Linux-libre 5.7.5-gnu
[librecmc/linux-libre.git] / arch / x86 / kernel / cpu / common.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /* cpu_feature_enabled() cannot be used this early */
3 #define USE_EARLY_PGTABLE_L5
4
5 #include <linux/memblock.h>
6 #include <linux/linkage.h>
7 #include <linux/bitops.h>
8 #include <linux/kernel.h>
9 #include <linux/export.h>
10 #include <linux/percpu.h>
11 #include <linux/string.h>
12 #include <linux/ctype.h>
13 #include <linux/delay.h>
14 #include <linux/sched/mm.h>
15 #include <linux/sched/clock.h>
16 #include <linux/sched/task.h>
17 #include <linux/sched/smt.h>
18 #include <linux/init.h>
19 #include <linux/kprobes.h>
20 #include <linux/kgdb.h>
21 #include <linux/smp.h>
22 #include <linux/io.h>
23 #include <linux/syscore_ops.h>
24
25 #include <asm/stackprotector.h>
26 #include <asm/perf_event.h>
27 #include <asm/mmu_context.h>
28 #include <asm/doublefault.h>
29 #include <asm/archrandom.h>
30 #include <asm/hypervisor.h>
31 #include <asm/processor.h>
32 #include <asm/tlbflush.h>
33 #include <asm/debugreg.h>
34 #include <asm/sections.h>
35 #include <asm/vsyscall.h>
36 #include <linux/topology.h>
37 #include <linux/cpumask.h>
38 #include <asm/pgtable.h>
39 #include <linux/atomic.h>
40 #include <asm/proto.h>
41 #include <asm/setup.h>
42 #include <asm/apic.h>
43 #include <asm/desc.h>
44 #include <asm/fpu/internal.h>
45 #include <asm/mtrr.h>
46 #include <asm/hwcap2.h>
47 #include <linux/numa.h>
48 #include <asm/asm.h>
49 #include <asm/bugs.h>
50 #include <asm/cpu.h>
51 #include <asm/mce.h>
52 #include <asm/msr.h>
53 #include <asm/memtype.h>
54 #include <asm/microcode.h>
55 #include <asm/microcode_intel.h>
56 #include <asm/intel-family.h>
57 #include <asm/cpu_device_id.h>
58 #include <asm/uv/uv.h>
59
60 #include "cpu.h"
61
62 u32 elf_hwcap2 __read_mostly;
63
64 /* all of these masks are initialized in setup_cpu_local_masks() */
65 cpumask_var_t cpu_initialized_mask;
66 cpumask_var_t cpu_callout_mask;
67 cpumask_var_t cpu_callin_mask;
68
69 /* representing cpus for which sibling maps can be computed */
70 cpumask_var_t cpu_sibling_setup_mask;
71
72 /* Number of siblings per CPU package */
73 int smp_num_siblings = 1;
74 EXPORT_SYMBOL(smp_num_siblings);
75
76 /* Last level cache ID of each logical CPU */
77 DEFINE_PER_CPU_READ_MOSTLY(u16, cpu_llc_id) = BAD_APICID;
78
79 /* correctly size the local cpu masks */
80 void __init setup_cpu_local_masks(void)
81 {
82         alloc_bootmem_cpumask_var(&cpu_initialized_mask);
83         alloc_bootmem_cpumask_var(&cpu_callin_mask);
84         alloc_bootmem_cpumask_var(&cpu_callout_mask);
85         alloc_bootmem_cpumask_var(&cpu_sibling_setup_mask);
86 }
87
88 static void default_init(struct cpuinfo_x86 *c)
89 {
90 #ifdef CONFIG_X86_64
91         cpu_detect_cache_sizes(c);
92 #else
93         /* Not much we can do here... */
94         /* Check if at least it has cpuid */
95         if (c->cpuid_level == -1) {
96                 /* No cpuid. It must be an ancient CPU */
97                 if (c->x86 == 4)
98                         strcpy(c->x86_model_id, "486");
99                 else if (c->x86 == 3)
100                         strcpy(c->x86_model_id, "386");
101         }
102 #endif
103 }
104
105 static const struct cpu_dev default_cpu = {
106         .c_init         = default_init,
107         .c_vendor       = "Unknown",
108         .c_x86_vendor   = X86_VENDOR_UNKNOWN,
109 };
110
111 static const struct cpu_dev *this_cpu = &default_cpu;
112
113 DEFINE_PER_CPU_PAGE_ALIGNED(struct gdt_page, gdt_page) = { .gdt = {
114 #ifdef CONFIG_X86_64
115         /*
116          * We need valid kernel segments for data and code in long mode too
117          * IRET will check the segment types  kkeil 2000/10/28
118          * Also sysret mandates a special GDT layout
119          *
120          * TLS descriptors are currently at a different place compared to i386.
121          * Hopefully nobody expects them at a fixed place (Wine?)
122          */
123         [GDT_ENTRY_KERNEL32_CS]         = GDT_ENTRY_INIT(0xc09b, 0, 0xfffff),
124         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xa09b, 0, 0xfffff),
125         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc093, 0, 0xfffff),
126         [GDT_ENTRY_DEFAULT_USER32_CS]   = GDT_ENTRY_INIT(0xc0fb, 0, 0xfffff),
127         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f3, 0, 0xfffff),
128         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xa0fb, 0, 0xfffff),
129 #else
130         [GDT_ENTRY_KERNEL_CS]           = GDT_ENTRY_INIT(0xc09a, 0, 0xfffff),
131         [GDT_ENTRY_KERNEL_DS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
132         [GDT_ENTRY_DEFAULT_USER_CS]     = GDT_ENTRY_INIT(0xc0fa, 0, 0xfffff),
133         [GDT_ENTRY_DEFAULT_USER_DS]     = GDT_ENTRY_INIT(0xc0f2, 0, 0xfffff),
134         /*
135          * Segments used for calling PnP BIOS have byte granularity.
136          * They code segments and data segments have fixed 64k limits,
137          * the transfer segment sizes are set at run time.
138          */
139         /* 32-bit code */
140         [GDT_ENTRY_PNPBIOS_CS32]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
141         /* 16-bit code */
142         [GDT_ENTRY_PNPBIOS_CS16]        = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
143         /* 16-bit data */
144         [GDT_ENTRY_PNPBIOS_DS]          = GDT_ENTRY_INIT(0x0092, 0, 0xffff),
145         /* 16-bit data */
146         [GDT_ENTRY_PNPBIOS_TS1]         = GDT_ENTRY_INIT(0x0092, 0, 0),
147         /* 16-bit data */
148         [GDT_ENTRY_PNPBIOS_TS2]         = GDT_ENTRY_INIT(0x0092, 0, 0),
149         /*
150          * The APM segments have byte granularity and their bases
151          * are set at run time.  All have 64k limits.
152          */
153         /* 32-bit code */
154         [GDT_ENTRY_APMBIOS_BASE]        = GDT_ENTRY_INIT(0x409a, 0, 0xffff),
155         /* 16-bit code */
156         [GDT_ENTRY_APMBIOS_BASE+1]      = GDT_ENTRY_INIT(0x009a, 0, 0xffff),
157         /* data */
158         [GDT_ENTRY_APMBIOS_BASE+2]      = GDT_ENTRY_INIT(0x4092, 0, 0xffff),
159
160         [GDT_ENTRY_ESPFIX_SS]           = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
161         [GDT_ENTRY_PERCPU]              = GDT_ENTRY_INIT(0xc092, 0, 0xfffff),
162         GDT_STACK_CANARY_INIT
163 #endif
164 } };
165 EXPORT_PER_CPU_SYMBOL_GPL(gdt_page);
166
167 #ifdef CONFIG_X86_64
168 static int __init x86_nopcid_setup(char *s)
169 {
170         /* nopcid doesn't accept parameters */
171         if (s)
172                 return -EINVAL;
173
174         /* do not emit a message if the feature is not present */
175         if (!boot_cpu_has(X86_FEATURE_PCID))
176                 return 0;
177
178         setup_clear_cpu_cap(X86_FEATURE_PCID);
179         pr_info("nopcid: PCID feature disabled\n");
180         return 0;
181 }
182 early_param("nopcid", x86_nopcid_setup);
183 #endif
184
185 static int __init x86_noinvpcid_setup(char *s)
186 {
187         /* noinvpcid doesn't accept parameters */
188         if (s)
189                 return -EINVAL;
190
191         /* do not emit a message if the feature is not present */
192         if (!boot_cpu_has(X86_FEATURE_INVPCID))
193                 return 0;
194
195         setup_clear_cpu_cap(X86_FEATURE_INVPCID);
196         pr_info("noinvpcid: INVPCID feature disabled\n");
197         return 0;
198 }
199 early_param("noinvpcid", x86_noinvpcid_setup);
200
201 #ifdef CONFIG_X86_32
202 static int cachesize_override = -1;
203 static int disable_x86_serial_nr = 1;
204
205 static int __init cachesize_setup(char *str)
206 {
207         get_option(&str, &cachesize_override);
208         return 1;
209 }
210 __setup("cachesize=", cachesize_setup);
211
212 static int __init x86_sep_setup(char *s)
213 {
214         setup_clear_cpu_cap(X86_FEATURE_SEP);
215         return 1;
216 }
217 __setup("nosep", x86_sep_setup);
218
219 /* Standard macro to see if a specific flag is changeable */
220 static inline int flag_is_changeable_p(u32 flag)
221 {
222         u32 f1, f2;
223
224         /*
225          * Cyrix and IDT cpus allow disabling of CPUID
226          * so the code below may return different results
227          * when it is executed before and after enabling
228          * the CPUID. Add "volatile" to not allow gcc to
229          * optimize the subsequent calls to this function.
