Linux-libre 3.0.78-gnu1
[librecmc/linux-libre.git] / arch / sparc / kernel / perf_event.c
1 /* Performance event support for sparc64.
2  *
3  * Copyright (C) 2009, 2010 David S. Miller <davem@davemloft.net>
4  *
5  * This code is based almost entirely upon the x86 perf event
6  * code, which is:
7  *
8  *  Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
9  *  Copyright (C) 2008-2009 Red Hat, Inc., Ingo Molnar
10  *  Copyright (C) 2009 Jaswinder Singh Rajput
11  *  Copyright (C) 2009 Advanced Micro Devices, Inc., Robert Richter
12  *  Copyright (C) 2008-2009 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
13  */
14
15 #include <linux/perf_event.h>
16 #include <linux/kprobes.h>
17 #include <linux/ftrace.h>
18 #include <linux/kernel.h>
19 #include <linux/kdebug.h>
20 #include <linux/mutex.h>
21
22 #include <asm/stacktrace.h>
23 #include <asm/cpudata.h>
24 #include <asm/uaccess.h>
25 #include <asm/atomic.h>
26 #include <asm/nmi.h>
27 #include <asm/pcr.h>
28
29 #include "kernel.h"
30 #include "kstack.h"
31
32 /* Sparc64 chips have two performance counters, 32-bits each, with
33  * overflow interrupts generated on transition from 0xffffffff to 0.
34  * The counters are accessed in one go using a 64-bit register.
35  *
36  * Both counters are controlled using a single control register.  The
37  * only way to stop all sampling is to clear all of the context (user,
38  * supervisor, hypervisor) sampling enable bits.  But these bits apply
39  * to both counters, thus the two counters can't be enabled/disabled
40  * individually.
41  *
42  * The control register has two event fields, one for each of the two
43  * counters.  It's thus nearly impossible to have one counter going
44  * while keeping the other one stopped.  Therefore it is possible to
45  * get overflow interrupts for counters not currently "in use" and
46  * that condition must be checked in the overflow interrupt handler.
47  *
48  * So we use a hack, in that we program inactive counters with the
49  * "sw_count0" and "sw_count1" events.  These count how many times
50  * the instruction "sethi %hi(0xfc000), %g0" is executed.  It's an
51  * unusual way to encode a NOP and therefore will not trigger in
52  * normal code.
53  */
54
55 #define MAX_HWEVENTS                    2
56 #define MAX_PERIOD                      ((1UL << 32) - 1)
57
58 #define PIC_UPPER_INDEX                 0
59 #define PIC_LOWER_INDEX                 1
60 #define PIC_NO_INDEX                    -1
61
62 struct cpu_hw_events {
63         /* Number of events currently scheduled onto this cpu.
64          * This tells how many entries in the arrays below
65          * are valid.
66          */
67         int                     n_events;
68
69         /* Number of new events added since the last hw_perf_disable().
70          * This works because the perf event layer always adds new
71          * events inside of a perf_{disable,enable}() sequence.
72          */
73         int                     n_added;
74
75         /* Array of events current scheduled on this cpu.  */
76         struct perf_event       *event[MAX_HWEVENTS];
77
78         /* Array of encoded longs, specifying the %pcr register
79          * encoding and the mask of PIC counters this even can
80          * be scheduled on.  See perf_event_encode() et al.
81          */
82         unsigned long           events[MAX_HWEVENTS];
83
84         /* The current counter index assigned to an event.  When the
85          * event hasn't been programmed into the cpu yet, this will
86          * hold PIC_NO_INDEX.  The event->hw.idx value tells us where
87          * we ought to schedule the event.
88          */
89         int                     current_idx[MAX_HWEVENTS];
90
91         /* Software copy of %pcr register on this cpu.  */
92         u64                     pcr;
93
94         /* Enabled/disable state.  */
95         int                     enabled;
96
97         unsigned int            group_flag;
98 };
99 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = { .enabled = 1, };
100
101 /* An event map describes the characteristics of a performance
102  * counter event.  In particular it gives the encoding as well as
103  * a mask telling which counters the event can be measured on.
