Linux-libre 4.14.145-gnu
[librecmc/linux-libre.git] / block / partition-generic.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  *  Code extracted from drivers/block/genhd.c
4  *  Copyright (C) 1991-1998  Linus Torvalds
5  *  Re-organised Feb 1998 Russell King
6  *
7  *  We now have independent partition support from the
8  *  block drivers, which allows all the partition code to
9  *  be grouped in one location, and it to be mostly self
10  *  contained.
11  */
12
13 #include <linux/init.h>
14 #include <linux/module.h>
15 #include <linux/fs.h>
16 #include <linux/slab.h>
17 #include <linux/kmod.h>
18 #include <linux/ctype.h>
19 #include <linux/genhd.h>
20 #include <linux/blktrace_api.h>
21
22 #include "partitions/check.h"
23
24 #ifdef CONFIG_BLK_DEV_MD
25 extern void md_autodetect_dev(dev_t dev);
26 #endif
27  
28 /*
29  * disk_name() is used by partition check code and the genhd driver.
30  * It formats the devicename of the indicated disk into
31  * the supplied buffer (of size at least 32), and returns
32  * a pointer to that same buffer (for convenience).
33  */
34
35 char *disk_name(struct gendisk *hd, int partno, char *buf)
36 {
37         if (!partno)
38                 snprintf(buf, BDEVNAME_SIZE, "%s", hd->disk_name);
39         else if (isdigit(hd->disk_name[strlen(hd->disk_name)-1]))
40                 snprintf(buf, BDEVNAME_SIZE, "%sp%d", hd->disk_name, partno);
41         else
42                 snprintf(buf, BDEVNAME_SIZE, "%s%d", hd->disk_name, partno);
43
44         return buf;
45 }
46
47 const char *bdevname(struct block_device *bdev, char *buf)
48 {
49         return disk_name(bdev->bd_disk, bdev->bd_part->partno, buf);
50 }
51
52 EXPORT_SYMBOL(bdevname);
53
54 const char *bio_devname(struct bio *bio, char *buf)
55 {
56         return disk_name(bio->bi_disk, bio->bi_partno, buf);
57 }
58 EXPORT_SYMBOL(bio_devname);
59
60 /*
61  * There's very little reason to use this, you should really
62  * have a struct block_device just about everywhere and use
63  * bdevname() instead.
64  */
65 const char *__bdevname(dev_t dev, char *buffer)
66 {
67         scnprintf(buffer, BDEVNAME_SIZE, "unknown-block(%u,%u)",
68                                 MAJOR(dev), MINOR(dev));
69         return buffer;
70 }
71
72 EXPORT_SYMBOL(__bdevname);
73
74 static ssize_t part_partition_show(struct device *dev,
75                                    struct device_attribute *attr, char *buf)
76 {
77         struct hd_struct *p = dev_to_part(dev);
78
79         return sprintf(buf, "%d\n", p->partno);
80 }
81
82 static ssize_t part_start_show(struct device *dev,
83                                struct device_attribute *attr, char *buf)
84 {
85         struct hd_struct *p = dev_to_part(dev);
86
87         return sprintf(buf, "%llu\n",(unsigned long long)p->start_sect);
88 }
89
90 ssize_t part_size_show(struct device *dev,
91                        struct device_attribute *attr, char *buf)
92 {
93         struct hd_struct *p = dev_to_part(dev);
94         return sprintf(buf, "%llu\n",(unsigned long long)part_nr_sects_read(p));
95 }
96
97 static ssize_t part_ro_show(struct device *dev,
98                             struct device_attribute *attr, char *buf)
99 {
100         struct hd_struct *p = dev_to_part(dev);
101         return sprintf(buf, "%d\n", p->policy ? 1 : 0);
102 }
103
104 static ssize_t part_alignment_offset_show(struct device *dev,
105                                           struct device_attribute *attr, char *buf)