230          */
231         asm volatile ("pushfl           \n\t"
232                       "pushfl           \n\t"
233                       "popl %0          \n\t"
234                       "movl %0, %1      \n\t"
235                       "xorl %2, %0      \n\t"
236                       "pushl %0         \n\t"
237                       "popfl            \n\t"
238                       "pushfl           \n\t"
239                       "popl %0          \n\t"
240                       "popfl            \n\t"
241
242                       : "=&r" (f1), "=&r" (f2)
243                       : "ir" (flag));
244
245         return ((f1^f2) & flag) != 0;
246 }
247
248 /* Probe for the CPUID instruction */
249 int have_cpuid_p(void)
250 {
251         return flag_is_changeable_p(X86_EFLAGS_ID);
252 }
253
254 static void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
255 {
256         unsigned long lo, hi;
257
258         if (!cpu_has(c, X86_FEATURE_PN) || !disable_x86_serial_nr)
259                 return;
260
261         /* Disable processor serial number: */
262
263         rdmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
264         lo |= 0x200000;
265         wrmsr(MSR_IA32_BBL_CR_CTL, lo, hi);
266
267         pr_notice("CPU serial number disabled.\n");
268         clear_cpu_cap(c, X86_FEATURE_PN);
269
270         /* Disabling the serial number may affect the cpuid level */
271         c->cpuid_level = cpuid_eax(0);
272 }
273
274 static int __init x86_serial_nr_setup(char *s)
275 {
276         disable_x86_serial_nr = 0;
277         return 1;
278 }
279 __setup("serialnumber", x86_serial_nr_setup);
280 #else
281 static inline int flag_is_changeable_p(u32 flag)
282 {
283         return 1;
284 }
285 static inline void squash_the_stupid_serial_number(struct cpuinfo_x86 *c)
286 {
287 }
288 #endif
289
290 static __init int setup_disable_smep(char *arg)
291 {
292         setup_clear_cpu_cap(X86_FEATURE_SMEP);
293         return 1;
294 }
295 __setup("nosmep", setup_disable_smep);
296
297 static __always_inline void setup_smep(struct cpuinfo_x86 *c)
298 {
299         if (cpu_has(c, X86_FEATURE_SMEP))
300                 cr4_set_bits(X86_CR4_SMEP);
301 }
302
303 static __init int setup_disable_smap(char *arg)
304 {
305         setup_clear_cpu_cap(X86_FEATURE_SMAP);
306         return 1;
307 }
308 __setup("nosmap", setup_disable_smap);
309
310 static __always_inline void setup_smap(struct cpuinfo_x86 *c)
311 {
312         unsigned long eflags = native_save_fl();
313
314         /* This should have been cleared long ago */
315         BUG_ON(eflags & X86_EFLAGS_AC);
316
317         if (cpu_has(c, X86_FEATURE_SMAP)) {
318 #ifdef CONFIG_X86_SMAP
319                 cr4_set_bits(X86_CR4_SMAP);
320 #else
321                 cr4_clear_bits(X86_CR4_SMAP);
322 #endif
323         }
324 }
325
326 static __always_inline void setup_umip(struct cpuinfo_x86 *c)
327 {
328         /* Check the boot processor, plus build option for UMIP. */
329         if (!cpu_feature_enabled(X86_FEATURE_UMIP))
330                 goto out;
331
332         /* Check the current processor's cpuid bits. */
333         if (!cpu_has(c, X86_FEATURE_UMIP))
334                 goto out;
335
336         cr4_set_bits(X86_CR4_UMIP);
337
338         pr_info_once("x86/cpu: User Mode Instruction Prevention (UMIP) activated\n");
339
340         return;
341
342 out:
343         /*
344          * Make sure UMIP is disabled in case it was enabled in a
345          * previous boot (e.g., via kexec).
346          */
347         cr4_clear_bits(X86_CR4_UMIP);
348 }
349
350 static DEFINE_STATIC_KEY_FALSE_RO(cr_pinning);
351 static unsigned long cr4_pinned_bits __ro_after_init;
352
353 void native_write_cr0(unsigned long val)
354 {
355         unsigned long bits_missing = 0;
356
357 set_register:
358         asm volatile("mov %0,%%cr0": "+r" (val), "+m" (__force_order));
359
360         if (static_branch_likely(&cr_pinning)) {
361                 if (unlikely((val & X86_CR0_WP) != X86_CR0_WP)) {
362                         bits_missing = X86_CR0_WP;
363                         val |= bits_missing;
364                         goto set_register;
365                 }
366                 /* Warn after we've set the missing bits. */
367                 WARN_ONCE(bits_missing, "CR0 WP bit went missing!?\n");
368         }
369 }
370 EXPORT_SYMBOL(native_write_cr0);
371
372 void native_write_cr4(unsigned long val)
373 {
374         unsigned long bits_missing = 0;
375
376 set_register:
377         asm volatile("mov %0,%%cr4": "+r" (val), "+m" (cr4_pinned_bits));
378
379         if (static_branch_likely(&cr_pinning)) {
380                 if (unlikely((val & cr4_pinned_bits) != cr4_pinned_bits)) {
381                         bits_missing = ~val & cr4_pinned_bits;
382                         val |= bits_missing;
383                         goto set_register;
384                 }
385                 /* Warn after we've set the missing bits. */
386                 WARN_ONCE(bits_missing, "CR4 bits went missing: %lx!?\n",
387                           bits_missing);
388         }
389 }
390 EXPORT_SYMBOL(native_write_cr4);
391
392 void cr4_init(void)
393 {
394         unsigned long cr4 = __read_cr4();
395
396         if (boot_cpu_has(X86_FEATURE_PCID))
397                 cr4 |= X86_CR4_PCIDE;
398         if (static_branch_likely(&cr_pinning))
399                 cr4 |= cr4_pinned_bits;
400
401         __write_cr4(cr4);
402
403         /* Initialize cr4 shadow for this CPU. */
404         this_cpu_write(cpu_tlbstate.cr4, cr4);
405 }
406
407 /*
408  * Once CPU feature detection is finished (and boot params have been
409  * parsed), record any of the sensitive CR bits that are set, and
410  * enable CR pinning.
411  */
412 static void __init setup_cr_pinning(void)
413 {
414         unsigned long mask;
415
416         mask = (X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_UMIP);
417         cr4_pinned_bits = this_cpu_read(cpu_tlbstate.cr4) & mask;
418         static_key_enable(&cr_pinning.key);
419 }
420
421 /*
422  * Protection Keys are not available in 32-bit mode.
423  */
424 static bool pku_disabled;
425
426 static __always_inline void setup_pku(struct cpuinfo_x86 *c)
427 {
428         struct pkru_state *pk;
429
430         /* check the boot processor, plus compile options for PKU: */
431         if (!cpu_feature_enabled(X86_FEATURE_PKU))
432                 return;
433         /* checks the actual processor's cpuid bits: */
434         if (!cpu_has(c, X86_FEATURE_PKU))
435                 return;
436         if (pku_disabled)
437                 return;
438
439         cr4_set_bits(X86_CR4_PKE);
440         pk = get_xsave_addr(&init_fpstate.xsave, XFEATURE_PKRU);
441         if (pk)
442                 pk->pkru = init_pkru_value;
443         /*
444          * Seting X86_CR4_PKE will cause the X86_FEATURE_OSPKE
445          * cpuid bit to be set.  We need to ensure that we
446          * update that bit in this CPU's "cpu_info".
447          */
448         set_cpu_cap(c, X86_FEATURE_OSPKE);
449 }
450
451 #ifdef CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS
452 static __init int setup_disable_pku(char *arg)
453 {
454         /*
455          * Do not clear the X86_FEATURE_PKU bit.  All of the
456          * runtime checks are against OSPKE so clearing the
457          * bit does nothing.
458          *
459          * This way, we will see "pku" in cpuinfo, but not
460          * "ospke", which is exactly what we want.  It shows
461          * that the CPU has PKU, but the OS has not enabled it.
462          * This happens to be exactly how a system would look
463          * if we disabled the config option.
464          */
465         pr_info("x86: 'nopku' specified, disabling Memory Protection Keys\n");
466         pku_disabled = true;
467         return 1;
468 }
469 __setup("nopku", setup_disable_pku);
470 #endif /* CONFIG_X86_64 */
471
472 /*
473  * Some CPU features depend on higher CPUID levels, which may not always
474  * be available due to CPUID level capping or broken virtualization
475  * software.  Add those features to this table to auto-disable them.
476  */
477 struct cpuid_dependent_feature {
478         u32 feature;
479         u32 level;
480 };
481
482 static const struct cpuid_dependent_feature
483 cpuid_dependent_features[] = {
484         { X86_FEATURE_MWAIT,            0x00000005 },
485         { X86_FEATURE_DCA,              0x00000009 },
486         { X86_FEATURE_XSAVE,            0x0000000d },
487         { 0, 0 }
488 };
489
490 static void filter_cpuid_features(struct cpuinfo_x86 *c, bool warn)
491 {
492         const struct cpuid_dependent_feature *df;
493
494         for (df = cpuid_dependent_features; df->feature; df++) {
495
496                 if (!cpu_has(c, df->feature))
497                         continue;
498                 /*
499                  * Note: cpuid_level is set to -1 if unavailable, but
500                  * extended_extended_level is set to 0 if unavailable
501                  * and the legitimate extended levels are all negative
502                  * when signed; hence the weird messing around with
503                  * signs here...
504                  */
505                 if (!((s32)df->level < 0 ?
