Linux-libre 5.7.6-gnu
[librecmc/linux-libre.git] / arch / x86 / platform / uv / tlb_uv.c
1 // SPDX-License-Identifier: GPL-2.0-or-later
2 /*
3  *      SGI UltraViolet TLB flush routines.
4  *
5  *      (c) 2008-2014 Cliff Wickman <cpw@sgi.com>, SGI.
6  */
7 #include <linux/seq_file.h>
8 #include <linux/proc_fs.h>
9 #include <linux/debugfs.h>
10 #include <linux/kernel.h>
11 #include <linux/slab.h>
12 #include <linux/delay.h>
13
14 #include <asm/mmu_context.h>
15 #include <asm/uv/uv.h>
16 #include <asm/uv/uv_mmrs.h>
17 #include <asm/uv/uv_hub.h>
18 #include <asm/uv/uv_bau.h>
19 #include <asm/apic.h>
20 #include <asm/tsc.h>
21 #include <asm/irq_vectors.h>
22 #include <asm/timer.h>
23
24 static struct bau_operations ops __ro_after_init;
25
26 /* timeouts in nanoseconds (indexed by UVH_AGING_PRESCALE_SEL urgency7 30:28) */
27 static const int timeout_base_ns[] = {
28                 20,
29                 160,
30                 1280,
31                 10240,
32                 81920,
33                 655360,
34                 5242880,
35                 167772160
36 };
37
38 static int timeout_us;
39 static bool nobau = true;
40 static int nobau_perm;
41
42 /* tunables: */
43 static int max_concurr          = MAX_BAU_CONCURRENT;
44 static int max_concurr_const    = MAX_BAU_CONCURRENT;
45 static int plugged_delay        = PLUGGED_DELAY;
46 static int plugsb4reset         = PLUGSB4RESET;
47 static int giveup_limit         = GIVEUP_LIMIT;
48 static int timeoutsb4reset      = TIMEOUTSB4RESET;
49 static int ipi_reset_limit      = IPI_RESET_LIMIT;
50 static int complete_threshold   = COMPLETE_THRESHOLD;
51 static int congested_respns_us  = CONGESTED_RESPONSE_US;
52 static int congested_reps       = CONGESTED_REPS;
53 static int disabled_period      = DISABLED_PERIOD;
54
55 static struct tunables tunables[] = {
56         {&max_concurr,           MAX_BAU_CONCURRENT}, /* must be [0] */
57         {&plugged_delay,         PLUGGED_DELAY},
58         {&plugsb4reset,          PLUGSB4RESET},
59         {&timeoutsb4reset,       TIMEOUTSB4RESET},
60         {&ipi_reset_limit,       IPI_RESET_LIMIT},
61         {&complete_threshold,    COMPLETE_THRESHOLD},
62         {&congested_respns_us,   CONGESTED_RESPONSE_US},
63         {&congested_reps,        CONGESTED_REPS},
64         {&disabled_period,       DISABLED_PERIOD},
65         {&giveup_limit,          GIVEUP_LIMIT}
66 };
67
68 static struct dentry *tunables_dir;
69
70 /* these correspond to the statistics printed by ptc_seq_show() */
71 static char *stat_description[] = {
72         "sent:     number of shootdown messages sent",
73         "stime:    time spent sending messages",
74         "numuvhubs: number of hubs targeted with shootdown",
75         "numuvhubs16: number times 16 or more hubs targeted",
76         "numuvhubs8: number times 8 or more hubs targeted",
77         "numuvhubs4: number times 4 or more hubs targeted",
78         "numuvhubs2: number times 2 or more hubs targeted",
79         "numuvhubs1: number times 1 hub targeted",
80         "numcpus:  number of cpus targeted with shootdown",
81         "dto:      number of destination timeouts",
82         "retries:  destination timeout retries sent",
83         "rok:   :  destination timeouts successfully retried",
84         "resetp:   ipi-style resource resets for plugs",
85         "resett:   ipi-style resource resets for timeouts",
86         "giveup:   fall-backs to ipi-style shootdowns",
87         "sto:      number of source timeouts",
88         "bz:       number of stay-busy's",
89         "throt:    number times spun in throttle",
90         "swack:   image of UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE",
91         "recv:     shootdown messages received",
92         "rtime:    time spent processing messages",
93         "all:      shootdown all-tlb messages",
94         "one:      shootdown one-tlb messages",
95         "mult:     interrupts that found multiple messages",
96         "none:     interrupts that found no messages",
97         "retry:    number of retry messages processed",
98         "canc:     number messages canceled by retries",
99         "nocan:    number retries that found nothing to cancel",
100         "reset:    number of ipi-style reset requests processed",
101         "rcan:     number messages canceled by reset requests",
102         "disable:  number times use of the BAU was disabled",
103         "enable:   number times use of the BAU was re-enabled"
104 };
105
106 static int __init setup_bau(char *arg)
107 {
108         int result;
109
110         if (!arg)
111                 return -EINVAL;
112
113         result = strtobool(arg, &nobau);
114         if (result)
115                 return result;
116
117         /* we need to flip the logic here, so that bau=y sets nobau to false */
118         nobau = !nobau;
119
120         if (!nobau)
121                 pr_info("UV BAU Enabled\n");
122         else
123                 pr_info("UV BAU Disabled\n");
124
125         return 0;
126 }
127 early_param("bau", setup_bau);
128
129 /* base pnode in this partition */
130 static int uv_base_pnode __read_mostly;
131
132 static DEFINE_PER_CPU(struct ptc_stats, ptcstats);
133 static DEFINE_PER_CPU(struct bau_control, bau_control);
134 static DEFINE_PER_CPU(cpumask_var_t, uv_flush_tlb_mask);
135
136 static void
137 set_bau_on(void)
138 {
139         int cpu;
140         struct bau_control *bcp;
141
142         if (nobau_perm) {
143                 pr_info("BAU not initialized; cannot be turned on\n");
144                 return;
145         }
146         nobau = false;
147         for_each_present_cpu(cpu) {
148                 bcp = &per_cpu(bau_control, cpu);
149                 bcp->nobau = false;
150         }
151         pr_info("BAU turned on\n");
152         return;
153 }
154
155 static void
156 set_bau_off(void)
157 {
158         int cpu;
159         struct bau_control *bcp;
160
161         nobau = true;
162         for_each_present_cpu(cpu) {
163                 bcp = &per_cpu(bau_control, cpu);
164                 bcp->nobau = true;
165         }
166         pr_info("BAU turned off\n");
167         return;
168 }
169
170 /*
171  * Determine the first node on a uvhub. 'Nodes' are used for kernel
172  * memory allocation.
173  */
174 static int __init uvhub_to_first_node(int uvhub)
175 {
176         int node, b;
177
178         for_each_online_node(node) {
179                 b = uv_node_to_blade_id(node);
180                 if (uvhub == b)
181                         return node;
182         }
183         return -1;
184 }
185
186 /*
187  * Determine the apicid of the first cpu on a uvhub.
188  */
189 static int __init uvhub_to_first_apicid(int uvhub)
190 {
191         int cpu;
192
193         for_each_present_cpu(cpu)
194                 if (uvhub == uv_cpu_to_blade_id(cpu))
195                         return per_cpu(x86_cpu_to_apicid, cpu);
196         return -1;
197 }
198
199 /*
200  * Free a software acknowledge hardware resource by clearing its Pending
201  * bit. This will return a reply to the sender.
202  * If the message has timed out, a reply has already been sent by the
203  * hardware but the resource has not been released. In that case our
204  * clear of the Timeout bit (as well) will free the resource. No reply will
205  * be sent (the hardware will only do one reply per message).
206  */
207 static void reply_to_message(struct msg_desc *mdp, struct bau_control *bcp,
208                                                 int do_acknowledge)
209 {
210         unsigned long dw;
211         struct bau_pq_entry *msg;
212
213         msg = mdp->msg;
214         if (!msg->canceled && do_acknowledge) {
215                 dw = (msg->swack_vec << UV_SW_ACK_NPENDING) | msg->swack_vec;
216                 ops.write_l_sw_ack(dw);
217         }
218         msg->replied_to = 1;
219         msg->swack_vec = 0;
220 }
221
222 /*
223  * Process the receipt of a RETRY message
224  */
225 static void bau_process_retry_msg(struct msg_desc *mdp,
226                                         struct bau_control *bcp)
227 {
228         int i;
229         int cancel_count = 0;
230         unsigned long msg_res;
231         unsigned long mmr = 0;
232         struct bau_pq_entry *msg = mdp->msg;
233         struct bau_pq_entry *msg2;
234         struct ptc_stats *stat = bcp->statp;
235
236         stat->d_retries++;
237         /*
238          * cancel any message from msg+1 to the retry itself
239          */
240         for (msg2 = msg+1, i = 0; i < DEST_Q_SIZE; msg2++, i++) {
241                 if (msg2 > mdp->queue_last)
242                         msg2 = mdp->queue_first;
243                 if (msg2 == msg)
244                         break;
245
246                 /* same conditions for cancellation as do_reset */
247                 if ((msg2->replied_to == 0) && (msg2->canceled == 0) &&
248                     (msg2->swack_vec) && ((msg2->swack_vec &
249                         msg->swack_vec) == 0) &&
250                     (msg2->sending_cpu == msg->sending_cpu) &&
251                     (msg2->msg_type != MSG_NOOP)) {
252                         mmr = ops.read_l_sw_ack();
253                         msg_res = msg2->swack_vec;
254                         /*
255                          * This is a message retry; clear the resources held
256                          * by the previous message only if they timed out.
257                          * If it has not timed out we have an unexpected
258                          * situation to report.
259                          */
260                         if (mmr & (msg_res << UV_SW_ACK_NPENDING)) {
261                                 unsigned long mr;
262                                 /*
263                                  * Is the resource timed out?
264                                  * Make everyone ignore the cancelled message.
265                                  */
266                                 msg2->canceled = 1;
267                                 stat->d_canceled++;
268                                 cancel_count++;
269                                 mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
270                                 ops.write_l_sw_ack(mr);
271                         }
272                 }
273         }
274         if (!cancel_count)
275                 stat->d_nocanceled++;
276 }
277
278 /*
279  * Do all the things a cpu should do for a TLB shootdown message.
280  * Other cpu's may come here at the same time for this message.
281  */
282 static void bau_process_message(struct msg_desc *mdp, struct bau_control *bcp,
283                                                 int do_acknowledge)
284 {
285         short socket_ack_count = 0;
286         short *sp;
287         struct atomic_short *asp;
288         struct ptc_stats *stat = bcp->statp;
289         struct bau_pq_entry *msg = mdp->msg;
290         struct bau_control *smaster = bcp->socket_master;
291
292         /*
293          * This must be a normal message, or retry of a normal message
294          */
295         if (msg->address == TLB_FLUSH_ALL) {
296                 local_flush_tlb();
297                 stat->d_alltlb++;
298         } else {
299                 __flush_tlb_one_user(msg->address);
300                 stat->d_onetlb++;
301         }
302         stat->d_requestee++;
303
304         /*
305          * One cpu on each uvhub has the additional job on a RETRY
306          * of releasing the resource held by the message that is
307          * being retried.  That message is identified by sending
308          * cpu number.