104  */
105 struct perf_event_map {
106         u16     encoding;
107         u8      pic_mask;
108 #define PIC_NONE        0x00
109 #define PIC_UPPER       0x01
110 #define PIC_LOWER       0x02
111 };
112
113 /* Encode a perf_event_map entry into a long.  */
114 static unsigned long perf_event_encode(const struct perf_event_map *pmap)
115 {
116         return ((unsigned long) pmap->encoding << 16) | pmap->pic_mask;
117 }
118
119 static u8 perf_event_get_msk(unsigned long val)
120 {
121         return val & 0xff;
122 }
123
124 static u64 perf_event_get_enc(unsigned long val)
125 {
126         return val >> 16;
127 }
128
129 #define C(x) PERF_COUNT_HW_CACHE_##x
130
131 #define CACHE_OP_UNSUPPORTED    0xfffe
132 #define CACHE_OP_NONSENSE       0xffff
133
134 typedef struct perf_event_map cache_map_t
135                                 [PERF_COUNT_HW_CACHE_MAX]
136                                 [PERF_COUNT_HW_CACHE_OP_MAX]
137                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
138
139 struct sparc_pmu {
140         const struct perf_event_map     *(*event_map)(int);
141         const cache_map_t               *cache_map;
142         int                             max_events;
143         int                             upper_shift;
144         int                             lower_shift;
145         int                             event_mask;
146         int                             hv_bit;
147         int                             irq_bit;
148         int                             upper_nop;
149         int                             lower_nop;
150 };
151
152 static const struct perf_event_map ultra3_perfmon_event_map[] = {
153         [PERF_COUNT_HW_CPU_CYCLES] = { 0x0000, PIC_UPPER | PIC_LOWER },
154         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x0001, PIC_UPPER | PIC_LOWER },
155         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0009, PIC_LOWER },
156         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0009, PIC_UPPER },
157 };
158
159 static const struct perf_event_map *ultra3_event_map(int event_id)
160 {
161         return &ultra3_perfmon_event_map[event_id];
162 }
163
164 static const cache_map_t ultra3_cache_map = {
165 [C(L1D)] = {
166         [C(OP_READ)] = {
167                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
168                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
169         },
170         [C(OP_WRITE)] = {
171                 [C(RESULT_ACCESS)] = { 0x0a, PIC_LOWER },
172                 [C(RESULT_MISS)] = { 0x0a, PIC_UPPER },
173         },
174         [C(OP_PREFETCH)] = {
175                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
176                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
177         },
178 },
179 [C(L1I)] = {
180         [C(OP_READ)] = {
181                 [C(RESULT_ACCESS)] = { 0x09, PIC_LOWER, },
182                 [C(RESULT_MISS)] = { 0x09, PIC_UPPER, },
183         },
184         [ C(OP_WRITE) ] = {
185                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
186                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
187         },
188         [ C(OP_PREFETCH) ] = {
189                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
190                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
191         },
192 },
193 [C(LL)] = {
194         [C(OP_READ)] = {
195                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER, },
196                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER, },
197         },
198         [C(OP_WRITE)] = {
199                 [C(RESULT_ACCESS)] = { 0x0c, PIC_LOWER },
200                 [C(RESULT_MISS)] = { 0x0c, PIC_UPPER },
201         },
202         [C(OP_PREFETCH)] = {
203                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
204                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
205         },
206 },
207 [C(DTLB)] = {
208         [C(OP_READ)] = {
209                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
210                 [C(RESULT_MISS)] = { 0x12, PIC_UPPER, },
211         },
212         [ C(OP_WRITE) ] = {
213                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
214                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
215         },
216         [ C(OP_PREFETCH) ] = {
217                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
