwirq;
101         char hd_name[HPET_DEV_NAME];
102 };
103
104 struct hpets {
105         struct hpets *hp_next;
106         struct hpet __iomem *hp_hpet;
107         unsigned long hp_hpet_phys;
108         struct clocksource *hp_clocksource;
109         unsigned long long hp_tick_freq;
110         unsigned long hp_delta;
111         unsigned int hp_ntimer;
112         unsigned int hp_which;
113         struct hpet_dev hp_dev[1];
114 };
115
116 static struct hpets *hpets;
117
118 #define HPET_OPEN               0x0001
119 #define HPET_IE                 0x0002  /* interrupt enabled */
120 #define HPET_PERIODIC           0x0004
121 #define HPET_SHARED_IRQ         0x0008
122
123
124 #ifndef readq
125 static inline unsigned long long readq(void __iomem *addr)
126 {
127         return readl(addr) | (((unsigned long long)readl(addr + 4)) << 32LL);
128 }
129 #endif
130
131 #ifndef writeq
132 static inline void writeq(unsigned long long v, void __iomem *addr)
133 {
134         writel(v & 0xffffffff, addr);
135         writel(v >> 32, addr + 4);
136 }
137 #endif
138
139 static irqreturn_t hpet_interrupt(int irq, void *data)
140 {
141         struct hpet_dev *devp;
142         unsigned long isr;
143
144         devp = data;
145         isr = 1 << (devp - devp->hd_hpets->hp_dev);
146
147         if ((devp->hd_flags & HPET_SHARED_IRQ) &&
148             !(isr & readl(&devp->hd_hpet->hpet_isr)))
149                 return IRQ_NONE;
150
151         spin_lock(&hpet_lock);
152         devp->hd_irqdata++;
153
154         /*
155          * For non-periodic timers, increment the accumulator.
156          * This has the effect of treating non-periodic like periodic.
157          */
158         if ((devp->hd_flags & (HPET_IE | HPET_PERIODIC)) == HPET_IE) {
159                 unsigned long m, t, mc, base, k;
160                 struct hpet __iomem *hpet = devp->hd_hpet;
161                 struct hpets *hpetp = devp->hd_hpets;
162
163                 t = devp->hd_ireqfreq;
164                 m = read_counter(&devp->hd_timer->hpet_compare);
165                 mc = read_counter(&hpet->hpet_mc);
166                 /* The time for the next interrupt would logically be t + m,
167                  * however, if we are very unlucky and the interrupt is delayed
168                  * for longer than t then we will completely miss the next
169                  * interrupt if we set t + m and an application will hang.
170                  * Therefore we need to make a more complex computation assuming
171                  * that there exists a k for which the following is true:
172                  * k * t + base < mc + delta
173                  * (k + 1) * t + base > mc + delta
174                  * where t is the interval in hpet ticks for the given freq,
175                  * base is the theoretical start value 0 < base < t,
176                  * mc is the main counter value at the time of the interrupt,
177                  * delta is the time it takes to write the a value to the
178                  * comparator.
179                  * k may then be computed as (mc - base + delta) / t .
180                  */
181                 base = mc % t;
182                 k = (mc - base + hpetp->hp_delta) / t;
183                 write_counter(t * (k + 1) + base,
184                               &devp->hd_timer->hpet_compare);
185         }
186
187         if (devp->hd_flags & HPET_SHARED_IRQ)
188                 writel(isr, &devp->hd_hpet->hpet_isr);
189         spin_unlock(&hpet_lock);
190
191         wake_up_interruptible(&devp->hd_waitqueue);
192
193         kill_fasync(&devp->hd_async_queue, SIGIO, POLL_IN);
194
195         return IRQ_HANDLED;
196 }
197
198 static void hpet_timer_set_irq(struct hpet_dev *devp)
199 {
200         unsigned long v;
201         int irq, gsi;
202         struct hpet_timer __iomem *timer;
203
204         spin_lock_irq(&hpet_lock);
205         if (devp->hd_hdwirq) {
206                 spin_unlock_irq(&hpet_lock);
207                 return;
208         }
209
210         timer = devp->hd_timer;
211
212         /* we prefer level triggered mode */
213         v = readl(&timer->hpet_config);
214         if (!(v & Tn_INT_TYPE_CNF_MASK)) {
215                 v |= Tn_INT_TYPE_CNF_MASK;
216                 writel(v, &timer->hpet_config);
217         }
218         spin_unlock_irq(&hpet_lock);
219
220         v = (readq(&timer->hpet_config) & Tn_INT_ROUTE_CAP_MASK) >>
221                                  Tn_INT_ROUTE_CAP_SHIFT;
222
223         /*
224          * In PIC mode, skip IRQ0-4, IRQ6-9, IRQ12-15 which is always used by
225          * legacy device. In IO APIC mode, we skip all the legacy IRQS.
