Linux-libre 4.19.123-gnu
[librecmc/linux-libre.git] / drivers / acpi / osl.c
1 /*
2  *  acpi_osl.c - OS-dependent functions ($Revision: 83 $)
3  *
4  *  Copyright (C) 2000       Andrew Henroid
5  *  Copyright (C) 2001, 2002 Andy Grover <andrew.grover@intel.com>
6  *  Copyright (C) 2001, 2002 Paul Diefenbaugh <paul.s.diefenbaugh@intel.com>
7  *  Copyright (c) 2008 Intel Corporation
8  *   Author: Matthew Wilcox <willy@linux.intel.com>
9  *
10  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
11  *
12  *  This program is free software; you can redistribute it and/or modify
13  *  it under the terms of the GNU General Public License as published by
14  *  the Free Software Foundation; either version 2 of the License, or
15  *  (at your option) any later version.
16  *
17  *  This program is distributed in the hope that it will be useful,
18  *  but WITHOUT ANY WARRANTY; without even the implied warranty of
19  *  MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
20  *  GNU General Public License for more details.
21  *
22  * ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
23  *
24  */
25
26 #include <linux/module.h>
27 #include <linux/kernel.h>
28 #include <linux/slab.h>
29 #include <linux/mm.h>
30 #include <linux/highmem.h>
31 #include <linux/pci.h>
32 #include <linux/interrupt.h>
33 #include <linux/kmod.h>
34 #include <linux/delay.h>
35 #include <linux/workqueue.h>
36 #include <linux/nmi.h>
37 #include <linux/acpi.h>
38 #include <linux/efi.h>
39 #include <linux/ioport.h>
40 #include <linux/list.h>
41 #include <linux/jiffies.h>
42 #include <linux/semaphore.h>
43
44 #include <asm/io.h>
45 #include <linux/uaccess.h>
46 #include <linux/io-64-nonatomic-lo-hi.h>
47
48 #include "acpica/accommon.h"
49 #include "acpica/acnamesp.h"
50 #include "internal.h"
51
52 #define _COMPONENT              ACPI_OS_SERVICES
53 ACPI_MODULE_NAME("osl");
54
55 struct acpi_os_dpc {
56         acpi_osd_exec_callback function;
57         void *context;
58         struct work_struct work;
59 };
60
61 #ifdef ENABLE_DEBUGGER
62 #include <linux/kdb.h>
63
64 /* stuff for debugger support */
65 int acpi_in_debugger;
66 EXPORT_SYMBOL(acpi_in_debugger);
67 #endif                          /*ENABLE_DEBUGGER */
68
69 static int (*__acpi_os_prepare_sleep)(u8 sleep_state, u32 pm1a_ctrl,
70                                       u32 pm1b_ctrl);
71 static int (*__acpi_os_prepare_extended_sleep)(u8 sleep_state, u32 val_a,
72                                       u32 val_b);
73
74 static acpi_osd_handler acpi_irq_handler;
75 static void *acpi_irq_context;
76 static struct workqueue_struct *kacpid_wq;
77 static struct workqueue_struct *kacpi_notify_wq;
78 static struct workqueue_struct *kacpi_hotplug_wq;
79 static bool acpi_os_initialized;
80 unsigned int acpi_sci_irq = INVALID_ACPI_IRQ;
81 bool acpi_permanent_mmap = false;
82
83 /*
84  * This list of permanent mappings is for memory that may be accessed from
85  * interrupt context, where we can't do the ioremap().
86  */
87 struct acpi_ioremap {
88         struct list_head list;
89         void __iomem *virt;
90         acpi_physical_address phys;
91         acpi_size size;
92         unsigned long refcount;
93 };
94
95 static LIST_HEAD(acpi_ioremaps);
96 static DEFINE_MUTEX(acpi_ioremap_lock);
97
98 static void __init acpi_request_region (struct acpi_generic_address *gas,
99         unsigned int length, char *desc)
100 {
101         u64 addr;
102
103         /* Handle possible alignment issues */
104         memcpy(&addr, &gas->address, sizeof(addr));
105         if (!addr || !length)
106                 return;
107
108         /* Resources are never freed */
109         if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_IO)
110                 request_region(addr, length, desc);
111         else if (gas->space_id == ACPI_ADR_SPACE_SYSTEM_MEMORY)
112                 request_mem_region(addr, length, desc);
113 }
114
115 static int __init acpi_reserve_resources(void)
116 {
117         acpi_request_region(&acpi_gbl_FADT.xpm1a_event_block, acpi_gbl_FADT.pm1_event_length,
118                 "ACPI PM1a_EVT_BLK");
119
120         acpi_request_region(&acpi_gbl_FADT.xpm1b_event_block, acpi_gbl_FADT.pm1_event_length,
121                 "ACPI PM1b_EVT_BLK");
122
123         acpi_request_region(&acpi_gbl_FADT.xpm1a_control_block, acpi_gbl_FADT.pm1_control_length,
124                 "ACPI PM1a_CNT_BLK");
125
126         acpi_request_region(&acpi_gbl_FADT.xpm1b_control_block, acpi_gbl_FADT.pm1_control_length,
127                 "ACPI PM1b_CNT_BLK");
128
129         if (acpi_gbl_FADT.pm_timer_length == 4)
130                 acpi_request_region(&acpi_gbl_FADT.xpm_timer_block, 4, "ACPI PM_TMR");
131
132         acpi_request_region(&acpi_gbl_FADT.xpm2_control_block, acpi_gbl_FADT.pm2_control_length,
133                 "ACPI PM2_CNT_BLK");
134
135         /* Length of GPE blocks must be a non-negative multiple of 2 */
136
137         if (!(acpi_gbl_FADT.gpe0_block_length & 0x1))
138                 acpi_request_region(&acpi_gbl_FADT.xgpe0_block,
139                                acpi_gbl_FADT.gpe0_block_length, "ACPI GPE0_BLK");
140
141         if (!(acpi_gbl_FADT.gpe1_block_length & 0x1))
142                 acpi_request_region(&acpi_gbl_FADT.xgpe1_block,
143                                acpi_gbl_FADT.gpe1_block_length, "ACPI GPE1_BLK");
144
145         return 0;
146 }
147 fs_initcall_sync(acpi_reserve_resources);
148
149 void acpi_os_printf(const char *fmt, ...)