218                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
219         },
220 },
221 [C(ITLB)] = {
222         [C(OP_READ)] = {
223                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
224                 [C(RESULT_MISS)] = { 0x11, PIC_UPPER, },
225         },
226         [ C(OP_WRITE) ] = {
227                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
228                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
229         },
230         [ C(OP_PREFETCH) ] = {
231                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
232                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
233         },
234 },
235 [C(BPU)] = {
236         [C(OP_READ)] = {
237                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
238                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
239         },
240         [ C(OP_WRITE) ] = {
241                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
242                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
243         },
244         [ C(OP_PREFETCH) ] = {
245                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
246                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
247         },
248 },
249 };
250
251 static const struct sparc_pmu ultra3_pmu = {
252         .event_map      = ultra3_event_map,
253         .cache_map      = &ultra3_cache_map,
254         .max_events     = ARRAY_SIZE(ultra3_perfmon_event_map),
255         .upper_shift    = 11,
256         .lower_shift    = 4,
257         .event_mask     = 0x3f,
258         .upper_nop      = 0x1c,
259         .lower_nop      = 0x14,
260 };
261
262 /* Niagara1 is very limited.  The upper PIC is hard-locked to count
263  * only instructions, so it is free running which creates all kinds of
264  * problems.  Some hardware designs make one wonder if the creator
265  * even looked at how this stuff gets used by software.
266  */
267 static const struct perf_event_map niagara1_perfmon_event_map[] = {
268         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, PIC_UPPER },
269         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, PIC_UPPER },
270         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0, PIC_NONE },
271         [PERF_COUNT_HW_CACHE_MISSES] = { 0x03, PIC_LOWER },
272 };
273
274 static const struct perf_event_map *niagara1_event_map(int event_id)
275 {
276         return &niagara1_perfmon_event_map[event_id];
277 }
278
279 static const cache_map_t niagara1_cache_map = {
280 [C(L1D)] = {
281         [C(OP_READ)] = {
282                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
283                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
284         },
285         [C(OP_WRITE)] = {
286                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
287                 [C(RESULT_MISS)] = { 0x03, PIC_LOWER, },
288         },
289         [C(OP_PREFETCH)] = {
290                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
291                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
292         },
293 },
294 [C(L1I)] = {
295         [C(OP_READ)] = {
296                 [C(RESULT_ACCESS)] = { 0x00, PIC_UPPER },
297                 [C(RESULT_MISS)] = { 0x02, PIC_LOWER, },
298         },
299         [ C(OP_WRITE) ] = {
300                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
301                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
302         },
303         [ C(OP_PREFETCH) ] = {
304                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
305                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
306         },
307 },
308 [C(LL)] = {
309         [C(OP_READ)] = {
310                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
311                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
312         },
313         [C(OP_WRITE)] = {
314                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
315                 [C(RESULT_MISS)] = { 0x07, PIC_LOWER, },
316         },
317         [C(OP_PREFETCH)] = {
318                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
319                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
320         },
321 },
322 [C(DTLB)] = {
323         [C(OP_READ)] = {
324                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