226          */
227         if (acpi_irq_model == ACPI_IRQ_MODEL_PIC)
228                 v &= ~0xf3df;
229         else
230                 v &= ~0xffff;
231
232         for_each_set_bit(irq, &v, HPET_MAX_IRQ) {
233                 if (irq >= nr_irqs) {
234                         irq = HPET_MAX_IRQ;
235                         break;
236                 }
237
238                 gsi = acpi_register_gsi(NULL, irq, ACPI_LEVEL_SENSITIVE,
239                                         ACPI_ACTIVE_LOW);
240                 if (gsi > 0)
241                         break;
242
243                 /* FIXME: Setup interrupt source table */
244         }
245
246         if (irq < HPET_MAX_IRQ) {
247                 spin_lock_irq(&hpet_lock);
248                 v = readl(&timer->hpet_config);
249                 v |= irq << Tn_INT_ROUTE_CNF_SHIFT;
250                 writel(v, &timer->hpet_config);
251                 devp->hd_hdwirq = gsi;
252                 spin_unlock_irq(&hpet_lock);
253         }
254         return;
255 }
256
257 static int hpet_open(struct inode *inode, struct file *file)
258 {
259         struct hpet_dev *devp;
260         struct hpets *hpetp;
261         int i;
262
263         if (file->f_mode & FMODE_WRITE)
264                 return -EINVAL;
265
266         mutex_lock(&hpet_mutex);
267         spin_lock_irq(&hpet_lock);
268
269         for (devp = NULL, hpetp = hpets; hpetp && !devp; hpetp = hpetp->hp_next)
270                 for (i = 0; i < hpetp->hp_ntimer; i++)
271                         if (hpetp->hp_dev[i].hd_flags & HPET_OPEN)
272                                 continue;
273                         else {
274                                 devp = &hpetp->hp_dev[i];
275                                 break;
276                         }
277
278         if (!devp) {
279                 spin_unlock_irq(&hpet_lock);
280                 mutex_unlock(&hpet_mutex);
281                 return -EBUSY;
282         }
283
284         file->private_data = devp;
285         devp->hd_irqdata = 0;
286         devp->hd_flags |= HPET_OPEN;
287         spin_unlock_irq(&hpet_lock);
288         mutex_unlock(&hpet_mutex);
289
290         hpet_timer_set_irq(devp);
291
292         return 0;
293 }
294
295 static ssize_t
296 hpet_read(struct file *file, char __user *buf, size_t count, loff_t * ppos)
297 {
298         DECLARE_WAITQUEUE(wait, current);
299         unsigned long data;
300         ssize_t retval;
301         struct hpet_dev *devp;
302
303         devp = file->private_data;
304         if (!devp->hd_ireqfreq)
305                 return -EIO;
306
307         if (count < sizeof(unsigned long))
308                 return -EINVAL;
309
310         add_wait_queue(&devp->hd_waitqueue, &wait);
311
312         for ( ; ; ) {
313                 set_current_state(TASK_INTERRUPTIBLE);
314
315                 spin_lock_irq(&hpet_lock);
316                 data = devp->hd_irqdata;
317                 devp->hd_irqdata = 0;
318                 spin_unlock_irq(&hpet_lock);
319
320                 if (data)
321                         break;
322                 else if (file->f_flags & O_NONBLOCK) {
323                         retval = -EAGAIN;
324                         goto out;
325                 } else if (signal_pending(current)) {
326                         retval = -ERESTARTSYS;
327                         goto out;
328                 }
329                 schedule();
330         }
331
332         retval = put_user(data, (unsigned long __user *)buf);
333         if (!retval)
334                 retval = sizeof(unsigned long);
335 out:
336         __set_current_state(TASK_RUNNING);
337         remove_wait_queue(&devp->hd_waitqueue, &wait);
338
339         return retval;
340 }
341
342 static __poll_t hpet_poll(struct file *file, poll_table * wait)
343 {
344         unsigned long v;
345         struct hpet_dev *devp;
346
347         devp = file->private_data;
348
349         if (!devp->hd_ireqfreq)
350                 return 0;
351
352         poll_wait(file, &devp->hd_waitqueue, wait);