106 {
107         struct hd_struct *p = dev_to_part(dev);
108         return sprintf(buf, "%llu\n", (unsigned long long)p->alignment_offset);
109 }
110
111 static ssize_t part_discard_alignment_show(struct device *dev,
112                                            struct device_attribute *attr, char *buf)
113 {
114         struct hd_struct *p = dev_to_part(dev);
115         return sprintf(buf, "%u\n", p->discard_alignment);
116 }
117
118 ssize_t part_stat_show(struct device *dev,
119                        struct device_attribute *attr, char *buf)
120 {
121         struct hd_struct *p = dev_to_part(dev);
122         struct request_queue *q = part_to_disk(p)->queue;
123         unsigned int inflight[2];
124         int cpu;
125
126         cpu = part_stat_lock();
127         part_round_stats(q, cpu, p);
128         part_stat_unlock();
129         part_in_flight(q, p, inflight);
130         return sprintf(buf,
131                 "%8lu %8lu %8llu %8u "
132                 "%8lu %8lu %8llu %8u "
133                 "%8u %8u %8u"
134                 "\n",
135                 part_stat_read(p, ios[READ]),
136                 part_stat_read(p, merges[READ]),
137                 (unsigned long long)part_stat_read(p, sectors[READ]),
138                 jiffies_to_msecs(part_stat_read(p, ticks[READ])),
139                 part_stat_read(p, ios[WRITE]),
140                 part_stat_read(p, merges[WRITE]),
141                 (unsigned long long)part_stat_read(p, sectors[WRITE]),
142                 jiffies_to_msecs(part_stat_read(p, ticks[WRITE])),
143                 inflight[0],
144                 jiffies_to_msecs(part_stat_read(p, io_ticks)),
145                 jiffies_to_msecs(part_stat_read(p, time_in_queue)));
146 }
147
148 ssize_t part_inflight_show(struct device *dev, struct device_attribute *attr,
149                            char *buf)
150 {
151         struct hd_struct *p = dev_to_part(dev);
152         struct request_queue *q = part_to_disk(p)->queue;
153         unsigned int inflight[2];
154
155         part_in_flight_rw(q, p, inflight);
156         return sprintf(buf, "%8u %8u\n", inflight[0], inflight[1]);
157 }
158
159 #ifdef CONFIG_FAIL_MAKE_REQUEST
160 ssize_t part_fail_show(struct device *dev,
161                        struct device_attribute *attr, char *buf)
162 {
163         struct hd_struct *p = dev_to_part(dev);
164
165         return sprintf(buf, "%d\n", p->make_it_fail);
166 }
167
168 ssize_t part_fail_store(struct device *dev,
169                         struct device_attribute *attr,
170                         const char *buf, size_t count)
171 {
172         struct hd_struct *p = dev_to_part(dev);
173         int i;
174
175         if (count > 0 && sscanf(buf, "%d", &i) > 0)
176                 p->make_it_fail = (i == 0) ? 0 : 1;
177
178         return count;
179 }
180 #endif
181
182 static DEVICE_ATTR(partition, S_IRUGO, part_partition_show, NULL);
183 static DEVICE_ATTR(start, S_IRUGO, part_start_show, NULL);
184 static DEVICE_ATTR(size, S_IRUGO, part_size_show, NULL);
185 static DEVICE_ATTR(ro, S_IRUGO, part_ro_show, NULL);
186 static DEVICE_ATTR(alignment_offset, S_IRUGO, part_alignment_offset_show, NULL);
187 static DEVICE_ATTR(discard_alignment, S_IRUGO, part_discard_alignment_show,
188                    NULL);
189 static DEVICE_ATTR(stat, S_IRUGO, part_stat_show, NULL);
190 static DEVICE_ATTR(inflight, S_IRUGO, part_inflight_show, NULL);