506                      (u32)df->level > (u32)c->extended_cpuid_level :
507                      (s32)df->level > (s32)c->cpuid_level))
508                         continue;
509
510                 clear_cpu_cap(c, df->feature);
511                 if (!warn)
512                         continue;
513
514                 pr_warn("CPU: CPU feature " X86_CAP_FMT " disabled, no CPUID level 0x%x\n",
515                         x86_cap_flag(df->feature), df->level);
516         }
517 }
518
519 /*
520  * Naming convention should be: <Name> [(<Codename>)]
521  * This table only is used unless init_<vendor>() below doesn't set it;
522  * in particular, if CPUID levels 0x80000002..4 are supported, this
523  * isn't used
524  */
525
526 /* Look up CPU names by table lookup. */
527 static const char *table_lookup_model(struct cpuinfo_x86 *c)
528 {
529 #ifdef CONFIG_X86_32
530         const struct legacy_cpu_model_info *info;
531
532         if (c->x86_model >= 16)
533                 return NULL;    /* Range check */
534
535         if (!this_cpu)
536                 return NULL;
537
538         info = this_cpu->legacy_models;
539
540         while (info->family) {
541                 if (info->family == c->x86)
542                         return info->model_names[c->x86_model];
543                 info++;
544         }
545 #endif
546         return NULL;            /* Not found */
547 }
548
549 /* Aligned to unsigned long to avoid split lock in atomic bitmap ops */
550 __u32 cpu_caps_cleared[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
551 __u32 cpu_caps_set[NCAPINTS + NBUGINTS] __aligned(sizeof(unsigned long));
552
553 void load_percpu_segment(int cpu)
554 {
555 #ifdef CONFIG_X86_32
556         loadsegment(fs, __KERNEL_PERCPU);
557 #else
558         __loadsegment_simple(gs, 0);
559         wrmsrl(MSR_GS_BASE, cpu_kernelmode_gs_base(cpu));
560 #endif
561         load_stack_canary_segment();
562 }
563
564 #ifdef CONFIG_X86_32
565 /* The 32-bit entry code needs to find cpu_entry_area. */
566 DEFINE_PER_CPU(struct cpu_entry_area *, cpu_entry_area);
567 #endif
568
569 /* Load the original GDT from the per-cpu structure */
570 void load_direct_gdt(int cpu)
571 {
572         struct desc_ptr gdt_descr;
573
574         gdt_descr.address = (long)get_cpu_gdt_rw(cpu);
575         gdt_descr.size = GDT_SIZE - 1;
576         load_gdt(&gdt_descr);
577 }
578 EXPORT_SYMBOL_GPL(load_direct_gdt);
579
580 /* Load a fixmap remapping of the per-cpu GDT */
581 void load_fixmap_gdt(int cpu)
582 {
583         struct desc_ptr gdt_descr;
584
585         gdt_descr.address = (long)get_cpu_gdt_ro(cpu);
586         gdt_descr.size = GDT_SIZE - 1;
587         load_gdt(&gdt_descr);
588 }
589 EXPORT_SYMBOL_GPL(load_fixmap_gdt);
590
591 /*
592  * Current gdt points %fs at the "master" per-cpu area: after this,
593  * it's on the real one.
594  */
595 void switch_to_new_gdt(int cpu)
596 {
597         /* Load the original GDT */
598         load_direct_gdt(cpu);
599         /* Reload the per-cpu base */
600         load_percpu_segment(cpu);
601 }
602
603 static const struct cpu_dev *cpu_devs[X86_VENDOR_NUM] = {};
604
605 static void get_model_name(struct cpuinfo_x86 *c)
606 {
607         unsigned int *v;
608         char *p, *q, *s;
609
610         if (c->extended_cpuid_level < 0x80000004)
611                 return;
612
613         v = (unsigned int *)c->x86_model_id;
614         cpuid(0x80000002, &v[0], &v[1], &v[2], &v[3]);
615         cpuid(0x80000003, &v[4], &v[5], &v[6], &v[7]);
616         cpuid(0x80000004, &v[8], &v[9], &v[10], &v[11]);
617         c->x86_model_id[48] = 0;
618
619         /* Trim whitespace */
620         p = q = s = &c->x86_model_id[0];
621
622         while (*p == ' ')
623                 p++;
624
625         while (*p) {
626                 /* Note the last non-whitespace index */
627                 if (!isspace(*p))
628                         s = q;
629
630                 *q++ = *p++;
631         }
632
633         *(s + 1) = '\0';
634 }
635
636 void detect_num_cpu_cores(struct cpuinfo_x86 *c)
637 {
638         unsigned int eax, ebx, ecx, edx;
639
640         c->x86_max_cores = 1;
641         if (!IS_ENABLED(CONFIG_SMP) || c->cpuid_level < 4)
642                 return;
643
644         cpuid_count(4, 0, &eax, &ebx, &ecx, &edx);
645         if (eax & 0x1f)
646                 c->x86_max_cores = (eax >> 26) + 1;
647 }
648
649 void cpu_detect_cache_sizes(struct cpuinfo_x86 *c)
650 {
651         unsigned int n, dummy, ebx, ecx, edx, l2size;
652
653         n = c->extended_cpuid_level;
654
655         if (n >= 0x80000005) {
656                 cpuid(0x80000005, &dummy, &ebx, &ecx, &edx);
657                 c->x86_cache_size = (ecx>>24) + (edx>>24);
658 #ifdef CONFIG_X86_64
659                 /* On K8 L1 TLB is inclusive, so don't count it */
660                 c->x86_tlbsize = 0;
661 #endif
662         }
663
664         if (n < 0x80000006)     /* Some chips just has a large L1. */
665                 return;
666
667         cpuid(0x80000006, &dummy, &ebx, &ecx, &edx);
668         l2size = ecx >> 16;
669
670 #ifdef CONFIG_X86_64
671         c->x86_tlbsize += ((ebx >> 16) & 0xfff) + (ebx & 0xfff);
672 #else
673         /* do processor-specific cache resizing */
674         if (this_cpu->legacy_cache_size)
675                 l2size = this_cpu->legacy_cache_size(c, l2size);
676
677         /* Allow user to override all this if necessary. */
678         if (cachesize_override != -1)
679                 l2size = cachesize_override;
680
681         if (l2size == 0)
682                 return;         /* Again, no L2 cache is possible */
683 #endif
684
685         c->x86_cache_size = l2size;
686 }
687
688 u16 __read_mostly tlb_lli_4k[NR_INFO];
689 u16 __read_mostly tlb_lli_2m[NR_INFO];
690 u16 __read_mostly tlb_lli_4m[NR_INFO];
691 u16 __read_mostly tlb_lld_4k[NR_INFO];
692 u16 __read_mostly tlb_lld_2m[NR_INFO];
693 u16 __read_mostly tlb_lld_4m[NR_INFO];
694 u16 __read_mostly tlb_lld_1g[NR_INFO];
695
696 static void cpu_detect_tlb(struct cpuinfo_x86 *c)
697 {
698         if (this_cpu->c_detect_tlb)
699                 this_cpu->c_detect_tlb(c);
700
701         pr_info("Last level iTLB entries: 4KB %d, 2MB %d, 4MB %d\n",
702                 tlb_lli_4k[ENTRIES], tlb_lli_2m[ENTRIES],
703                 tlb_lli_4m[ENTRIES]);
704
705         pr_info("Last level dTLB entries: 4KB %d, 2MB %d, 4MB %d, 1GB %d\n",
706                 tlb_lld_4k[ENTRIES], tlb_lld_2m[ENTRIES],
707                 tlb_lld_4m[ENTRIES], tlb_lld_1g[ENTRIES]);
708 }
709
710 int detect_ht_early(struct cpuinfo_x86 *c)
711 {
712 #ifdef CONFIG_SMP
713         u32 eax, ebx, ecx, edx;
714
715         if (!cpu_has(c, X86_FEATURE_HT))
716                 return -1;
717
718         if (cpu_has(c, X86_FEATURE_CMP_LEGACY))
719                 return -1;
720
721         if (cpu_has(c, X86_FEATURE_XTOPOLOGY))
722                 return -1;
723
724         cpuid(1, &eax, &ebx, &ecx, &edx);
725
726         smp_num_siblings = (ebx & 0xff0000) >> 16;
727         if (smp_num_siblings == 1)
728                 pr_info_once("CPU0: Hyper-Threading is disabled\n");
729 #endif
730         return 0;
731 }
732
733 void detect_ht(struct cpuinfo_x86 *c)
734 {
735 #ifdef CONFIG_SMP
736         int index_msb, core_bits;
737
738         if (detect_ht_early(c) < 0)
739                 return;
740
741         index_msb = get_count_order(smp_num_siblings);
742         c->phys_proc_id = apic->phys_pkg_id(c->initial_apicid, index_msb);
743
744         smp_num_siblings = smp_num_siblings / c->x86_max_cores;
745
746         index_msb = get_count_order(smp_num_siblings);
747
748         core_bits = get_count_order(c->x86_max_cores);
749
750         c->cpu_core_id = apic->phys_pkg_id(c->initial_apicid, index_msb) &
751                                        ((1 << core_bits) - 1);
752 #endif
753 }
754
755 static void get_cpu_vendor(struct cpuinfo_x86 *c)
756 {
757         char *v = c->x86_vendor_id;
758         int i;
759
760         for (i = 0; i < X86_VENDOR_NUM; i++) {
761                 if (!cpu_devs[i])
762                         break;
763
764                 if (!strcmp(v, cpu_devs[i]->c_ident[0]) ||
765                     (cpu_devs[i]->c_ident[1] &&
766                      !strcmp(v, cpu_devs[i]->c_ident[1]))) {
767
768                         this_cpu = cpu_devs[i];
769                         c->x86_vendor = this_cpu->c_x86_vendor;
770                         return;
771                 }
772         }
773
774         pr_err_once("CPU: vendor_id '%s' unknown, using generic init.\n" \
775                     "CPU: Your system may be unstable.\n", v);
776
777         c->x86_vendor = X86_VENDOR_UNKNOWN;
778         this_cpu = &default_cpu;
779 }
780
781 void cpu_detect(struct cpuinfo_x86 *c)
782 {
783         /* Get vendor name */
784         cpuid(0x00000000, (unsigned int *)&c->cpuid_level,
785               (unsigned int *)&c->x86_vendor_id[0],
786               (unsigned int *)&c->x86_vendor_id[8],
787               (unsigned int *)&c->x86_vendor_id[4]);
788
789         c->x86 = 4;
790         /* Intel-defined flags: level 0x00000001 */
791         if (c->cpuid_level >= 0x00000001) {
792                 u32 junk, tfms, cap0, misc;
793
794                 cpuid(0x00000001, &tfms, &misc, &junk, &cap0);
795                 c->x86          = x86_family(tfms);
796                 c->x86_model    = x86_model(tfms);
797                 c->x86_stepping = x86_stepping(tfms);
798
799                 if (cap0 & (1<<19)) {
800                         c->x86_clflush_size = ((misc >> 8) & 0xff) * 8;
801                         c->x86_cache_alignment = c->x86_clflush_size;
802                 }
803         }
804 }
805
806 static void apply_forced_caps(struct cpuinfo_x86 *c)
807 {
808         int i;
809
810         for (i = 0; i < NCAPINTS + NBUGINTS; i++) {
811                 c->x86_capability[i] &= ~cpu_caps_cleared[i];
812                 c->x86_capability[i] |= cpu_caps_set[i];
813         }
814 }
815
816 static void init_speculation_control(struct cpuinfo_x86 *c)
817 {
818         /*
819          * The Intel SPEC_CTRL CPUID bit implies IBRS and IBPB support,
820          * and they also have a different bit for STIBP support. Also,
821          * a hypervisor might have set the individual AMD bits even on
822          * Intel CPUs, for finer-grained selection of what's available.