353
354         spin_lock_irq(&hpet_lock);
355         v = devp->hd_irqdata;
356         spin_unlock_irq(&hpet_lock);
357
358         if (v != 0)
359                 return EPOLLIN | EPOLLRDNORM;
360
361         return 0;
362 }
363
364 #ifdef CONFIG_HPET_MMAP
365 #ifdef CONFIG_HPET_MMAP_DEFAULT
366 static int hpet_mmap_enabled = 1;
367 #else
368 static int hpet_mmap_enabled = 0;
369 #endif
370
371 static __init int hpet_mmap_enable(char *str)
372 {
373         get_option(&str, &hpet_mmap_enabled);
374         pr_info("HPET mmap %s\n", hpet_mmap_enabled ? "enabled" : "disabled");
375         return 1;
376 }
377 __setup("hpet_mmap=", hpet_mmap_enable);
378
379 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
380 {
381         struct hpet_dev *devp;
382         unsigned long addr;
383
384         if (!hpet_mmap_enabled)
385                 return -EACCES;
386
387         devp = file->private_data;
388         addr = devp->hd_hpets->hp_hpet_phys;
389
390         if (addr & (PAGE_SIZE - 1))
391                 return -ENOSYS;
392
393         vma->vm_page_prot = pgprot_noncached(vma->vm_page_prot);
394         return vm_iomap_memory(vma, addr, PAGE_SIZE);
395 }
396 #else
397 static int hpet_mmap(struct file *file, struct vm_area_struct *vma)
398 {
399         return -ENOSYS;
400 }
401 #endif
402
403 static int hpet_fasync(int fd, struct file *file, int on)
404 {
405         struct hpet_dev *devp;
406
407         devp = file->private_data;
408
409         if (fasync_helper(fd, file, on, &devp->hd_async_queue) >= 0)
410                 return 0;
411         else
412                 return -EIO;
413 }
414
415 static int hpet_release(struct inode *inode, struct file *file)
416 {
417         struct hpet_dev *devp;
418         struct hpet_timer __iomem *timer;
419         int irq = 0;
420
421         devp = file->private_data;
422         timer = devp->hd_timer;
423
424         spin_lock_irq(&hpet_lock);
425
426         writeq((readq(&timer->hpet_config) & ~Tn_INT_ENB_CNF_MASK),
427                &timer->hpet_config);
428
429         irq = devp->hd_irq;
430         devp->hd_irq = 0;
431
432         devp->hd_ireqfreq = 0;
433
434         if (devp->hd_flags & HPET_PERIODIC
435             && readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
436                 unsigned long v;
437
438                 v = readq(&timer->hpet_config);
439                 v ^= Tn_TYPE_CNF_MASK;
440                 writeq(v, &timer->hpet_config);
441         }
442
443         devp->hd_flags &= ~(HPET_OPEN | HPET_IE | HPET_PERIODIC);
444         spin_unlock_irq(&hpet_lock);
445
446         if (irq)
447                 free_irq(irq, devp);
448
449         file->private_data = NULL;
450         return 0;
451 }
452
453 static int hpet_ioctl_ieon(struct hpet_dev *devp)
454 {
455         struct hpet_timer __iomem *timer;
456         struct hpet __iomem *hpet;
457         struct hpets *hpetp;
458         int irq;
459         unsigned long g, v, t, m;
460         unsigned long flags, isr;
461
462         timer = devp->hd_timer;
463         hpet = devp->hd_hpet;
464         hpetp = devp->hd_hpets;
465
466         if (!devp->hd_ireqfreq)
467                 return -EIO;
468
469         spin_lock_irq(&hpet_lock);
470
471         if (devp->hd_flags & HPET_IE) {
472                 spin_unlock_irq(&hpet_lock);
473                 return -EBUSY;
474         }
475
476         devp->hd_flags |= HPET_IE;
477
478         if (readl(&timer->hpet_config) & Tn_INT_TYPE_CNF_MASK)
479                 devp->hd_flags |= HPET_SHARED_IRQ;
480         spin_unlock_irq(&hpet_lock);
481
482         irq = devp->hd_hdwirq;
483
484         if (irq) {
485                 unsigned long irq_flags;
486
487                 if (devp->hd_flags & HPET_SHARED_IRQ) {
488                         /*
489                          * To prevent the interrupt handler from seeing an
490                          * unwanted interrupt status bit, program the timer
491                          * so that it will not fire in the near future ...