309          */
310         if (msg->msg_type == MSG_RETRY && bcp == bcp->uvhub_master)
311                 bau_process_retry_msg(mdp, bcp);
312
313         /*
314          * This is a swack message, so we have to reply to it.
315          * Count each responding cpu on the socket. This avoids
316          * pinging the count's cache line back and forth between
317          * the sockets.
318          */
319         sp = &smaster->socket_acknowledge_count[mdp->msg_slot];
320         asp = (struct atomic_short *)sp;
321         socket_ack_count = atom_asr(1, asp);
322         if (socket_ack_count == bcp->cpus_in_socket) {
323                 int msg_ack_count;
324                 /*
325                  * Both sockets dump their completed count total into
326                  * the message's count.
327                  */
328                 *sp = 0;
329                 asp = (struct atomic_short *)&msg->acknowledge_count;
330                 msg_ack_count = atom_asr(socket_ack_count, asp);
331
332                 if (msg_ack_count == bcp->cpus_in_uvhub) {
333                         /*
334                          * All cpus in uvhub saw it; reply
335                          * (unless we are in the UV2 workaround)
336                          */
337                         reply_to_message(mdp, bcp, do_acknowledge);
338                 }
339         }
340
341         return;
342 }
343
344 /*
345  * Determine the first cpu on a pnode.
346  */
347 static int pnode_to_first_cpu(int pnode, struct bau_control *smaster)
348 {
349         int cpu;
350         struct hub_and_pnode *hpp;
351
352         for_each_present_cpu(cpu) {
353                 hpp = &smaster->thp[cpu];
354                 if (pnode == hpp->pnode)
355                         return cpu;
356         }
357         return -1;
358 }
359
360 /*
361  * Last resort when we get a large number of destination timeouts is
362  * to clear resources held by a given cpu.
363  * Do this with IPI so that all messages in the BAU message queue
364  * can be identified by their nonzero swack_vec field.
365  *
366  * This is entered for a single cpu on the uvhub.
367  * The sender want's this uvhub to free a specific message's
368  * swack resources.
369  */
370 static void do_reset(void *ptr)
371 {
372         int i;
373         struct bau_control *bcp = &per_cpu(bau_control, smp_processor_id());
374         struct reset_args *rap = (struct reset_args *)ptr;
375         struct bau_pq_entry *msg;
376         struct ptc_stats *stat = bcp->statp;
377
378         stat->d_resets++;
379         /*
380          * We're looking for the given sender, and
381          * will free its swack resource.
382          * If all cpu's finally responded after the timeout, its
383          * message 'replied_to' was set.
384          */
385         for (msg = bcp->queue_first, i = 0; i < DEST_Q_SIZE; msg++, i++) {
386                 unsigned long msg_res;
387                 /* do_reset: same conditions for cancellation as
388                    bau_process_retry_msg() */
389                 if ((msg->replied_to == 0) &&
390                     (msg->canceled == 0) &&
391                     (msg->sending_cpu == rap->sender) &&
392                     (msg->swack_vec) &&
393                     (msg->msg_type != MSG_NOOP)) {
394                         unsigned long mmr;
395                         unsigned long mr;
396                         /*
397                          * make everyone else ignore this message
398                          */
399                         msg->canceled = 1;
400                         /*
401                          * only reset the resource if it is still pending
402                          */
403                         mmr = ops.read_l_sw_ack();
404                         msg_res = msg->swack_vec;
405                         mr = (msg_res << UV_SW_ACK_NPENDING) | msg_res;
406                         if (mmr & msg_res) {
407                                 stat->d_rcanceled++;
408                                 ops.write_l_sw_ack(mr);
409                         }
410                 }
411         }
412         return;
413 }
414
415 /*
416  * Use IPI to get all target uvhubs to release resources held by
417  * a given sending cpu number.
418  */
419 static void reset_with_ipi(struct pnmask *distribution, struct bau_control *bcp)
420 {
421         int pnode;
422         int apnode;
423         int maskbits;
424         int sender = bcp->cpu;
425         cpumask_t *mask = bcp->uvhub_master->cpumask;
426         struct bau_control *smaster = bcp->socket_master;
427         struct reset_args reset_args;
428
429         reset_args.sender = sender;
430         cpumask_clear(mask);
431         /* find a single cpu for each uvhub in this distribution mask */
432         maskbits = sizeof(struct pnmask) * BITSPERBYTE;
433         /* each bit is a pnode relative to the partition base pnode */
434         for (pnode = 0; pnode < maskbits; pnode++) {
435                 int cpu;
436                 if (!bau_uvhub_isset(pnode, distribution))
437                         continue;
438                 apnode = pnode + bcp->partition_base_pnode;
439                 cpu = pnode_to_first_cpu(apnode, smaster);
440                 cpumask_set_cpu(cpu, mask);
441         }
442
443         /* IPI all cpus; preemption is already disabled */
444         smp_call_function_many(mask, do_reset, (void *)&reset_args, 1);
445         return;
446 }
447
448 /*
449  * Not to be confused with cycles_2_ns() from tsc.c; this gives a relative
450  * number, not an absolute. It converts a duration in cycles to a duration in
451  * ns.
452  */
453 static inline unsigned long long cycles_2_ns(unsigned long long cyc)
454 {
455         struct cyc2ns_data data;
456         unsigned long long ns;
457
458         cyc2ns_read_begin(&data);
459         ns = mul_u64_u32_shr(cyc, data.cyc2ns_mul, data.cyc2ns_shift);
460         cyc2ns_read_end();
461
462         return ns;
463 }
464
465 /*
466  * The reverse of the above; converts a duration in ns to a duration in cycles.
467  */
468 static inline unsigned long long ns_2_cycles(unsigned long long ns)
469 {
470         struct cyc2ns_data data;
471         unsigned long long cyc;
472
473         cyc2ns_read_begin(&data);
474         cyc = (ns << data.cyc2ns_shift) / data.cyc2ns_mul;
475         cyc2ns_read_end();
476
477         return cyc;
478 }
479
480 static inline unsigned long cycles_2_us(unsigned long long cyc)
481 {
482         return cycles_2_ns(cyc) / NSEC_PER_USEC;
483 }
484
485 static inline cycles_t sec_2_cycles(unsigned long sec)
486 {
487         return ns_2_cycles(sec * NSEC_PER_SEC);
488 }
489
490 static inline unsigned long long usec_2_cycles(unsigned long usec)
491 {
492         return ns_2_cycles(usec * NSEC_PER_USEC);
493 }
494
495 /*
496  * wait for all cpus on this hub to finish their sends and go quiet
497  * leaves uvhub_quiesce set so that no new broadcasts are started by
498  * bau_flush_send_and_wait()
499  */
500 static inline void quiesce_local_uvhub(struct bau_control *hmaster)
501 {
502         atom_asr(1, (struct atomic_short *)&hmaster->uvhub_quiesce);
503 }
504
505 /*
506  * mark this quiet-requestor as done
507  */
508 static inline void end_uvhub_quiesce(struct bau_control *hmaster)
509 {
510         atom_asr(-1, (struct atomic_short *)&hmaster->uvhub_quiesce);
511 }
512
513 static unsigned long uv1_read_status(unsigned long mmr_offset, int right_shift)
514 {
515         unsigned long descriptor_status;
516
517         descriptor_status = uv_read_local_mmr(mmr_offset);
518         descriptor_status >>= right_shift;
519         descriptor_status &= UV_ACT_STATUS_MASK;
520         return descriptor_status;
521 }
522
523 /*
524  * Wait for completion of a broadcast software ack message
525  * return COMPLETE, RETRY(PLUGGED or TIMEOUT) or GIVEUP
526  */
527 static int uv1_wait_completion(struct bau_desc *bau_desc,
528                                 struct bau_control *bcp, long try)
529 {
530         unsigned long descriptor_status;
531         cycles_t ttm;
532         u64 mmr_offset = bcp->status_mmr;
533         int right_shift = bcp->status_index;
534         struct ptc_stats *stat = bcp->statp;
535
536         descriptor_status = uv1_read_status(mmr_offset, right_shift);
537         /* spin on the status MMR, waiting for it to go idle */
538         while ((descriptor_status != DS_IDLE)) {
539                 /*
540                  * Our software ack messages may be blocked because
541                  * there are no swack resources available.  As long
542                  * as none of them has timed out hardware will NACK
543                  * our message and its state will stay IDLE.
544                  */
545                 if (descriptor_status == DS_SOURCE_TIMEOUT) {
546                         stat->s_stimeout++;
547                         return FLUSH_GIVEUP;
548                 } else if (descriptor_status == DS_DESTINATION_TIMEOUT) {
549                         stat->s_dtimeout++;
550                         ttm = get_cycles();
551
552                         /*
553                          * Our retries may be blocked by all destination
554                          * swack resources being consumed, and a timeout
555                          * pending.  In that case hardware returns the
556                          * ERROR that looks like a destination timeout.
557                          */
558                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
559                                 bcp->conseccompletes = 0;
560                                 return FLUSH_RETRY_PLUGGED;
561                         }
562
563                         bcp->conseccompletes = 0;
564                         return FLUSH_RETRY_TIMEOUT;
565                 } else {
566                         /*
567                          * descriptor_status is still BUSY
568                          */
569                         cpu_relax();
570                 }
571                 descriptor_status = uv1_read_status(mmr_offset, right_shift);
572         }
573         bcp->conseccompletes++;
574         return FLUSH_COMPLETE;
575 }
576
577 /*
578  * UV2 could have an extra bit of status in the ACTIVATION_STATUS_2 register.
579  * But not currently used.
580  */
581 static unsigned long uv2_3_read_status(unsigned long offset, int rshft, int desc)
582 {
583         return ((read_lmmr(offset) >> rshft) & UV_ACT_STATUS_MASK) << 1;
584 }
585
586 /*
587  * Entered when a bau descriptor has gone into a permanent busy wait because
588  * of a hardware bug.
589  * Workaround the bug.
590  */
591 static int handle_uv2_busy(struct bau_control *bcp)
592 {
593         struct ptc_stats *stat = bcp->statp;
594
595         stat->s_uv2_wars++;
596         bcp->busy = 1;
597         return FLUSH_GIVEUP;
598 }
599
600 static int uv2_3_wait_completion(struct bau_desc *bau_desc,
601                                 struct bau_control *bcp, long try)
602 {
603         unsigned long descriptor_stat;
604         cycles_t ttm;
605         u64 mmr_offset = bcp->status_mmr;
606         int right_shift = bcp->status_index;
607         int desc = bcp->uvhub_cpu;
608         long busy_reps = 0;
609         struct ptc_stats *stat = bcp->statp;
610
611         descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
612
613         /* spin on the status MMR, waiting for it to go idle */
614         while (descriptor_stat != UV2H_DESC_IDLE) {
615                 if (descriptor_stat == UV2H_DESC_SOURCE_TIMEOUT) {
616                         /*
617                          * A h/w bug on the destination side may
618                          * have prevented the message being marked
619                          * pending, thus it doesn't get replied to
620                          * and gets continually nacked until it times
621                          * out with a SOURCE_TIMEOUT.