150 {
151         va_list args;
152         va_start(args, fmt);
153         acpi_os_vprintf(fmt, args);
154         va_end(args);
155 }
156 EXPORT_SYMBOL(acpi_os_printf);
157
158 void acpi_os_vprintf(const char *fmt, va_list args)
159 {
160         static char buffer[512];
161
162         vsprintf(buffer, fmt, args);
163
164 #ifdef ENABLE_DEBUGGER
165         if (acpi_in_debugger) {
166                 kdb_printf("%s", buffer);
167         } else {
168                 if (printk_get_level(buffer))
169                         printk("%s", buffer);
170                 else
171                         printk(KERN_CONT "%s", buffer);
172         }
173 #else
174         if (acpi_debugger_write_log(buffer) < 0) {
175                 if (printk_get_level(buffer))
176                         printk("%s", buffer);
177                 else
178                         printk(KERN_CONT "%s", buffer);
179         }
180 #endif
181 }
182
183 #ifdef CONFIG_KEXEC
184 static unsigned long acpi_rsdp;
185 static int __init setup_acpi_rsdp(char *arg)
186 {
187         return kstrtoul(arg, 16, &acpi_rsdp);
188 }
189 early_param("acpi_rsdp", setup_acpi_rsdp);
190 #endif
191
192 acpi_physical_address __init acpi_os_get_root_pointer(void)
193 {
194         acpi_physical_address pa;
195
196 #ifdef CONFIG_KEXEC
197         if (acpi_rsdp)
198                 return acpi_rsdp;
199 #endif
200         pa = acpi_arch_get_root_pointer();
201         if (pa)
202                 return pa;
203
204         if (efi_enabled(EFI_CONFIG_TABLES)) {
205                 if (efi.acpi20 != EFI_INVALID_TABLE_ADDR)
206                         return efi.acpi20;
207                 if (efi.acpi != EFI_INVALID_TABLE_ADDR)
208                         return efi.acpi;
209                 pr_err(PREFIX "System description tables not found\n");
210         } else if (IS_ENABLED(CONFIG_ACPI_LEGACY_TABLES_LOOKUP)) {
211                 acpi_find_root_pointer(&pa);
212         }
213
214         return pa;
215 }
216
217 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
218 static struct acpi_ioremap *
219 acpi_map_lookup(acpi_physical_address phys, acpi_size size)
220 {
221         struct acpi_ioremap *map;
222
223         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
224                 if (map->phys <= phys &&
225                     phys + size <= map->phys + map->size)
226                         return map;
227
228         return NULL;
229 }
230
231 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
232 static void __iomem *
233 acpi_map_vaddr_lookup(acpi_physical_address phys, unsigned int size)
234 {
235         struct acpi_ioremap *map;
236
237         map = acpi_map_lookup(phys, size);
238         if (map)
239                 return map->virt + (phys - map->phys);
240
241         return NULL;
242 }
243
244 void __iomem *acpi_os_get_iomem(acpi_physical_address phys, unsigned int size)
245 {
246         struct acpi_ioremap *map;
247         void __iomem *virt = NULL;
248
249         mutex_lock(&acpi_ioremap_lock);
250         map = acpi_map_lookup(phys, size);
251         if (map) {
252                 virt = map->virt + (phys - map->phys);
253                 map->refcount++;
254         }
255         mutex_unlock(&acpi_ioremap_lock);
256         return virt;
257 }
258 EXPORT_SYMBOL_GPL(acpi_os_get_iomem);
259
260 /* Must be called with 'acpi_ioremap_lock' or RCU read lock held. */
261 static struct acpi_ioremap *
262 acpi_map_lookup_virt(void __iomem *virt, acpi_size size)
263 {
264         struct acpi_ioremap *map;
265
266         list_for_each_entry_rcu(map, &acpi_ioremaps, list)
267                 if (map->virt <= virt &&
268                     virt + size <= map->virt + map->size)
269                         return map;
270
271         return NULL;
272 }
273
274 #if defined(CONFIG_IA64) || defined(CONFIG_ARM64)
275 /* ioremap will take care of cache attributes */
276 #define should_use_kmap(pfn)   0
277 #else
278 #define should_use_kmap(pfn)   page_is_ram(pfn)
279 #endif
280
281 static void __iomem *acpi_map(acpi_physical_address pg_off, unsigned long pg_sz)
282 {
283         unsigned long pfn;
284
285         pfn = pg_off >> PAGE_SHIFT;
286         if (should_use_kmap(pfn)) {
287                 if (pg_sz > PAGE_SIZE)
288                         return NULL;
289                 return (void __iomem __force *)kmap(pfn_to_page(pfn));
290         } else
291                 return acpi_os_ioremap(pg_off, pg_sz);
292 }
293
294 static void acpi_unmap(acpi_physical_address pg_off, void __iomem *vaddr)
295 {
296         unsigned long pfn;
297
298         pfn = pg_off >> PAGE_SHIFT;
299         if (should_use_kmap(pfn))
300                 kunmap(pfn_to_page(pfn));
301         else
302                 iounmap(vaddr);
303 }
304
305 /**
306  * acpi_os_map_iomem - Get a virtual address for a given physical address range.
307  * @phys: Start of the physical address range to map.
308  * @size: Size of the physical address range to map.
309  *
310  * Look up the given physical address range in the list of existing ACPI memory
311  * mappings.  If found, get a reference to it and return a pointer to it (its
312  * virtual address).  If not found, map it, add it to that list and return a
313  * pointer to it.
314  *
315  * During early init (when acpi_permanent_mmap has not been set yet) this
316  * routine simply calls __acpi_map_table() to get the job done.
317  */
318 void __iomem *__ref
319 acpi_os_map_iomem(acpi_physical_address phys, acpi_size size)
320 {
321         struct acpi_ioremap *map;
322         void __iomem *virt;
323         acpi_physical_address pg_off;
324         acpi_size pg_sz;
325
326         if (phys > ULONG_MAX) {
327                 printk(KERN_ERR PREFIX "Cannot map memory that high\n");
328                 return NULL;
329         }
330
331         if (!acpi_permanent_mmap)
332                 return __acpi_map_table((unsigned long)phys, size);
333
334         mutex_lock(&acpi_ioremap_lock);
335         /* Check if there's a suitable mapping already. */
336         map = acpi_map_lookup(phys, size);
337         if (map) {
338                 map->refcount++;
339                 goto out;
340         }
341
342         map = kzalloc(sizeof(*map), GFP_KERNEL);
343         if (!map) {
344                 mutex_unlock(&acpi_ioremap_lock);
345                 return NULL;
346         }
347
348         pg_off = round_down(phys, PAGE_SIZE);
349         pg_sz = round_up(phys + size, PAGE_SIZE) - pg_off;
350         virt = acpi_map(pg_off, pg_sz);
351         if (!virt) {
352                 mutex_unlock(&acpi_ioremap_lock);
353                 kfree(map);
354                 return NULL;
355         }
356
357         INIT_LIST_HEAD(&map->list);
358         map->virt = virt;
359         map->phys = pg_off;
360         map->size = pg_sz;
361         map->refcount = 1;
362
363         list_add_tail_rcu(&map->list, &acpi_ioremaps);
364
365 out:
366         mutex_unlock(&acpi_ioremap_lock);
367         return map->virt + (phys - map->phys);
368 }
369 EXPORT_SYMBOL_GPL(acpi_os_map_iomem);
370
371 void *__ref acpi_os_map_memory(acpi_physical_address phys, acpi_size size)
372 {
373         return (void *)acpi_os_map_iomem(phys, size);
374 }
375 EXPORT_SYMBOL_GPL(acpi_os_map_memory);
376
377 /* Must be called with mutex_lock(&acpi_ioremap_lock) */
378 static unsigned long acpi_os_drop_map_ref(struct acpi_ioremap *map)
379 {
380         unsigned long refcount = --map->refcount;
381
382         if (!refcount)
383                 list_del_rcu(&map->list);
384         return refcount;
385 }
386
387 static void acpi_os_map_cleanup(struct acpi_ioremap *map)
388 {
389         synchronize_rcu_expedited();
390         acpi_unmap(map->phys, map->virt);
391         kfree(map);
392 }
393
394 /**
395  * acpi_os_unmap_iomem - Drop a memory mapping reference.
396  * @virt: Start of the address range to drop a reference to.
397  * @size: Size of the address range to drop a reference to.
398  *
399  * Look up the given virtual address range in the list of existing ACPI memory
400  * mappings, drop a reference to it and unmap it if there are no more active
401  * references to it.
402  *
403  * During early init (when acpi_permanent_mmap has not been set yet) this
404  * routine simply calls __acpi_unmap_table() to get the job done.  Since
405  * __acpi_unmap_table() is an __init function, the __ref annotation is needed
406  * here.