492                          */
493                         writel(readl(&timer->hpet_config) & ~Tn_TYPE_CNF_MASK,
494                                &timer->hpet_config);
495                         write_counter(read_counter(&hpet->hpet_mc),
496                                       &timer->hpet_compare);
497                         /* ... and clear any left-over status. */
498                         isr = 1 << (devp - devp->hd_hpets->hp_dev);
499                         writel(isr, &hpet->hpet_isr);
500                 }
501
502                 sprintf(devp->hd_name, "hpet%d", (int)(devp - hpetp->hp_dev));
503                 irq_flags = devp->hd_flags & HPET_SHARED_IRQ ? IRQF_SHARED : 0;
504                 if (request_irq(irq, hpet_interrupt, irq_flags,
505                                 devp->hd_name, (void *)devp)) {
506                         printk(KERN_ERR "hpet: IRQ %d is not free\n", irq);
507                         irq = 0;
508                 }
509         }
510
511         if (irq == 0) {
512                 spin_lock_irq(&hpet_lock);
513                 devp->hd_flags ^= HPET_IE;
514                 spin_unlock_irq(&hpet_lock);
515                 return -EIO;
516         }
517
518         devp->hd_irq = irq;
519         t = devp->hd_ireqfreq;
520         v = readq(&timer->hpet_config);
521
522         /* 64-bit comparators are not yet supported through the ioctls,
523          * so force this into 32-bit mode if it supports both modes
524          */
525         g = v | Tn_32MODE_CNF_MASK | Tn_INT_ENB_CNF_MASK;
526
527         if (devp->hd_flags & HPET_PERIODIC) {
528                 g |= Tn_TYPE_CNF_MASK;
529                 v |= Tn_TYPE_CNF_MASK | Tn_VAL_SET_CNF_MASK;
530                 writeq(v, &timer->hpet_config);
531                 local_irq_save(flags);
532
533                 /*
534                  * NOTE: First we modify the hidden accumulator
535                  * register supported by periodic-capable comparators.
536                  * We never want to modify the (single) counter; that
537                  * would affect all the comparators. The value written
538                  * is the counter value when the first interrupt is due.
539                  */
540                 m = read_counter(&hpet->hpet_mc);
541                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
542                 /*
543                  * Then we modify the comparator, indicating the period
544                  * for subsequent interrupt.
545                  */
546                 write_counter(t, &timer->hpet_compare);
547         } else {
548                 local_irq_save(flags);
549                 m = read_counter(&hpet->hpet_mc);
550                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
551         }
552
553         if (devp->hd_flags & HPET_SHARED_IRQ) {
554                 isr = 1 << (devp - devp->hd_hpets->hp_dev);
555                 writel(isr, &hpet->hpet_isr);
556         }
557         writeq(g, &timer->hpet_config);
558         local_irq_restore(flags);
559
560         return 0;
561 }
562
563 /* converts Hz to number of timer ticks */
564 static inline unsigned long hpet_time_div(struct hpets *hpets,
565                                           unsigned long dis)
566 {
567         unsigned long long m;
568
569         m = hpets->hp_tick_freq + (dis >> 1);
570         return div64_ul(m, dis);
571 }
572
573 static int
574 hpet_ioctl_common(struct hpet_dev *devp, unsigned int cmd, unsigned long arg,
575                   struct hpet_info *info)
576 {
577         struct hpet_timer __iomem *timer;
578         struct hpets *hpetp;
579         int err;
580         unsigned long v;
581
582         switch (cmd) {
583         case HPET_IE_OFF:
584         case HPET_INFO:
585         case HPET_EPI:
586         case HPET_DPI:
587         case HPET_IRQFREQ:
588                 timer = devp->hd_timer;
589                 hpetp = devp->hd_hpets;
590                 break;
591         case HPET_IE_ON:
592                 return hpet_ioctl_ieon(devp);
593         default:
594                 return -EINVAL;