191 #ifdef CONFIG_FAIL_MAKE_REQUEST
192 static struct device_attribute dev_attr_fail =
193         __ATTR(make-it-fail, S_IRUGO|S_IWUSR, part_fail_show, part_fail_store);
194 #endif
195
196 static struct attribute *part_attrs[] = {
197         &dev_attr_partition.attr,
198         &dev_attr_start.attr,
199         &dev_attr_size.attr,
200         &dev_attr_ro.attr,
201         &dev_attr_alignment_offset.attr,
202         &dev_attr_discard_alignment.attr,
203         &dev_attr_stat.attr,
204         &dev_attr_inflight.attr,
205 #ifdef CONFIG_FAIL_MAKE_REQUEST
206         &dev_attr_fail.attr,
207 #endif
208         NULL
209 };
210
211 static struct attribute_group part_attr_group = {
212         .attrs = part_attrs,
213 };
214
215 static const struct attribute_group *part_attr_groups[] = {
216         &part_attr_group,
217 #ifdef CONFIG_BLK_DEV_IO_TRACE
218         &blk_trace_attr_group,
219 #endif
220         NULL
221 };
222
223 static void part_release(struct device *dev)
224 {
225         struct hd_struct *p = dev_to_part(dev);
226         blk_free_devt(dev->devt);
227         hd_free_part(p);
228         kfree(p);
229 }
230
231 static int part_uevent(struct device *dev, struct kobj_uevent_env *env)
232 {
233         struct hd_struct *part = dev_to_part(dev);
234
235         add_uevent_var(env, "PARTN=%u", part->partno);
236         if (part->info && part->info->volname[0])
237                 add_uevent_var(env, "PARTNAME=%s", part->info->volname);
238         return 0;
239 }
240
241 struct device_type part_type = {
242         .name           = "partition",
243         .groups         = part_attr_groups,
244         .release        = part_release,
245         .uevent         = part_uevent,
246 };
247
248 static void delete_partition_rcu_cb(struct rcu_head *head)
249 {
250         struct hd_struct *part = container_of(head, struct hd_struct, rcu_head);
251
252         part->start_sect = 0;
253         part->nr_sects = 0;
254         part_stat_set_all(part, 0);
255         put_device(part_to_dev(part));
256 }
257
258 void __delete_partition(struct percpu_ref *ref)
259 {
260         struct hd_struct *part = container_of(ref, struct hd_struct, ref);
261         call_rcu(&part->rcu_head, delete_partition_rcu_cb);
262 }
263
264 /*
265  * Must be called either with bd_mutex held, before a disk can be opened or
266  * after all disk users are gone.
267  */
268 void delete_partition(struct gendisk *disk, int partno)
269 {
270         struct disk_part_tbl *ptbl =
271                 rcu_dereference_protected(disk->part_tbl, 1);
272         struct hd_struct *part;
273
274         if (partno >= ptbl->len)
275                 return;
276
277         part = rcu_dereference_protected(ptbl->part[partno], 1);
278         if (!part)
279                 return;
280
281         rcu_assign_pointer(ptbl->part[partno], NULL);
282         rcu_assign_pointer(ptbl->last_lookup, NULL);
283         kobject_put(part->holder_dir);
284         device_del(part_to_dev(part));
285
286         hd_struct_kill(part);
287 }
288
289 static ssize_t whole_disk_show(struct device *dev,
290                                struct device_attribute *attr, char *buf)
291 {
292         return 0;
293 }
294 static DEVICE_ATTR(whole_disk, S_IRUSR | S_IRGRP | S_IROTH,
295                    whole_disk_show, NULL);
296
297 /*
298  * Must be called either with bd_mutex held, before a disk can be opened or
299  * after all disk users are gone.