407  */
408 void __ref acpi_os_unmap_iomem(void __iomem *virt, acpi_size size)
409 {
410         struct acpi_ioremap *map;
411         unsigned long refcount;
412
413         if (!acpi_permanent_mmap) {
414                 __acpi_unmap_table(virt, size);
415                 return;
416         }
417
418         mutex_lock(&acpi_ioremap_lock);
419         map = acpi_map_lookup_virt(virt, size);
420         if (!map) {
421                 mutex_unlock(&acpi_ioremap_lock);
422                 WARN(true, PREFIX "%s: bad address %p\n", __func__, virt);
423                 return;
424         }
425         refcount = acpi_os_drop_map_ref(map);
426         mutex_unlock(&acpi_ioremap_lock);
427
428         if (!refcount)
429                 acpi_os_map_cleanup(map);
430 }
431 EXPORT_SYMBOL_GPL(acpi_os_unmap_iomem);
432
433 void __ref acpi_os_unmap_memory(void *virt, acpi_size size)
434 {
435         return acpi_os_unmap_iomem((void __iomem *)virt, size);
436 }
437 EXPORT_SYMBOL_GPL(acpi_os_unmap_memory);
438
439 int acpi_os_map_generic_address(struct acpi_generic_address *gas)
440 {
441         u64 addr;
442         void __iomem *virt;
443
444         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
445                 return 0;
446
447         /* Handle possible alignment issues */
448         memcpy(&addr, &gas->address, sizeof(addr));
449         if (!addr || !gas->bit_width)
450                 return -EINVAL;
451
452         virt = acpi_os_map_iomem(addr, gas->bit_width / 8);
453         if (!virt)
454                 return -EIO;
455
456         return 0;
457 }
458 EXPORT_SYMBOL(acpi_os_map_generic_address);
459
460 void acpi_os_unmap_generic_address(struct acpi_generic_address *gas)
461 {
462         u64 addr;
463         struct acpi_ioremap *map;
464         unsigned long refcount;
465
466         if (gas->space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
467                 return;
468
469         /* Handle possible alignment issues */
470         memcpy(&addr, &gas->address, sizeof(addr));
471         if (!addr || !gas->bit_width)
472                 return;
473
474         mutex_lock(&acpi_ioremap_lock);
475         map = acpi_map_lookup(addr, gas->bit_width / 8);
476         if (!map) {
477                 mutex_unlock(&acpi_ioremap_lock);
478                 return;
479         }
480         refcount = acpi_os_drop_map_ref(map);
481         mutex_unlock(&acpi_ioremap_lock);
482
483         if (!refcount)
484                 acpi_os_map_cleanup(map);
485 }
486 EXPORT_SYMBOL(acpi_os_unmap_generic_address);
487
488 #ifdef ACPI_FUTURE_USAGE
489 acpi_status
490 acpi_os_get_physical_address(void *virt, acpi_physical_address * phys)
491 {
492         if (!phys || !virt)
493                 return AE_BAD_PARAMETER;
494
495         *phys = virt_to_phys(virt);
496
497         return AE_OK;
498 }
499 #endif
500
501 #ifdef CONFIG_ACPI_REV_OVERRIDE_POSSIBLE
502 static bool acpi_rev_override;
503
504 int __init acpi_rev_override_setup(char *str)
505 {
506         acpi_rev_override = true;
507         return 1;
508 }
509 __setup("acpi_rev_override", acpi_rev_override_setup);
510 #else
511 #define acpi_rev_override       false
512 #endif
513
514 #define ACPI_MAX_OVERRIDE_LEN 100
515
516 static char acpi_os_name[ACPI_MAX_OVERRIDE_LEN];
517
518 acpi_status
519 acpi_os_predefined_override(const struct acpi_predefined_names *init_val,
520                             acpi_string *new_val)
521 {
522         if (!init_val || !new_val)
523                 return AE_BAD_PARAMETER;
524
525         *new_val = NULL;
526         if (!memcmp(init_val->name, "_OS_", 4) && strlen(acpi_os_name)) {
527                 printk(KERN_INFO PREFIX "Overriding _OS definition to '%s'\n",
528                        acpi_os_name);
529                 *new_val = acpi_os_name;
530         }
531
532         if (!memcmp(init_val->name, "_REV", 4) && acpi_rev_override) {
533                 printk(KERN_INFO PREFIX "Overriding _REV return value to 5\n");
534                 *new_val = (char *)5;
535         }
536
537         return AE_OK;
538 }
539
540 static irqreturn_t acpi_irq(int irq, void *dev_id)
541 {
542         u32 handled;
543
544         handled = (*acpi_irq_handler) (acpi_irq_context);
545
546         if (handled) {
547                 acpi_irq_handled++;
548                 return IRQ_HANDLED;
549         } else {
550                 acpi_irq_not_handled++;
551                 return IRQ_NONE;
552         }
553 }
554
555 acpi_status
556 acpi_os_install_interrupt_handler(u32 gsi, acpi_osd_handler handler,
557                                   void *context)
558 {
559         unsigned int irq;
560
561         acpi_irq_stats_init();
562
563         /*
564          * ACPI interrupts different from the SCI in our copy of the FADT are
565          * not supported.
566          */
567         if (gsi != acpi_gbl_FADT.sci_interrupt)
568                 return AE_BAD_PARAMETER;
569
570         if (acpi_irq_handler)
571                 return AE_ALREADY_ACQUIRED;
572
573         if (acpi_gsi_to_irq(gsi, &irq) < 0) {
574                 printk(KERN_ERR PREFIX "SCI (ACPI GSI %d) not registered\n",
575                        gsi);
576                 return AE_OK;
577         }
578
579         acpi_irq_handler = handler;
580         acpi_irq_context = context;
581         if (request_irq(irq, acpi_irq, IRQF_SHARED, "acpi", acpi_irq)) {
582                 printk(KERN_ERR PREFIX "SCI (IRQ%d) allocation failed\n", irq);
583                 acpi_irq_handler = NULL;
584                 return AE_NOT_ACQUIRED;
585         }
586         acpi_sci_irq = irq;
587
588         return AE_OK;
589 }
590
591 acpi_status acpi_os_remove_interrupt_handler(u32 gsi, acpi_osd_handler handler)
592 {
593         if (gsi != acpi_gbl_FADT.sci_interrupt || !acpi_sci_irq_valid())
594                 return AE_BAD_PARAMETER;
595
596         free_irq(acpi_sci_irq, acpi_irq);
597         acpi_irq_handler = NULL;
598         acpi_sci_irq = INVALID_ACPI_IRQ;
599
600         return AE_OK;
601 }
602
603 /*
604  * Running in interpreter thread context, safe to sleep
605  */
606
607 void acpi_os_sleep(u64 ms)
608 {
609         msleep(ms);
610 }
611
612 void acpi_os_stall(u32 us)
613 {
614         while (us) {
615                 u32 delay = 1000;
616
617                 if (delay > us)
618                         delay = us;
619                 udelay(delay);
620                 touch_nmi_watchdog();
621                 us -= delay;
622         }
623 }
624
625 /*
626  * Support ACPI 3.0 AML Timer operand. Returns a 64-bit free-running,
627  * monotonically increasing timer with 100ns granularity. Do not use
628  * ktime_get() to implement this function because this function may get
629  * called after timekeeping has been suspended. Note: calling this function
630  * after timekeeping has been suspended may lead to unexpected results
631  * because when timekeeping is suspended the jiffies counter is not
632  * incremented. See also timekeeping_suspend().