823          */
824         if (cpu_has(c, X86_FEATURE_SPEC_CTRL)) {
825                 set_cpu_cap(c, X86_FEATURE_IBRS);
826                 set_cpu_cap(c, X86_FEATURE_IBPB);
827                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
828         }
829
830         if (cpu_has(c, X86_FEATURE_INTEL_STIBP))
831                 set_cpu_cap(c, X86_FEATURE_STIBP);
832
833         if (cpu_has(c, X86_FEATURE_SPEC_CTRL_SSBD) ||
834             cpu_has(c, X86_FEATURE_VIRT_SSBD))
835                 set_cpu_cap(c, X86_FEATURE_SSBD);
836
837         if (cpu_has(c, X86_FEATURE_AMD_IBRS)) {
838                 set_cpu_cap(c, X86_FEATURE_IBRS);
839                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
840         }
841
842         if (cpu_has(c, X86_FEATURE_AMD_IBPB))
843                 set_cpu_cap(c, X86_FEATURE_IBPB);
844
845         if (cpu_has(c, X86_FEATURE_AMD_STIBP)) {
846                 set_cpu_cap(c, X86_FEATURE_STIBP);
847                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
848         }
849
850         if (cpu_has(c, X86_FEATURE_AMD_SSBD)) {
851                 set_cpu_cap(c, X86_FEATURE_SSBD);
852                 set_cpu_cap(c, X86_FEATURE_MSR_SPEC_CTRL);
853                 clear_cpu_cap(c, X86_FEATURE_VIRT_SSBD);
854         }
855 }
856
857 static void init_cqm(struct cpuinfo_x86 *c)
858 {
859         if (!cpu_has(c, X86_FEATURE_CQM_LLC)) {
860                 c->x86_cache_max_rmid  = -1;
861                 c->x86_cache_occ_scale = -1;
862                 return;
863         }
864
865         /* will be overridden if occupancy monitoring exists */
866         c->x86_cache_max_rmid = cpuid_ebx(0xf);
867
868         if (cpu_has(c, X86_FEATURE_CQM_OCCUP_LLC) ||
869             cpu_has(c, X86_FEATURE_CQM_MBM_TOTAL) ||
870             cpu_has(c, X86_FEATURE_CQM_MBM_LOCAL)) {
871                 u32 eax, ebx, ecx, edx;
872
873                 /* QoS sub-leaf, EAX=0Fh, ECX=1 */
874                 cpuid_count(0xf, 1, &eax, &ebx, &ecx, &edx);
875
876                 c->x86_cache_max_rmid  = ecx;
877                 c->x86_cache_occ_scale = ebx;
878         }
879 }
880
881 void get_cpu_cap(struct cpuinfo_x86 *c)
882 {
883         u32 eax, ebx, ecx, edx;
884
885         /* Intel-defined flags: level 0x00000001 */
886         if (c->cpuid_level >= 0x00000001) {
887                 cpuid(0x00000001, &eax, &ebx, &ecx, &edx);
888
889                 c->x86_capability[CPUID_1_ECX] = ecx;
890                 c->x86_capability[CPUID_1_EDX] = edx;
891         }
892
893         /* Thermal and Power Management Leaf: level 0x00000006 (eax) */
894         if (c->cpuid_level >= 0x00000006)
895                 c->x86_capability[CPUID_6_EAX] = cpuid_eax(0x00000006);
896
897         /* Additional Intel-defined flags: level 0x00000007 */
898         if (c->cpuid_level >= 0x00000007) {
899                 cpuid_count(0x00000007, 0, &eax, &ebx, &ecx, &edx);
900                 c->x86_capability[CPUID_7_0_EBX] = ebx;
901                 c->x86_capability[CPUID_7_ECX] = ecx;
902                 c->x86_capability[CPUID_7_EDX] = edx;
903
904                 /* Check valid sub-leaf index before accessing it */
905                 if (eax >= 1) {
906                         cpuid_count(0x00000007, 1, &eax, &ebx, &ecx, &edx);
907                         c->x86_capability[CPUID_7_1_EAX] = eax;
908                 }
909         }
910
911         /* Extended state features: level 0x0000000d */
912         if (c->cpuid_level >= 0x0000000d) {
913                 cpuid_count(0x0000000d, 1, &eax, &ebx, &ecx, &edx);
914
915                 c->x86_capability[CPUID_D_1_EAX] = eax;
916         }
917
918         /* AMD-defined flags: level 0x80000001 */
919         eax = cpuid_eax(0x80000000);
920         c->extended_cpuid_level = eax;
921
922         if ((eax & 0xffff0000) == 0x80000000) {
923                 if (eax >= 0x80000001) {
924                         cpuid(0x80000001, &eax, &ebx, &ecx, &edx);
925
926                         c->x86_capability[CPUID_8000_0001_ECX] = ecx;
927                         c->x86_capability[CPUID_8000_0001_EDX] = edx;
928                 }
929         }
930
931         if (c->extended_cpuid_level >= 0x80000007) {
932                 cpuid(0x80000007, &eax, &ebx, &ecx, &edx);
933
934                 c->x86_capability[CPUID_8000_0007_EBX] = ebx;
935                 c->x86_power = edx;
936         }
937
938         if (c->extended_cpuid_level >= 0x80000008) {
939                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
940                 c->x86_capability[CPUID_8000_0008_EBX] = ebx;
941         }
942
943         if (c->extended_cpuid_level >= 0x8000000a)
944                 c->x86_capability[CPUID_8000_000A_EDX] = cpuid_edx(0x8000000a);
945
946         init_scattered_cpuid_features(c);
947         init_speculation_control(c);
948         init_cqm(c);
949
950         /*
951          * Clear/Set all flags overridden by options, after probe.
952          * This needs to happen each time we re-probe, which may happen
953          * several times during CPU initialization.
954          */
955         apply_forced_caps(c);
956 }
957
958 void get_cpu_address_sizes(struct cpuinfo_x86 *c)
959 {
960         u32 eax, ebx, ecx, edx;
961
962         if (c->extended_cpuid_level >= 0x80000008) {
963                 cpuid(0x80000008, &eax, &ebx, &ecx, &edx);
964
965                 c->x86_virt_bits = (eax >> 8) & 0xff;
966                 c->x86_phys_bits = eax & 0xff;
967         }
968 #ifdef CONFIG_X86_32
969         else if (cpu_has(c, X86_FEATURE_PAE) || cpu_has(c, X86_FEATURE_PSE36))
970                 c->x86_phys_bits = 36;
971 #endif
972         c->x86_cache_bits = c->x86_phys_bits;
973 }
974
975 static void identify_cpu_without_cpuid(struct cpuinfo_x86 *c)
976 {
977 #ifdef CONFIG_X86_32
978         int i;
979
980         /*
981          * First of all, decide if this is a 486 or higher
982          * It's a 486 if we can modify the AC flag
983          */
984         if (flag_is_changeable_p(X86_EFLAGS_AC))
985                 c->x86 = 4;
986         else
987                 c->x86 = 3;
988
989         for (i = 0; i < X86_VENDOR_NUM; i++)
990                 if (cpu_devs[i] && cpu_devs[i]->c_identify) {
991                         c->x86_vendor_id[0] = 0;
992                         cpu_devs[i]->c_identify(c);
993                         if (c->x86_vendor_id[0]) {
994                                 get_cpu_vendor(c);
995                                 break;
996                         }
997                 }
998 #endif
999 }
1000
1001 #define NO_SPECULATION          BIT(0)
1002 #define NO_MELTDOWN             BIT(1)
1003 #define NO_SSB                  BIT(2)
1004 #define NO_L1TF                 BIT(3)
1005 #define NO_MDS                  BIT(4)
1006 #define MSBDS_ONLY              BIT(5)
1007 #define NO_SWAPGS               BIT(6)
1008 #define NO_ITLB_MULTIHIT        BIT(7)
1009 #define NO_SPECTRE_V2           BIT(8)
1010
1011 #define VULNWL(vendor, family, model, whitelist)        \
1012         X86_MATCH_VENDOR_FAM_MODEL(vendor, family, model, whitelist)
1013
1014 #define VULNWL_INTEL(model, whitelist)          \
1015         VULNWL(INTEL, 6, INTEL_FAM6_##model, whitelist)
1016
1017 #define VULNWL_AMD(family, whitelist)           \
1018         VULNWL(AMD, family, X86_MODEL_ANY, whitelist)
1019
1020 #define VULNWL_HYGON(family, whitelist)         \
1021         VULNWL(HYGON, family, X86_MODEL_ANY, whitelist)
1022
1023 static const __initconst struct x86_cpu_id cpu_vuln_whitelist[] = {
1024         VULNWL(ANY,     4, X86_MODEL_ANY,       NO_SPECULATION),
1025         VULNWL(CENTAUR, 5, X86_MODEL_ANY,       NO_SPECULATION),
1026         VULNWL(INTEL,   5, X86_MODEL_ANY,       NO_SPECULATION),
1027         VULNWL(NSC,     5, X86_MODEL_ANY,       NO_SPECULATION),
1028
1029         /* Intel Family 6 */
1030         VULNWL_INTEL(ATOM_SALTWELL,             NO_SPECULATION | NO_ITLB_MULTIHIT),
1031         VULNWL_INTEL(ATOM_SALTWELL_TABLET,      NO_SPECULATION | NO_ITLB_MULTIHIT),
1032         VULNWL_INTEL(ATOM_SALTWELL_MID,         NO_SPECULATION | NO_ITLB_MULTIHIT),
1033         VULNWL_INTEL(ATOM_BONNELL,              NO_SPECULATION | NO_ITLB_MULTIHIT),
1034         VULNWL_INTEL(ATOM_BONNELL_MID,          NO_SPECULATION | NO_ITLB_MULTIHIT),
1035
1036         VULNWL_INTEL(ATOM_SILVERMONT,           NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1037         VULNWL_INTEL(ATOM_SILVERMONT_D,         NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1038         VULNWL_INTEL(ATOM_SILVERMONT_MID,       NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1039         VULNWL_INTEL(ATOM_AIRMONT,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1040         VULNWL_INTEL(XEON_PHI_KNL,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1041         VULNWL_INTEL(XEON_PHI_KNM,              NO_SSB | NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1042
1043         VULNWL_INTEL(CORE_YONAH,                NO_SSB),
1044
1045         VULNWL_INTEL(ATOM_AIRMONT_MID,          NO_L1TF | MSBDS_ONLY | NO_SWAPGS | NO_ITLB_MULTIHIT),
1046         VULNWL_INTEL(ATOM_AIRMONT_NP,           NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1047
1048         VULNWL_INTEL(ATOM_GOLDMONT,             NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1049         VULNWL_INTEL(ATOM_GOLDMONT_D,           NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1050         VULNWL_INTEL(ATOM_GOLDMONT_PLUS,        NO_MDS | NO_L1TF | NO_SWAPGS | NO_ITLB_MULTIHIT),
1051
1052         /*
1053          * Technically, swapgs isn't serializing on AMD (despite it previously
1054          * being documented as such in the APM).  But according to AMD, %gs is
1055          * updated non-speculatively, and the issuing of %gs-relative memory
1056          * operands will be blocked until the %gs update completes, which is
1057          * good enough for our purposes.
