Linux-libre 4.19.8-gnu
[librecmc/linux-libre.git] / arch / x86 / mm / tlb.c
1 #include <linux/init.h>
2
3 #include <linux/mm.h>
4 #include <linux/spinlock.h>
5 #include <linux/smp.h>
6 #include <linux/interrupt.h>
7 #include <linux/export.h>
8 #include <linux/cpu.h>
9 #include <linux/debugfs.h>
10
11 #include <asm/tlbflush.h>
12 #include <asm/mmu_context.h>
13 #include <asm/nospec-branch.h>
14 #include <asm/cache.h>
15 #include <asm/apic.h>
16 #include <asm/uv/uv.h>
17
18 /*
19  *      TLB flushing, formerly SMP-only
20  *              c/o Linus Torvalds.
21  *
22  *      These mean you can really definitely utterly forget about
23  *      writing to user space from interrupts. (Its not allowed anyway).
24  *
25  *      Optimizations Manfred Spraul <manfred@colorfullife.com>
26  *
27  *      More scalable flush, from Andi Kleen
28  *
29  *      Implement flush IPI by CALL_FUNCTION_VECTOR, Alex Shi
30  */
31
32 /*
33  * Use bit 0 to mangle the TIF_SPEC_IB state into the mm pointer which is
34  * stored in cpu_tlb_state.last_user_mm_ibpb.
35  */
36 #define LAST_USER_MM_IBPB       0x1UL
37
38 /*
39  * We get here when we do something requiring a TLB invalidation
40  * but could not go invalidate all of the contexts.  We do the
41  * necessary invalidation by clearing out the 'ctx_id' which
42  * forces a TLB flush when the context is loaded.
43  */
44 static void clear_asid_other(void)
45 {
46         u16 asid;
47
48         /*
49          * This is only expected to be set if we have disabled
50          * kernel _PAGE_GLOBAL pages.
51          */
52         if (!static_cpu_has(X86_FEATURE_PTI)) {
53                 WARN_ON_ONCE(1);
54                 return;
55         }
56
57         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
58                 /* Do not need to flush the current asid */
59                 if (asid == this_cpu_read(cpu_tlbstate.loaded_mm_asid))
60                         continue;
61                 /*
62                  * Make sure the next time we go to switch to
63                  * this asid, we do a flush:
64                  */
65                 this_cpu_write(cpu_tlbstate.ctxs[asid].ctx_id, 0);
66         }
67         this_cpu_write(cpu_tlbstate.invalidate_other, false);
68 }
69
70 atomic64_t last_mm_ctx_id = ATOMIC64_INIT(1);
71
72
73 static void choose_new_asid(struct mm_struct *next, u64 next_tlb_gen,
74                             u16 *new_asid, bool *need_flush)
75 {
76         u16 asid;
77
78         if (!static_cpu_has(X86_FEATURE_PCID)) {
79                 *new_asid = 0;
80                 *need_flush = true;
81                 return;
82         }
83
84         if (this_cpu_read(cpu_tlbstate.invalidate_other))
85                 clear_asid_other();
86
87         for (asid = 0; asid < TLB_NR_DYN_ASIDS; asid++) {
88                 if (this_cpu_read(cpu_tlbstate.ctxs[asid].ctx_id) !=
89                     next->context.ctx_id)
90                         continue;
91
92                 *new_asid = asid;
93                 *need_flush = (this_cpu_read(cpu_tlbstate.ctxs[asid].tlb_gen) <
94                                next_tlb_gen);
95                 return;
96         }
97
98         /*
99          * We don't currently own an ASID slot on this CPU.
100          * Allocate a slot.
101          */
102         *new_asid = this_cpu_add_return(cpu_tlbstate.next_asid, 1) - 1;
103         if (*new_asid >= TLB_NR_DYN_ASIDS) {
104                 *new_asid = 0;
105                 this_cpu_write(cpu_tlbstate.next_asid, 1);
106         }
107         *need_flush = true;
108 }
109
110 static void load_new_mm_cr3(pgd_t *pgdir, u16 new_asid, bool need_flush)
111 {
112         unsigned long new_mm_cr3;
113
114         if (need_flush) {
115                 invalidate_user_asid(new_asid);
116                 new_mm_cr3 = build_cr3(pgdir, new_asid);
117         } else {
118                 new_mm_cr3 = build_cr3_noflush(pgdir, new_asid);
119         }
120
121         /*
122          * Caution: many callers of this function expect
123          * that load_cr3() is serializing and orders TLB
124          * fills with respect to the mm_cpumask writes.