300  */
301 struct hd_struct *add_partition(struct gendisk *disk, int partno,
302                                 sector_t start, sector_t len, int flags,
303                                 struct partition_meta_info *info)
304 {
305         struct hd_struct *p;
306         dev_t devt = MKDEV(0, 0);
307         struct device *ddev = disk_to_dev(disk);
308         struct device *pdev;
309         struct disk_part_tbl *ptbl;
310         const char *dname;
311         int err;
312
313         err = disk_expand_part_tbl(disk, partno);
314         if (err)
315                 return ERR_PTR(err);
316         ptbl = rcu_dereference_protected(disk->part_tbl, 1);
317
318         if (ptbl->part[partno])
319                 return ERR_PTR(-EBUSY);
320
321         p = kzalloc(sizeof(*p), GFP_KERNEL);
322         if (!p)
323                 return ERR_PTR(-EBUSY);
324
325         if (!init_part_stats(p)) {
326                 err = -ENOMEM;
327                 goto out_free;
328         }
329
330         seqcount_init(&p->nr_sects_seq);
331         pdev = part_to_dev(p);
332
333         p->start_sect = start;
334         p->alignment_offset =
335                 queue_limit_alignment_offset(&disk->queue->limits, start);
336         p->discard_alignment =
337                 queue_limit_discard_alignment(&disk->queue->limits, start);
338         p->nr_sects = len;
339         p->partno = partno;
340         p->policy = get_disk_ro(disk);
341
342         if (info) {
343                 struct partition_meta_info *pinfo = alloc_part_info(disk);
344                 if (!pinfo) {
345                         err = -ENOMEM;
346                         goto out_free_stats;
347                 }
348                 memcpy(pinfo, info, sizeof(*info));
349                 p->info = pinfo;
350         }
351
352         dname = dev_name(ddev);
353         if (isdigit(dname[strlen(dname) - 1]))
354                 dev_set_name(pdev, "%sp%d", dname, partno);
355         else
356                 dev_set_name(pdev, "%s%d", dname, partno);
357
358         device_initialize(pdev);
359         pdev->class = &block_class;
360         pdev->type = &part_type;
361         pdev->parent = ddev;
362
363         err = blk_alloc_devt(p, &devt);
364         if (err)
365                 goto out_free_info;
366         pdev->devt = devt;
367
368         /* delay uevent until 'holders' subdir is created */
369         dev_set_uevent_suppress(pdev, 1);
370         err = device_add(pdev);
371         if (err)
372                 goto out_put;
373
374         err = -ENOMEM;
375         p->holder_dir = kobject_create_and_add("holders", &pdev->kobj);
376         if (!p->holder_dir)
377                 goto out_del;
378
379         dev_set_uevent_suppress(pdev, 0);
380         if (flags & ADDPART_FLAG_WHOLEDISK) {
381                 err = device_create_file(pdev, &dev_attr_whole_disk);
382                 if (err)
383                         goto out_del;
384         }
385
386         err = hd_ref_init(p);
387         if (err) {
388                 if (flags & ADDPART_FLAG_WHOLEDISK)
389                         goto out_remove_file;
390                 goto out_del;
391         }
392
393         /* everything is up and running, commence */
394         rcu_assign_pointer(ptbl->part[partno], p);
395
396         /* suppress uevent if the disk suppresses it */
397         if (!dev_get_uevent_suppress(ddev))
398                 kobject_uevent(&pdev->kobj, KOBJ_ADD);
399         return p;
400
401 out_free_info:
402         free_part_info(p);
403 out_free_stats:
404         free_part_stats(p);
405 out_free:
406         kfree(p);
407         return ERR_PTR(err);
408 out_remove_file:
409         device_remove_file(pdev, &dev_attr_whole_disk);
410 out_del:
411         kobject_put(p->holder_dir);
412         device_del(pdev);
413 out_put:
414         put_device(pdev);
415         return ERR_PTR(err);
416 }
417
418 static bool disk_unlock_native_capacity(struct gendisk *disk)
419 {
420         const struct block_device_operations *bdops = disk->fops;
421
422         if (bdops->unlock_native_capacity &&
423             !(disk->flags & GENHD_FL_NATIVE_CAPACITY)) {
424                 printk(KERN_CONT "enabling native capacity\n");
425                 bdops->unlock_native_capacity(disk);
426                 disk->flags |= GENHD_FL_NATIVE_CAPACITY;
427                 return true;
428         } else {
429                 printk(KERN_CONT "truncated\n");
430                 return false;
431         }
432 }
433
434 static int drop_partitions(struct gendisk *disk, struct block_device *bdev)
435 {
436         struct disk_part_iter piter;
437         struct hd_struct *part;
438         int res;
439
440         if (bdev->bd_part_count || bdev->bd_super)
441                 return -EBUSY;
442         res = invalidate_partition(disk, 0);
443         if (res)
444                 return res;
445
446         disk_part_iter_init(&piter, disk, DISK_PITER_INCL_EMPTY);
447         while ((part = disk_part_iter_next(&piter)))
448                 delete_partition(disk, part->partno);
449         disk_part_iter_exit(&piter);
450
451         return 0;
452 }
453
454 static bool part_zone_aligned(struct gendisk *disk,
455                               struct block_device *bdev,
456                               sector_t from, sector_t size)
457 {
458         unsigned int zone_sectors = bdev_zone_sectors(bdev);
459
460         /*
461          * If this function is called, then the disk is a zoned block device
462          * (host-aware or host-managed). This can be detected even if the
463          * zoned block device support is disabled (CONFIG_BLK_DEV_ZONED not
464          * set). In this case, however, only host-aware devices will be seen
465          * as a block device is not created for host-managed devices. Without
466          * zoned block device support, host-aware drives can still be used as
467          * regular block devices (no zone operation) and their zone size will
468          * be reported as 0. Allow this case.