622                          */
623                         stat->s_stimeout++;
624                         return FLUSH_GIVEUP;
625                 } else if (descriptor_stat == UV2H_DESC_DEST_TIMEOUT) {
626                         ttm = get_cycles();
627
628                         /*
629                          * Our retries may be blocked by all destination
630                          * swack resources being consumed, and a timeout
631                          * pending.  In that case hardware returns the
632                          * ERROR that looks like a destination timeout.
633                          * Without using the extended status we have to
634                          * deduce from the short time that this was a
635                          * strong nack.
636                          */
637                         if (cycles_2_us(ttm - bcp->send_message) < timeout_us) {
638                                 bcp->conseccompletes = 0;
639                                 stat->s_plugged++;
640                                 /* FLUSH_RETRY_PLUGGED causes hang on boot */
641                                 return FLUSH_GIVEUP;
642                         }
643                         stat->s_dtimeout++;
644                         bcp->conseccompletes = 0;
645                         /* FLUSH_RETRY_TIMEOUT causes hang on boot */
646                         return FLUSH_GIVEUP;
647                 } else {
648                         busy_reps++;
649                         if (busy_reps > 1000000) {
650                                 /* not to hammer on the clock */
651                                 busy_reps = 0;
652                                 ttm = get_cycles();
653                                 if ((ttm - bcp->send_message) > bcp->timeout_interval)
654                                         return handle_uv2_busy(bcp);
655                         }
656                         /*
657                          * descriptor_stat is still BUSY
658                          */
659                         cpu_relax();
660                 }
661                 descriptor_stat = uv2_3_read_status(mmr_offset, right_shift, desc);
662         }
663         bcp->conseccompletes++;
664         return FLUSH_COMPLETE;
665 }
666
667 /*
668  * Returns the status of current BAU message for cpu desc as a bit field
669  * [Error][Busy][Aux]
670  */
671 static u64 read_status(u64 status_mmr, int index, int desc)
672 {
673         u64 stat;
674
675         stat = ((read_lmmr(status_mmr) >> index) & UV_ACT_STATUS_MASK) << 1;
676         stat |= (read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_2) >> desc) & 0x1;
677
678         return stat;
679 }
680
681 static int uv4_wait_completion(struct bau_desc *bau_desc,
682                                 struct bau_control *bcp, long try)
683 {
684         struct ptc_stats *stat = bcp->statp;
685         u64 descriptor_stat;
686         u64 mmr = bcp->status_mmr;
687         int index = bcp->status_index;
688         int desc = bcp->uvhub_cpu;
689
690         descriptor_stat = read_status(mmr, index, desc);
691
692         /* spin on the status MMR, waiting for it to go idle */
693         while (descriptor_stat != UV2H_DESC_IDLE) {
694                 switch (descriptor_stat) {
695                 case UV2H_DESC_SOURCE_TIMEOUT:
696                         stat->s_stimeout++;
697                         return FLUSH_GIVEUP;
698
699                 case UV2H_DESC_DEST_TIMEOUT:
700                         stat->s_dtimeout++;
701                         bcp->conseccompletes = 0;
702                         return FLUSH_RETRY_TIMEOUT;
703
704                 case UV2H_DESC_DEST_STRONG_NACK:
705                         stat->s_plugged++;
706                         bcp->conseccompletes = 0;
707                         return FLUSH_RETRY_PLUGGED;
708
709                 case UV2H_DESC_DEST_PUT_ERR:
710                         bcp->conseccompletes = 0;
711                         return FLUSH_GIVEUP;
712
713                 default:
714                         /* descriptor_stat is still BUSY */
715                         cpu_relax();
716                 }
717                 descriptor_stat = read_status(mmr, index, desc);
718         }
719         bcp->conseccompletes++;
720         return FLUSH_COMPLETE;
721 }
722
723 /*
724  * Our retries are blocked by all destination sw ack resources being
725  * in use, and a timeout is pending. In that case hardware immediately
726  * returns the ERROR that looks like a destination timeout.
727  */
728 static void destination_plugged(struct bau_desc *bau_desc,
729                         struct bau_control *bcp,
730                         struct bau_control *hmaster, struct ptc_stats *stat)
731 {
732         udelay(bcp->plugged_delay);
733         bcp->plugged_tries++;
734
735         if (bcp->plugged_tries >= bcp->plugsb4reset) {
736                 bcp->plugged_tries = 0;
737
738                 quiesce_local_uvhub(hmaster);
739
740                 spin_lock(&hmaster->queue_lock);
741                 reset_with_ipi(&bau_desc->distribution, bcp);
742                 spin_unlock(&hmaster->queue_lock);
743
744                 end_uvhub_quiesce(hmaster);
745
746                 bcp->ipi_attempts++;
747                 stat->s_resets_plug++;
748         }
749 }
750
751 static void destination_timeout(struct bau_desc *bau_desc,
752                         struct bau_control *bcp, struct bau_control *hmaster,
753                         struct ptc_stats *stat)
754 {
755         hmaster->max_concurr = 1;
756         bcp->timeout_tries++;
757         if (bcp->timeout_tries >= bcp->timeoutsb4reset) {
758                 bcp->timeout_tries = 0;
759
760                 quiesce_local_uvhub(hmaster);
761
762                 spin_lock(&hmaster->queue_lock);
763                 reset_with_ipi(&bau_desc->distribution, bcp);
764                 spin_unlock(&hmaster->queue_lock);
765
766                 end_uvhub_quiesce(hmaster);
767
768                 bcp->ipi_attempts++;
769                 stat->s_resets_timeout++;
770         }
771 }
772
773 /*
774  * Stop all cpus on a uvhub from using the BAU for a period of time.
775  * This is reversed by check_enable.
776  */
777 static void disable_for_period(struct bau_control *bcp, struct ptc_stats *stat)
778 {
779         int tcpu;
780         struct bau_control *tbcp;
781         struct bau_control *hmaster;
782         cycles_t tm1;
783
784         hmaster = bcp->uvhub_master;
785         spin_lock(&hmaster->disable_lock);
786         if (!bcp->baudisabled) {
787                 stat->s_bau_disabled++;
788                 tm1 = get_cycles();
789                 for_each_present_cpu(tcpu) {
790                         tbcp = &per_cpu(bau_control, tcpu);
791                         if (tbcp->uvhub_master == hmaster) {
792                                 tbcp->baudisabled = 1;
793                                 tbcp->set_bau_on_time =
794                                         tm1 + bcp->disabled_period;
795                         }
796                 }
797         }
798         spin_unlock(&hmaster->disable_lock);
799 }
800
801 static void count_max_concurr(int stat, struct bau_control *bcp,
802                                 struct bau_control *hmaster)
803 {
804         bcp->plugged_tries = 0;
805         bcp->timeout_tries = 0;
806         if (stat != FLUSH_COMPLETE)
807                 return;
808         if (bcp->conseccompletes <= bcp->complete_threshold)
809                 return;
810         if (hmaster->max_concurr >= hmaster->max_concurr_const)
811                 return;
812         hmaster->max_concurr++;
813 }
814
815 static void record_send_stats(cycles_t time1, cycles_t time2,
816                 struct bau_control *bcp, struct ptc_stats *stat,
817                 int completion_status, int try)
818 {
819         cycles_t elapsed;
820
821         if (time2 > time1) {
822                 elapsed = time2 - time1;
823                 stat->s_time += elapsed;
824
825                 if ((completion_status == FLUSH_COMPLETE) && (try == 1)) {
826                         bcp->period_requests++;
827                         bcp->period_time += elapsed;
828                         if ((elapsed > usec_2_cycles(bcp->cong_response_us)) &&
829                             (bcp->period_requests > bcp->cong_reps) &&
830                             ((bcp->period_time / bcp->period_requests) >
831                                         usec_2_cycles(bcp->cong_response_us))) {
832                                 stat->s_congested++;
833                                 disable_for_period(bcp, stat);
834                         }
835                 }
836         } else
837                 stat->s_requestor--;
838
839         if (completion_status == FLUSH_COMPLETE && try > 1)
840                 stat->s_retriesok++;
841         else if (completion_status == FLUSH_GIVEUP) {
842                 stat->s_giveup++;
843                 if (get_cycles() > bcp->period_end)
844                         bcp->period_giveups = 0;
845                 bcp->period_giveups++;
846                 if (bcp->period_giveups == 1)
847                         bcp->period_end = get_cycles() + bcp->disabled_period;
848                 if (bcp->period_giveups > bcp->giveup_limit) {
849                         disable_for_period(bcp, stat);
850                         stat->s_giveuplimit++;
851                 }
852         }
853 }
854
855 /*
856  * Because of a uv1 hardware bug only a limited number of concurrent
857  * requests can be made.
858  */
859 static void uv1_throttle(struct bau_control *hmaster, struct ptc_stats *stat)
860 {
861         spinlock_t *lock = &hmaster->uvhub_lock;
862         atomic_t *v;
863
864         v = &hmaster->active_descriptor_count;
865         if (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr)) {
866                 stat->s_throttles++;
867                 do {
868                         cpu_relax();
869                 } while (!atomic_inc_unless_ge(lock, v, hmaster->max_concurr));
870         }
871 }
872
873 /*
874  * Handle the completion status of a message send.
875  */
876 static void handle_cmplt(int completion_status, struct bau_desc *bau_desc,
877                         struct bau_control *bcp, struct bau_control *hmaster,
878                         struct ptc_stats *stat)
879 {
880         if (completion_status == FLUSH_RETRY_PLUGGED)
881                 destination_plugged(bau_desc, bcp, hmaster, stat);
882         else if (completion_status == FLUSH_RETRY_TIMEOUT)
883                 destination_timeout(bau_desc, bcp, hmaster, stat);
884 }
885
886 /*
887  * Send a broadcast and wait for it to complete.
888  *
889  * The flush_mask contains the cpus the broadcast is to be sent to including
890  * cpus that are on the local uvhub.
891  *
892  * Returns 0 if all flushing represented in the mask was done.
893  * Returns 1 if it gives up entirely and the original cpu mask is to be
894  * returned to the kernel.