125          */
126         write_cr3(new_mm_cr3);
127 }
128
129 void leave_mm(int cpu)
130 {
131         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
132
133         /*
134          * It's plausible that we're in lazy TLB mode while our mm is init_mm.
135          * If so, our callers still expect us to flush the TLB, but there
136          * aren't any user TLB entries in init_mm to worry about.
137          *
138          * This needs to happen before any other sanity checks due to
139          * intel_idle's shenanigans.
140          */
141         if (loaded_mm == &init_mm)
142                 return;
143
144         /* Warn if we're not lazy. */
145         WARN_ON(!this_cpu_read(cpu_tlbstate.is_lazy));
146
147         switch_mm(NULL, &init_mm, NULL);
148 }
149 EXPORT_SYMBOL_GPL(leave_mm);
150
151 void switch_mm(struct mm_struct *prev, struct mm_struct *next,
152                struct task_struct *tsk)
153 {
154         unsigned long flags;
155
156         local_irq_save(flags);
157         switch_mm_irqs_off(prev, next, tsk);
158         local_irq_restore(flags);
159 }
160
161 static void sync_current_stack_to_mm(struct mm_struct *mm)
162 {
163         unsigned long sp = current_stack_pointer;
164         pgd_t *pgd = pgd_offset(mm, sp);
165
166         if (pgtable_l5_enabled()) {
167                 if (unlikely(pgd_none(*pgd))) {
168                         pgd_t *pgd_ref = pgd_offset_k(sp);
169
170                         set_pgd(pgd, *pgd_ref);
171                 }
172         } else {
173                 /*
174                  * "pgd" is faked.  The top level entries are "p4d"s, so sync
175                  * the p4d.  This compiles to approximately the same code as
176                  * the 5-level case.
177                  */
178                 p4d_t *p4d = p4d_offset(pgd, sp);
179
180                 if (unlikely(p4d_none(*p4d))) {
181                         pgd_t *pgd_ref = pgd_offset_k(sp);
182                         p4d_t *p4d_ref = p4d_offset(pgd_ref, sp);
183
184                         set_p4d(p4d, *p4d_ref);
185                 }
186         }
187 }
188
189 static inline unsigned long mm_mangle_tif_spec_ib(struct task_struct *next)
190 {
191         unsigned long next_tif = task_thread_info(next)->flags;
192         unsigned long ibpb = (next_tif >> TIF_SPEC_IB) & LAST_USER_MM_IBPB;
193
194         return (unsigned long)next->mm | ibpb;
195 }
196
197 static void cond_ibpb(struct task_struct *next)
198 {
199         if (!next || !next->mm)
200                 return;
201
202         /*
203          * Both, the conditional and the always IBPB mode use the mm
204          * pointer to avoid the IBPB when switching between tasks of the
205          * same process. Using the mm pointer instead of mm->context.ctx_id
206          * opens a hypothetical hole vs. mm_struct reuse, which is more or
207          * less impossible to control by an attacker. Aside of that it
208          * would only affect the first schedule so the theoretically
209          * exposed data is not really interesting.
210          */
211         if (static_branch_likely(&switch_mm_cond_ibpb)) {
212                 unsigned long prev_mm, next_mm;
213
214                 /*
215                  * This is a bit more complex than the always mode because
216                  * it has to handle two cases:
217                  *
218                  * 1) Switch from a user space task (potential attacker)
219                  *    which has TIF_SPEC_IB set to a user space task
220                  *    (potential victim) which has TIF_SPEC_IB not set.
221                  *
222                  * 2) Switch from a user space task (potential attacker)
223                  *    which has TIF_SPEC_IB not set to a user space task
224                  *    (potential victim) which has TIF_SPEC_IB set.