469          */
470         if (!zone_sectors)
471                 return true;
472
473         /*
474          * Check partition start and size alignement. If the drive has a
475          * smaller last runt zone, ignore it and allow the partition to
476          * use it. Check the zone size too: it should be a power of 2 number
477          * of sectors.
478          */
479         if (WARN_ON_ONCE(!is_power_of_2(zone_sectors))) {
480                 u32 rem;
481
482                 div_u64_rem(from, zone_sectors, &rem);
483                 if (rem)
484                         return false;
485                 if ((from + size) < get_capacity(disk)) {
486                         div_u64_rem(size, zone_sectors, &rem);
487                         if (rem)
488                                 return false;
489                 }
490
491         } else {
492
493                 if (from & (zone_sectors - 1))
494                         return false;
495                 if ((from + size) < get_capacity(disk) &&
496                     (size & (zone_sectors - 1)))
497                         return false;
498
499         }
500
501         return true;
502 }
503
504 int rescan_partitions(struct gendisk *disk, struct block_device *bdev)
505 {
506         struct parsed_partitions *state = NULL;
507         struct hd_struct *part;
508         int p, highest, res;
509 rescan:
510         if (state && !IS_ERR(state)) {
511                 free_partitions(state);
512                 state = NULL;
513         }
514
515         res = drop_partitions(disk, bdev);
516         if (res)
517                 return res;
518
519         if (disk->fops->revalidate_disk)
520                 disk->fops->revalidate_disk(disk);
521         check_disk_size_change(disk, bdev);
522         bdev->bd_invalidated = 0;
523         if (!get_capacity(disk) || !(state = check_partition(disk, bdev)))
524                 return 0;
525         if (IS_ERR(state)) {
526                 /*
527                  * I/O error reading the partition table.  If any
528                  * partition code tried to read beyond EOD, retry
529                  * after unlocking native capacity.
530                  */
531                 if (PTR_ERR(state) == -ENOSPC) {
532                         printk(KERN_WARNING "%s: partition table beyond EOD, ",
533                                disk->disk_name);
534                         if (disk_unlock_native_capacity(disk))
535                                 goto rescan;
536                 }
537                 return -EIO;
538         }
539         /*
540          * If any partition code tried to read beyond EOD, try
541          * unlocking native capacity even if partition table is
542          * successfully read as we could be missing some partitions.
543          */
544         if (state->access_beyond_eod) {
545                 printk(KERN_WARNING
546                        "%s: partition table partially beyond EOD, ",
547                        disk->disk_name);
548                 if (disk_unlock_native_capacity(disk))
549                         goto rescan;
550         }
551
552         /* tell userspace that the media / partition table may have changed */
553         kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
554
555         /* Detect the highest partition number and preallocate
556          * disk->part_tbl.  This is an optimization and not strictly
557          * necessary.