1058          */
1059
1060         VULNWL_INTEL(ATOM_TREMONT_D,            NO_ITLB_MULTIHIT),
1061
1062         /* AMD Family 0xf - 0x12 */
1063         VULNWL_AMD(0x0f,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1064         VULNWL_AMD(0x10,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1065         VULNWL_AMD(0x11,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1066         VULNWL_AMD(0x12,        NO_MELTDOWN | NO_SSB | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1067
1068         /* FAMILY_ANY must be last, otherwise 0x0f - 0x12 matches won't work */
1069         VULNWL_AMD(X86_FAMILY_ANY,      NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1070         VULNWL_HYGON(X86_FAMILY_ANY,    NO_MELTDOWN | NO_L1TF | NO_MDS | NO_SWAPGS | NO_ITLB_MULTIHIT),
1071
1072         /* Zhaoxin Family 7 */
1073         VULNWL(CENTAUR, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1074         VULNWL(ZHAOXIN, 7, X86_MODEL_ANY,       NO_SPECTRE_V2 | NO_SWAPGS),
1075         {}
1076 };
1077
1078 #define VULNBL_INTEL_STEPPINGS(model, steppings, issues)                   \
1079         X86_MATCH_VENDOR_FAM_MODEL_STEPPINGS_FEATURE(INTEL, 6,             \
1080                                             INTEL_FAM6_##model, steppings, \
1081                                             X86_FEATURE_ANY, issues)
1082
1083 #define SRBDS           BIT(0)
1084
1085 static const struct x86_cpu_id cpu_vuln_blacklist[] __initconst = {
1086         VULNBL_INTEL_STEPPINGS(IVYBRIDGE,       X86_STEPPING_ANY,               SRBDS),
1087         VULNBL_INTEL_STEPPINGS(HASWELL,         X86_STEPPING_ANY,               SRBDS),
1088         VULNBL_INTEL_STEPPINGS(HASWELL_L,       X86_STEPPING_ANY,               SRBDS),
1089         VULNBL_INTEL_STEPPINGS(HASWELL_G,       X86_STEPPING_ANY,               SRBDS),
1090         VULNBL_INTEL_STEPPINGS(BROADWELL_G,     X86_STEPPING_ANY,               SRBDS),
1091         VULNBL_INTEL_STEPPINGS(BROADWELL,       X86_STEPPING_ANY,               SRBDS),
1092         VULNBL_INTEL_STEPPINGS(SKYLAKE_L,       X86_STEPPING_ANY,               SRBDS),
1093         VULNBL_INTEL_STEPPINGS(SKYLAKE,         X86_STEPPING_ANY,               SRBDS),
1094         VULNBL_INTEL_STEPPINGS(KABYLAKE_L,      X86_STEPPINGS(0x0, 0xC),        SRBDS),
1095         VULNBL_INTEL_STEPPINGS(KABYLAKE,        X86_STEPPINGS(0x0, 0xD),        SRBDS),
1096         {}
1097 };
1098
1099 static bool __init cpu_matches(const struct x86_cpu_id *table, unsigned long which)
1100 {
1101         const struct x86_cpu_id *m = x86_match_cpu(table);
1102
1103         return m && !!(m->driver_data & which);
1104 }
1105
1106 u64 x86_read_arch_cap_msr(void)
1107 {
1108         u64 ia32_cap = 0;
1109
1110         if (boot_cpu_has(X86_FEATURE_ARCH_CAPABILITIES))
1111                 rdmsrl(MSR_IA32_ARCH_CAPABILITIES, ia32_cap);
1112
1113         return ia32_cap;
1114 }
1115
1116 static void __init cpu_set_bug_bits(struct cpuinfo_x86 *c)
1117 {
1118         u64 ia32_cap = x86_read_arch_cap_msr();
1119
1120         /* Set ITLB_MULTIHIT bug if cpu is not in the whitelist and not mitigated */
1121         if (!cpu_matches(cpu_vuln_whitelist, NO_ITLB_MULTIHIT) &&
1122             !(ia32_cap & ARCH_CAP_PSCHANGE_MC_NO))
1123                 setup_force_cpu_bug(X86_BUG_ITLB_MULTIHIT);
1124
1125         if (cpu_matches(cpu_vuln_whitelist, NO_SPECULATION))
1126                 return;
1127
1128         setup_force_cpu_bug(X86_BUG_SPECTRE_V1);
1129
1130         if (!cpu_matches(cpu_vuln_whitelist, NO_SPECTRE_V2))
1131                 setup_force_cpu_bug(X86_BUG_SPECTRE_V2);
1132
1133         if (!cpu_matches(cpu_vuln_whitelist, NO_SSB) &&
1134             !(ia32_cap & ARCH_CAP_SSB_NO) &&
1135            !cpu_has(c, X86_FEATURE_AMD_SSB_NO))
1136                 setup_force_cpu_bug(X86_BUG_SPEC_STORE_BYPASS);
1137
1138         if (ia32_cap & ARCH_CAP_IBRS_ALL)
1139                 setup_force_cpu_cap(X86_FEATURE_IBRS_ENHANCED);
1140
1141         if (!cpu_matches(cpu_vuln_whitelist, NO_MDS) &&
1142             !(ia32_cap & ARCH_CAP_MDS_NO)) {
1143                 setup_force_cpu_bug(X86_BUG_MDS);
1144                 if (cpu_matches(cpu_vuln_whitelist, MSBDS_ONLY))
1145                         setup_force_cpu_bug(X86_BUG_MSBDS_ONLY);
1146         }
1147
1148         if (!cpu_matches(cpu_vuln_whitelist, NO_SWAPGS))
1149                 setup_force_cpu_bug(X86_BUG_SWAPGS);
1150
1151         /*
1152          * When the CPU is not mitigated for TAA (TAA_NO=0) set TAA bug when:
1153          *      - TSX is supported or
1154          *      - TSX_CTRL is present
1155          *
1156          * TSX_CTRL check is needed for cases when TSX could be disabled before
1157          * the kernel boot e.g. kexec.
1158          * TSX_CTRL check alone is not sufficient for cases when the microcode
1159          * update is not present or running as guest that don't get TSX_CTRL.
1160          */
1161         if (!(ia32_cap & ARCH_CAP_TAA_NO) &&
1162             (cpu_has(c, X86_FEATURE_RTM) ||
1163              (ia32_cap & ARCH_CAP_TSX_CTRL_MSR)))
1164                 setup_force_cpu_bug(X86_BUG_TAA);
1165
1166         /*
1167          * SRBDS affects CPUs which support RDRAND or RDSEED and are listed
1168          * in the vulnerability blacklist.
1169          */
1170         if ((cpu_has(c, X86_FEATURE_RDRAND) ||
1171              cpu_has(c, X86_FEATURE_RDSEED)) &&
1172             cpu_matches(cpu_vuln_blacklist, SRBDS))
1173                     setup_force_cpu_bug(X86_BUG_SRBDS);
1174
1175         if (cpu_matches(cpu_vuln_whitelist, NO_MELTDOWN))
1176                 return;
1177
1178         /* Rogue Data Cache Load? No! */
1179         if (ia32_cap & ARCH_CAP_RDCL_NO)
1180                 return;
1181
1182         setup_force_cpu_bug(X86_BUG_CPU_MELTDOWN);
1183
1184         if (cpu_matches(cpu_vuln_whitelist, NO_L1TF))
1185                 return;
1186
1187         setup_force_cpu_bug(X86_BUG_L1TF);
1188 }
1189
1190 /*
1191  * The NOPL instruction is supposed to exist on all CPUs of family >= 6;
1192  * unfortunately, that's not true in practice because of early VIA
1193  * chips and (more importantly) broken virtualizers that are not easy
1194  * to detect. In the latter case it doesn't even *fail* reliably, so
1195  * probing for it doesn't even work. Disable it completely on 32-bit
1196  * unless we can find a reliable way to detect all the broken cases.
1197  * Enable it explicitly on 64-bit for non-constant inputs of cpu_has().
1198  */
1199 static void detect_nopl(void)
1200 {
1201 #ifdef CONFIG_X86_32
1202         setup_clear_cpu_cap(X86_FEATURE_NOPL);
1203 #else
1204         setup_force_cpu_cap(X86_FEATURE_NOPL);
1205 #endif
1206 }
1207
1208 /*
1209  * Do minimum CPU detection early.
1210  * Fields really needed: vendor, cpuid_level, family, model, mask,
1211  * cache alignment.
1212  * The others are not touched to avoid unwanted side effects.
1213  *
1214  * WARNING: this function is only called on the boot CPU.  Don't add code
1215  * here that is supposed to run on all CPUs.