225                  *
226                  * This could be done by unconditionally issuing IBPB when
227                  * a task which has TIF_SPEC_IB set is either scheduled in
228                  * or out. Though that results in two flushes when:
229                  *
230                  * - the same user space task is scheduled out and later
231                  *   scheduled in again and only a kernel thread ran in
232                  *   between.
233                  *
234                  * - a user space task belonging to the same process is
235                  *   scheduled in after a kernel thread ran in between
236                  *
237                  * - a user space task belonging to the same process is
238                  *   scheduled in immediately.
239                  *
240                  * Optimize this with reasonably small overhead for the
241                  * above cases. Mangle the TIF_SPEC_IB bit into the mm
242                  * pointer of the incoming task which is stored in
243                  * cpu_tlbstate.last_user_mm_ibpb for comparison.
244                  */
245                 next_mm = mm_mangle_tif_spec_ib(next);
246                 prev_mm = this_cpu_read(cpu_tlbstate.last_user_mm_ibpb);
247
248                 /*
249                  * Issue IBPB only if the mm's are different and one or
250                  * both have the IBPB bit set.
251                  */
252                 if (next_mm != prev_mm &&
253                     (next_mm | prev_mm) & LAST_USER_MM_IBPB)
254                         indirect_branch_prediction_barrier();
255
256                 this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, next_mm);
257         }
258
259         if (static_branch_unlikely(&switch_mm_always_ibpb)) {
260                 /*
261                  * Only flush when switching to a user space task with a
262                  * different context than the user space task which ran
263                  * last on this CPU.
264                  */
265                 if (this_cpu_read(cpu_tlbstate.last_user_mm) != next->mm) {
266                         indirect_branch_prediction_barrier();
267                         this_cpu_write(cpu_tlbstate.last_user_mm, next->mm);
268                 }
269         }
270 }
271
272 void switch_mm_irqs_off(struct mm_struct *prev, struct mm_struct *next,
273                         struct task_struct *tsk)
274 {
275         struct mm_struct *real_prev = this_cpu_read(cpu_tlbstate.loaded_mm);
276         u16 prev_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
277         unsigned cpu = smp_processor_id();
278         u64 next_tlb_gen;
279
280         /*
281          * NB: The scheduler will call us with prev == next when switching
282          * from lazy TLB mode to normal mode if active_mm isn't changing.
283          * When this happens, we don't assume that CR3 (and hence
284          * cpu_tlbstate.loaded_mm) matches next.
285          *
286          * NB: leave_mm() calls us with prev == NULL and tsk == NULL.
287          */
288
289         /* We don't want flush_tlb_func_* to run concurrently with us. */
290         if (IS_ENABLED(CONFIG_PROVE_LOCKING))
291                 WARN_ON_ONCE(!irqs_disabled());
292
293         /*
294          * Verify that CR3 is what we think it is.  This will catch
295          * hypothetical buggy code that directly switches to swapper_pg_dir
296          * without going through leave_mm() / switch_mm_irqs_off() or that
297          * does something like write_cr3(read_cr3_pa()).
298          *
299          * Only do this check if CONFIG_DEBUG_VM=y because __read_cr3()
300          * isn't free.
301          */
302 #ifdef CONFIG_DEBUG_VM
303         if (WARN_ON_ONCE(__read_cr3() != build_cr3(real_prev->pgd, prev_asid))) {
304                 /*
305                  * If we were to BUG here, we'd be very likely to kill
306                  * the system so hard that we don't see the call trace.
307                  * Try to recover instead by ignoring the error and doing
308                  * a global flush to minimize the chance of corruption.
309                  *
310                  * (This is far from being a fully correct recovery.
311                  *  Architecturally, the CPU could prefetch something
312                  *  back into an incorrect ASID slot and leave it there
313                  *  to cause trouble down the road.  It's better than
314                  *  nothing, though.)
315                  */
316                 __flush_tlb_all();
317         }
318 #endif
319         this_cpu_write(cpu_tlbstate.is_lazy, false);
320
321         /*
322          * The membarrier system call requires a full memory barrier and
323          * core serialization before returning to user-space, after
324          * storing to rq->curr. Writing to CR3 provides that full
325          * memory barrier and core serializing instruction.