325                 [C(RESULT_MISS)] = { 0x05, PIC_LOWER, },
326         },
327         [ C(OP_WRITE) ] = {
328                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
329                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
330         },
331         [ C(OP_PREFETCH) ] = {
332                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
333                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
334         },
335 },
336 [C(ITLB)] = {
337         [C(OP_READ)] = {
338                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
339                 [C(RESULT_MISS)] = { 0x04, PIC_LOWER, },
340         },
341         [ C(OP_WRITE) ] = {
342                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
343                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
344         },
345         [ C(OP_PREFETCH) ] = {
346                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
347                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
348         },
349 },
350 [C(BPU)] = {
351         [C(OP_READ)] = {
352                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
353                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
354         },
355         [ C(OP_WRITE) ] = {
356                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
357                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
358         },
359         [ C(OP_PREFETCH) ] = {
360                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
361                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
362         },
363 },
364 };
365
366 static const struct sparc_pmu niagara1_pmu = {
367         .event_map      = niagara1_event_map,
368         .cache_map      = &niagara1_cache_map,
369         .max_events     = ARRAY_SIZE(niagara1_perfmon_event_map),
370         .upper_shift    = 0,
371         .lower_shift    = 4,
372         .event_mask     = 0x7,
373         .upper_nop      = 0x0,
374         .lower_nop      = 0x0,
375 };
376
377 static const struct perf_event_map niagara2_perfmon_event_map[] = {
378         [PERF_COUNT_HW_CPU_CYCLES] = { 0x02ff, PIC_UPPER | PIC_LOWER },
379         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x02ff, PIC_UPPER | PIC_LOWER },
380         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x0208, PIC_UPPER | PIC_LOWER },
381         [PERF_COUNT_HW_CACHE_MISSES] = { 0x0302, PIC_UPPER | PIC_LOWER },
382         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x0201, PIC_UPPER | PIC_LOWER },
383         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x0202, PIC_UPPER | PIC_LOWER },
384 };
385
386 static const struct perf_event_map *niagara2_event_map(int event_id)
387 {
388         return &niagara2_perfmon_event_map[event_id];
389 }
390
391 static const cache_map_t niagara2_cache_map = {
392 [C(L1D)] = {
393         [C(OP_READ)] = {
394                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
395                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
396         },
397         [C(OP_WRITE)] = {
398                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
399                 [C(RESULT_MISS)] = { 0x0302, PIC_UPPER | PIC_LOWER, },
400         },
401         [C(OP_PREFETCH)] = {
402                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
403                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
404         },
405 },
406 [C(L1I)] = {
407         [C(OP_READ)] = {
408                 [C(RESULT_ACCESS)] = { 0x02ff, PIC_UPPER | PIC_LOWER, },
409                 [C(RESULT_MISS)] = { 0x0301, PIC_UPPER | PIC_LOWER, },
410         },
411         [ C(OP_WRITE) ] = {
412                 [ C(RESULT_ACCESS) ] = { CACHE_OP_NONSENSE },
413                 [ C(RESULT_MISS)   ] = { CACHE_OP_NONSENSE },
414         },
415         [ C(OP_PREFETCH) ] = {
416                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
417                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
418         },
419 },
420 [C(LL)] = {
421         [C(OP_READ)] = {
422                 [C(RESULT_ACCESS)] = { 0x0208, PIC_UPPER | PIC_LOWER, },
423                 [C(RESULT_MISS)] = { 0x0330, PIC_UPPER | PIC_LOWER, },
424         },
425         [C(OP_WRITE)] = {
426                 [C(RESULT_ACCESS)] = { 0x0210, PIC_UPPER | PIC_LOWER, },