1216  */
1217 static void __init early_identify_cpu(struct cpuinfo_x86 *c)
1218 {
1219 #ifdef CONFIG_X86_64
1220         c->x86_clflush_size = 64;
1221         c->x86_phys_bits = 36;
1222         c->x86_virt_bits = 48;
1223 #else
1224         c->x86_clflush_size = 32;
1225         c->x86_phys_bits = 32;
1226         c->x86_virt_bits = 32;
1227 #endif
1228         c->x86_cache_alignment = c->x86_clflush_size;
1229
1230         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1231         c->extended_cpuid_level = 0;
1232
1233         if (!have_cpuid_p())
1234                 identify_cpu_without_cpuid(c);
1235
1236         /* cyrix could have cpuid enabled via c_identify()*/
1237         if (have_cpuid_p()) {
1238                 cpu_detect(c);
1239                 get_cpu_vendor(c);
1240                 get_cpu_cap(c);
1241                 get_cpu_address_sizes(c);
1242                 setup_force_cpu_cap(X86_FEATURE_CPUID);
1243
1244                 if (this_cpu->c_early_init)
1245                         this_cpu->c_early_init(c);
1246
1247                 c->cpu_index = 0;
1248                 filter_cpuid_features(c, false);
1249
1250                 if (this_cpu->c_bsp_init)
1251                         this_cpu->c_bsp_init(c);
1252         } else {
1253                 setup_clear_cpu_cap(X86_FEATURE_CPUID);
1254         }
1255
1256         setup_force_cpu_cap(X86_FEATURE_ALWAYS);
1257
1258         cpu_set_bug_bits(c);
1259
1260         cpu_set_core_cap_bits(c);
1261
1262         fpu__init_system(c);
1263
1264 #ifdef CONFIG_X86_32
1265         /*
1266          * Regardless of whether PCID is enumerated, the SDM says
1267          * that it can't be enabled in 32-bit mode.
1268          */
1269         setup_clear_cpu_cap(X86_FEATURE_PCID);
1270 #endif
1271
1272         /*
1273          * Later in the boot process pgtable_l5_enabled() relies on
1274          * cpu_feature_enabled(X86_FEATURE_LA57). If 5-level paging is not
1275          * enabled by this point we need to clear the feature bit to avoid
1276          * false-positives at the later stage.
1277          *
1278          * pgtable_l5_enabled() can be false here for several reasons:
1279          *  - 5-level paging is disabled compile-time;
1280          *  - it's 32-bit kernel;
1281          *  - machine doesn't support 5-level paging;
1282          *  - user specified 'no5lvl' in kernel command line.
1283          */
1284         if (!pgtable_l5_enabled())
1285                 setup_clear_cpu_cap(X86_FEATURE_LA57);
1286
1287         detect_nopl();
1288 }
1289
1290 void __init early_cpu_init(void)
1291 {
1292         const struct cpu_dev *const *cdev;
1293         int count = 0;
1294
1295 #ifdef CONFIG_PROCESSOR_SELECT
1296         pr_info("KERNEL supported cpus:\n");
1297 #endif
1298
1299         for (cdev = __x86_cpu_dev_start; cdev < __x86_cpu_dev_end; cdev++) {
1300                 const struct cpu_dev *cpudev = *cdev;
1301
1302                 if (count >= X86_VENDOR_NUM)
1303                         break;
1304                 cpu_devs[count] = cpudev;
1305                 count++;
1306
1307 #ifdef CONFIG_PROCESSOR_SELECT
1308                 {
1309                         unsigned int j;
1310
1311                         for (j = 0; j < 2; j++) {
1312                                 if (!cpudev->c_ident[j])
1313                                         continue;
1314                                 pr_info("  %s %s\n", cpudev->c_vendor,
1315                                         cpudev->c_ident[j]);
1316                         }
1317                 }
1318 #endif
1319         }
1320         early_identify_cpu(&boot_cpu_data);
1321 }
1322
1323 static void detect_null_seg_behavior(struct cpuinfo_x86 *c)
1324 {
1325 #ifdef CONFIG_X86_64
1326         /*
1327          * Empirically, writing zero to a segment selector on AMD does
1328          * not clear the base, whereas writing zero to a segment
1329          * selector on Intel does clear the base.  Intel's behavior
1330          * allows slightly faster context switches in the common case
1331          * where GS is unused by the prev and next threads.
1332          *
1333          * Since neither vendor documents this anywhere that I can see,
1334          * detect it directly instead of hardcoding the choice by
1335          * vendor.
1336          *
1337          * I've designated AMD's behavior as the "bug" because it's
1338          * counterintuitive and less friendly.
1339          */
1340
1341         unsigned long old_base, tmp;
1342         rdmsrl(MSR_FS_BASE, old_base);
1343         wrmsrl(MSR_FS_BASE, 1);
1344         loadsegment(fs, 0);
1345         rdmsrl(MSR_FS_BASE, tmp);
1346         if (tmp != 0)
1347                 set_cpu_bug(c, X86_BUG_NULL_SEG);
1348         wrmsrl(MSR_FS_BASE, old_base);
1349 #endif
1350 }
1351
1352 static void generic_identify(struct cpuinfo_x86 *c)
1353 {
1354         c->extended_cpuid_level = 0;
1355
1356         if (!have_cpuid_p())
1357                 identify_cpu_without_cpuid(c);
1358
1359         /* cyrix could have cpuid enabled via c_identify()*/
1360         if (!have_cpuid_p())
1361                 return;
1362
1363         cpu_detect(c);
1364
1365         get_cpu_vendor(c);
1366
1367         get_cpu_cap(c);
1368
1369         get_cpu_address_sizes(c);
1370
1371         if (c->cpuid_level >= 0x00000001) {
1372                 c->initial_apicid = (cpuid_ebx(1) >> 24) & 0xFF;
1373 #ifdef CONFIG_X86_32
1374 # ifdef CONFIG_SMP
1375                 c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1376 # else
1377                 c->apicid = c->initial_apicid;
1378 # endif
1379 #endif
1380                 c->phys_proc_id = c->initial_apicid;
1381         }
1382
1383         get_model_name(c); /* Default name */
1384
1385         detect_null_seg_behavior(c);
1386
1387         /*
1388          * ESPFIX is a strange bug.  All real CPUs have it.  Paravirt
1389          * systems that run Linux at CPL > 0 may or may not have the
1390          * issue, but, even if they have the issue, there's absolutely
1391          * nothing we can do about it because we can't use the real IRET
1392          * instruction.
1393          *
1394          * NB: For the time being, only 32-bit kernels support
1395          * X86_BUG_ESPFIX as such.  64-bit kernels directly choose
1396          * whether to apply espfix using paravirt hooks.  If any
1397          * non-paravirt system ever shows up that does *not* have the
1398          * ESPFIX issue, we can change this.
1399          */
1400 #ifdef CONFIG_X86_32
1401 # ifdef CONFIG_PARAVIRT_XXL
1402         do {
1403                 extern void native_iret(void);
1404                 if (pv_ops.cpu.iret == native_iret)
1405                         set_cpu_bug(c, X86_BUG_ESPFIX);
1406         } while (0);
1407 # else
1408         set_cpu_bug(c, X86_BUG_ESPFIX);
1409 # endif
1410 #endif
1411 }
1412
1413 static void x86_init_cache_qos(struct cpuinfo_x86 *c)
1414 {
1415         /*
1416          * The heavy lifting of max_rmid and cache_occ_scale are handled
1417          * in get_cpu_cap().  Here we just set the max_rmid for the boot_cpu
1418          * in case CQM bits really aren't there in this CPU.
1419          */
1420         if (c != &boot_cpu_data) {
1421                 boot_cpu_data.x86_cache_max_rmid =
1422                         min(boot_cpu_data.x86_cache_max_rmid,
1423                             c->x86_cache_max_rmid);
1424         }
1425 }
1426
1427 /*
1428  * Validate that ACPI/mptables have the same information about the
1429  * effective APIC id and update the package map.
1430  */
1431 static void validate_apic_and_package_id(struct cpuinfo_x86 *c)
1432 {
1433 #ifdef CONFIG_SMP
1434         unsigned int apicid, cpu = smp_processor_id();
1435
1436         apicid = apic->cpu_present_to_apicid(cpu);
1437
1438         if (apicid != c->apicid) {
1439                 pr_err(FW_BUG "CPU%u: APIC id mismatch. Firmware: %x APIC: %x\n",
1440                        cpu, apicid, c->initial_apicid);
1441         }
1442         BUG_ON(topology_update_package_map(c->phys_proc_id, cpu));
1443         BUG_ON(topology_update_die_map(c->cpu_die_id, cpu));
1444 #else
1445         c->logical_proc_id = 0;
1446 #endif
1447 }
1448
1449 /*
1450  * This does the hard work of actually picking apart the CPU stuff...
1451  */
1452 static void identify_cpu(struct cpuinfo_x86 *c)
1453 {
1454         int i;
1455
1456         c->loops_per_jiffy = loops_per_jiffy;
1457         c->x86_cache_size = 0;
1458         c->x86_vendor = X86_VENDOR_UNKNOWN;
1459         c->x86_model = c->x86_stepping = 0;     /* So far unknown... */
1460         c->x86_vendor_id[0] = '\0'; /* Unset */
1461         c->x86_model_id[0] = '\0';  /* Unset */
1462         c->x86_max_cores = 1;
1463         c->x86_coreid_bits = 0;
1464         c->cu_id = 0xff;
1465 #ifdef CONFIG_X86_64
1466         c->x86_clflush_size = 64;
1467         c->x86_phys_bits = 36;
1468         c->x86_virt_bits = 48;
1469 #else
1470         c->cpuid_level = -1;    /* CPUID not detected */
1471         c->x86_clflush_size = 32;
1472         c->x86_phys_bits = 32;
1473         c->x86_virt_bits = 32;
1474 #endif
1475         c->x86_cache_alignment = c->x86_clflush_size;
1476         memset(&c->x86_capability, 0, sizeof(c->x86_capability));
1477 #ifdef CONFIG_X86_VMX_FEATURE_NAMES
1478         memset(&c->vmx_capability, 0, sizeof(c->vmx_capability));
1479 #endif
1480
1481         generic_identify(c);
1482
1483         if (this_cpu->c_identify)
1484                 this_cpu->c_identify(c);
1485
1486         /* Clear/Set all flags overridden by options, after probe */
1487         apply_forced_caps(c);
1488
1489 #ifdef CONFIG_X86_64
1490         c->apicid = apic->phys_pkg_id(c->initial_apicid, 0);
1491 #endif
1492
1493         /*
1494          * Vendor-specific initialization.  In this section we
1495          * canonicalize the feature flags, meaning if there are
1496          * features a certain CPU supports which CPUID doesn't
1497          * tell us, CPUID claiming incorrect flags, or other bugs,
1498          * we handle them here.