326          */
327         if (real_prev == next) {
328                 VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[prev_asid].ctx_id) !=
329                            next->context.ctx_id);
330
331                 /*
332                  * We don't currently support having a real mm loaded without
333                  * our cpu set in mm_cpumask().  We have all the bookkeeping
334                  * in place to figure out whether we would need to flush
335                  * if our cpu were cleared in mm_cpumask(), but we don't
336                  * currently use it.
337                  */
338                 if (WARN_ON_ONCE(real_prev != &init_mm &&
339                                  !cpumask_test_cpu(cpu, mm_cpumask(next))))
340                         cpumask_set_cpu(cpu, mm_cpumask(next));
341
342                 return;
343         } else {
344                 u16 new_asid;
345                 bool need_flush;
346
347                 /*
348                  * Avoid user/user BTB poisoning by flushing the branch
349                  * predictor when switching between processes. This stops
350                  * one process from doing Spectre-v2 attacks on another.
351                  */
352                 cond_ibpb(tsk);
353
354                 if (IS_ENABLED(CONFIG_VMAP_STACK)) {
355                         /*
356                          * If our current stack is in vmalloc space and isn't
357                          * mapped in the new pgd, we'll double-fault.  Forcibly
358                          * map it.
359                          */
360                         sync_current_stack_to_mm(next);
361                 }
362
363                 /*
364                  * Stop remote flushes for the previous mm.
365                  * Skip kernel threads; we never send init_mm TLB flushing IPIs,
366                  * but the bitmap manipulation can cause cache line contention.
367                  */
368                 if (real_prev != &init_mm) {
369                         VM_WARN_ON_ONCE(!cpumask_test_cpu(cpu,
370                                                 mm_cpumask(real_prev)));
371                         cpumask_clear_cpu(cpu, mm_cpumask(real_prev));
372                 }
373
374                 /*
375                  * Start remote flushes and then read tlb_gen.
376                  */
377                 if (next != &init_mm)
378                         cpumask_set_cpu(cpu, mm_cpumask(next));
379                 next_tlb_gen = atomic64_read(&next->context.tlb_gen);
380
381                 choose_new_asid(next, next_tlb_gen, &new_asid, &need_flush);
382
383                 /* Let nmi_uaccess_okay() know that we're changing CR3. */
384                 this_cpu_write(cpu_tlbstate.loaded_mm, LOADED_MM_SWITCHING);
385                 barrier();
386
387                 if (need_flush) {
388                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].ctx_id, next->context.ctx_id);
389                         this_cpu_write(cpu_tlbstate.ctxs[new_asid].tlb_gen, next_tlb_gen);
390                         load_new_mm_cr3(next->pgd, new_asid, true);
391
392                         /*
393                          * NB: This gets called via leave_mm() in the idle path
394                          * where RCU functions differently.  Tracing normally
395                          * uses RCU, so we need to use the _rcuidle variant.
396                          *
397                          * (There is no good reason for this.  The idle code should
398                          *  be rearranged to call this before rcu_idle_enter().)
399                          */
400                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, TLB_FLUSH_ALL);
401                 } else {
402                         /* The new ASID is already up to date. */
403                         load_new_mm_cr3(next->pgd, new_asid, false);
404
405                         /* See above wrt _rcuidle. */
406                         trace_tlb_flush_rcuidle(TLB_FLUSH_ON_TASK_SWITCH, 0);
407                 }
408
409                 /* Make sure we write CR3 before loaded_mm. */
410                 barrier();
411
412                 this_cpu_write(cpu_tlbstate.loaded_mm, next);
413                 this_cpu_write(cpu_tlbstate.loaded_mm_asid, new_asid);
414         }
415
416         load_mm_cr4(next);
417         switch_ldt(real_prev, next);
418 }
419
420 /*
421  * Please ignore the name of this function.  It should be called
422  * switch_to_kernel_thread().
423  *
424  * enter_lazy_tlb() is a hint from the scheduler that we are entering a
425  * kernel thread or other context without an mm.  Acceptable implementations
426  * include doing nothing whatsoever, switching to init_mm, or various clever
427  * lazy tricks to try to minimize TLB flushes.
428  *
429  * The scheduler reserves the right to call enter_lazy_tlb() several times
430  * in a row.  It will notify us that we're going back to a real mm by
431  * calling switch_mm_irqs_off().