595         }
596
597         err = 0;
598
599         switch (cmd) {
600         case HPET_IE_OFF:
601                 if ((devp->hd_flags & HPET_IE) == 0)
602                         break;
603                 v = readq(&timer->hpet_config);
604                 v &= ~Tn_INT_ENB_CNF_MASK;
605                 writeq(v, &timer->hpet_config);
606                 if (devp->hd_irq) {
607                         free_irq(devp->hd_irq, devp);
608                         devp->hd_irq = 0;
609                 }
610                 devp->hd_flags ^= HPET_IE;
611                 break;
612         case HPET_INFO:
613                 {
614                         memset(info, 0, sizeof(*info));
615                         if (devp->hd_ireqfreq)
616                                 info->hi_ireqfreq =
617                                         hpet_time_div(hpetp, devp->hd_ireqfreq);
618                         info->hi_flags =
619                             readq(&timer->hpet_config) & Tn_PER_INT_CAP_MASK;
620                         info->hi_hpet = hpetp->hp_which;
621                         info->hi_timer = devp - hpetp->hp_dev;
622                         break;
623                 }
624         case HPET_EPI:
625                 v = readq(&timer->hpet_config);
626                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
627                         err = -ENXIO;
628                         break;
629                 }
630                 devp->hd_flags |= HPET_PERIODIC;
631                 break;
632         case HPET_DPI:
633                 v = readq(&timer->hpet_config);
634                 if ((v & Tn_PER_INT_CAP_MASK) == 0) {
635                         err = -ENXIO;
636                         break;
637                 }
638                 if (devp->hd_flags & HPET_PERIODIC &&
639                     readq(&timer->hpet_config) & Tn_TYPE_CNF_MASK) {
640                         v = readq(&timer->hpet_config);
641                         v ^= Tn_TYPE_CNF_MASK;
642                         writeq(v, &timer->hpet_config);
643                 }
644                 devp->hd_flags &= ~HPET_PERIODIC;
645                 break;
646         case HPET_IRQFREQ:
647                 if ((arg > hpet_max_freq) &&
648                     !capable(CAP_SYS_RESOURCE)) {
649                         err = -EACCES;
650                         break;
651                 }
652
653                 if (!arg) {
654                         err = -EINVAL;
655                         break;
656                 }
657
658                 devp->hd_ireqfreq = hpet_time_div(hpetp, arg);
659         }
660
661         return err;
662 }
663
664 static long
665 hpet_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
666 {
667         struct hpet_info info;
668         int err;
669
670         mutex_lock(&hpet_mutex);
671         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
672         mutex_unlock(&hpet_mutex);
673
674         if ((cmd == HPET_INFO) && !err &&
675             (copy_to_user((void __user *)arg, &info, sizeof(info))))
676                 err = -EFAULT;
677
678         return err;
679 }
680
681 #ifdef CONFIG_COMPAT
682 struct compat_hpet_info {
683         compat_ulong_t hi_ireqfreq;     /* Hz */
684         compat_ulong_t hi_flags;        /* information */
685         unsigned short hi_hpet;
686         unsigned short hi_timer;
687 };
688
689 static long
690 hpet_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
691 {
692         struct hpet_info info;
693         int err;
694
695         mutex_lock(&hpet_mutex);
696         err = hpet_ioctl_common(file->private_data, cmd, arg, &info);
697         mutex_unlock(&hpet_mutex);
698
699         if ((cmd == HPET_INFO) && !err) {
700                 struct compat_hpet_info __user *u = compat_ptr(arg);
701                 if (put_user(info.hi_ireqfreq, &u->hi_ireqfreq) ||
702                     put_user(info.hi_flags, &u->hi_flags) ||
703                     put_user(info.hi_hpet, &u->hi_hpet) ||
704                     put_user(info.hi_timer, &u->hi_timer))
705                         err = -EFAULT;