1499          *
1500          * At the end of this section, c->x86_capability better
1501          * indicate the features this CPU genuinely supports!
1502          */
1503         if (this_cpu->c_init)
1504                 this_cpu->c_init(c);
1505
1506         /* Disable the PN if appropriate */
1507         squash_the_stupid_serial_number(c);
1508
1509         /* Set up SMEP/SMAP/UMIP */
1510         setup_smep(c);
1511         setup_smap(c);
1512         setup_umip(c);
1513
1514         /*
1515          * The vendor-specific functions might have changed features.
1516          * Now we do "generic changes."
1517          */
1518
1519         /* Filter out anything that depends on CPUID levels we don't have */
1520         filter_cpuid_features(c, true);
1521
1522         /* If the model name is still unset, do table lookup. */
1523         if (!c->x86_model_id[0]) {
1524                 const char *p;
1525                 p = table_lookup_model(c);
1526                 if (p)
1527                         strcpy(c->x86_model_id, p);
1528                 else
1529                         /* Last resort... */
1530                         sprintf(c->x86_model_id, "%02x/%02x",
1531                                 c->x86, c->x86_model);
1532         }
1533
1534 #ifdef CONFIG_X86_64
1535         detect_ht(c);
1536 #endif
1537
1538         x86_init_rdrand(c);
1539         x86_init_cache_qos(c);
1540         setup_pku(c);
1541
1542         /*
1543          * Clear/Set all flags overridden by options, need do it
1544          * before following smp all cpus cap AND.
1545          */
1546         apply_forced_caps(c);
1547
1548         /*
1549          * On SMP, boot_cpu_data holds the common feature set between
1550          * all CPUs; so make sure that we indicate which features are
1551          * common between the CPUs.  The first time this routine gets
1552          * executed, c == &boot_cpu_data.
1553          */
1554         if (c != &boot_cpu_data) {
1555                 /* AND the already accumulated flags with these */
1556                 for (i = 0; i < NCAPINTS; i++)
1557                         boot_cpu_data.x86_capability[i] &= c->x86_capability[i];
1558
1559                 /* OR, i.e. replicate the bug flags */
1560                 for (i = NCAPINTS; i < NCAPINTS + NBUGINTS; i++)
1561                         c->x86_capability[i] |= boot_cpu_data.x86_capability[i];
1562         }
1563
1564         /* Init Machine Check Exception if available. */
1565         mcheck_cpu_init(c);
1566
1567         select_idle_routine(c);
1568
1569 #ifdef CONFIG_NUMA
1570         numa_add_cpu(smp_processor_id());
1571 #endif
1572 }
1573
1574 /*
1575  * Set up the CPU state needed to execute SYSENTER/SYSEXIT instructions
1576  * on 32-bit kernels:
1577  */
1578 #ifdef CONFIG_X86_32
1579 void enable_sep_cpu(void)
1580 {
1581         struct tss_struct *tss;
1582         int cpu;
1583
1584         if (!boot_cpu_has(X86_FEATURE_SEP))
1585                 return;
1586
1587         cpu = get_cpu();
1588         tss = &per_cpu(cpu_tss_rw, cpu);
1589
1590         /*
1591          * We cache MSR_IA32_SYSENTER_CS's value in the TSS's ss1 field --
1592          * see the big comment in struct x86_hw_tss's definition.
1593          */
1594
1595         tss->x86_tss.ss1 = __KERNEL_CS;
1596         wrmsr(MSR_IA32_SYSENTER_CS, tss->x86_tss.ss1, 0);
1597         wrmsr(MSR_IA32_SYSENTER_ESP, (unsigned long)(cpu_entry_stack(cpu) + 1), 0);
1598         wrmsr(MSR_IA32_SYSENTER_EIP, (unsigned long)entry_SYSENTER_32, 0);
1599
1600         put_cpu();
1601 }
1602 #endif
1603
1604 void __init identify_boot_cpu(void)
1605 {
1606         identify_cpu(&boot_cpu_data);
1607 #ifdef CONFIG_X86_32
1608         sysenter_setup();
1609         enable_sep_cpu();
1610 #endif
1611         cpu_detect_tlb(&boot_cpu_data);
1612         setup_cr_pinning();
1613
1614         tsx_init();
1615 }
1616
1617 void identify_secondary_cpu(struct cpuinfo_x86 *c)
1618 {
1619         BUG_ON(c == &boot_cpu_data);
1620         identify_cpu(c);
1621 #ifdef CONFIG_X86_32
1622         enable_sep_cpu();
1623 #endif
1624         mtrr_ap_init();
1625         validate_apic_and_package_id(c);
1626         x86_spec_ctrl_setup_ap();
1627         update_srbds_msr();
1628 }
1629
1630 static __init int setup_noclflush(char *arg)
1631 {
1632         setup_clear_cpu_cap(X86_FEATURE_CLFLUSH);
1633         setup_clear_cpu_cap(X86_FEATURE_CLFLUSHOPT);
1634         return 1;
1635 }
1636 __setup("noclflush", setup_noclflush);
1637
1638 void print_cpu_info(struct cpuinfo_x86 *c)
1639 {
1640         const char *vendor = NULL;
1641
1642         if (c->x86_vendor < X86_VENDOR_NUM) {
1643                 vendor = this_cpu->c_vendor;
1644         } else {
1645                 if (c->cpuid_level >= 0)
1646                         vendor = c->x86_vendor_id;
1647         }
1648
1649         if (vendor && !strstr(c->x86_model_id, vendor))
1650                 pr_cont("%s ", vendor);
1651
1652         if (c->x86_model_id[0])
1653                 pr_cont("%s", c->x86_model_id);
1654         else
1655                 pr_cont("%d86", c->x86);
1656
1657         pr_cont(" (family: 0x%x, model: 0x%x", c->x86, c->x86_model);
1658
1659         if (c->x86_stepping || c->cpuid_level >= 0)
1660                 pr_cont(", stepping: 0x%x)\n", c->x86_stepping);
1661         else
1662                 pr_cont(")\n");
1663 }
1664
1665 /*
1666  * clearcpuid= was already parsed in fpu__init_parse_early_param.
1667  * But we need to keep a dummy __setup around otherwise it would
1668  * show up as an environment variable for init.
1669  */
1670 static __init int setup_clearcpuid(char *arg)
1671 {
1672         return 1;
1673 }
1674 __setup("clearcpuid=", setup_clearcpuid);
1675
1676 #ifdef CONFIG_X86_64
1677 DEFINE_PER_CPU_FIRST(struct fixed_percpu_data,
1678                      fixed_percpu_data) __aligned(PAGE_SIZE) __visible;
1679 EXPORT_PER_CPU_SYMBOL_GPL(fixed_percpu_data);
1680
1681 /*
1682  * The following percpu variables are hot.  Align current_task to
1683  * cacheline size such that they fall in the same cacheline.
1684  */
1685 DEFINE_PER_CPU(struct task_struct *, current_task) ____cacheline_aligned =
1686         &init_task;
1687 EXPORT_PER_CPU_SYMBOL(current_task);
1688
1689 DEFINE_PER_CPU(struct irq_stack *, hardirq_stack_ptr);
1690 DEFINE_PER_CPU(unsigned int, irq_count) __visible = -1;
1691
1692 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1693 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1694
1695 /* May not be marked __init: used by software suspend */
1696 void syscall_init(void)
1697 {
1698         wrmsr(MSR_STAR, 0, (__USER32_CS << 16) | __KERNEL_CS);
1699         wrmsrl(MSR_LSTAR, (unsigned long)entry_SYSCALL_64);
1700
1701 #ifdef CONFIG_IA32_EMULATION
1702         wrmsrl(MSR_CSTAR, (unsigned long)entry_SYSCALL_compat);
1703         /*
1704          * This only works on Intel CPUs.
1705          * On AMD CPUs these MSRs are 32-bit, CPU truncates MSR_IA32_SYSENTER_EIP.
1706          * This does not cause SYSENTER to jump to the wrong location, because
1707          * AMD doesn't allow SYSENTER in long mode (either 32- or 64-bit).
1708          */
1709         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)__KERNEL_CS);
1710         wrmsrl_safe(MSR_IA32_SYSENTER_ESP,
1711                     (unsigned long)(cpu_entry_stack(smp_processor_id()) + 1));
1712         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, (u64)entry_SYSENTER_compat);
1713 #else
1714         wrmsrl(MSR_CSTAR, (unsigned long)ignore_sysret);
1715         wrmsrl_safe(MSR_IA32_SYSENTER_CS, (u64)GDT_ENTRY_INVALID_SEG);
1716         wrmsrl_safe(MSR_IA32_SYSENTER_ESP, 0ULL);
1717         wrmsrl_safe(MSR_IA32_SYSENTER_EIP, 0ULL);
1718 #endif
1719
1720         /* Flags to clear on syscall */
1721         wrmsrl(MSR_SYSCALL_MASK,
1722                X86_EFLAGS_TF|X86_EFLAGS_DF|X86_EFLAGS_IF|
1723                X86_EFLAGS_IOPL|X86_EFLAGS_AC|X86_EFLAGS_NT);
1724 }
1725
1726 DEFINE_PER_CPU(int, debug_stack_usage);
1727 DEFINE_PER_CPU(u32, debug_idt_ctr);
1728
1729 void debug_stack_set_zero(void)
1730 {
1731         this_cpu_inc(debug_idt_ctr);
1732         load_current_idt();
1733 }
1734 NOKPROBE_SYMBOL(debug_stack_set_zero);
1735
1736 void debug_stack_reset(void)
1737 {
1738         if (WARN_ON(!this_cpu_read(debug_idt_ctr)))
1739                 return;
1740         if (this_cpu_dec_return(debug_idt_ctr) == 0)
1741                 load_current_idt();
1742 }
1743 NOKPROBE_SYMBOL(debug_stack_reset);
1744
1745 #else   /* CONFIG_X86_64 */
1746
1747 DEFINE_PER_CPU(struct task_struct *, current_task) = &init_task;
1748 EXPORT_PER_CPU_SYMBOL(current_task);
1749 DEFINE_PER_CPU(int, __preempt_count) = INIT_PREEMPT_COUNT;
1750 EXPORT_PER_CPU_SYMBOL(__preempt_count);
1751
1752 /*
1753  * On x86_32, vm86 modifies tss.sp0, so sp0 isn't a reliable way to find
1754  * the top of the kernel stack.  Use an extra percpu variable to track the
1755  * top of the kernel stack directly.