633  */
634 u64 acpi_os_get_timer(void)
635 {
636         return (get_jiffies_64() - INITIAL_JIFFIES) *
637                 (ACPI_100NSEC_PER_SEC / HZ);
638 }
639
640 acpi_status acpi_os_read_port(acpi_io_address port, u32 * value, u32 width)
641 {
642         u32 dummy;
643
644         if (!value)
645                 value = &dummy;
646
647         *value = 0;
648         if (width <= 8) {
649                 *(u8 *) value = inb(port);
650         } else if (width <= 16) {
651                 *(u16 *) value = inw(port);
652         } else if (width <= 32) {
653                 *(u32 *) value = inl(port);
654         } else {
655                 BUG();
656         }
657
658         return AE_OK;
659 }
660
661 EXPORT_SYMBOL(acpi_os_read_port);
662
663 acpi_status acpi_os_write_port(acpi_io_address port, u32 value, u32 width)
664 {
665         if (width <= 8) {
666                 outb(value, port);
667         } else if (width <= 16) {
668                 outw(value, port);
669         } else if (width <= 32) {
670                 outl(value, port);
671         } else {
672                 BUG();
673         }
674
675         return AE_OK;
676 }
677
678 EXPORT_SYMBOL(acpi_os_write_port);
679
680 int acpi_os_read_iomem(void __iomem *virt_addr, u64 *value, u32 width)
681 {
682
683         switch (width) {
684         case 8:
685                 *(u8 *) value = readb(virt_addr);
686                 break;
687         case 16:
688                 *(u16 *) value = readw(virt_addr);
689                 break;
690         case 32:
691                 *(u32 *) value = readl(virt_addr);
692                 break;
693         case 64:
694                 *(u64 *) value = readq(virt_addr);
695                 break;
696         default:
697                 return -EINVAL;
698         }
699
700         return 0;
701 }
702
703 acpi_status
704 acpi_os_read_memory(acpi_physical_address phys_addr, u64 *value, u32 width)
705 {
706         void __iomem *virt_addr;
707         unsigned int size = width / 8;
708         bool unmap = false;
709         u64 dummy;
710         int error;
711
712         rcu_read_lock();
713         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
714         if (!virt_addr) {
715                 rcu_read_unlock();
716                 virt_addr = acpi_os_ioremap(phys_addr, size);
717                 if (!virt_addr)
718                         return AE_BAD_ADDRESS;
719                 unmap = true;
720         }
721
722         if (!value)
723                 value = &dummy;
724
725         error = acpi_os_read_iomem(virt_addr, value, width);
726         BUG_ON(error);
727
728         if (unmap)
729                 iounmap(virt_addr);
730         else
731                 rcu_read_unlock();
732
733         return AE_OK;
734 }
735
736 acpi_status
737 acpi_os_write_memory(acpi_physical_address phys_addr, u64 value, u32 width)
738 {
739         void __iomem *virt_addr;
740         unsigned int size = width / 8;
741         bool unmap = false;
742
743         rcu_read_lock();
744         virt_addr = acpi_map_vaddr_lookup(phys_addr, size);
745         if (!virt_addr) {
746                 rcu_read_unlock();
747                 virt_addr = acpi_os_ioremap(phys_addr, size);
748                 if (!virt_addr)
749                         return AE_BAD_ADDRESS;
750                 unmap = true;
751         }
752
753         switch (width) {
754         case 8:
755                 writeb(value, virt_addr);
756                 break;
757         case 16:
758                 writew(value, virt_addr);
759                 break;
760         case 32:
761                 writel(value, virt_addr);
762                 break;
763         case 64:
764                 writeq(value, virt_addr);
765                 break;
766         default:
767                 BUG();
768         }
769
770         if (unmap)
771                 iounmap(virt_addr);
772         else
773                 rcu_read_unlock();
774
775         return AE_OK;
776 }
777
778 acpi_status
779 acpi_os_read_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
780                                u64 *value, u32 width)
781 {
782         int result, size;
783         u32 value32;
784
785         if (!value)
786                 return AE_BAD_PARAMETER;
787
788         switch (width) {
789         case 8:
790                 size = 1;
791                 break;
792         case 16:
793                 size = 2;
794                 break;
795         case 32:
796                 size = 4;
797                 break;
798         default:
799                 return AE_ERROR;
800         }
801
802         result = raw_pci_read(pci_id->segment, pci_id->bus,
803                                 PCI_DEVFN(pci_id->device, pci_id->function),
804                                 reg, size, &value32);
805         *value = value32;
806
807         return (result ? AE_ERROR : AE_OK);
808 }
809
810 acpi_status
811 acpi_os_write_pci_configuration(struct acpi_pci_id * pci_id, u32 reg,
812                                 u64 value, u32 width)
813 {
814         int result, size;
815
816         switch (width) {
817         case 8:
818                 size = 1;
819                 break;
820         case 16:
821                 size = 2;
822                 break;
823         case 32:
824                 size = 4;
825                 break;
826         default:
827                 return AE_ERROR;
828         }
829
830         result = raw_pci_write(pci_id->segment, pci_id->bus,
831                                 PCI_DEVFN(pci_id->device, pci_id->function),
832                                 reg, size, value);
833
834         return (result ? AE_ERROR : AE_OK);
835 }
836
837 static void acpi_os_execute_deferred(struct work_struct *work)
838 {
839         struct acpi_os_dpc *dpc = container_of(work, struct acpi_os_dpc, work);
840
841         dpc->function(dpc->context);
842         kfree(dpc);
843 }
844
845 #ifdef CONFIG_ACPI_DEBUGGER
846 static struct acpi_debugger acpi_debugger;
847 static bool acpi_debugger_initialized;
848
849 int acpi_register_debugger(struct module *owner,
850                            const struct acpi_debugger_ops *ops)
851 {
852         int ret = 0;
853
854         mutex_lock(&acpi_debugger.lock);
855         if (acpi_debugger.ops) {
856                 ret = -EBUSY;
857                 goto err_lock;
858         }
859
860         acpi_debugger.owner = owner;
861         acpi_debugger.ops = ops;
862
863 err_lock:
864         mutex_unlock(&acpi_debugger.lock);
865         return ret;
866 }
867 EXPORT_SYMBOL(acpi_register_debugger);
868
869 void acpi_unregister_debugger(const struct acpi_debugger_ops *ops)
870 {
871         mutex_lock(&acpi_debugger.lock);
872         if (ops == acpi_debugger.ops) {
873                 acpi_debugger.ops = NULL;
874                 acpi_debugger.owner = NULL;
875         }
876         mutex_unlock(&acpi_debugger.lock);
877 }
878 EXPORT_SYMBOL(acpi_unregister_debugger);
879
880 int acpi_debugger_create_thread(acpi_osd_exec_callback function, void *context)
881 {
882         int ret;
883         int (*func)(acpi_osd_exec_callback, void *);
884         struct module *owner;
885
886         if (!acpi_debugger_initialized)
887                 return -ENODEV;
888         mutex_lock(&acpi_debugger.lock);
889         if (!acpi_debugger.ops) {
890                 ret = -ENODEV;
891                 goto err_lock;
892         }
893         if (!try_module_get(acpi_debugger.owner)) {
894                 ret = -ENODEV;
895                 goto err_lock;
896         }
897         func = acpi_debugger.ops->create_thread;
898         owner = acpi_debugger.owner;
899         mutex_unlock(&acpi_debugger.lock);
900
901         ret = func(function, context);
902
903         mutex_lock(&acpi_debugger.lock);
904         module_put(owner);
905 err_lock:
906         mutex_unlock(&acpi_debugger.lock);
907         return ret;
908 }
909
910 ssize_t acpi_debugger_write_log(const char *msg)
911 {
912         ssize_t ret;
913         ssize_t (*func)(const char *);
914         struct module *owner;
915
916         if (!acpi_debugger_initialized)
917                 return -ENODEV;
918         mutex_lock(&acpi_debugger.lock);
919         if (!acpi_debugger.ops) {
920                 ret = -ENODEV;
921                 goto err_lock;
922         }
923         if (!try_module_get(acpi_debugger.owner)) {
924                 ret = -ENODEV;
925                 goto err_lock;
926         }
927         func = acpi_debugger.ops->write_log;
928         owner = acpi_debugger.owner;
929         mutex_unlock(&acpi_debugger.lock);
930
931         ret = func(msg);
932
933         mutex_lock(&acpi_debugger.lock);