706         }
707
708         return err;
709 }
710 #endif
711
712 static const struct file_operations hpet_fops = {
713         .owner = THIS_MODULE,
714         .llseek = no_llseek,
715         .read = hpet_read,
716         .poll = hpet_poll,
717         .unlocked_ioctl = hpet_ioctl,
718 #ifdef CONFIG_COMPAT
719         .compat_ioctl = hpet_compat_ioctl,
720 #endif
721         .open = hpet_open,
722         .release = hpet_release,
723         .fasync = hpet_fasync,
724         .mmap = hpet_mmap,
725 };
726
727 static int hpet_is_known(struct hpet_data *hdp)
728 {
729         struct hpets *hpetp;
730
731         for (hpetp = hpets; hpetp; hpetp = hpetp->hp_next)
732                 if (hpetp->hp_hpet_phys == hdp->hd_phys_address)
733                         return 1;
734
735         return 0;
736 }
737
738 static struct ctl_table hpet_table[] = {
739         {
740          .procname = "max-user-freq",
741          .data = &hpet_max_freq,
742          .maxlen = sizeof(int),
743          .mode = 0644,
744          .proc_handler = proc_dointvec,
745          },
746         {}
747 };
748
749 static struct ctl_table hpet_root[] = {
750         {
751          .procname = "hpet",
752          .maxlen = 0,
753          .mode = 0555,
754          .child = hpet_table,
755          },
756         {}
757 };
758
759 static struct ctl_table dev_root[] = {
760         {
761          .procname = "dev",
762          .maxlen = 0,
763          .mode = 0555,
764          .child = hpet_root,
765          },
766         {}
767 };
768
769 static struct ctl_table_header *sysctl_header;
770
771 /*
772  * Adjustment for when arming the timer with
773  * initial conditions.  That is, main counter
774  * ticks expired before interrupts are enabled.
775  */
776 #define TICK_CALIBRATE  (1000UL)
777
778 static unsigned long __hpet_calibrate(struct hpets *hpetp)
779 {
780         struct hpet_timer __iomem *timer = NULL;
781         unsigned long t, m, count, i, flags, start;
782         struct hpet_dev *devp;
783         int j;
784         struct hpet __iomem *hpet;
785
786         for (j = 0, devp = hpetp->hp_dev; j < hpetp->hp_ntimer; j++, devp++)
787                 if ((devp->hd_flags & HPET_OPEN) == 0) {
788                         timer = devp->hd_timer;
789                         break;
790                 }
791
792         if (!timer)
793                 return 0;
794
795         hpet = hpetp->hp_hpet;
796         t = read_counter(&timer->hpet_compare);
797
798         i = 0;
799         count = hpet_time_div(hpetp, TICK_CALIBRATE);
800
801         local_irq_save(flags);
802
803         start = read_counter(&hpet->hpet_mc);
804
805         do {
806                 m = read_counter(&hpet->hpet_mc);
807                 write_counter(t + m + hpetp->hp_delta, &timer->hpet_compare);
808         } while (i++, (m - start) < count);
809
810         local_irq_restore(flags);
811
812         return (m - start) / i;
813 }
814
815 static unsigned long hpet_calibrate(struct hpets *hpetp)
816 {
817         unsigned long ret = ~0UL;
818         unsigned long tmp;
819
820         /*
821          * Try to calibrate until return value becomes stable small value.
822          * If SMI interruption occurs in calibration loop, the return value
823          * will be big. This avoids its impact.
824          */
825         for ( ; ; ) {
826                 tmp = __hpet_calibrate(hpetp);
827                 if (ret <= tmp)
828                         break;
829                 ret = tmp;
830         }
831
832         return ret;
833 }
834
835 int hpet_alloc(struct hpet_data *hdp)
836 {
837         u64 cap, mcfg;
838         struct hpet_dev *devp;
839         u32 i, ntimer;
840         struct hpets *hpetp;
841         struct hpet __iomem *hpet;
842         static struct hpets *last;
843         unsigned long period;
844         unsigned long long temp;
845         u32 remainder;
846
847         /*
848          * hpet_alloc can be called by platform dependent code.
849          * If platform dependent code has allocated the hpet that
850          * ACPI has also reported, then we catch it here.