895  */
896 static int uv_flush_send_and_wait(struct cpumask *flush_mask,
897                                   struct bau_control *bcp,
898                                   struct bau_desc *bau_desc)
899 {
900         int seq_number = 0;
901         int completion_stat = 0;
902         int uv1 = 0;
903         long try = 0;
904         unsigned long index;
905         cycles_t time1;
906         cycles_t time2;
907         struct ptc_stats *stat = bcp->statp;
908         struct bau_control *hmaster = bcp->uvhub_master;
909         struct uv1_bau_msg_header *uv1_hdr = NULL;
910         struct uv2_3_bau_msg_header *uv2_3_hdr = NULL;
911
912         if (bcp->uvhub_version == UV_BAU_V1) {
913                 uv1 = 1;
914                 uv1_throttle(hmaster, stat);
915         }
916
917         while (hmaster->uvhub_quiesce)
918                 cpu_relax();
919
920         time1 = get_cycles();
921         if (uv1)
922                 uv1_hdr = &bau_desc->header.uv1_hdr;
923         else
924                 /* uv2 and uv3 */
925                 uv2_3_hdr = &bau_desc->header.uv2_3_hdr;
926
927         do {
928                 if (try == 0) {
929                         if (uv1)
930                                 uv1_hdr->msg_type = MSG_REGULAR;
931                         else
932                                 uv2_3_hdr->msg_type = MSG_REGULAR;
933                         seq_number = bcp->message_number++;
934                 } else {
935                         if (uv1)
936                                 uv1_hdr->msg_type = MSG_RETRY;
937                         else
938                                 uv2_3_hdr->msg_type = MSG_RETRY;
939                         stat->s_retry_messages++;
940                 }
941
942                 if (uv1)
943                         uv1_hdr->sequence = seq_number;
944                 else
945                         uv2_3_hdr->sequence = seq_number;
946                 index = (1UL << AS_PUSH_SHIFT) | bcp->uvhub_cpu;
947                 bcp->send_message = get_cycles();
948
949                 write_mmr_activation(index);
950
951                 try++;
952                 completion_stat = ops.wait_completion(bau_desc, bcp, try);
953
954                 handle_cmplt(completion_stat, bau_desc, bcp, hmaster, stat);
955
956                 if (bcp->ipi_attempts >= bcp->ipi_reset_limit) {
957                         bcp->ipi_attempts = 0;
958                         stat->s_overipilimit++;
959                         completion_stat = FLUSH_GIVEUP;
960                         break;
961                 }
962                 cpu_relax();
963         } while ((completion_stat == FLUSH_RETRY_PLUGGED) ||
964                  (completion_stat == FLUSH_RETRY_TIMEOUT));
965
966         time2 = get_cycles();
967
968         count_max_concurr(completion_stat, bcp, hmaster);
969
970         while (hmaster->uvhub_quiesce)
971                 cpu_relax();
972
973         atomic_dec(&hmaster->active_descriptor_count);
974
975         record_send_stats(time1, time2, bcp, stat, completion_stat, try);
976
977         if (completion_stat == FLUSH_GIVEUP)
978                 /* FLUSH_GIVEUP will fall back to using IPI's for tlb flush */
979                 return 1;
980         return 0;
981 }
982
983 /*
984  * The BAU is disabled for this uvhub. When the disabled time period has
985  * expired re-enable it.
986  * Return 0 if it is re-enabled for all cpus on this uvhub.
987  */
988 static int check_enable(struct bau_control *bcp, struct ptc_stats *stat)
989 {
990         int tcpu;
991         struct bau_control *tbcp;
992         struct bau_control *hmaster;
993
994         hmaster = bcp->uvhub_master;
995         spin_lock(&hmaster->disable_lock);
996         if (bcp->baudisabled && (get_cycles() >= bcp->set_bau_on_time)) {
997                 stat->s_bau_reenabled++;
998                 for_each_present_cpu(tcpu) {
999                         tbcp = &per_cpu(bau_control, tcpu);
1000                         if (tbcp->uvhub_master == hmaster) {
1001                                 tbcp->baudisabled = 0;
1002                                 tbcp->period_requests = 0;
1003                                 tbcp->period_time = 0;
1004                                 tbcp->period_giveups = 0;
1005                         }
1006                 }
1007                 spin_unlock(&hmaster->disable_lock);
1008                 return 0;
1009         }
1010         spin_unlock(&hmaster->disable_lock);
1011         return -1;
1012 }
1013
1014 static void record_send_statistics(struct ptc_stats *stat, int locals, int hubs,
1015                                 int remotes, struct bau_desc *bau_desc)
1016 {
1017         stat->s_requestor++;
1018         stat->s_ntargcpu += remotes + locals;
1019         stat->s_ntargremotes += remotes;
1020         stat->s_ntarglocals += locals;
1021
1022         /* uvhub statistics */
1023         hubs = bau_uvhub_weight(&bau_desc->distribution);
1024         if (locals) {
1025                 stat->s_ntarglocaluvhub++;
1026                 stat->s_ntargremoteuvhub += (hubs - 1);
1027         } else
1028                 stat->s_ntargremoteuvhub += hubs;
1029
1030         stat->s_ntarguvhub += hubs;
1031
1032         if (hubs >= 16)
1033                 stat->s_ntarguvhub16++;
1034         else if (hubs >= 8)
1035                 stat->s_ntarguvhub8++;
1036         else if (hubs >= 4)
1037                 stat->s_ntarguvhub4++;
1038         else if (hubs >= 2)
1039                 stat->s_ntarguvhub2++;
1040         else
1041                 stat->s_ntarguvhub1++;
1042 }
1043
1044 /*
1045  * Translate a cpu mask to the uvhub distribution mask in the BAU
1046  * activation descriptor.
1047  */
1048 static int set_distrib_bits(struct cpumask *flush_mask, struct bau_control *bcp,
1049                         struct bau_desc *bau_desc, int *localsp, int *remotesp)
1050 {
1051         int cpu;
1052         int pnode;
1053         int cnt = 0;
1054         struct hub_and_pnode *hpp;
1055
1056         for_each_cpu(cpu, flush_mask) {
1057                 /*
1058                  * The distribution vector is a bit map of pnodes, relative
1059                  * to the partition base pnode (and the partition base nasid
1060                  * in the header).
1061                  * Translate cpu to pnode and hub using a local memory array.
1062                  */
1063                 hpp = &bcp->socket_master->thp[cpu];
1064                 pnode = hpp->pnode - bcp->partition_base_pnode;
1065                 bau_uvhub_set(pnode, &bau_desc->distribution);
1066                 cnt++;
1067                 if (hpp->uvhub == bcp->uvhub)
1068                         (*localsp)++;
1069                 else
1070                         (*remotesp)++;
1071         }
1072         if (!cnt)
1073                 return 1;
1074         return 0;
1075 }
1076
1077 /*
1078  * globally purge translation cache of a virtual address or all TLB's
1079  * @cpumask: mask of all cpu's in which the address is to be removed
1080  * @mm: mm_struct containing virtual address range
1081  * @start: start virtual address to be removed from TLB
1082  * @end: end virtual address to be remove from TLB
1083  * @cpu: the current cpu
1084  *
1085  * This is the entry point for initiating any UV global TLB shootdown.
1086  *
1087  * Purges the translation caches of all specified processors of the given
1088  * virtual address, or purges all TLB's on specified processors.
1089  *
1090  * The caller has derived the cpumask from the mm_struct.  This function
1091  * is called only if there are bits set in the mask. (e.g. flush_tlb_page())
1092  *
1093  * The cpumask is converted into a uvhubmask of the uvhubs containing
1094  * those cpus.
1095  *
1096  * Note that this function should be called with preemption disabled.
1097  *
1098  * Returns NULL if all remote flushing was done.
1099  * Returns pointer to cpumask if some remote flushing remains to be
1100  * done.  The returned pointer is valid till preemption is re-enabled.
1101  */
1102 const struct cpumask *uv_flush_tlb_others(const struct cpumask *cpumask,
1103                                           const struct flush_tlb_info *info)
1104 {
1105         unsigned int cpu = smp_processor_id();
1106         int locals = 0, remotes = 0, hubs = 0;
1107         struct bau_desc *bau_desc;
1108         struct cpumask *flush_mask;
1109         struct ptc_stats *stat;
1110         struct bau_control *bcp;
1111         unsigned long descriptor_status, status, address;
1112
1113         bcp = &per_cpu(bau_control, cpu);
1114
1115         if (bcp->nobau)
1116                 return cpumask;
1117
1118         stat = bcp->statp;
1119         stat->s_enters++;
1120
1121         if (bcp->busy) {
1122                 descriptor_status =
1123                         read_lmmr(UVH_LB_BAU_SB_ACTIVATION_STATUS_0);
1124                 status = ((descriptor_status >> (bcp->uvhub_cpu *
1125                         UV_ACT_STATUS_SIZE)) & UV_ACT_STATUS_MASK) << 1;
1126                 if (status == UV2H_DESC_BUSY)
1127                         return cpumask;
1128                 bcp->busy = 0;
1129         }
1130
1131         /* bau was disabled due to slow response */
1132         if (bcp->baudisabled) {
1133                 if (check_enable(bcp, stat)) {
1134                         stat->s_ipifordisabled++;
1135                         return cpumask;
1136                 }
1137         }
1138
1139         /*
1140          * Each sending cpu has a per-cpu mask which it fills from the caller's
1141          * cpu mask.  All cpus are converted to uvhubs and copied to the
1142          * activation descriptor.
1143          */
1144         flush_mask = (struct cpumask *)per_cpu(uv_flush_tlb_mask, cpu);
1145         /* don't actually do a shootdown of the local cpu */
1146         cpumask_andnot(flush_mask, cpumask, cpumask_of(cpu));
1147
1148         if (cpumask_test_cpu(cpu, cpumask))
1149                 stat->s_ntargself++;
1150
1151         bau_desc = bcp->descriptor_base;
1152         bau_desc += (ITEMS_PER_DESC * bcp->uvhub_cpu);
1153         bau_uvhubs_clear(&bau_desc->distribution, UV_DISTRIBUTION_SIZE);
1154         if (set_distrib_bits(flush_mask, bcp, bau_desc, &locals, &remotes))
1155                 return NULL;
1156
1157         record_send_statistics(stat, locals, hubs, remotes, bau_desc);
1158
1159         if (!info->end || (info->end - info->start) <= PAGE_SIZE)
1160                 address = info->start;
1161         else
1162                 address = TLB_FLUSH_ALL;
1163
1164         switch (bcp->uvhub_version) {
1165         case UV_BAU_V1:
1166         case UV_BAU_V2:
1167         case UV_BAU_V3:
1168                 bau_desc->payload.uv1_2_3.address = address;
1169                 bau_desc->payload.uv1_2_3.sending_cpu = cpu;
1170                 break;
1171         case UV_BAU_V4:
1172                 bau_desc->payload.uv4.address = address;
1173                 bau_desc->payload.uv4.sending_cpu = cpu;
1174                 bau_desc->payload.uv4.qualifier = BAU_DESC_QUALIFIER;
1175                 break;
1176         }
1177
1178         /*
1179          * uv_flush_send_and_wait returns 0 if all cpu's were messaged,
1180          * or 1 if it gave up and the original cpumask should be returned.
1181          */
1182         if (!uv_flush_send_and_wait(flush_mask, bcp, bau_desc))
1183                 return NULL;
1184         else
1185                 return cpumask;
1186 }
1187
1188 /*
1189  * Search the message queue for any 'other' unprocessed message with the
1190  * same software acknowledge resource bit vector as the 'msg' message.