1756  */
1757 DEFINE_PER_CPU(unsigned long, cpu_current_top_of_stack) =
1758         (unsigned long)&init_thread_union + THREAD_SIZE;
1759 EXPORT_PER_CPU_SYMBOL(cpu_current_top_of_stack);
1760
1761 #ifdef CONFIG_STACKPROTECTOR
1762 DEFINE_PER_CPU_ALIGNED(struct stack_canary, stack_canary);
1763 #endif
1764
1765 #endif  /* CONFIG_X86_64 */
1766
1767 /*
1768  * Clear all 6 debug registers:
1769  */
1770 static void clear_all_debug_regs(void)
1771 {
1772         int i;
1773
1774         for (i = 0; i < 8; i++) {
1775                 /* Ignore db4, db5 */
1776                 if ((i == 4) || (i == 5))
1777                         continue;
1778
1779                 set_debugreg(0, i);
1780         }
1781 }
1782
1783 #ifdef CONFIG_KGDB
1784 /*
1785  * Restore debug regs if using kgdbwait and you have a kernel debugger
1786  * connection established.
1787  */
1788 static void dbg_restore_debug_regs(void)
1789 {
1790         if (unlikely(kgdb_connected && arch_kgdb_ops.correct_hw_break))
1791                 arch_kgdb_ops.correct_hw_break();
1792 }
1793 #else /* ! CONFIG_KGDB */
1794 #define dbg_restore_debug_regs()
1795 #endif /* ! CONFIG_KGDB */
1796
1797 static void wait_for_master_cpu(int cpu)
1798 {
1799 #ifdef CONFIG_SMP
1800         /*
1801          * wait for ACK from master CPU before continuing
1802          * with AP initialization
1803          */
1804         WARN_ON(cpumask_test_and_set_cpu(cpu, cpu_initialized_mask));
1805         while (!cpumask_test_cpu(cpu, cpu_callout_mask))
1806                 cpu_relax();
1807 #endif
1808 }
1809
1810 #ifdef CONFIG_X86_64
1811 static inline void setup_getcpu(int cpu)
1812 {
1813         unsigned long cpudata = vdso_encode_cpunode(cpu, early_cpu_to_node(cpu));
1814         struct desc_struct d = { };
1815
1816         if (boot_cpu_has(X86_FEATURE_RDTSCP))
1817                 write_rdtscp_aux(cpudata);
1818
1819         /* Store CPU and node number in limit. */
1820         d.limit0 = cpudata;
1821         d.limit1 = cpudata >> 16;
1822
1823         d.type = 5;             /* RO data, expand down, accessed */
1824         d.dpl = 3;              /* Visible to user code */
1825         d.s = 1;                /* Not a system segment */
1826         d.p = 1;                /* Present */
1827         d.d = 1;                /* 32-bit */
1828
1829         write_gdt_entry(get_cpu_gdt_rw(cpu), GDT_ENTRY_CPUNODE, &d, DESCTYPE_S);
1830 }
1831
1832 static inline void ucode_cpu_init(int cpu)
1833 {
1834         if (cpu)
1835                 load_ucode_ap();
1836 }
1837
1838 static inline void tss_setup_ist(struct tss_struct *tss)
1839 {
1840         /* Set up the per-CPU TSS IST stacks */
1841         tss->x86_tss.ist[IST_INDEX_DF] = __this_cpu_ist_top_va(DF);
1842         tss->x86_tss.ist[IST_INDEX_NMI] = __this_cpu_ist_top_va(NMI);
1843         tss->x86_tss.ist[IST_INDEX_DB] = __this_cpu_ist_top_va(DB);
1844         tss->x86_tss.ist[IST_INDEX_MCE] = __this_cpu_ist_top_va(MCE);
1845 }
1846
1847 #else /* CONFIG_X86_64 */
1848
1849 static inline void setup_getcpu(int cpu) { }
1850
1851 static inline void ucode_cpu_init(int cpu)
1852 {
1853         show_ucode_info_early();
1854 }
1855
1856 static inline void tss_setup_ist(struct tss_struct *tss) { }
1857
1858 #endif /* !CONFIG_X86_64 */
1859
1860 static inline void tss_setup_io_bitmap(struct tss_struct *tss)
1861 {
1862         tss->x86_tss.io_bitmap_base = IO_BITMAP_OFFSET_INVALID;
1863
1864 #ifdef CONFIG_X86_IOPL_IOPERM
1865         tss->io_bitmap.prev_max = 0;
1866         tss->io_bitmap.prev_sequence = 0;
1867         memset(tss->io_bitmap.bitmap, 0xff, sizeof(tss->io_bitmap.bitmap));
1868         /*
1869          * Invalidate the extra array entry past the end of the all
1870          * permission bitmap as required by the hardware.
1871          */
1872         tss->io_bitmap.mapall[IO_BITMAP_LONGS] = ~0UL;
1873 #endif
1874 }
1875
1876 /*
1877  * cpu_init() initializes state that is per-CPU. Some data is already
1878  * initialized (naturally) in the bootstrap process, such as the GDT
1879  * and IDT. We reload them nevertheless, this function acts as a
1880  * 'CPU state barrier', nothing should get across.
1881  */
1882 void cpu_init(void)
1883 {
1884         struct tss_struct *tss = this_cpu_ptr(&cpu_tss_rw);
1885         struct task_struct *cur = current;
1886         int cpu = raw_smp_processor_id();
1887
1888         wait_for_master_cpu(cpu);
1889
1890         ucode_cpu_init(cpu);
1891
1892 #ifdef CONFIG_NUMA
1893         if (this_cpu_read(numa_node) == 0 &&
1894             early_cpu_to_node(cpu) != NUMA_NO_NODE)
1895                 set_numa_node(early_cpu_to_node(cpu));
1896 #endif
1897         setup_getcpu(cpu);
1898
1899         pr_debug("Initializing CPU#%d\n", cpu);
1900
1901         if (IS_ENABLED(CONFIG_X86_64) || cpu_feature_enabled(X86_FEATURE_VME) ||
1902             boot_cpu_has(X86_FEATURE_TSC) || boot_cpu_has(X86_FEATURE_DE))
1903                 cr4_clear_bits(X86_CR4_VME|X86_CR4_PVI|X86_CR4_TSD|X86_CR4_DE);
1904
1905         /*
1906          * Initialize the per-CPU GDT with the boot GDT,
1907          * and set up the GDT descriptor:
1908          */
1909         switch_to_new_gdt(cpu);
1910         load_current_idt();
1911
1912         if (IS_ENABLED(CONFIG_X86_64)) {
1913                 loadsegment(fs, 0);
1914                 memset(cur->thread.tls_array, 0, GDT_ENTRY_TLS_ENTRIES * 8);
1915                 syscall_init();
1916
1917                 wrmsrl(MSR_FS_BASE, 0);
1918                 wrmsrl(MSR_KERNEL_GS_BASE, 0);
1919                 barrier();
1920
1921                 x2apic_setup();
1922         }
1923
1924         mmgrab(&init_mm);
1925         cur->active_mm = &init_mm;
1926         BUG_ON(cur->mm);
1927         initialize_tlbstate_and_flush();
1928         enter_lazy_tlb(&init_mm, cur);
1929
1930         /* Initialize the TSS. */
1931         tss_setup_ist(tss);
1932         tss_setup_io_bitmap(tss);
1933         set_tss_desc(cpu, &get_cpu_entry_area(cpu)->tss.x86_tss);
1934
1935         load_TR_desc();
1936         /*
1937          * sp0 points to the entry trampoline stack regardless of what task
1938          * is running.
1939          */
1940         load_sp0((unsigned long)(cpu_entry_stack(cpu) + 1));
1941
1942         load_mm_ldt(&init_mm);
1943
1944         clear_all_debug_regs();
1945         dbg_restore_debug_regs();
1946
1947         doublefault_init_cpu_tss();
1948
1949         fpu__init_cpu();
1950
1951         if (is_uv_system())
1952                 uv_cpu_init();
1953
1954         load_fixmap_gdt(cpu);
1955 }
1956
1957 /*
1958  * The microcode loader calls this upon late microcode load to recheck features,
1959  * only when microcode has been updated. Caller holds microcode_mutex and CPU
1960  * hotplug lock.
1961  */
1962 void microcode_check(void)
1963 {
1964         struct cpuinfo_x86 info;
1965
1966         perf_check_microcode();
1967
1968         /* Reload CPUID max function as it might've changed. */
1969         info.cpuid_level = cpuid_eax(0);
1970
1971         /*
1972          * Copy all capability leafs to pick up the synthetic ones so that
1973          * memcmp() below doesn't fail on that. The ones coming from CPUID will
1974          * get overwritten in get_cpu_cap().
1975          */
1976         memcpy(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability));
1977
1978         get_cpu_cap(&info);
1979
1980         if (!memcmp(&info.x86_capability, &boot_cpu_data.x86_capability, sizeof(info.x86_capability)))
1981                 return;
1982
1983         pr_warn("x86/CPU: CPU features have changed after loading microcode, but might not take effect.\n");
1984         pr_warn("x86/CPU: Please consider either early loading through initrd/built-in or a potential BIOS update.\n");
1985 }
1986
1987 /*
1988  * Invoked from core CPU hotplug code after hotplug operations
1989  */
1990 void arch_smt_update(void)
1991 {
1992         /* Handle the speculative execution misfeatures */
1993         cpu_bugs_smt_update();
1994         /* Check whether IPI broadcasting can be enabled */
1995         apic_smt_update();
1996 }