934         module_put(owner);
935 err_lock:
936         mutex_unlock(&acpi_debugger.lock);
937         return ret;
938 }
939
940 ssize_t acpi_debugger_read_cmd(char *buffer, size_t buffer_length)
941 {
942         ssize_t ret;
943         ssize_t (*func)(char *, size_t);
944         struct module *owner;
945
946         if (!acpi_debugger_initialized)
947                 return -ENODEV;
948         mutex_lock(&acpi_debugger.lock);
949         if (!acpi_debugger.ops) {
950                 ret = -ENODEV;
951                 goto err_lock;
952         }
953         if (!try_module_get(acpi_debugger.owner)) {
954                 ret = -ENODEV;
955                 goto err_lock;
956         }
957         func = acpi_debugger.ops->read_cmd;
958         owner = acpi_debugger.owner;
959         mutex_unlock(&acpi_debugger.lock);
960
961         ret = func(buffer, buffer_length);
962
963         mutex_lock(&acpi_debugger.lock);
964         module_put(owner);
965 err_lock:
966         mutex_unlock(&acpi_debugger.lock);
967         return ret;
968 }
969
970 int acpi_debugger_wait_command_ready(void)
971 {
972         int ret;
973         int (*func)(bool, char *, size_t);
974         struct module *owner;
975
976         if (!acpi_debugger_initialized)
977                 return -ENODEV;
978         mutex_lock(&acpi_debugger.lock);
979         if (!acpi_debugger.ops) {
980                 ret = -ENODEV;
981                 goto err_lock;
982         }
983         if (!try_module_get(acpi_debugger.owner)) {
984                 ret = -ENODEV;
985                 goto err_lock;
986         }
987         func = acpi_debugger.ops->wait_command_ready;
988         owner = acpi_debugger.owner;
989         mutex_unlock(&acpi_debugger.lock);
990
991         ret = func(acpi_gbl_method_executing,
992                    acpi_gbl_db_line_buf, ACPI_DB_LINE_BUFFER_SIZE);
993
994         mutex_lock(&acpi_debugger.lock);
995         module_put(owner);
996 err_lock:
997         mutex_unlock(&acpi_debugger.lock);
998         return ret;
999 }
1000
1001 int acpi_debugger_notify_command_complete(void)
1002 {
1003         int ret;
1004         int (*func)(void);
1005         struct module *owner;
1006
1007         if (!acpi_debugger_initialized)
1008                 return -ENODEV;
1009         mutex_lock(&acpi_debugger.lock);
1010         if (!acpi_debugger.ops) {
1011                 ret = -ENODEV;
1012                 goto err_lock;
1013         }
1014         if (!try_module_get(acpi_debugger.owner)) {
1015                 ret = -ENODEV;
1016                 goto err_lock;
1017         }
1018         func = acpi_debugger.ops->notify_command_complete;
1019         owner = acpi_debugger.owner;
1020         mutex_unlock(&acpi_debugger.lock);
1021
1022         ret = func();
1023
1024         mutex_lock(&acpi_debugger.lock);
1025         module_put(owner);
1026 err_lock:
1027         mutex_unlock(&acpi_debugger.lock);
1028         return ret;
1029 }
1030
1031 int __init acpi_debugger_init(void)
1032 {
1033         mutex_init(&acpi_debugger.lock);
1034         acpi_debugger_initialized = true;
1035         return 0;
1036 }
1037 #endif
1038
1039 /*******************************************************************************
1040  *
1041  * FUNCTION:    acpi_os_execute
1042  *
1043  * PARAMETERS:  Type               - Type of the callback
1044  *              Function           - Function to be executed
1045  *              Context            - Function parameters
1046  *
1047  * RETURN:      Status
1048  *
1049  * DESCRIPTION: Depending on type, either queues function for deferred execution or
1050  *              immediately executes function on a separate thread.
1051  *
1052  ******************************************************************************/
1053
1054 acpi_status acpi_os_execute(acpi_execute_type type,
1055                             acpi_osd_exec_callback function, void *context)
1056 {
1057         acpi_status status = AE_OK;
1058         struct acpi_os_dpc *dpc;
1059         struct workqueue_struct *queue;
1060         int ret;
1061         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1062                           "Scheduling function [%p(%p)] for deferred execution.\n",
1063                           function, context));
1064
1065         if (type == OSL_DEBUGGER_MAIN_THREAD) {
1066                 ret = acpi_debugger_create_thread(function, context);
1067                 if (ret) {
1068                         pr_err("Call to kthread_create() failed.\n");
1069                         status = AE_ERROR;
1070                 }
1071                 goto out_thread;
1072         }
1073
1074         /*
1075          * Allocate/initialize DPC structure.  Note that this memory will be
1076          * freed by the callee.  The kernel handles the work_struct list  in a
1077          * way that allows us to also free its memory inside the callee.
1078          * Because we may want to schedule several tasks with different
1079          * parameters we can't use the approach some kernel code uses of
1080          * having a static work_struct.
1081          */
1082
1083         dpc = kzalloc(sizeof(struct acpi_os_dpc), GFP_ATOMIC);
1084         if (!dpc)
1085                 return AE_NO_MEMORY;
1086
1087         dpc->function = function;
1088         dpc->context = context;
1089
1090         /*
1091          * To prevent lockdep from complaining unnecessarily, make sure that
1092          * there is a different static lockdep key for each workqueue by using
1093          * INIT_WORK() for each of them separately.
1094          */
1095         if (type == OSL_NOTIFY_HANDLER) {
1096                 queue = kacpi_notify_wq;
1097                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1098         } else if (type == OSL_GPE_HANDLER) {
1099                 queue = kacpid_wq;
1100                 INIT_WORK(&dpc->work, acpi_os_execute_deferred);
1101         } else {
1102                 pr_err("Unsupported os_execute type %d.\n", type);
1103                 status = AE_ERROR;
1104         }
1105
1106         if (ACPI_FAILURE(status))
1107                 goto err_workqueue;
1108
1109         /*
1110          * On some machines, a software-initiated SMI causes corruption unless
1111          * the SMI runs on CPU 0.  An SMI can be initiated by any AML, but
1112          * typically it's done in GPE-related methods that are run via
1113          * workqueues, so we can avoid the known corruption cases by always
1114          * queueing on CPU 0.
1115          */
1116         ret = queue_work_on(0, queue, &dpc->work);
1117         if (!ret) {
1118                 printk(KERN_ERR PREFIX
1119                           "Call to queue_work() failed.\n");
1120                 status = AE_ERROR;
1121         }
1122 err_workqueue:
1123         if (ACPI_FAILURE(status))
1124                 kfree(dpc);
1125 out_thread:
1126         return status;
1127 }
1128 EXPORT_SYMBOL(acpi_os_execute);
1129
1130 void acpi_os_wait_events_complete(void)
1131 {
1132         /*
1133          * Make sure the GPE handler or the fixed event handler is not used
1134          * on another CPU after removal.
1135          */
1136         if (acpi_sci_irq_valid())
1137                 synchronize_hardirq(acpi_sci_irq);
1138         flush_workqueue(kacpid_wq);
1139         flush_workqueue(kacpi_notify_wq);
1140 }
1141 EXPORT_SYMBOL(acpi_os_wait_events_complete);
1142
1143 struct acpi_hp_work {
1144         struct work_struct work;
1145         struct acpi_device *adev;
1146         u32 src;
1147 };
1148
1149 static void acpi_hotplug_work_fn(struct work_struct *work)
1150 {
1151         struct acpi_hp_work *hpw = container_of(work, struct acpi_hp_work, work);
1152
1153         acpi_os_wait_events_complete();
1154         acpi_device_hotplug(hpw->adev, hpw->src);
1155         kfree(hpw);
1156 }
1157
1158 acpi_status acpi_hotplug_schedule(struct acpi_device *adev, u32 src)
1159 {
1160         struct acpi_hp_work *hpw;
1161
1162         ACPI_DEBUG_PRINT((ACPI_DB_EXEC,
1163                   "Scheduling hotplug event (%p, %u) for deferred execution.\n",
1164                   adev, src));
1165
1166         hpw = kmalloc(sizeof(*hpw), GFP_KERNEL);
1167         if (!hpw)
1168                 return AE_NO_MEMORY;
1169
1170         INIT_WORK(&hpw->work, acpi_hotplug_work_fn);
1171         hpw->adev = adev;
1172         hpw->src = src;
1173         /*
1174          * We can't run hotplug code in kacpid_wq/kacpid_notify_wq etc., because
1175          * the hotplug code may call driver .remove() functions, which may
1176          * invoke flush_scheduled_work()/acpi_os_wait_events_complete() to flush
1177          * these workqueues.
