Linux-libre 5.4.48-gnu
[librecmc/linux-libre.git] / crypto / asymmetric_keys / x509_public_key.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /* Instantiate a public key crypto key from an X.509 Certificate
3  *
4  * Copyright (C) 2012 Red Hat, Inc. All Rights Reserved.
5  * Written by David Howells (dhowells@redhat.com)
6  */
7
8 #define pr_fmt(fmt) "X.509: "fmt
9 #include <linux/module.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <keys/asymmetric-subtype.h>
13 #include <keys/asymmetric-parser.h>
14 #include <keys/system_keyring.h>
15 #include <crypto/hash.h>
16 #include "asymmetric_keys.h"
17 #include "x509_parser.h"
18
19 /*
20  * Set up the signature parameters in an X.509 certificate.  This involves
21  * digesting the signed data and extracting the signature.
22  */
23 int x509_get_sig_params(struct x509_certificate *cert)
24 {
25         struct public_key_signature *sig = cert->sig;
26         struct crypto_shash *tfm;
27         struct shash_desc *desc;
28         size_t desc_size;
29         int ret;
30
31         pr_devel("==>%s()\n", __func__);
32
33         if (!cert->pub->pkey_algo)
34                 cert->unsupported_key = true;
35
36         if (!sig->pkey_algo)
37                 cert->unsupported_sig = true;
38
39         /* We check the hash if we can - even if we can't then verify it */
40         if (!sig->hash_algo) {
41                 cert->unsupported_sig = true;
42                 return 0;
43         }
44
45         sig->s = kmemdup(cert->raw_sig, cert->raw_sig_size, GFP_KERNEL);
46         if (!sig->s)
47                 return -ENOMEM;
48
49         sig->s_size = cert->raw_sig_size;
50
51         /* Allocate the hashing algorithm we're going to need and find out how
52          * big the hash operational data will be.
53          */
54         tfm = crypto_alloc_shash(sig->hash_algo, 0, 0);
55         if (IS_ERR(tfm)) {
56                 if (PTR_ERR(tfm) == -ENOENT) {
57                         cert->unsupported_sig = true;
58                         return 0;
59                 }
60                 return PTR_ERR(tfm);
61         }
62
63         desc_size = crypto_shash_descsize(tfm) + sizeof(*desc);
64         sig->digest_size = crypto_shash_digestsize(tfm);
65
66         ret = -ENOMEM;
67         sig->digest = kmalloc(sig->digest_size, GFP_KERNEL);
68         if (!sig->digest)
69                 goto error;
70
71         desc = kzalloc(desc_size, GFP_KERNEL);
72         if (!desc)
73                 goto error;
74
75         desc->tfm = tfm;
76
77         ret = crypto_shash_digest(desc, cert->tbs, cert->tbs_size, sig->digest);
78         if (ret < 0)
79                 goto error_2;
80
81         ret = is_hash_blacklisted(sig->digest, sig->digest_size, "tbs");
82         if (ret == -EKEYREJECTED) {
83                 pr_err("Cert %*phN is blacklisted\n",
84                        sig->digest_size, sig->digest);
85                 cert->blacklisted = true;
86                 ret = 0;
87         }
88
89 error_2:
90         kfree(desc);
91 error:
92         crypto_free_shash(tfm);
93         pr_devel("<==%s() = %d\n", __func__, ret);
94         return ret;
95 }
96
97 /*
98  * Check for self-signedness in an X.509 cert and if found, check the signature
99  * immediately if we can.
100  */
101 int x509_check_for_self_signed(struct x509_certificate *cert)
102 {
103         int ret = 0;
104
105         pr_devel("==>%s()\n", __func__);
106
107         if (cert->raw_subject_size != cert->raw_issuer_size ||
108             memcmp(cert->raw_subject, cert->raw_issuer,
109                    cert->raw_issuer_size) != 0)
110                 goto not_self_signed;
111
112         if (cert->sig->auth_ids[0] || cert->sig->auth_ids[1]) {
113                 /* If the AKID is present it may have one or two parts.  If
114                  * both are supplied, both must match.