1191  */
1192 static struct bau_pq_entry *find_another_by_swack(struct bau_pq_entry *msg,
1193                                                   struct bau_control *bcp)
1194 {
1195         struct bau_pq_entry *msg_next = msg + 1;
1196         unsigned char swack_vec = msg->swack_vec;
1197
1198         if (msg_next > bcp->queue_last)
1199                 msg_next = bcp->queue_first;
1200         while (msg_next != msg) {
1201                 if ((msg_next->canceled == 0) && (msg_next->replied_to == 0) &&
1202                                 (msg_next->swack_vec == swack_vec))
1203                         return msg_next;
1204                 msg_next++;
1205                 if (msg_next > bcp->queue_last)
1206                         msg_next = bcp->queue_first;
1207         }
1208         return NULL;
1209 }
1210
1211 /*
1212  * UV2 needs to work around a bug in which an arriving message has not
1213  * set a bit in the UVH_LB_BAU_INTD_SOFTWARE_ACKNOWLEDGE register.
1214  * Such a message must be ignored.
1215  */
1216 static void process_uv2_message(struct msg_desc *mdp, struct bau_control *bcp)
1217 {
1218         unsigned long mmr_image;
1219         unsigned char swack_vec;
1220         struct bau_pq_entry *msg = mdp->msg;
1221         struct bau_pq_entry *other_msg;
1222
1223         mmr_image = ops.read_l_sw_ack();
1224         swack_vec = msg->swack_vec;
1225
1226         if ((swack_vec & mmr_image) == 0) {
1227                 /*
1228                  * This message was assigned a swack resource, but no
1229                  * reserved acknowlegment is pending.
1230                  * The bug has prevented this message from setting the MMR.
1231                  */
1232                 /*
1233                  * Some message has set the MMR 'pending' bit; it might have
1234                  * been another message.  Look for that message.
1235                  */
1236                 other_msg = find_another_by_swack(msg, bcp);
1237                 if (other_msg) {
1238                         /*
1239                          * There is another. Process this one but do not
1240                          * ack it.
1241                          */
1242                         bau_process_message(mdp, bcp, 0);
1243                         /*
1244                          * Let the natural processing of that other message
1245                          * acknowledge it. Don't get the processing of sw_ack's
1246                          * out of order.
1247                          */
1248                         return;
1249                 }
1250         }
1251
1252         /*
1253          * Either the MMR shows this one pending a reply or there is no
1254          * other message using this sw_ack, so it is safe to acknowledge it.
1255          */
1256         bau_process_message(mdp, bcp, 1);
1257
1258         return;
1259 }
1260
1261 /*
1262  * The BAU message interrupt comes here. (registered by set_intr_gate)
1263  * See entry_64.S
1264  *
1265  * We received a broadcast assist message.
1266  *
1267  * Interrupts are disabled; this interrupt could represent
1268  * the receipt of several messages.
1269  *
1270  * All cores/threads on this hub get this interrupt.
1271  * The last one to see it does the software ack.
1272  * (the resource will not be freed until noninterruptable cpus see this
1273  *  interrupt; hardware may timeout the s/w ack and reply ERROR)
1274  */
1275 void uv_bau_message_interrupt(struct pt_regs *regs)
1276 {
1277         int count = 0;
1278         cycles_t time_start;
1279         struct bau_pq_entry *msg;
1280         struct bau_control *bcp;
1281         struct ptc_stats *stat;
1282         struct msg_desc msgdesc;
1283
1284         ack_APIC_irq();
1285         kvm_set_cpu_l1tf_flush_l1d();
1286         time_start = get_cycles();
1287
1288         bcp = &per_cpu(bau_control, smp_processor_id());
1289         stat = bcp->statp;
1290
1291         msgdesc.queue_first = bcp->queue_first;
1292         msgdesc.queue_last = bcp->queue_last;
1293
1294         msg = bcp->bau_msg_head;
1295         while (msg->swack_vec) {
1296                 count++;
1297
1298                 msgdesc.msg_slot = msg - msgdesc.queue_first;
1299                 msgdesc.msg = msg;
1300                 if (bcp->uvhub_version == UV_BAU_V2)
1301                         process_uv2_message(&msgdesc, bcp);
1302                 else
1303                         /* no error workaround for uv1 or uv3 */
1304                         bau_process_message(&msgdesc, bcp, 1);
1305
1306                 msg++;
1307                 if (msg > msgdesc.queue_last)
1308                         msg = msgdesc.queue_first;
1309                 bcp->bau_msg_head = msg;
1310         }
1311         stat->d_time += (get_cycles() - time_start);
1312         if (!count)
1313                 stat->d_nomsg++;
1314         else if (count > 1)
1315                 stat->d_multmsg++;
1316 }
1317
1318 /*
1319  * Each target uvhub (i.e. a uvhub that has cpu's) needs to have
1320  * shootdown message timeouts enabled.  The timeout does not cause
1321  * an interrupt, but causes an error message to be returned to
1322  * the sender.
1323  */
1324 static void __init enable_timeouts(void)
1325 {
1326         int uvhub;
1327         int nuvhubs;
1328         int pnode;
1329         unsigned long mmr_image;
1330
1331         nuvhubs = uv_num_possible_blades();
1332
1333         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
1334                 if (!uv_blade_nr_possible_cpus(uvhub))
1335                         continue;
1336
1337                 pnode = uv_blade_to_pnode(uvhub);
1338                 mmr_image = read_mmr_misc_control(pnode);
1339                 /*
1340                  * Set the timeout period and then lock it in, in three
1341                  * steps; captures and locks in the period.
1342                  *
1343                  * To program the period, the SOFT_ACK_MODE must be off.
1344                  */
1345                 mmr_image &= ~(1L << SOFTACK_MSHIFT);
1346                 write_mmr_misc_control(pnode, mmr_image);
1347                 /*
1348                  * Set the 4-bit period.
1349                  */
1350                 mmr_image &= ~((unsigned long)0xf << SOFTACK_PSHIFT);
1351                 mmr_image |= (SOFTACK_TIMEOUT_PERIOD << SOFTACK_PSHIFT);
1352                 write_mmr_misc_control(pnode, mmr_image);
1353                 /*
1354                  * UV1:
1355                  * Subsequent reversals of the timebase bit (3) cause an
1356                  * immediate timeout of one or all INTD resources as
1357                  * indicated in bits 2:0 (7 causes all of them to timeout).
1358                  */
1359                 mmr_image |= (1L << SOFTACK_MSHIFT);
1360                 if (is_uv2_hub()) {
1361                         /* do not touch the legacy mode bit */
1362                         /* hw bug workaround; do not use extended status */
1363                         mmr_image &= ~(1L << UV2_EXT_SHFT);
1364                 } else if (is_uv3_hub()) {
1365                         mmr_image &= ~(1L << PREFETCH_HINT_SHFT);
1366                         mmr_image |= (1L << SB_STATUS_SHFT);
1367                 }
1368                 write_mmr_misc_control(pnode, mmr_image);
1369         }
1370 }
1371
1372 static void *ptc_seq_start(struct seq_file *file, loff_t *offset)
1373 {
1374         if (*offset < num_possible_cpus())
1375                 return offset;
1376         return NULL;
1377 }
1378
1379 static void *ptc_seq_next(struct seq_file *file, void *data, loff_t *offset)
1380 {
1381         (*offset)++;
1382         if (*offset < num_possible_cpus())
1383                 return offset;
1384         return NULL;
1385 }
1386
1387 static void ptc_seq_stop(struct seq_file *file, void *data)
1388 {
1389 }
1390
1391 /*
1392  * Display the statistics thru /proc/sgi_uv/ptc_statistics
1393  * 'data' points to the cpu number
1394  * Note: see the descriptions in stat_description[].
1395  */
1396 static int ptc_seq_show(struct seq_file *file, void *data)
1397 {
1398         struct ptc_stats *stat;
1399         struct bau_control *bcp;
1400         int cpu;
1401
1402         cpu = *(loff_t *)data;
1403         if (!cpu) {
1404                 seq_puts(file,
1405                          "# cpu bauoff sent stime self locals remotes ncpus localhub ");
1406                 seq_puts(file, "remotehub numuvhubs numuvhubs16 numuvhubs8 ");
1407                 seq_puts(file,
1408                          "numuvhubs4 numuvhubs2 numuvhubs1 dto snacks retries ");
1409                 seq_puts(file,
1410                          "rok resetp resett giveup sto bz throt disable ");
1411                 seq_puts(file,
1412                          "enable wars warshw warwaits enters ipidis plugged ");
1413                 seq_puts(file,
1414                          "ipiover glim cong swack recv rtime all one mult ");
1415                 seq_puts(file, "none retry canc nocan reset rcan\n");
1416         }
1417         if (cpu < num_possible_cpus() && cpu_online(cpu)) {
1418                 bcp = &per_cpu(bau_control, cpu);
1419                 if (bcp->nobau) {
1420                         seq_printf(file, "cpu %d bau disabled\n", cpu);
1421                         return 0;
1422                 }
1423                 stat = bcp->statp;
1424                 /* source side statistics */
1425                 seq_printf(file,
1426                         "cpu %d %d %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1427                            cpu, bcp->nobau, stat->s_requestor,
1428                            cycles_2_us(stat->s_time),
1429                            stat->s_ntargself, stat->s_ntarglocals,
1430                            stat->s_ntargremotes, stat->s_ntargcpu,
1431                            stat->s_ntarglocaluvhub, stat->s_ntargremoteuvhub,
1432                            stat->s_ntarguvhub, stat->s_ntarguvhub16);
1433                 seq_printf(file, "%ld %ld %ld %ld %ld %ld ",
1434                            stat->s_ntarguvhub8, stat->s_ntarguvhub4,
1435                            stat->s_ntarguvhub2, stat->s_ntarguvhub1,
1436                            stat->s_dtimeout, stat->s_strongnacks);
1437                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld ",
1438                            stat->s_retry_messages, stat->s_retriesok,
1439                            stat->s_resets_plug, stat->s_resets_timeout,
1440                            stat->s_giveup, stat->s_stimeout,
1441                            stat->s_busy, stat->s_throttles);
1442                 seq_printf(file, "%ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld ",
1443                            stat->s_bau_disabled, stat->s_bau_reenabled,
1444                            stat->s_uv2_wars, stat->s_uv2_wars_hw,
1445                            stat->s_uv2_war_waits, stat->s_enters,
1446                            stat->s_ipifordisabled, stat->s_plugged,
1447                            stat->s_overipilimit, stat->s_giveuplimit,
1448                            stat->s_congested);
1449
1450                 /* destination side statistics */
1451                 seq_printf(file,
1452                         "%lx %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld %ld\n",
1453                            ops.read_g_sw_ack(uv_cpu_to_pnode(cpu)),
1454                            stat->d_requestee, cycles_2_us(stat->d_time),
1455                            stat->d_alltlb, stat->d_onetlb, stat->d_multmsg,
1456                            stat->d_nomsg, stat->d_retries, stat->d_canceled,
1457                            stat->d_nocanceled, stat->d_resets,
1458                            stat->d_rcanceled);
1459         }
1460         return 0;
1461 }
1462
1463 /*
1464  * Display the tunables thru debugfs
1465  */
1466 static ssize_t tunables_read(struct file *file, char __user *userbuf,
1467                                 size_t count, loff_t *ppos)
1468 {
1469         char *buf;
1470         int ret;
1471
1472         buf = kasprintf(GFP_KERNEL, "%s %s %s\n%d %d %d %d %d %d %d %d %d %d\n",
1473                 "max_concur plugged_delay plugsb4reset timeoutsb4reset",
1474                 "ipi_reset_limit complete_threshold congested_response_us",
1475                 "congested_reps disabled_period giveup_limit",
1476                 max_concurr, plugged_delay, plugsb4reset,
1477                 timeoutsb4reset, ipi_reset_limit, complete_threshold,
1478                 congested_respns_us, congested_reps, disabled_period,
1479                 giveup_limit);
1480
1481         if (!buf)
1482                 return -ENOMEM;
1483
1484         ret = simple_read_from_buffer(userbuf, count, ppos, buf, strlen(buf));
1485         kfree(buf);
1486         return ret;
1487 }
1488
1489 /*
1490  * handle a write to /proc/sgi_uv/ptc_statistics
1491  * -1: reset the statistics
1492  *  0: display meaning of the statistics
1493  */
1494 static ssize_t ptc_proc_write(struct file *file, const char __user *user,
1495                                 size_t count, loff_t *data)
1496 {
1497         int cpu;
1498         int i;
1499         int elements;
1500         long input_arg;
1501         char optstr[64];
1502         struct ptc_stats *stat;
1503
1504         if (count == 0 || count > sizeof(optstr))
1505                 return -EINVAL;
1506         if (copy_from_user(optstr, user, count))
1507                 return -EFAULT;
1508         optstr[count - 1] = '\0';
1509
1510         if (!strcmp(optstr, "on")) {
1511                 set_bau_on();
1512                 return count;
1513         } else if (!strcmp(optstr, "off")) {
1514                 set_bau_off();
1515                 return count;
1516         }
1517
1518         if (kstrtol(optstr, 10, &input_arg) < 0) {
1519                 pr_debug("%s is invalid\n", optstr);
1520                 return -EINVAL;
1521         }
1522
1523         if (input_arg == 0) {
1524                 elements = ARRAY_SIZE(stat_description);
1525                 pr_debug("# cpu:      cpu number\n");
1526                 pr_debug("Sender statistics:\n");
1527                 for (i = 0; i < elements; i++)
1528                         pr_debug("%s\n", stat_description[i]);
1529         } else if (input_arg == -1) {
1530                 for_each_present_cpu(cpu) {
1531                         stat = &per_cpu(ptcstats, cpu);
1532                         memset(stat, 0, sizeof(struct ptc_stats));
1533                 }
1534         }
1535
1536         return count;
1537 }
1538
1539 static int local_atoi(const char *name)
1540 {
1541         int val = 0;
1542
1543         for (;; name++) {
1544                 switch (*name) {
1545                 case '0' ... '9':
1546                         val = 10*val+(*name-'0');
1547                         break;
1548                 default:
1549                         return val;
1550                 }
1551         }
1552 }
1553
1554 /*
1555  * Parse the values written to /sys/kernel/debug/sgi_uv/bau_tunables.