1178          */
1179         if (!queue_work(kacpi_hotplug_wq, &hpw->work)) {
1180                 kfree(hpw);
1181                 return AE_ERROR;
1182         }
1183         return AE_OK;
1184 }
1185
1186 bool acpi_queue_hotplug_work(struct work_struct *work)
1187 {
1188         return queue_work(kacpi_hotplug_wq, work);
1189 }
1190
1191 acpi_status
1192 acpi_os_create_semaphore(u32 max_units, u32 initial_units, acpi_handle * handle)
1193 {
1194         struct semaphore *sem = NULL;
1195
1196         sem = acpi_os_allocate_zeroed(sizeof(struct semaphore));
1197         if (!sem)
1198                 return AE_NO_MEMORY;
1199
1200         sema_init(sem, initial_units);
1201
1202         *handle = (acpi_handle *) sem;
1203
1204         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Creating semaphore[%p|%d].\n",
1205                           *handle, initial_units));
1206
1207         return AE_OK;
1208 }
1209
1210 /*
1211  * TODO: A better way to delete semaphores?  Linux doesn't have a
1212  * 'delete_semaphore()' function -- may result in an invalid
1213  * pointer dereference for non-synchronized consumers.  Should
1214  * we at least check for blocked threads and signal/cancel them?
1215  */
1216
1217 acpi_status acpi_os_delete_semaphore(acpi_handle handle)
1218 {
1219         struct semaphore *sem = (struct semaphore *)handle;
1220
1221         if (!sem)
1222                 return AE_BAD_PARAMETER;
1223
1224         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Deleting semaphore[%p].\n", handle));
1225
1226         BUG_ON(!list_empty(&sem->wait_list));
1227         kfree(sem);
1228         sem = NULL;
1229
1230         return AE_OK;
1231 }
1232
1233 /*
1234  * TODO: Support for units > 1?
1235  */
1236 acpi_status acpi_os_wait_semaphore(acpi_handle handle, u32 units, u16 timeout)
1237 {
1238         acpi_status status = AE_OK;
1239         struct semaphore *sem = (struct semaphore *)handle;
1240         long jiffies;
1241         int ret = 0;
1242
1243         if (!acpi_os_initialized)
1244                 return AE_OK;
1245
1246         if (!sem || (units < 1))
1247                 return AE_BAD_PARAMETER;
1248
1249         if (units > 1)
1250                 return AE_SUPPORT;
1251
1252         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Waiting for semaphore[%p|%d|%d]\n",
1253                           handle, units, timeout));
1254
1255         if (timeout == ACPI_WAIT_FOREVER)
1256                 jiffies = MAX_SCHEDULE_TIMEOUT;
1257         else
1258                 jiffies = msecs_to_jiffies(timeout);
1259
1260         ret = down_timeout(sem, jiffies);
1261         if (ret)
1262                 status = AE_TIME;
1263
1264         if (ACPI_FAILURE(status)) {
1265                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1266                                   "Failed to acquire semaphore[%p|%d|%d], %s",
1267                                   handle, units, timeout,
1268                                   acpi_format_exception(status)));
1269         } else {
1270                 ACPI_DEBUG_PRINT((ACPI_DB_MUTEX,
1271                                   "Acquired semaphore[%p|%d|%d]", handle,
1272                                   units, timeout));
1273         }
1274
1275         return status;
1276 }
1277
1278 /*
1279  * TODO: Support for units > 1?
1280  */
1281 acpi_status acpi_os_signal_semaphore(acpi_handle handle, u32 units)
1282 {
1283         struct semaphore *sem = (struct semaphore *)handle;
1284
1285         if (!acpi_os_initialized)
1286                 return AE_OK;
1287
1288         if (!sem || (units < 1))
1289                 return AE_BAD_PARAMETER;
1290
1291         if (units > 1)
1292                 return AE_SUPPORT;
1293
1294         ACPI_DEBUG_PRINT((ACPI_DB_MUTEX, "Signaling semaphore[%p|%d]\n", handle,
1295                           units));
1296
1297         up(sem);
1298
1299         return AE_OK;
1300 }
1301
1302 acpi_status acpi_os_get_line(char *buffer, u32 buffer_length, u32 *bytes_read)
1303 {
1304 #ifdef ENABLE_DEBUGGER
1305         if (acpi_in_debugger) {
1306                 u32 chars;
1307
1308                 kdb_read(buffer, buffer_length);
1309
1310                 /* remove the CR kdb includes */
1311                 chars = strlen(buffer) - 1;
1312                 buffer[chars] = '\0';
1313         }
1314 #else
1315         int ret;
1316
1317         ret = acpi_debugger_read_cmd(buffer, buffer_length);
1318         if (ret < 0)
1319                 return AE_ERROR;
1320         if (bytes_read)
1321                 *bytes_read = ret;
1322 #endif
1323
1324         return AE_OK;
1325 }
1326 EXPORT_SYMBOL(acpi_os_get_line);
1327
1328 acpi_status acpi_os_wait_command_ready(void)
1329 {
1330         int ret;
1331
1332         ret = acpi_debugger_wait_command_ready();
1333         if (ret < 0)
1334                 return AE_ERROR;
1335         return AE_OK;
1336 }
1337
1338 acpi_status acpi_os_notify_command_complete(void)
1339 {
1340         int ret;
1341
1342         ret = acpi_debugger_notify_command_complete();
1343         if (ret < 0)
1344                 return AE_ERROR;
1345         return AE_OK;
1346 }
1347
1348 acpi_status acpi_os_signal(u32 function, void *info)
1349 {
1350         switch (function) {
1351         case ACPI_SIGNAL_FATAL:
1352                 printk(KERN_ERR PREFIX "Fatal opcode executed\n");
1353                 break;
1354         case ACPI_SIGNAL_BREAKPOINT:
1355                 /*
1356                  * AML Breakpoint
1357                  * ACPI spec. says to treat it as a NOP unless
1358                  * you are debugging.  So if/when we integrate
1359                  * AML debugger into the kernel debugger its
1360                  * hook will go here.  But until then it is
1361                  * not useful to print anything on breakpoints.
1362                  */
1363                 break;
1364         default:
1365                 break;
1366         }
1367
1368         return AE_OK;
1369 }
1370
1371 static int __init acpi_os_name_setup(char *str)
1372 {
1373         char *p = acpi_os_name;
1374         int count = ACPI_MAX_OVERRIDE_LEN - 1;
1375
1376         if (!str || !*str)
1377                 return 0;
1378
1379         for (; count-- && *str; str++) {
1380                 if (isalnum(*str) || *str == ' ' || *str == ':')
1381                         *p++ = *str;
1382                 else if (*str == '\'' || *str == '"')
1383                         continue;
1384                 else
1385                         break;
1386         }
1387         *p = 0;
1388
1389         return 1;
1390
1391 }
1392
1393 __setup("acpi_os_name=", acpi_os_name_setup);
1394
1395 /*
1396  * Disable the auto-serialization of named objects creation methods.
1397  *
1398  * This feature is enabled by default.  It marks the AML control methods
1399  * that contain the opcodes to create named objects as "Serialized".
1400  */
1401 static int __init acpi_no_auto_serialize_setup(char *str)
1402 {
1403         acpi_gbl_auto_serialize_methods = FALSE;
1404         pr_info("ACPI: auto-serialization disabled\n");
1405
1406         return 1;
1407 }
1408
1409 __setup("acpi_no_auto_serialize", acpi_no_auto_serialize_setup);
1410
1411 /* Check of resource interference between native drivers and ACPI
1412  * OperationRegions (SystemIO and System Memory only).