427                 [C(RESULT_MISS)] = { 0x0320, PIC_UPPER | PIC_LOWER, },
428         },
429         [C(OP_PREFETCH)] = {
430                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
431                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
432         },
433 },
434 [C(DTLB)] = {
435         [C(OP_READ)] = {
436                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
437                 [C(RESULT_MISS)] = { 0x0b08, PIC_UPPER | PIC_LOWER, },
438         },
439         [ C(OP_WRITE) ] = {
440                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
441                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
442         },
443         [ C(OP_PREFETCH) ] = {
444                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
445                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
446         },
447 },
448 [C(ITLB)] = {
449         [C(OP_READ)] = {
450                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
451                 [C(RESULT_MISS)] = { 0xb04, PIC_UPPER | PIC_LOWER, },
452         },
453         [ C(OP_WRITE) ] = {
454                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
455                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
456         },
457         [ C(OP_PREFETCH) ] = {
458                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
459                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
460         },
461 },
462 [C(BPU)] = {
463         [C(OP_READ)] = {
464                 [C(RESULT_ACCESS)] = { CACHE_OP_UNSUPPORTED },
465                 [C(RESULT_MISS)] = { CACHE_OP_UNSUPPORTED },
466         },
467         [ C(OP_WRITE) ] = {
468                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
469                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
470         },
471         [ C(OP_PREFETCH) ] = {
472                 [ C(RESULT_ACCESS) ] = { CACHE_OP_UNSUPPORTED },
473                 [ C(RESULT_MISS)   ] = { CACHE_OP_UNSUPPORTED },
474         },
475 },
476 };
477
478 static const struct sparc_pmu niagara2_pmu = {
479         .event_map      = niagara2_event_map,
480         .cache_map      = &niagara2_cache_map,
481         .max_events     = ARRAY_SIZE(niagara2_perfmon_event_map),
482         .upper_shift    = 19,
483         .lower_shift    = 6,
484         .event_mask     = 0xfff,
485         .hv_bit         = 0x8,
486         .irq_bit        = 0x30,
487         .upper_nop      = 0x220,
488         .lower_nop      = 0x220,
489 };
490
491 static const struct sparc_pmu *sparc_pmu __read_mostly;
492
493 static u64 event_encoding(u64 event_id, int idx)
494 {
495         if (idx == PIC_UPPER_INDEX)
496                 event_id <<= sparc_pmu->upper_shift;
497         else
498                 event_id <<= sparc_pmu->lower_shift;
499         return event_id;
500 }
501
502 static u64 mask_for_index(int idx)
503 {
504         return event_encoding(sparc_pmu->event_mask, idx);
505 }
506
507 static u64 nop_for_index(int idx)
508 {
509         return event_encoding(idx == PIC_UPPER_INDEX ?
510                               sparc_pmu->upper_nop :
511                               sparc_pmu->lower_nop, idx);
512 }
513
514 static inline void sparc_pmu_enable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
515 {
516         u64 enc, val, mask = mask_for_index(idx);
517
518         enc = perf_event_get_enc(cpuc->events[idx]);
519
520         val = cpuc->pcr;
521         val &= ~mask;
522         val |= event_encoding(enc, idx);
523         cpuc->pcr = val;
524
525         pcr_ops->write(cpuc->pcr);
526 }
527
528 static inline void sparc_pmu_disable_event(struct cpu_hw_events *cpuc, struct hw_perf_event *hwc, int idx)
529 {
530         u64 mask = mask_for_index(idx);
531         u64 nop = nop_for_index(idx);
532         u64 val;
533
534         val = cpuc->pcr;
535         val &= ~mask;
536         val |= nop;
537         cpuc->pcr = val;
538
539         pcr_ops->write(cpuc->pcr);
540 }
541
542 static u32 read_pmc(int idx)
543 {
544         u64 val;
545
546         read_pic(val);
547         if (idx == PIC_UPPER_INDEX)
548                 val >>= 32;
549
550         return val & 0xffffffff;
551 }
552
553 static void write_pmc(int idx, u64 val)
554 {
555         u64 shift, mask, pic;
556
557         shift = 0;
558         if (idx == PIC_UPPER_INDEX)