1556  * Zero values reset them to defaults.
1557  */
1558 static int parse_tunables_write(struct bau_control *bcp, char *instr,
1559                                 int count)
1560 {
1561         char *p;
1562         char *q;
1563         int cnt = 0;
1564         int val;
1565         int e = ARRAY_SIZE(tunables);
1566
1567         p = instr + strspn(instr, WHITESPACE);
1568         q = p;
1569         for (; *p; p = q + strspn(q, WHITESPACE)) {
1570                 q = p + strcspn(p, WHITESPACE);
1571                 cnt++;
1572                 if (q == p)
1573                         break;
1574         }
1575         if (cnt != e) {
1576                 pr_info("bau tunable error: should be %d values\n", e);
1577                 return -EINVAL;
1578         }
1579
1580         p = instr + strspn(instr, WHITESPACE);
1581         q = p;
1582         for (cnt = 0; *p; p = q + strspn(q, WHITESPACE), cnt++) {
1583                 q = p + strcspn(p, WHITESPACE);
1584                 val = local_atoi(p);
1585                 switch (cnt) {
1586                 case 0:
1587                         if (val == 0) {
1588                                 max_concurr = MAX_BAU_CONCURRENT;
1589                                 max_concurr_const = MAX_BAU_CONCURRENT;
1590                                 continue;
1591                         }
1592                         if (val < 1 || val > bcp->cpus_in_uvhub) {
1593                                 pr_debug(
1594                                 "Error: BAU max concurrent %d is invalid\n",
1595                                 val);
1596                                 return -EINVAL;
1597                         }
1598                         max_concurr = val;
1599                         max_concurr_const = val;
1600                         continue;
1601                 default:
1602                         if (val == 0)
1603                                 *tunables[cnt].tunp = tunables[cnt].deflt;
1604                         else
1605                                 *tunables[cnt].tunp = val;
1606                         continue;
1607                 }
1608         }
1609         return 0;
1610 }
1611
1612 /*
1613  * Handle a write to debugfs. (/sys/kernel/debug/sgi_uv/bau_tunables)
1614  */
1615 static ssize_t tunables_write(struct file *file, const char __user *user,
1616                                 size_t count, loff_t *data)
1617 {
1618         int cpu;
1619         int ret;
1620         char instr[100];
1621         struct bau_control *bcp;
1622
1623         if (count == 0 || count > sizeof(instr)-1)
1624                 return -EINVAL;
1625         if (copy_from_user(instr, user, count))
1626                 return -EFAULT;
1627
1628         instr[count] = '\0';
1629
1630         cpu = get_cpu();
1631         bcp = &per_cpu(bau_control, cpu);
1632         ret = parse_tunables_write(bcp, instr, count);
1633         put_cpu();
1634         if (ret)
1635                 return ret;
1636
1637         for_each_present_cpu(cpu) {
1638                 bcp = &per_cpu(bau_control, cpu);
1639                 bcp->max_concurr         = max_concurr;
1640                 bcp->max_concurr_const   = max_concurr;
1641                 bcp->plugged_delay       = plugged_delay;
1642                 bcp->plugsb4reset        = plugsb4reset;
1643                 bcp->timeoutsb4reset     = timeoutsb4reset;
1644                 bcp->ipi_reset_limit     = ipi_reset_limit;
1645                 bcp->complete_threshold  = complete_threshold;
1646                 bcp->cong_response_us    = congested_respns_us;
1647                 bcp->cong_reps           = congested_reps;
1648                 bcp->disabled_period     = sec_2_cycles(disabled_period);
1649                 bcp->giveup_limit        = giveup_limit;
1650         }
1651         return count;
1652 }
1653
1654 static const struct seq_operations uv_ptc_seq_ops = {
1655         .start          = ptc_seq_start,
1656         .next           = ptc_seq_next,
1657         .stop           = ptc_seq_stop,
1658         .show           = ptc_seq_show
1659 };
1660
1661 static int ptc_proc_open(struct inode *inode, struct file *file)
1662 {
1663         return seq_open(file, &uv_ptc_seq_ops);
1664 }
1665
1666 static int tunables_open(struct inode *inode, struct file *file)
1667 {
1668         return 0;
1669 }
1670
1671 static const struct proc_ops uv_ptc_proc_ops = {
1672         .proc_open      = ptc_proc_open,
1673         .proc_read      = seq_read,
1674         .proc_write     = ptc_proc_write,
1675         .proc_lseek     = seq_lseek,
1676         .proc_release   = seq_release,
1677 };
1678
1679 static const struct file_operations tunables_fops = {
1680         .open           = tunables_open,
1681         .read           = tunables_read,
1682         .write          = tunables_write,
1683         .llseek         = default_llseek,
1684 };
1685
1686 static int __init uv_ptc_init(void)
1687 {
1688         struct proc_dir_entry *proc_uv_ptc;
1689
1690         if (!is_uv_system())
1691                 return 0;
1692
1693         proc_uv_ptc = proc_create(UV_PTC_BASENAME, 0444, NULL,
1694                                   &uv_ptc_proc_ops);
1695         if (!proc_uv_ptc) {
1696                 pr_err("unable to create %s proc entry\n",
1697                        UV_PTC_BASENAME);
1698                 return -EINVAL;
1699         }
1700
1701         tunables_dir = debugfs_create_dir(UV_BAU_TUNABLES_DIR, NULL);
1702         debugfs_create_file(UV_BAU_TUNABLES_FILE, 0600, tunables_dir, NULL,
1703                             &tunables_fops);
1704         return 0;
1705 }
1706
1707 /*
1708  * Initialize the sending side's sending buffers.
1709  */
1710 static void activation_descriptor_init(int node, int pnode, int base_pnode)
1711 {
1712         int i;
1713         int cpu;
1714         int uv1 = 0;
1715         unsigned long gpa;
1716         unsigned long m;
1717         unsigned long n;
1718         size_t dsize;
1719         struct bau_desc *bau_desc;
1720         struct bau_desc *bd2;
1721         struct uv1_bau_msg_header *uv1_hdr;
1722         struct uv2_3_bau_msg_header *uv2_3_hdr;
1723         struct bau_control *bcp;
1724
1725         /*
1726          * each bau_desc is 64 bytes; there are 8 (ITEMS_PER_DESC)
1727          * per cpu; and one per cpu on the uvhub (ADP_SZ)
1728          */
1729         dsize = sizeof(struct bau_desc) * ADP_SZ * ITEMS_PER_DESC;
1730         bau_desc = kmalloc_node(dsize, GFP_KERNEL, node);
1731         BUG_ON(!bau_desc);
1732
1733         gpa = uv_gpa(bau_desc);
1734         n = uv_gpa_to_gnode(gpa);
1735         m = ops.bau_gpa_to_offset(gpa);
1736         if (is_uv1_hub())
1737                 uv1 = 1;
1738
1739         /* the 14-bit pnode */
1740         write_mmr_descriptor_base(pnode,
1741                 (n << UVH_LB_BAU_SB_DESCRIPTOR_BASE_NODE_ID_SHFT | m));
1742         /*
1743          * Initializing all 8 (ITEMS_PER_DESC) descriptors for each
1744          * cpu even though we only use the first one; one descriptor can
1745          * describe a broadcast to 256 uv hubs.
1746          */
1747         for (i = 0, bd2 = bau_desc; i < (ADP_SZ * ITEMS_PER_DESC); i++, bd2++) {
1748                 memset(bd2, 0, sizeof(struct bau_desc));
1749                 if (uv1) {
1750                         uv1_hdr = &bd2->header.uv1_hdr;
1751                         uv1_hdr->swack_flag = 1;
1752                         /*
1753                          * The base_dest_nasid set in the message header
1754                          * is the nasid of the first uvhub in the partition.
1755                          * The bit map will indicate destination pnode numbers
1756                          * relative to that base. They may not be consecutive
1757                          * if nasid striding is being used.