851          */
852         if (hpet_is_known(hdp)) {
853                 printk(KERN_DEBUG "%s: duplicate HPET ignored\n",
854                         __func__);
855                 return 0;
856         }
857
858         hpetp = kzalloc(struct_size(hpetp, hp_dev, hdp->hd_nirqs),
859                         GFP_KERNEL);
860
861         if (!hpetp)
862                 return -ENOMEM;
863
864         hpetp->hp_which = hpet_nhpet++;
865         hpetp->hp_hpet = hdp->hd_address;
866         hpetp->hp_hpet_phys = hdp->hd_phys_address;
867
868         hpetp->hp_ntimer = hdp->hd_nirqs;
869
870         for (i = 0; i < hdp->hd_nirqs; i++)
871                 hpetp->hp_dev[i].hd_hdwirq = hdp->hd_irq[i];
872
873         hpet = hpetp->hp_hpet;
874
875         cap = readq(&hpet->hpet_cap);
876
877         ntimer = ((cap & HPET_NUM_TIM_CAP_MASK) >> HPET_NUM_TIM_CAP_SHIFT) + 1;
878
879         if (hpetp->hp_ntimer != ntimer) {
880                 printk(KERN_WARNING "hpet: number irqs doesn't agree"
881                        " with number of timers\n");
882                 kfree(hpetp);
883                 return -ENODEV;
884         }
885
886         if (last)
887                 last->hp_next = hpetp;
888         else
889                 hpets = hpetp;
890
891         last = hpetp;
892
893         period = (cap & HPET_COUNTER_CLK_PERIOD_MASK) >>
894                 HPET_COUNTER_CLK_PERIOD_SHIFT; /* fs, 10^-15 */
895         temp = 1000000000000000uLL; /* 10^15 femtoseconds per second */
896         temp += period >> 1; /* round */
897         do_div(temp, period);
898         hpetp->hp_tick_freq = temp; /* ticks per second */
899
900         printk(KERN_INFO "hpet%d: at MMIO 0x%lx, IRQ%s",
901                 hpetp->hp_which, hdp->hd_phys_address,
902                 hpetp->hp_ntimer > 1 ? "s" : "");
903         for (i = 0; i < hpetp->hp_ntimer; i++)
904                 printk(KERN_CONT "%s %d", i > 0 ? "," : "", hdp->hd_irq[i]);
905         printk(KERN_CONT "\n");
906
907         temp = hpetp->hp_tick_freq;
908         remainder = do_div(temp, 1000000);
909         printk(KERN_INFO
910                 "hpet%u: %u comparators, %d-bit %u.%06u MHz counter\n",
911                 hpetp->hp_which, hpetp->hp_ntimer,
912                 cap & HPET_COUNTER_SIZE_MASK ? 64 : 32,
913                 (unsigned) temp, remainder);
914
915         mcfg = readq(&hpet->hpet_config);
916         if ((mcfg & HPET_ENABLE_CNF_MASK) == 0) {
917                 write_counter(0L, &hpet->hpet_mc);
918                 mcfg |= HPET_ENABLE_CNF_MASK;
919                 writeq(mcfg, &hpet->hpet_config);
920         }
921
922         for (i = 0, devp = hpetp->hp_dev; i < hpetp->hp_ntimer; i++, devp++) {
923                 struct hpet_timer __iomem *timer;
924
925                 timer = &hpet->hpet_timers[devp - hpetp->hp_dev];
926
927                 devp->hd_hpets = hpetp;
928                 devp->hd_hpet = hpet;
929                 devp->hd_timer = timer;
930
931                 /*
932                  * If the timer was reserved by platform code,
933                  * then make timer unavailable for opens.