432  */
433 void enter_lazy_tlb(struct mm_struct *mm, struct task_struct *tsk)
434 {
435         if (this_cpu_read(cpu_tlbstate.loaded_mm) == &init_mm)
436                 return;
437
438         if (tlb_defer_switch_to_init_mm()) {
439                 /*
440                  * There's a significant optimization that may be possible
441                  * here.  We have accurate enough TLB flush tracking that we
442                  * don't need to maintain coherence of TLB per se when we're
443                  * lazy.  We do, however, need to maintain coherence of
444                  * paging-structure caches.  We could, in principle, leave our
445                  * old mm loaded and only switch to init_mm when
446                  * tlb_remove_page() happens.
447                  */
448                 this_cpu_write(cpu_tlbstate.is_lazy, true);
449         } else {
450                 switch_mm(NULL, &init_mm, NULL);
451         }
452 }
453
454 /*
455  * Call this when reinitializing a CPU.  It fixes the following potential
456  * problems:
457  *
458  * - The ASID changed from what cpu_tlbstate thinks it is (most likely
459  *   because the CPU was taken down and came back up with CR3's PCID
460  *   bits clear.  CPU hotplug can do this.
461  *
462  * - The TLB contains junk in slots corresponding to inactive ASIDs.
463  *
464  * - The CPU went so far out to lunch that it may have missed a TLB
465  *   flush.
466  */
467 void initialize_tlbstate_and_flush(void)
468 {
469         int i;
470         struct mm_struct *mm = this_cpu_read(cpu_tlbstate.loaded_mm);
471         u64 tlb_gen = atomic64_read(&init_mm.context.tlb_gen);
472         unsigned long cr3 = __read_cr3();
473
474         /* Assert that CR3 already references the right mm. */
475         WARN_ON((cr3 & CR3_ADDR_MASK) != __pa(mm->pgd));
476
477         /*
478          * Assert that CR4.PCIDE is set if needed.  (CR4.PCIDE initialization
479          * doesn't work like other CR4 bits because it can only be set from
480          * long mode.)
481          */
482         WARN_ON(boot_cpu_has(X86_FEATURE_PCID) &&
483                 !(cr4_read_shadow() & X86_CR4_PCIDE));
484
485         /* Force ASID 0 and force a TLB flush. */
486         write_cr3(build_cr3(mm->pgd, 0));
487
488         /* Reinitialize tlbstate. */
489         this_cpu_write(cpu_tlbstate.last_user_mm_ibpb, LAST_USER_MM_IBPB);
490         this_cpu_write(cpu_tlbstate.loaded_mm_asid, 0);
491         this_cpu_write(cpu_tlbstate.next_asid, 1);
492         this_cpu_write(cpu_tlbstate.ctxs[0].ctx_id, mm->context.ctx_id);
493         this_cpu_write(cpu_tlbstate.ctxs[0].tlb_gen, tlb_gen);
494
495         for (i = 1; i < TLB_NR_DYN_ASIDS; i++)
496                 this_cpu_write(cpu_tlbstate.ctxs[i].ctx_id, 0);
497 }
498
499 /*
500  * flush_tlb_func_common()'s memory ordering requirement is that any
501  * TLB fills that happen after we flush the TLB are ordered after we
502  * read active_mm's tlb_gen.  We don't need any explicit barriers
503  * because all x86 flush operations are serializing and the
504  * atomic64_read operation won't be reordered by the compiler.
505  */
506 static void flush_tlb_func_common(const struct flush_tlb_info *f,
507                                   bool local, enum tlb_flush_reason reason)
508 {
509         /*
510          * We have three different tlb_gen values in here.  They are:
511          *
512          * - mm_tlb_gen:     the latest generation.
513          * - local_tlb_gen:  the generation that this CPU has already caught
514          *                   up to.
515          * - f->new_tlb_gen: the generation that the requester of the flush
516          *                   wants us to catch up to.