1758                          */
1759                         uv1_hdr->base_dest_nasid =
1760                                                   UV_PNODE_TO_NASID(base_pnode);
1761                         uv1_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1762                         uv1_hdr->command         = UV_NET_ENDPOINT_INTD;
1763                         uv1_hdr->int_both        = 1;
1764                         /*
1765                          * all others need to be set to zero:
1766                          *   fairness chaining multilevel count replied_to
1767                          */
1768                 } else {
1769                         /*
1770                          * BIOS uses legacy mode, but uv2 and uv3 hardware always
1771                          * uses native mode for selective broadcasts.
1772                          */
1773                         uv2_3_hdr = &bd2->header.uv2_3_hdr;
1774                         uv2_3_hdr->swack_flag      = 1;
1775                         uv2_3_hdr->base_dest_nasid =
1776                                                   UV_PNODE_TO_NASID(base_pnode);
1777                         uv2_3_hdr->dest_subnodeid  = UV_LB_SUBNODEID;
1778                         uv2_3_hdr->command         = UV_NET_ENDPOINT_INTD;
1779                 }
1780         }
1781         for_each_present_cpu(cpu) {
1782                 if (pnode != uv_blade_to_pnode(uv_cpu_to_blade_id(cpu)))
1783                         continue;
1784                 bcp = &per_cpu(bau_control, cpu);
1785                 bcp->descriptor_base = bau_desc;
1786         }
1787 }
1788
1789 /*
1790  * initialize the destination side's receiving buffers
1791  * entered for each uvhub in the partition
1792  * - node is first node (kernel memory notion) on the uvhub
1793  * - pnode is the uvhub's physical identifier
1794  */
1795 static void pq_init(int node, int pnode)
1796 {
1797         int cpu;
1798         size_t plsize;
1799         char *cp;
1800         void *vp;
1801         unsigned long gnode, first, last, tail;
1802         struct bau_pq_entry *pqp;
1803         struct bau_control *bcp;
1804
1805         plsize = (DEST_Q_SIZE + 1) * sizeof(struct bau_pq_entry);
1806         vp = kmalloc_node(plsize, GFP_KERNEL, node);
1807         BUG_ON(!vp);
1808
1809         pqp = (struct bau_pq_entry *)vp;
1810         cp = (char *)pqp + 31;
1811         pqp = (struct bau_pq_entry *)(((unsigned long)cp >> 5) << 5);
1812
1813         for_each_present_cpu(cpu) {
1814                 if (pnode != uv_cpu_to_pnode(cpu))
1815                         continue;
1816                 /* for every cpu on this pnode: */
1817                 bcp = &per_cpu(bau_control, cpu);
1818                 bcp->queue_first        = pqp;
1819                 bcp->bau_msg_head       = pqp;
1820                 bcp->queue_last         = pqp + (DEST_Q_SIZE - 1);
1821         }
1822
1823         first = ops.bau_gpa_to_offset(uv_gpa(pqp));
1824         last = ops.bau_gpa_to_offset(uv_gpa(pqp + (DEST_Q_SIZE - 1)));
1825
1826         /*
1827          * Pre UV4, the gnode is required to locate the payload queue
1828          * and the payload queue tail must be maintained by the kernel.
1829          */
1830         bcp = &per_cpu(bau_control, smp_processor_id());
1831         if (bcp->uvhub_version <= UV_BAU_V3) {
1832                 tail = first;
1833                 gnode = uv_gpa_to_gnode(uv_gpa(pqp));
1834                 first = (gnode << UV_PAYLOADQ_GNODE_SHIFT) | tail;
1835                 write_mmr_payload_tail(pnode, tail);
1836         }
1837
1838         ops.write_payload_first(pnode, first);
1839         ops.write_payload_last(pnode, last);
1840
1841         /* in effect, all msg_type's are set to MSG_NOOP */
1842         memset(pqp, 0, sizeof(struct bau_pq_entry) * DEST_Q_SIZE);
1843 }
1844
1845 /*
1846  * Initialization of each UV hub's structures
1847  */
1848 static void __init init_uvhub(int uvhub, int vector, int base_pnode)
1849 {
1850         int node;
1851         int pnode;
1852         unsigned long apicid;
1853
1854         node = uvhub_to_first_node(uvhub);
1855         pnode = uv_blade_to_pnode(uvhub);
1856
1857         activation_descriptor_init(node, pnode, base_pnode);
1858
1859         pq_init(node, pnode);
1860         /*
1861          * The below initialization can't be in firmware because the
1862          * messaging IRQ will be determined by the OS.
1863          */
1864         apicid = uvhub_to_first_apicid(uvhub) | uv_apicid_hibits;
1865         write_mmr_data_config(pnode, ((apicid << 32) | vector));
1866 }
1867
1868 /*
1869  * We will set BAU_MISC_CONTROL with a timeout period.
1870  * But the BIOS has set UVH_AGING_PRESCALE_SEL and UVH_TRANSACTION_TIMEOUT.
1871  * So the destination timeout period has to be calculated from them.
1872  */
1873 static int calculate_destination_timeout(void)
1874 {
1875         unsigned long mmr_image;
1876         int mult1;
1877         int mult2;
1878         int index;
1879         int base;
1880         int ret;
1881         unsigned long ts_ns;
1882
1883         if (is_uv1_hub()) {
1884                 mult1 = SOFTACK_TIMEOUT_PERIOD & BAU_MISC_CONTROL_MULT_MASK;
1885                 mmr_image = uv_read_local_mmr(UVH_AGING_PRESCALE_SEL);
1886                 index = (mmr_image >> BAU_URGENCY_7_SHIFT) & BAU_URGENCY_7_MASK;
1887                 mmr_image = uv_read_local_mmr(UVH_TRANSACTION_TIMEOUT);
1888                 mult2 = (mmr_image >> BAU_TRANS_SHIFT) & BAU_TRANS_MASK;
1889                 ts_ns = timeout_base_ns[index];
1890                 ts_ns *= (mult1 * mult2);
1891                 ret = ts_ns / 1000;
1892         } else {
1893                 /* same destination timeout for uv2 and uv3 */
1894                 /* 4 bits  0/1 for 10/80us base, 3 bits of multiplier */
1895                 mmr_image = uv_read_local_mmr(UVH_LB_BAU_MISC_CONTROL);
1896                 mmr_image = (mmr_image & UV_SA_MASK) >> UV_SA_SHFT;
1897                 if (mmr_image & (1L << UV2_ACK_UNITS_SHFT))
1898                         base = 80;
1899                 else
1900                         base = 10;
1901                 mult1 = mmr_image & UV2_ACK_MASK;
1902                 ret = mult1 * base;
1903         }
1904         return ret;
1905 }
1906
1907 static void __init init_per_cpu_tunables(void)
1908 {
1909         int cpu;
1910         struct bau_control *bcp;
1911
1912         for_each_present_cpu(cpu) {
1913                 bcp = &per_cpu(bau_control, cpu);
1914                 bcp->baudisabled                = 0;
1915                 if (nobau)
1916                         bcp->nobau              = true;
1917                 bcp->statp                      = &per_cpu(ptcstats, cpu);
1918                 /* time interval to catch a hardware stay-busy bug */
1919                 bcp->timeout_interval           = usec_2_cycles(2*timeout_us);
1920                 bcp->max_concurr                = max_concurr;
1921                 bcp->max_concurr_const          = max_concurr;
1922                 bcp->plugged_delay              = plugged_delay;
1923                 bcp->plugsb4reset               = plugsb4reset;
1924                 bcp->timeoutsb4reset            = timeoutsb4reset;
1925                 bcp->ipi_reset_limit            = ipi_reset_limit;
1926                 bcp->complete_threshold         = complete_threshold;
1927                 bcp->cong_response_us           = congested_respns_us;
1928                 bcp->cong_reps                  = congested_reps;
1929                 bcp->disabled_period            = sec_2_cycles(disabled_period);
1930                 bcp->giveup_limit               = giveup_limit;
1931                 spin_lock_init(&bcp->queue_lock);
1932                 spin_lock_init(&bcp->uvhub_lock);
1933                 spin_lock_init(&bcp->disable_lock);
1934         }
1935 }
1936
1937 /*
1938  * Scan all cpus to collect blade and socket summaries.
1939  */
1940 static int __init get_cpu_topology(int base_pnode,
1941                                         struct uvhub_desc *uvhub_descs,
1942                                         unsigned char *uvhub_mask)
1943 {
1944         int cpu;
1945         int pnode;
1946         int uvhub;
1947         int socket;
1948         struct bau_control *bcp;
1949         struct uvhub_desc *bdp;
1950         struct socket_desc *sdp;
1951
1952         for_each_present_cpu(cpu) {
1953                 bcp = &per_cpu(bau_control, cpu);
1954
1955                 memset(bcp, 0, sizeof(struct bau_control));
1956
1957                 pnode = uv_cpu_hub_info(cpu)->pnode;
1958                 if ((pnode - base_pnode) >= UV_DISTRIBUTION_SIZE) {
1959                         pr_emerg(
1960                                 "cpu %d pnode %d-%d beyond %d; BAU disabled\n",
1961                                 cpu, pnode, base_pnode, UV_DISTRIBUTION_SIZE);
1962                         return 1;
1963                 }
1964
1965                 bcp->osnode = cpu_to_node(cpu);
1966                 bcp->partition_base_pnode = base_pnode;
1967
1968                 uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
1969                 *(uvhub_mask + (uvhub/8)) |= (1 << (uvhub%8));
1970                 bdp = &uvhub_descs[uvhub];
1971
1972                 bdp->num_cpus++;
1973                 bdp->uvhub = uvhub;
1974                 bdp->pnode = pnode;
1975
1976                 /* kludge: 'assuming' one node per socket, and assuming that
1977                    disabling a socket just leaves a gap in node numbers */
1978                 socket = bcp->osnode & 1;
1979                 bdp->socket_mask |= (1 << socket);
1980                 sdp = &bdp->socket[socket];
1981                 sdp->cpu_number[sdp->num_cpus] = cpu;
1982                 sdp->num_cpus++;
1983                 if (sdp->num_cpus > MAX_CPUS_PER_SOCKET) {
1984                         pr_emerg("%d cpus per socket invalid\n",
1985                                 sdp->num_cpus);
1986                         return 1;
1987                 }
1988         }
1989         return 0;
1990 }
1991
1992 /*
1993  * Each socket is to get a local array of pnodes/hubs.
1994  */
1995 static void make_per_cpu_thp(struct bau_control *smaster)
1996 {
1997         int cpu;
1998         size_t hpsz = sizeof(struct hub_and_pnode) * num_possible_cpus();
1999
2000         smaster->thp = kzalloc_node(hpsz, GFP_KERNEL, smaster->osnode);
2001         for_each_present_cpu(cpu) {
2002                 smaster->thp[cpu].pnode = uv_cpu_hub_info(cpu)->pnode;
2003                 smaster->thp[cpu].uvhub = uv_cpu_hub_info(cpu)->numa_blade_id;
2004         }
2005 }
2006
2007 /*
2008  * Each uvhub is to get a local cpumask.