1413  * IO ports and memory declared in ACPI might be used by the ACPI subsystem
1414  * in arbitrary AML code and can interfere with legacy drivers.
1415  * acpi_enforce_resources= can be set to:
1416  *
1417  *   - strict (default) (2)
1418  *     -> further driver trying to access the resources will not load
1419  *   - lax              (1)
1420  *     -> further driver trying to access the resources will load, but you
1421  *     get a system message that something might go wrong...
1422  *
1423  *   - no               (0)
1424  *     -> ACPI Operation Region resources will not be registered
1425  *
1426  */
1427 #define ENFORCE_RESOURCES_STRICT 2
1428 #define ENFORCE_RESOURCES_LAX    1
1429 #define ENFORCE_RESOURCES_NO     0
1430
1431 static unsigned int acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1432
1433 static int __init acpi_enforce_resources_setup(char *str)
1434 {
1435         if (str == NULL || *str == '\0')
1436                 return 0;
1437
1438         if (!strcmp("strict", str))
1439                 acpi_enforce_resources = ENFORCE_RESOURCES_STRICT;
1440         else if (!strcmp("lax", str))
1441                 acpi_enforce_resources = ENFORCE_RESOURCES_LAX;
1442         else if (!strcmp("no", str))
1443                 acpi_enforce_resources = ENFORCE_RESOURCES_NO;
1444
1445         return 1;
1446 }
1447
1448 __setup("acpi_enforce_resources=", acpi_enforce_resources_setup);
1449
1450 /* Check for resource conflicts between ACPI OperationRegions and native
1451  * drivers */
1452 int acpi_check_resource_conflict(const struct resource *res)
1453 {
1454         acpi_adr_space_type space_id;
1455         acpi_size length;
1456         u8 warn = 0;
1457         int clash = 0;
1458
1459         if (acpi_enforce_resources == ENFORCE_RESOURCES_NO)
1460                 return 0;
1461         if (!(res->flags & IORESOURCE_IO) && !(res->flags & IORESOURCE_MEM))
1462                 return 0;
1463
1464         if (res->flags & IORESOURCE_IO)
1465                 space_id = ACPI_ADR_SPACE_SYSTEM_IO;
1466         else
1467                 space_id = ACPI_ADR_SPACE_SYSTEM_MEMORY;
1468
1469         length = resource_size(res);
1470         if (acpi_enforce_resources != ENFORCE_RESOURCES_NO)
1471                 warn = 1;
1472         clash = acpi_check_address_range(space_id, res->start, length, warn);
1473
1474         if (clash) {
1475                 if (acpi_enforce_resources != ENFORCE_RESOURCES_NO) {
1476                         if (acpi_enforce_resources == ENFORCE_RESOURCES_LAX)
1477                                 printk(KERN_NOTICE "ACPI: This conflict may"
1478                                        " cause random problems and system"
1479                                        " instability\n");
1480                         printk(KERN_INFO "ACPI: If an ACPI driver is available"
1481                                " for this device, you should use it instead of"
1482                                " the native driver\n");
1483                 }
1484                 if (acpi_enforce_resources == ENFORCE_RESOURCES_STRICT)
1485                         return -EBUSY;
1486         }
1487         return 0;
1488 }
1489 EXPORT_SYMBOL(acpi_check_resource_conflict);
1490
1491 int acpi_check_region(resource_size_t start, resource_size_t n,
1492                       const char *name)
1493 {
1494         struct resource res = {
1495                 .start = start,
1496                 .end   = start + n - 1,
1497                 .name  = name,
1498                 .flags = IORESOURCE_IO,
1499         };
1500
1501         return acpi_check_resource_conflict(&res);
1502 }
1503 EXPORT_SYMBOL(acpi_check_region);
1504
1505 static acpi_status acpi_deactivate_mem_region(acpi_handle handle, u32 level,
1506                                               void *_res, void **return_value)
1507 {
1508         struct acpi_mem_space_context **mem_ctx;
1509         union acpi_operand_object *handler_obj;
1510         union acpi_operand_object *region_obj2;
1511         union acpi_operand_object *region_obj;
1512         struct resource *res = _res;
1513         acpi_status status;
1514
1515         region_obj = acpi_ns_get_attached_object(handle);
1516         if (!region_obj)
1517                 return AE_OK;
1518
1519         handler_obj = region_obj->region.handler;
1520         if (!handler_obj)
1521                 return AE_OK;
1522
1523         if (region_obj->region.space_id != ACPI_ADR_SPACE_SYSTEM_MEMORY)
1524                 return AE_OK;
1525
1526         if (!(region_obj->region.flags & AOPOBJ_SETUP_COMPLETE))
1527                 return AE_OK;
1528
1529         region_obj2 = acpi_ns_get_secondary_object(region_obj);
1530         if (!region_obj2)
1531                 return AE_OK;
1532
1533         mem_ctx = (void *)&region_obj2->extra.region_context;
1534
1535         if (!(mem_ctx[0]->address >= res->start &&
1536               mem_ctx[0]->address < res->end))
1537                 return AE_OK;
1538
1539         status = handler_obj->address_space.setup(region_obj,
1540                                                   ACPI_REGION_DEACTIVATE,
1541                                                   NULL, (void **)mem_ctx);
1542         if (ACPI_SUCCESS(status))
1543                 region_obj->region.flags &= ~(AOPOBJ_SETUP_COMPLETE);
1544
1545         return status;
1546 }
1547
1548 /**
1549  * acpi_release_memory - Release any mappings done to a memory region
1550  * @handle: Handle to namespace node
1551  * @res: Memory resource
1552  * @level: A level that terminates the search
1553  *
1554  * Walks through @handle and unmaps all SystemMemory Operation Regions that
1555  * overlap with @res and that have already been activated (mapped).
1556  *
1557  * This is a helper that allows drivers to place special requirements on memory
1558  * region that may overlap with operation regions, primarily allowing them to
1559  * safely map the region as non-cached memory.
1560  *
1561  * The unmapped Operation Regions will be automatically remapped next time they
1562  * are called, so the drivers do not need to do anything else.
1563  */
1564 acpi_status acpi_release_memory(acpi_handle handle, struct resource *res,
1565                                 u32 level)
1566 {
1567         if (!(res->flags & IORESOURCE_MEM))
1568                 return AE_TYPE;
1569
1570         return acpi_walk_namespace(ACPI_TYPE_REGION, handle, level,
1571                                    acpi_deactivate_mem_region, NULL, res, NULL);
1572 }
1573 EXPORT_SYMBOL_GPL(acpi_release_memory);
1574
1575 /*
1576  * Let drivers know whether the resource checks are effective
1577  */
1578 int acpi_resources_are_enforced(void)
1579 {
1580         return acpi_enforce_resources == ENFORCE_RESOURCES_STRICT;
1581 }
1582 EXPORT_SYMBOL(acpi_resources_are_enforced);
1583
1584 /*
1585  * Deallocate the memory for a spinlock.
1586  */
1587 void acpi_os_delete_lock(acpi_spinlock handle)
1588 {
1589         ACPI_FREE(handle);
1590 }
1591
1592 /*
1593  * Acquire a spinlock.
1594  *
1595  * handle is a pointer to the spinlock_t.
1596  */
1597
1598 acpi_cpu_flags acpi_os_acquire_lock(acpi_spinlock lockp)
1599 {
1600         acpi_cpu_flags flags;
1601         spin_lock_irqsave(lockp, flags);
1602         return flags;
1603 }
1604
1605 /*
1606  * Release a spinlock. See above.