934                  */
935                 if (hdp->hd_state & (1 << i)) {
936                         devp->hd_flags = HPET_OPEN;
937                         continue;
938                 }
939
940                 init_waitqueue_head(&devp->hd_waitqueue);
941         }
942
943         hpetp->hp_delta = hpet_calibrate(hpetp);
944
945 /* This clocksource driver currently only works on ia64 */
946 #ifdef CONFIG_IA64
947         if (!hpet_clocksource) {
948                 hpet_mctr = (void __iomem *)&hpetp->hp_hpet->hpet_mc;
949                 clocksource_hpet.archdata.fsys_mmio = hpet_mctr;
950                 clocksource_register_hz(&clocksource_hpet, hpetp->hp_tick_freq);
951                 hpetp->hp_clocksource = &clocksource_hpet;
952                 hpet_clocksource = &clocksource_hpet;
953         }
954 #endif
955
956         return 0;
957 }
958
959 static acpi_status hpet_resources(struct acpi_resource *res, void *data)
960 {
961         struct hpet_data *hdp;
962         acpi_status status;
963         struct acpi_resource_address64 addr;
964
965         hdp = data;
966
967         status = acpi_resource_to_address64(res, &addr);
968
969         if (ACPI_SUCCESS(status)) {
970                 hdp->hd_phys_address = addr.address.minimum;
971                 hdp->hd_address = ioremap(addr.address.minimum, addr.address.address_length);
972                 if (!hdp->hd_address)
973                         return AE_ERROR;
974
975                 if (hpet_is_known(hdp)) {
976                         iounmap(hdp->hd_address);
977                         return AE_ALREADY_EXISTS;
978                 }
979         } else if (res->type == ACPI_RESOURCE_TYPE_FIXED_MEMORY32) {
980                 struct acpi_resource_fixed_memory32 *fixmem32;
981
982                 fixmem32 = &res->data.fixed_memory32;
983
984                 hdp->hd_phys_address = fixmem32->address;
985                 hdp->hd_address = ioremap(fixmem32->address,
986                                                 HPET_RANGE_SIZE);
987
988                 if (hpet_is_known(hdp)) {
989                         iounmap(hdp->hd_address);
990                         return AE_ALREADY_EXISTS;
991                 }
992         } else if (res->type == ACPI_RESOURCE_TYPE_EXTENDED_IRQ) {
993                 struct acpi_resource_extended_irq *irqp;
994                 int i, irq;
995
996                 irqp = &res->data.extended_irq;
997
998                 for (i = 0; i < irqp->interrupt_count; i++) {
999                         if (hdp->hd_nirqs >= HPET_MAX_TIMERS)
1000                                 break;
1001
1002                         irq = acpi_register_gsi(NULL, irqp->interrupts[i],
1003                                       irqp->triggering, irqp->polarity);
1004                         if (irq < 0)
1005                                 return AE_ERROR;
1006
1007                         hdp->hd_irq[hdp->hd_nirqs] = irq;
1008                         hdp->hd_nirqs++;
1009                 }
1010         }
1011
1012         return AE_OK;
1013 }
1014
1015 static int hpet_acpi_add(struct acpi_device *device)
1016 {
1017         acpi_status result;
1018         struct hpet_data data;
1019
1020         memset(&data, 0, sizeof(data));
1021
1022         result =
1023             acpi_walk_resources(device->handle, METHOD_NAME__CRS,
1024                                 hpet_resources, &data);
1025
1026         if (ACPI_FAILURE(result))
1027                 return -ENODEV;
1028
1029         if (!data.hd_address || !data.hd_nirqs) {
1030                 if (data.hd_address)
1031                         iounmap(data.hd_address);
1032                 printk("%s: no address or irqs in _CRS\n", __func__);
1033                 return -ENODEV;
1034         }
1035
1036         return hpet_alloc(&data);
1037 }
1038
1039 static const struct acpi_device_id hpet_device_ids[] = {
1040         {"PNP0103", 0},
1041         {"", 0},
1042 };
1043
1044 static struct acpi_driver hpet_acpi_driver = {
1045         .name = "hpet",
1046         .ids = hpet_device_ids,
1047         .ops = {
1048                 .add = hpet_acpi_add,
1049                 },
1050 };
1051
1052 static struct miscdevice hpet_misc = { HPET_MINOR, "hpet", &hpet_fops };
1053
1054 static int __init hpet_init(void)
1055 {
1056         int result;
1057
1058         result = misc_register(&hpet_misc);
1059         if (result < 0)
1060                 return -ENODEV;
1061
1062         sysctl_header = register_sysctl_table(dev_root);
1063
1064         result = acpi_bus_register_driver(&hpet_acpi_driver);
1065         if (result < 0) {
1066                 if (sysctl_header)
1067                         unregister_sysctl_table(sysctl_header);
1068                 misc_deregister(&hpet_misc);
1069                 return result;
1070         }
1071
1072         return 0;
1073 }
1074 device_initcall(hpet_init);
1075
1076 /*
1077 MODULE_AUTHOR("Bob Picco <Robert.Picco@hp.com>");
1078 MODULE_LICENSE("GPL");
1079 */