558          */
559         for (p = 1, highest = 0; p < state->limit; p++)
560                 if (state->parts[p].size)
561                         highest = p;
562
563         disk_expand_part_tbl(disk, highest);
564
565         /* add partitions */
566         for (p = 1; p < state->limit; p++) {
567                 sector_t size, from;
568
569                 size = state->parts[p].size;
570                 if (!size)
571                         continue;
572
573                 from = state->parts[p].from;
574                 if (from >= get_capacity(disk)) {
575                         printk(KERN_WARNING
576                                "%s: p%d start %llu is beyond EOD, ",
577                                disk->disk_name, p, (unsigned long long) from);
578                         if (disk_unlock_native_capacity(disk))
579                                 goto rescan;
580                         continue;
581                 }
582
583                 if (from + size > get_capacity(disk)) {
584                         printk(KERN_WARNING
585                                "%s: p%d size %llu extends beyond EOD, ",
586                                disk->disk_name, p, (unsigned long long) size);
587
588                         if (disk_unlock_native_capacity(disk)) {
589                                 /* free state and restart */
590                                 goto rescan;
591                         } else {
592                                 /*
593                                  * we can not ignore partitions of broken tables
594                                  * created by for example camera firmware, but
595                                  * we limit them to the end of the disk to avoid
596                                  * creating invalid block devices
597                                  */
598                                 size = get_capacity(disk) - from;
599                         }
600                 }
601
602                 /*
603                  * On a zoned block device, partitions should be aligned on the
604                  * device zone size (i.e. zone boundary crossing not allowed).
605                  * Otherwise, resetting the write pointer of the last zone of
606                  * one partition may impact the following partition.
607                  */
608                 if (bdev_is_zoned(bdev) &&
609                     !part_zone_aligned(disk, bdev, from, size)) {
610                         printk(KERN_WARNING
611                                "%s: p%d start %llu+%llu is not zone aligned\n",
612                                disk->disk_name, p, (unsigned long long) from,
613                                (unsigned long long) size);
614                         continue;
615                 }
616
617                 part = add_partition(disk, p, from, size,
618                                      state->parts[p].flags,
619                                      &state->parts[p].info);
620                 if (IS_ERR(part)) {
621                         printk(KERN_ERR " %s: p%d could not be added: %ld\n",
622                                disk->disk_name, p, -PTR_ERR(part));
623                         continue;
624                 }
625 #ifdef CONFIG_BLK_DEV_MD
626                 if (state->parts[p].flags & ADDPART_FLAG_RAID)
627                         md_autodetect_dev(part_to_dev(part)->devt);
628 #endif
629         }
630         free_partitions(state);
631         return 0;
632 }
633
634 int invalidate_partitions(struct gendisk *disk, struct block_device *bdev)
635 {
636         int res;
637
638         if (!bdev->bd_invalidated)
639                 return 0;
640
641         res = drop_partitions(disk, bdev);
642         if (res)
643                 return res;
644
645         set_capacity(disk, 0);
646         check_disk_size_change(disk, bdev);
647         bdev->bd_invalidated = 0;
648         /* tell userspace that the media / partition table may have changed */
649         kobject_uevent(&disk_to_dev(disk)->kobj, KOBJ_CHANGE);
650
651         return 0;
652 }
653
654 unsigned char *read_dev_sector(struct block_device *bdev, sector_t n, Sector *p)
655 {
656         struct address_space *mapping = bdev->bd_inode->i_mapping;
657         struct page *page;
658
659         page = read_mapping_page(mapping, (pgoff_t)(n >> (PAGE_SHIFT-9)), NULL);
660         if (!IS_ERR(page)) {
661                 if (PageError(page))
662                         goto fail;
663                 p->v = page;
664                 return (unsigned char *)page_address(page) +  ((n & ((1 << (PAGE_SHIFT - 9)) - 1)) << 9);
665 fail:
666                 put_page(page);
667         }
668         p->v = NULL;
669         return NULL;
670 }
671
672 EXPORT_SYMBOL(read_dev_sector);