517          */
518         struct mm_struct *loaded_mm = this_cpu_read(cpu_tlbstate.loaded_mm);
519         u32 loaded_mm_asid = this_cpu_read(cpu_tlbstate.loaded_mm_asid);
520         u64 mm_tlb_gen = atomic64_read(&loaded_mm->context.tlb_gen);
521         u64 local_tlb_gen = this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen);
522
523         /* This code cannot presently handle being reentered. */
524         VM_WARN_ON(!irqs_disabled());
525
526         if (unlikely(loaded_mm == &init_mm))
527                 return;
528
529         VM_WARN_ON(this_cpu_read(cpu_tlbstate.ctxs[loaded_mm_asid].ctx_id) !=
530                    loaded_mm->context.ctx_id);
531
532         if (this_cpu_read(cpu_tlbstate.is_lazy)) {
533                 /*
534                  * We're in lazy mode.  We need to at least flush our
535                  * paging-structure cache to avoid speculatively reading
536                  * garbage into our TLB.  Since switching to init_mm is barely
537                  * slower than a minimal flush, just switch to init_mm.
538                  */
539                 switch_mm_irqs_off(NULL, &init_mm, NULL);
540                 return;
541         }
542
543         if (unlikely(local_tlb_gen == mm_tlb_gen)) {
544                 /*
545                  * There's nothing to do: we're already up to date.  This can
546                  * happen if two concurrent flushes happen -- the first flush to
547                  * be handled can catch us all the way up, leaving no work for
548                  * the second flush.
549                  */
550                 trace_tlb_flush(reason, 0);
551                 return;
552         }
553
554         WARN_ON_ONCE(local_tlb_gen > mm_tlb_gen);
555         WARN_ON_ONCE(f->new_tlb_gen > mm_tlb_gen);
556
557         /*
558          * If we get to this point, we know that our TLB is out of date.
559          * This does not strictly imply that we need to flush (it's
560          * possible that f->new_tlb_gen <= local_tlb_gen), but we're
561          * going to need to flush in the very near future, so we might
562          * as well get it over with.
563          *
564          * The only question is whether to do a full or partial flush.
565          *
566          * We do a partial flush if requested and two extra conditions
567          * are met:
568          *
569          * 1. f->new_tlb_gen == local_tlb_gen + 1.  We have an invariant that
570          *    we've always done all needed flushes to catch up to
571          *    local_tlb_gen.  If, for example, local_tlb_gen == 2 and
572          *    f->new_tlb_gen == 3, then we know that the flush needed to bring
573          *    us up to date for tlb_gen 3 is the partial flush we're
574          *    processing.
575          *
576          *    As an example of why this check is needed, suppose that there
577          *    are two concurrent flushes.  The first is a full flush that
578          *    changes context.tlb_gen from 1 to 2.  The second is a partial
579          *    flush that changes context.tlb_gen from 2 to 3.  If they get
580          *    processed on this CPU in reverse order, we'll see
581          *     local_tlb_gen == 1, mm_tlb_gen == 3, and end != TLB_FLUSH_ALL.
582          *    If we were to use __flush_tlb_one_user() and set local_tlb_gen to
583          *    3, we'd be break the invariant: we'd update local_tlb_gen above
584          *    1 without the full flush that's needed for tlb_gen 2.
585          *
586          * 2. f->new_tlb_gen == mm_tlb_gen.  This is purely an optimiation.
587          *    Partial TLB flushes are not all that much cheaper than full TLB
588          *    flushes, so it seems unlikely that it would be a performance win
589          *    to do a partial flush if that won't bring our TLB fully up to
590          *    date.  By doing a full flush instead, we can increase
591          *    local_tlb_gen all the way to mm_tlb_gen and we can probably
592          *    avoid another flush in the very near future.