559                 shift = 32;
560
561         mask = ((u64) 0xffffffff) << shift;
562         val <<= shift;
563
564         read_pic(pic);
565         pic &= ~mask;
566         pic |= val;
567         write_pic(pic);
568 }
569
570 static u64 sparc_perf_event_update(struct perf_event *event,
571                                    struct hw_perf_event *hwc, int idx)
572 {
573         int shift = 64 - 32;
574         u64 prev_raw_count, new_raw_count;
575         s64 delta;
576
577 again:
578         prev_raw_count = local64_read(&hwc->prev_count);
579         new_raw_count = read_pmc(idx);
580
581         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
582                              new_raw_count) != prev_raw_count)
583                 goto again;
584
585         delta = (new_raw_count << shift) - (prev_raw_count << shift);
586         delta >>= shift;
587
588         local64_add(delta, &event->count);
589         local64_sub(delta, &hwc->period_left);
590
591         return new_raw_count;
592 }
593
594 static int sparc_perf_event_set_period(struct perf_event *event,
595                                        struct hw_perf_event *hwc, int idx)
596 {
597         s64 left = local64_read(&hwc->period_left);
598         s64 period = hwc->sample_period;
599         int ret = 0;
600
601         if (unlikely(left <= -period)) {
602                 left = period;
603                 local64_set(&hwc->period_left, left);
604                 hwc->last_period = period;
605                 ret = 1;
606         }
607
608         if (unlikely(left <= 0)) {
609                 left += period;
610                 local64_set(&hwc->period_left, left);
611                 hwc->last_period = period;
612                 ret = 1;
613         }
614         if (left > MAX_PERIOD)
615                 left = MAX_PERIOD;
616
617         local64_set(&hwc->prev_count, (u64)-left);
618
619         write_pmc(idx, (u64)(-left) & 0xffffffff);
620
621         perf_event_update_userpage(event);
622
623         return ret;
624 }
625
626 /* If performance event entries have been added, move existing
627  * events around (if necessary) and then assign new entries to
628  * counters.
629  */
630 static u64 maybe_change_configuration(struct cpu_hw_events *cpuc, u64 pcr)
631 {
632         int i;
633
634         if (!cpuc->n_added)
635                 goto out;
636
637         /* Read in the counters which are moving.  */
638         for (i = 0; i < cpuc->n_events; i++) {
639                 struct perf_event *cp = cpuc->event[i];
640
641                 if (cpuc->current_idx[i] != PIC_NO_INDEX &&
642                     cpuc->current_idx[i] != cp->hw.idx) {
643                         sparc_perf_event_update(cp, &cp->hw,
644                                                 cpuc->current_idx[i]);
645                         cpuc->current_idx[i] = PIC_NO_INDEX;
646                 }
647         }
648
649         /* Assign to counters all unassigned events.  */
650         for (i = 0; i < cpuc->n_events; i++) {
651                 struct perf_event *cp = cpuc->event[i];
652                 struct hw_perf_event *hwc = &cp->hw;
653                 int idx = hwc->idx;
654                 u64 enc;
655
656                 if (cpuc->current_idx[i] != PIC_NO_INDEX)
657                         continue;
658
659                 sparc_perf_event_set_period(cp, hwc, idx);
660                 cpuc->current_idx[i] = idx;
661
662                 enc = perf_event_get_enc(cpuc->events[i]);
663                 pcr &= ~mask_for_index(idx);
664                 if (hwc->state & PERF_HES_STOPPED)
665                         pcr |= nop_for_index(idx);
666                 else
667                         pcr |= event_encoding(enc, idx);
668         }
669 out:
670         return pcr;
671 }
672
673 static void sparc_pmu_enable(struct pmu *pmu)
674 {
675         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
676         u64 pcr;
677
678         if (cpuc->enabled)
679                 return;
680
681         cpuc->enabled = 1;
682         barrier();
683
684         pcr = cpuc->pcr;
685         if (!cpuc->n_events) {
686                 pcr = 0;
687         } else {
688                 pcr = maybe_change_configuration(cpuc, pcr);
689
690                 /* We require that all of the events have the same
691                  * configuration, so just fetch the settings from the
692                  * first entry.