115                  */
116                 bool a = asymmetric_key_id_same(cert->skid, cert->sig->auth_ids[1]);
117                 bool b = asymmetric_key_id_same(cert->id, cert->sig->auth_ids[0]);
118
119                 if (!a && !b)
120                         goto not_self_signed;
121
122                 ret = -EKEYREJECTED;
123                 if (((a && !b) || (b && !a)) &&
124                     cert->sig->auth_ids[0] && cert->sig->auth_ids[1])
125                         goto out;
126         }
127
128         ret = -EKEYREJECTED;
129         if (strcmp(cert->pub->pkey_algo, cert->sig->pkey_algo) != 0)
130                 goto out;
131
132         ret = public_key_verify_signature(cert->pub, cert->sig);
133         if (ret < 0) {
134                 if (ret == -ENOPKG) {
135                         cert->unsupported_sig = true;
136                         ret = 0;
137                 }
138                 goto out;
139         }
140
141         pr_devel("Cert Self-signature verified");
142         cert->self_signed = true;
143
144 out:
145         pr_devel("<==%s() = %d\n", __func__, ret);
146         return ret;
147
148 not_self_signed:
149         pr_devel("<==%s() = 0 [not]\n", __func__);
150         return 0;
151 }
152
153 /*
154  * Attempt to parse a data blob for a key as an X509 certificate.
155  */
156 static int x509_key_preparse(struct key_preparsed_payload *prep)
157 {
158         struct asymmetric_key_ids *kids;
159         struct x509_certificate *cert;
160         const char *q;
161         size_t srlen, sulen;
162         char *desc = NULL, *p;
163         int ret;
164
165         cert = x509_cert_parse(prep->data, prep->datalen);
166         if (IS_ERR(cert))
167                 return PTR_ERR(cert);
168
169         pr_devel("Cert Issuer: %s\n", cert->issuer);
170         pr_devel("Cert Subject: %s\n", cert->subject);
171
172         if (cert->unsupported_key) {
173                 ret = -ENOPKG;
174                 goto error_free_cert;
175         }
176
177         pr_devel("Cert Key Algo: %s\n", cert->pub->pkey_algo);
178         pr_devel("Cert Valid period: %lld-%lld\n", cert->valid_from, cert->valid_to);
179
180         cert->pub->id_type = "X509";
181
182         if (cert->unsupported_sig) {
183                 public_key_signature_free(cert->sig);
184                 cert->sig = NULL;
185         } else {
186                 pr_devel("Cert Signature: %s + %s\n",
187                          cert->sig->pkey_algo, cert->sig->hash_algo);
188         }
189
190         /* Don't permit addition of blacklisted keys */
191         ret = -EKEYREJECTED;
192         if (cert->blacklisted)
193                 goto error_free_cert;
194
195         /* Propose a description */
196         sulen = strlen(cert->subject);
197         if (cert->raw_skid) {
198                 srlen = cert->raw_skid_size;
199                 q = cert->raw_skid;
200         } else {
201                 srlen = cert->raw_serial_size;
202                 q = cert->raw_serial;
203         }
204
205         ret = -ENOMEM;
206         desc = kmalloc(sulen + 2 + srlen * 2 + 1, GFP_KERNEL);
207         if (!desc)
208                 goto error_free_cert;
209         p = memcpy(desc, cert->subject, sulen);
210         p += sulen;
211         *p++ = ':';
212         *p++ = ' ';
213         p = bin2hex(p, q, srlen);
214         *p = 0;
215
216         kids = kmalloc(sizeof(struct asymmetric_key_ids), GFP_KERNEL);
217         if (!kids)
218                 goto error_free_desc;
219         kids->id[0] = cert->id;
220         kids->id[1] = cert->skid;
221
222         /* We're pinning the module by being linked against it */
223         __module_get(public_key_subtype.owner);
224         prep->payload.data[asym_subtype] = &public_key_subtype;
225         prep->payload.data[asym_key_ids] = kids;
226         prep->payload.data[asym_crypto] = cert->pub;
227         prep->payload.data[asym_auth] = cert->sig;
228         prep->description = desc;
229         prep->quotalen = 100;
230
231         /* We've finished with the certificate */
232         cert->pub = NULL;
233         cert->id = NULL;
234         cert->skid = NULL;
235         cert->sig = NULL;
236         desc = NULL;
237         ret = 0;
238
239 error_free_desc:
240         kfree(desc);
241 error_free_cert:
242         x509_free_certificate(cert);
243         return ret;
244 }
245
246 static struct asymmetric_key_parser x509_key_parser = {
247         .owner  = THIS_MODULE,
248         .name   = "x509",
249         .parse  = x509_key_preparse,
250 };
251
252 /*
253  * Module stuff
254  */
255 static int __init x509_key_init(void)
256 {
257         return register_asymmetric_key_parser(&x509_key_parser);
258 }
259
260 static void __exit x509_key_exit(void)
261 {
262         unregister_asymmetric_key_parser(&x509_key_parser);
263 }
264
265 module_init(x509_key_init);
266 module_exit(x509_key_exit);
267
268 MODULE_DESCRIPTION("X.509 certificate parser");
269 MODULE_AUTHOR("Red Hat, Inc.");
270 MODULE_LICENSE("GPL");