593          */
594         if (f->end != TLB_FLUSH_ALL &&
595             f->new_tlb_gen == local_tlb_gen + 1 &&
596             f->new_tlb_gen == mm_tlb_gen) {
597                 /* Partial flush */
598                 unsigned long addr;
599                 unsigned long nr_pages = (f->end - f->start) >> PAGE_SHIFT;
600
601                 addr = f->start;
602                 while (addr < f->end) {
603                         __flush_tlb_one_user(addr);
604                         addr += PAGE_SIZE;
605                 }
606                 if (local)
607                         count_vm_tlb_events(NR_TLB_LOCAL_FLUSH_ONE, nr_pages);
608                 trace_tlb_flush(reason, nr_pages);
609         } else {
610                 /* Full flush. */
611                 local_flush_tlb();
612                 if (local)
613                         count_vm_tlb_event(NR_TLB_LOCAL_FLUSH_ALL);
614                 trace_tlb_flush(reason, TLB_FLUSH_ALL);
615         }
616
617         /* Both paths above update our state to mm_tlb_gen. */
618         this_cpu_write(cpu_tlbstate.ctxs[loaded_mm_asid].tlb_gen, mm_tlb_gen);
619 }
620
621 static void flush_tlb_func_local(void *info, enum tlb_flush_reason reason)
622 {
623         const struct flush_tlb_info *f = info;
624
625         flush_tlb_func_common(f, true, reason);
626 }
627
628 static void flush_tlb_func_remote(void *info)
629 {
630         const struct flush_tlb_info *f = info;
631
632         inc_irq_stat(irq_tlb_count);
633
634         if (f->mm && f->mm != this_cpu_read(cpu_tlbstate.loaded_mm))
635                 return;
636
637         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
638         flush_tlb_func_common(f, false, TLB_REMOTE_SHOOTDOWN);
639 }
640
641 void native_flush_tlb_others(const struct cpumask *cpumask,
642                              const struct flush_tlb_info *info)
643 {
644         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
645         if (info->end == TLB_FLUSH_ALL)
646                 trace_tlb_flush(TLB_REMOTE_SEND_IPI, TLB_FLUSH_ALL);
647         else
648                 trace_tlb_flush(TLB_REMOTE_SEND_IPI,
649                                 (info->end - info->start) >> PAGE_SHIFT);
650
651         if (is_uv_system()) {
652                 /*
653                  * This whole special case is confused.  UV has a "Broadcast
654                  * Assist Unit", which seems to be a fancy way to send IPIs.
655                  * Back when x86 used an explicit TLB flush IPI, UV was
656                  * optimized to use its own mechanism.  These days, x86 uses
657                  * smp_call_function_many(), but UV still uses a manual IPI,
658                  * and that IPI's action is out of date -- it does a manual
659                  * flush instead of calling flush_tlb_func_remote().  This
660                  * means that the percpu tlb_gen variables won't be updated
661                  * and we'll do pointless flushes on future context switches.
662                  *
663                  * Rather than hooking native_flush_tlb_others() here, I think
664                  * that UV should be updated so that smp_call_function_many(),
665                  * etc, are optimal on UV.
666                  */
667                 unsigned int cpu;
668
669                 cpu = smp_processor_id();
670                 cpumask = uv_flush_tlb_others(cpumask, info);
671                 if (cpumask)
672                         smp_call_function_many(cpumask, flush_tlb_func_remote,
673                                                (void *)info, 1);
674                 return;
675         }
676         smp_call_function_many(cpumask, flush_tlb_func_remote,
677                                (void *)info, 1);
678 }
679
680 /*
681  * See Documentation/x86/tlb.txt for details.  We choose 33
682  * because it is large enough to cover the vast majority (at
683  * least 95%) of allocations, and is small enough that we are
684  * confident it will not cause too much overhead.  Each single
685  * flush is about 100 ns, so this caps the maximum overhead at
686  * _about_ 3,000 ns.
687  *
688  * This is in units of pages.