1607  */
1608
1609 void acpi_os_release_lock(acpi_spinlock lockp, acpi_cpu_flags flags)
1610 {
1611         spin_unlock_irqrestore(lockp, flags);
1612 }
1613
1614 #ifndef ACPI_USE_LOCAL_CACHE
1615
1616 /*******************************************************************************
1617  *
1618  * FUNCTION:    acpi_os_create_cache
1619  *
1620  * PARAMETERS:  name      - Ascii name for the cache
1621  *              size      - Size of each cached object
1622  *              depth     - Maximum depth of the cache (in objects) <ignored>
1623  *              cache     - Where the new cache object is returned
1624  *
1625  * RETURN:      status
1626  *
1627  * DESCRIPTION: Create a cache object
1628  *
1629  ******************************************************************************/
1630
1631 acpi_status
1632 acpi_os_create_cache(char *name, u16 size, u16 depth, acpi_cache_t ** cache)
1633 {
1634         *cache = kmem_cache_create(name, size, 0, 0, NULL);
1635         if (*cache == NULL)
1636                 return AE_ERROR;
1637         else
1638                 return AE_OK;
1639 }
1640
1641 /*******************************************************************************
1642  *
1643  * FUNCTION:    acpi_os_purge_cache
1644  *
1645  * PARAMETERS:  Cache           - Handle to cache object
1646  *
1647  * RETURN:      Status
1648  *
1649  * DESCRIPTION: Free all objects within the requested cache.
1650  *
1651  ******************************************************************************/
1652
1653 acpi_status acpi_os_purge_cache(acpi_cache_t * cache)
1654 {
1655         kmem_cache_shrink(cache);
1656         return (AE_OK);
1657 }
1658
1659 /*******************************************************************************
1660  *
1661  * FUNCTION:    acpi_os_delete_cache
1662  *
1663  * PARAMETERS:  Cache           - Handle to cache object
1664  *
1665  * RETURN:      Status
1666  *
1667  * DESCRIPTION: Free all objects within the requested cache and delete the
1668  *              cache object.
1669  *
1670  ******************************************************************************/
1671
1672 acpi_status acpi_os_delete_cache(acpi_cache_t * cache)
1673 {
1674         kmem_cache_destroy(cache);
1675         return (AE_OK);
1676 }
1677
1678 /*******************************************************************************
1679  *
1680  * FUNCTION:    acpi_os_release_object
1681  *
1682  * PARAMETERS:  Cache       - Handle to cache object
1683  *              Object      - The object to be released
1684  *
1685  * RETURN:      None
1686  *
1687  * DESCRIPTION: Release an object to the specified cache.  If cache is full,
1688  *              the object is deleted.
1689  *
1690  ******************************************************************************/
1691
1692 acpi_status acpi_os_release_object(acpi_cache_t * cache, void *object)
1693 {
1694         kmem_cache_free(cache, object);
1695         return (AE_OK);
1696 }
1697 #endif
1698
1699 static int __init acpi_no_static_ssdt_setup(char *s)
1700 {
1701         acpi_gbl_disable_ssdt_table_install = TRUE;
1702         pr_info("ACPI: static SSDT installation disabled\n");
1703
1704         return 0;
1705 }
1706
1707 early_param("acpi_no_static_ssdt", acpi_no_static_ssdt_setup);
1708
1709 static int __init acpi_disable_return_repair(char *s)
1710 {
1711         printk(KERN_NOTICE PREFIX
1712                "ACPI: Predefined validation mechanism disabled\n");
1713         acpi_gbl_disable_auto_repair = TRUE;
1714
1715         return 1;
1716 }
1717
1718 __setup("acpica_no_return_repair", acpi_disable_return_repair);
1719
1720 acpi_status __init acpi_os_initialize(void)
1721 {
1722         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1723         acpi_os_map_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1724         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe0_block);
1725         acpi_os_map_generic_address(&acpi_gbl_FADT.xgpe1_block);
1726         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER) {
1727                 /*
1728                  * Use acpi_os_map_generic_address to pre-map the reset
1729                  * register if it's in system memory.
1730                  */
1731                 int rv;
1732
1733                 rv = acpi_os_map_generic_address(&acpi_gbl_FADT.reset_register);
1734                 pr_debug(PREFIX "%s: map reset_reg status %d\n", __func__, rv);
1735         }
1736         acpi_os_initialized = true;
1737
1738         return AE_OK;
1739 }
1740
1741 acpi_status __init acpi_os_initialize1(void)
1742 {
1743         kacpid_wq = alloc_workqueue("kacpid", 0, 1);
1744         kacpi_notify_wq = alloc_workqueue("kacpi_notify", 0, 1);
1745         kacpi_hotplug_wq = alloc_ordered_workqueue("kacpi_hotplug", 0);
1746         BUG_ON(!kacpid_wq);
1747         BUG_ON(!kacpi_notify_wq);
1748         BUG_ON(!kacpi_hotplug_wq);
1749         acpi_osi_init();
1750         return AE_OK;
1751 }
1752
1753 acpi_status acpi_os_terminate(void)
1754 {
1755         if (acpi_irq_handler) {
1756                 acpi_os_remove_interrupt_handler(acpi_gbl_FADT.sci_interrupt,
1757                                                  acpi_irq_handler);
1758         }
1759
1760         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe1_block);
1761         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xgpe0_block);
1762         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1b_event_block);
1763         acpi_os_unmap_generic_address(&acpi_gbl_FADT.xpm1a_event_block);
1764         if (acpi_gbl_FADT.flags & ACPI_FADT_RESET_REGISTER)
1765                 acpi_os_unmap_generic_address(&acpi_gbl_FADT.reset_register);
1766
1767         destroy_workqueue(kacpid_wq);
1768         destroy_workqueue(kacpi_notify_wq);
1769         destroy_workqueue(kacpi_hotplug_wq);
1770
1771         return AE_OK;
1772 }
1773
1774 acpi_status acpi_os_prepare_sleep(u8 sleep_state, u32 pm1a_control,
1775                                   u32 pm1b_control)
1776 {
1777         int rc = 0;
1778         if (__acpi_os_prepare_sleep)
1779                 rc = __acpi_os_prepare_sleep(sleep_state,
1780                                              pm1a_control, pm1b_control);
1781         if (rc < 0)
1782                 return AE_ERROR;
1783         else if (rc > 0)
1784                 return AE_CTRL_TERMINATE;
1785
1786         return AE_OK;
1787 }
1788
1789 void acpi_os_set_prepare_sleep(int (*func)(u8 sleep_state,
1790                                u32 pm1a_ctrl, u32 pm1b_ctrl))
1791 {
1792         __acpi_os_prepare_sleep = func;
1793 }
1794
1795 #if (ACPI_REDUCED_HARDWARE)
1796 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1797                                   u32 val_b)
1798 {
1799         int rc = 0;
1800         if (__acpi_os_prepare_extended_sleep)
1801                 rc = __acpi_os_prepare_extended_sleep(sleep_state,
1802                                              val_a, val_b);
1803         if (rc < 0)
1804                 return AE_ERROR;
1805         else if (rc > 0)
1806                 return AE_CTRL_TERMINATE;
1807
1808         return AE_OK;
1809 }
1810 #else
1811 acpi_status acpi_os_prepare_extended_sleep(u8 sleep_state, u32 val_a,
1812                                   u32 val_b)
1813 {
1814         return AE_OK;
1815 }
1816 #endif
1817
1818 void acpi_os_set_prepare_extended_sleep(int (*func)(u8 sleep_state,
1819                                u32 val_a, u32 val_b))
1820 {
1821         __acpi_os_prepare_extended_sleep = func;
1822 }
1823
1824 acpi_status acpi_os_enter_sleep(u8 sleep_state,
1825                                 u32 reg_a_value, u32 reg_b_value)
1826 {
1827         acpi_status status;
1828
1829         if (acpi_gbl_reduced_hardware)
1830                 status = acpi_os_prepare_extended_sleep(sleep_state,
1831                                                         reg_a_value,
1832                                                         reg_b_value);
1833         else
1834                 status = acpi_os_prepare_sleep(sleep_state,
1835                                                reg_a_value, reg_b_value);
1836         return status;
1837 }