2009  */
2010 static void make_per_hub_cpumask(struct bau_control *hmaster)
2011 {
2012         int sz = sizeof(cpumask_t);
2013
2014         hmaster->cpumask = kzalloc_node(sz, GFP_KERNEL, hmaster->osnode);
2015 }
2016
2017 /*
2018  * Initialize all the per_cpu information for the cpu's on a given socket,
2019  * given what has been gathered into the socket_desc struct.
2020  * And reports the chosen hub and socket masters back to the caller.
2021  */
2022 static int scan_sock(struct socket_desc *sdp, struct uvhub_desc *bdp,
2023                         struct bau_control **smasterp,
2024                         struct bau_control **hmasterp)
2025 {
2026         int i, cpu, uvhub_cpu;
2027         struct bau_control *bcp;
2028
2029         for (i = 0; i < sdp->num_cpus; i++) {
2030                 cpu = sdp->cpu_number[i];
2031                 bcp = &per_cpu(bau_control, cpu);
2032                 bcp->cpu = cpu;
2033                 if (i == 0) {
2034                         *smasterp = bcp;
2035                         if (!(*hmasterp))
2036                                 *hmasterp = bcp;
2037                 }
2038                 bcp->cpus_in_uvhub = bdp->num_cpus;
2039                 bcp->cpus_in_socket = sdp->num_cpus;
2040                 bcp->socket_master = *smasterp;
2041                 bcp->uvhub = bdp->uvhub;
2042                 if (is_uv1_hub())
2043                         bcp->uvhub_version = UV_BAU_V1;
2044                 else if (is_uv2_hub())
2045                         bcp->uvhub_version = UV_BAU_V2;
2046                 else if (is_uv3_hub())
2047                         bcp->uvhub_version = UV_BAU_V3;
2048                 else if (is_uv4_hub())
2049                         bcp->uvhub_version = UV_BAU_V4;
2050                 else {
2051                         pr_emerg("uvhub version not 1, 2, 3, or 4\n");
2052                         return 1;
2053                 }
2054                 bcp->uvhub_master = *hmasterp;
2055                 uvhub_cpu = uv_cpu_blade_processor_id(cpu);
2056                 bcp->uvhub_cpu = uvhub_cpu;
2057
2058                 /*
2059                  * The ERROR and BUSY status registers are located pairwise over
2060                  * the STATUS_0 and STATUS_1 mmrs; each an array[32] of 2 bits.
2061                  */
2062                 if (uvhub_cpu < UV_CPUS_PER_AS) {
2063                         bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_0;
2064                         bcp->status_index = uvhub_cpu * UV_ACT_STATUS_SIZE;
2065                 } else {
2066                         bcp->status_mmr = UVH_LB_BAU_SB_ACTIVATION_STATUS_1;
2067                         bcp->status_index = (uvhub_cpu - UV_CPUS_PER_AS)
2068                                                 * UV_ACT_STATUS_SIZE;
2069                 }
2070
2071                 if (bcp->uvhub_cpu >= MAX_CPUS_PER_UVHUB) {
2072                         pr_emerg("%d cpus per uvhub invalid\n",
2073                                 bcp->uvhub_cpu);
2074                         return 1;
2075                 }
2076         }
2077         return 0;
2078 }
2079
2080 /*
2081  * Summarize the blade and socket topology into the per_cpu structures.
2082  */
2083 static int __init summarize_uvhub_sockets(int nuvhubs,
2084                         struct uvhub_desc *uvhub_descs,
2085                         unsigned char *uvhub_mask)
2086 {
2087         int socket;
2088         int uvhub;
2089         unsigned short socket_mask;
2090
2091         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2092                 struct uvhub_desc *bdp;
2093                 struct bau_control *smaster = NULL;
2094                 struct bau_control *hmaster = NULL;
2095
2096                 if (!(*(uvhub_mask + (uvhub/8)) & (1 << (uvhub%8))))
2097                         continue;
2098
2099                 bdp = &uvhub_descs[uvhub];
2100                 socket_mask = bdp->socket_mask;
2101                 socket = 0;
2102                 while (socket_mask) {
2103                         struct socket_desc *sdp;
2104                         if ((socket_mask & 1)) {
2105                                 sdp = &bdp->socket[socket];
2106                                 if (scan_sock(sdp, bdp, &smaster, &hmaster))
2107                                         return 1;
2108                                 make_per_cpu_thp(smaster);
2109                         }
2110                         socket++;
2111                         socket_mask = (socket_mask >> 1);
2112                 }
2113                 make_per_hub_cpumask(hmaster);
2114         }
2115         return 0;
2116 }
2117
2118 /*
2119  * initialize the bau_control structure for each cpu
2120  */
2121 static int __init init_per_cpu(int nuvhubs, int base_part_pnode)
2122 {
2123         struct uvhub_desc *uvhub_descs;
2124         unsigned char *uvhub_mask = NULL;
2125
2126         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2127                 timeout_us = calculate_destination_timeout();
2128
2129         uvhub_descs = kcalloc(nuvhubs, sizeof(struct uvhub_desc), GFP_KERNEL);
2130         if (!uvhub_descs)
2131                 goto fail;
2132
2133         uvhub_mask = kzalloc((nuvhubs+7)/8, GFP_KERNEL);
2134         if (!uvhub_mask)
2135                 goto fail;
2136
2137         if (get_cpu_topology(base_part_pnode, uvhub_descs, uvhub_mask))
2138                 goto fail;
2139
2140         if (summarize_uvhub_sockets(nuvhubs, uvhub_descs, uvhub_mask))
2141                 goto fail;
2142
2143         kfree(uvhub_descs);
2144         kfree(uvhub_mask);
2145         init_per_cpu_tunables();
2146         return 0;
2147
2148 fail:
2149         kfree(uvhub_descs);
2150         kfree(uvhub_mask);
2151         return 1;
2152 }
2153
2154 static const struct bau_operations uv1_bau_ops __initconst = {
2155         .bau_gpa_to_offset       = uv_gpa_to_offset,
2156         .read_l_sw_ack           = read_mmr_sw_ack,
2157         .read_g_sw_ack           = read_gmmr_sw_ack,
2158         .write_l_sw_ack          = write_mmr_sw_ack,
2159         .write_g_sw_ack          = write_gmmr_sw_ack,
2160         .write_payload_first     = write_mmr_payload_first,
2161         .write_payload_last      = write_mmr_payload_last,
2162         .wait_completion         = uv1_wait_completion,
2163 };
2164
2165 static const struct bau_operations uv2_3_bau_ops __initconst = {
2166         .bau_gpa_to_offset       = uv_gpa_to_offset,
2167         .read_l_sw_ack           = read_mmr_sw_ack,
2168         .read_g_sw_ack           = read_gmmr_sw_ack,
2169         .write_l_sw_ack          = write_mmr_sw_ack,
2170         .write_g_sw_ack          = write_gmmr_sw_ack,
2171         .write_payload_first     = write_mmr_payload_first,
2172         .write_payload_last      = write_mmr_payload_last,
2173         .wait_completion         = uv2_3_wait_completion,
2174 };
2175
2176 static const struct bau_operations uv4_bau_ops __initconst = {
2177         .bau_gpa_to_offset       = uv_gpa_to_soc_phys_ram,
2178         .read_l_sw_ack           = read_mmr_proc_sw_ack,
2179         .read_g_sw_ack           = read_gmmr_proc_sw_ack,
2180         .write_l_sw_ack          = write_mmr_proc_sw_ack,
2181         .write_g_sw_ack          = write_gmmr_proc_sw_ack,
2182         .write_payload_first     = write_mmr_proc_payload_first,
2183         .write_payload_last      = write_mmr_proc_payload_last,
2184         .wait_completion         = uv4_wait_completion,
2185 };
2186
2187 /*
2188  * Initialization of BAU-related structures
2189  */
2190 static int __init uv_bau_init(void)
2191 {
2192         int uvhub;
2193         int pnode;
2194         int nuvhubs;
2195         int cur_cpu;
2196         int cpus;
2197         int vector;
2198         cpumask_var_t *mask;
2199
2200         if (!is_uv_system())
2201                 return 0;
2202
2203         if (is_uv4_hub())
2204                 ops = uv4_bau_ops;
2205         else if (is_uv3_hub())
2206                 ops = uv2_3_bau_ops;
2207         else if (is_uv2_hub())
2208                 ops = uv2_3_bau_ops;
2209         else if (is_uv1_hub())
2210                 ops = uv1_bau_ops;
2211
2212         nuvhubs = uv_num_possible_blades();
2213         if (nuvhubs < 2) {
2214                 pr_crit("UV: BAU disabled - insufficient hub count\n");
2215                 goto err_bau_disable;
2216         }
2217
2218         for_each_possible_cpu(cur_cpu) {
2219                 mask = &per_cpu(uv_flush_tlb_mask, cur_cpu);
2220                 zalloc_cpumask_var_node(mask, GFP_KERNEL, cpu_to_node(cur_cpu));
2221         }
2222
2223         uv_base_pnode = 0x7fffffff;
2224         for (uvhub = 0; uvhub < nuvhubs; uvhub++) {
2225                 cpus = uv_blade_nr_possible_cpus(uvhub);
2226                 if (cpus && (uv_blade_to_pnode(uvhub) < uv_base_pnode))
2227                         uv_base_pnode = uv_blade_to_pnode(uvhub);
2228         }
2229
2230         /* software timeouts are not supported on UV4 */
2231         if (is_uv3_hub() || is_uv2_hub() || is_uv1_hub())
2232                 enable_timeouts();
2233
2234         if (init_per_cpu(nuvhubs, uv_base_pnode)) {
2235                 pr_crit("UV: BAU disabled - per CPU init failed\n");
2236                 goto err_bau_disable;
2237         }
2238
2239         vector = UV_BAU_MESSAGE;
2240         for_each_possible_blade(uvhub) {
2241                 if (uv_blade_nr_possible_cpus(uvhub))
2242                         init_uvhub(uvhub, vector, uv_base_pnode);
2243         }
2244
2245         for_each_possible_blade(uvhub) {
2246                 if (uv_blade_nr_possible_cpus(uvhub)) {
2247                         unsigned long val;
2248                         unsigned long mmr;
2249                         pnode = uv_blade_to_pnode(uvhub);
2250                         /* INIT the bau */
2251                         val = 1L << 63;
2252                         write_gmmr_activation(pnode, val);
2253                         mmr = 1; /* should be 1 to broadcast to both sockets */
2254                         if (!is_uv1_hub())
2255                                 write_mmr_data_broadcast(pnode, mmr);
2256                 }
2257         }
2258
2259         return 0;
2260
2261 err_bau_disable:
2262
2263         for_each_possible_cpu(cur_cpu)
2264                 free_cpumask_var(per_cpu(uv_flush_tlb_mask, cur_cpu));
2265
2266         set_bau_off();
2267         nobau_perm = 1;
2268
2269         return -EINVAL;
2270 }
2271 core_initcall(uv_bau_init);
2272 fs_initcall(uv_ptc_init);