689  */
690 static unsigned long tlb_single_page_flush_ceiling __read_mostly = 33;
691
692 void flush_tlb_mm_range(struct mm_struct *mm, unsigned long start,
693                                 unsigned long end, unsigned long vmflag)
694 {
695         int cpu;
696
697         struct flush_tlb_info info __aligned(SMP_CACHE_BYTES) = {
698                 .mm = mm,
699         };
700
701         cpu = get_cpu();
702
703         /* This is also a barrier that synchronizes with switch_mm(). */
704         info.new_tlb_gen = inc_mm_tlb_gen(mm);
705
706         /* Should we flush just the requested range? */
707         if ((end != TLB_FLUSH_ALL) &&
708             !(vmflag & VM_HUGETLB) &&
709             ((end - start) >> PAGE_SHIFT) <= tlb_single_page_flush_ceiling) {
710                 info.start = start;
711                 info.end = end;
712         } else {
713                 info.start = 0UL;
714                 info.end = TLB_FLUSH_ALL;
715         }
716
717         if (mm == this_cpu_read(cpu_tlbstate.loaded_mm)) {
718                 VM_WARN_ON(irqs_disabled());
719                 local_irq_disable();
720                 flush_tlb_func_local(&info, TLB_LOCAL_MM_SHOOTDOWN);
721                 local_irq_enable();
722         }
723
724         if (cpumask_any_but(mm_cpumask(mm), cpu) < nr_cpu_ids)
725                 flush_tlb_others(mm_cpumask(mm), &info);
726
727         put_cpu();
728 }
729
730
731 static void do_flush_tlb_all(void *info)
732 {
733         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH_RECEIVED);
734         __flush_tlb_all();
735 }
736
737 void flush_tlb_all(void)
738 {
739         count_vm_tlb_event(NR_TLB_REMOTE_FLUSH);
740         on_each_cpu(do_flush_tlb_all, NULL, 1);
741 }
742
743 static void do_kernel_range_flush(void *info)
744 {
745         struct flush_tlb_info *f = info;
746         unsigned long addr;
747
748         /* flush range by one by one 'invlpg' */
749         for (addr = f->start; addr < f->end; addr += PAGE_SIZE)
750                 __flush_tlb_one_kernel(addr);
751 }
752
753 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
754 {
755
756         /* Balance as user space task's flush, a bit conservative */
757         if (end == TLB_FLUSH_ALL ||
758             (end - start) > tlb_single_page_flush_ceiling << PAGE_SHIFT) {
759                 on_each_cpu(do_flush_tlb_all, NULL, 1);
760         } else {
761                 struct flush_tlb_info info;
762                 info.start = start;
763                 info.end = end;
764                 on_each_cpu(do_kernel_range_flush, &info, 1);
765         }
766 }
767
768 void arch_tlbbatch_flush(struct arch_tlbflush_unmap_batch *batch)
769 {
770         struct flush_tlb_info info = {
771                 .mm = NULL,
772                 .start = 0UL,
773                 .end = TLB_FLUSH_ALL,
774         };
775
776         int cpu = get_cpu();
777
778         if (cpumask_test_cpu(cpu, &batch->cpumask)) {
779                 VM_WARN_ON(irqs_disabled());
780                 local_irq_disable();
781                 flush_tlb_func_local(&info, TLB_LOCAL_SHOOTDOWN);
782                 local_irq_enable();
783         }
784
785         if (cpumask_any_but(&batch->cpumask, cpu) < nr_cpu_ids)
786                 flush_tlb_others(&batch->cpumask, &info);
787
788         cpumask_clear(&batch->cpumask);
789
790         put_cpu();
791 }
792
793 static ssize_t tlbflush_read_file(struct file *file, char __user *user_buf,
794                              size_t count, loff_t *ppos)
795 {
796         char buf[32];
797         unsigned int len;
798
799         len = sprintf(buf, "%ld\n", tlb_single_page_flush_ceiling);
800         return simple_read_from_buffer(user_buf, count, ppos, buf, len);
801 }
802
803 static ssize_t tlbflush_write_file(struct file *file,
804                  const char __user *user_buf, size_t count, loff_t *ppos)
805 {
806         char buf[32];
807         ssize_t len;
808         int ceiling;
809
810         len = min(count, sizeof(buf) - 1);
811         if (copy_from_user(buf, user_buf, len))
812                 return -EFAULT;
813
814         buf[len] = '\0';
815         if (kstrtoint(buf, 0, &ceiling))
816                 return -EINVAL;
817
818         if (ceiling < 0)
819                 return -EINVAL;
820
821         tlb_single_page_flush_ceiling = ceiling;
822         return count;
823 }
824
825 static const struct file_operations fops_tlbflush = {
826         .read = tlbflush_read_file,
827         .write = tlbflush_write_file,
828         .llseek = default_llseek,
829 };
830
831 static int __init create_tlb_single_page_flush_ceiling(void)
832 {
833         debugfs_create_file("tlb_single_page_flush_ceiling", S_IRUSR | S_IWUSR,
834                             arch_debugfs_dir, NULL, &fops_tlbflush);
835         return 0;
836 }
837 late_initcall(create_tlb_single_page_flush_ceiling);