693                  */
694                 cpuc->pcr = pcr | cpuc->event[0]->hw.config_base;
695         }
696
697         pcr_ops->write(cpuc->pcr);
698 }
699
700 static void sparc_pmu_disable(struct pmu *pmu)
701 {
702         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
703         u64 val;
704
705         if (!cpuc->enabled)
706                 return;
707
708         cpuc->enabled = 0;
709         cpuc->n_added = 0;
710
711         val = cpuc->pcr;
712         val &= ~(PCR_UTRACE | PCR_STRACE |
713                  sparc_pmu->hv_bit | sparc_pmu->irq_bit);
714         cpuc->pcr = val;
715
716         pcr_ops->write(cpuc->pcr);
717 }
718
719 static int active_event_index(struct cpu_hw_events *cpuc,
720                               struct perf_event *event)
721 {
722         int i;
723
724         for (i = 0; i < cpuc->n_events; i++) {
725                 if (cpuc->event[i] == event)
726                         break;
727         }
728         BUG_ON(i == cpuc->n_events);
729         return cpuc->current_idx[i];
730 }
731
732 static void sparc_pmu_start(struct perf_event *event, int flags)
733 {
734         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
735         int idx = active_event_index(cpuc, event);
736
737         if (flags & PERF_EF_RELOAD) {
738                 WARN_ON_ONCE(!(event->hw.state & PERF_HES_UPTODATE));
739                 sparc_perf_event_set_period(event, &event->hw, idx);
740         }
741
742         event->hw.state = 0;
743
744         sparc_pmu_enable_event(cpuc, &event->hw, idx);
745 }
746
747 static void sparc_pmu_stop(struct perf_event *event, int flags)
748 {
749         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
750         int idx = active_event_index(cpuc, event);
751
752         if (!(event->hw.state & PERF_HES_STOPPED)) {
753                 sparc_pmu_disable_event(cpuc, &event->hw, idx);
754                 event->hw.state |= PERF_HES_STOPPED;
755         }
756
757         if (!(event->hw.state & PERF_HES_UPTODATE) && (flags & PERF_EF_UPDATE)) {
758                 sparc_perf_event_update(event, &event->hw, idx);
759                 event->hw.state |= PERF_HES_UPTODATE;
760         }
761 }
762
763 static void sparc_pmu_del(struct perf_event *event, int _flags)
764 {
765         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
766         unsigned long flags;
767         int i;
768
769         local_irq_save(flags);
770         perf_pmu_disable(event->pmu);
771
772         for (i = 0; i < cpuc->n_events; i++) {
773                 if (event == cpuc->event[i]) {
774                         /* Absorb the final count and turn off the
775                          * event.
776                          */
777                         sparc_pmu_stop(event, PERF_EF_UPDATE);
778
779                         /* Shift remaining entries down into
780                          * the existing slot.
781                          */
782                         while (++i < cpuc->n_events) {
783                                 cpuc->event[i - 1] = cpuc->event[i];
784                                 cpuc->events[i - 1] = cpuc->events[i];
785                                 cpuc->current_idx[i - 1] =
786                                         cpuc->current_idx[i];
787                         }
788
789                         perf_event_update_userpage(event);
790
791                         cpuc->n_events--;
792                         break;
793                 }
794         }
795
796         perf_pmu_enable(event->pmu);
797         local_irq_restore(flags);
798 }
799
800 static void sparc_pmu_read(struct perf_event *event)
801 {
802         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
803         int idx = active_event_index(cpuc, event);
804         struct hw_perf_event *hwc = &event->hw;
805
806         sparc_perf_event_update(event, hwc, idx);
807 }
808
809 static atomic_t active_events = ATOMIC_INIT(0);
810 static DEFINE_MUTEX(pmc_grab_mutex);
811
812 static void perf_stop_nmi_watchdog(void *unused)
813 {
814         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
815
816         stop_nmi_watchdog(NULL);
817         cpuc->pcr = pcr_ops->read();
818 }
819
820 void perf_event_grab_pmc(void)
821 {
822         if (atomic_inc_not_zero(&active_events))
823                 return;
824
825         mutex_lock(&pmc_grab_mutex);
826         if (atomic_read(&active_events) == 0) {
827                 if (atomic_read(&nmi_active) > 0) {
828                         on_each_cpu(perf_stop_nmi_watchdog, NULL, 1);
829                         BUG_ON(atomic_read(&nmi_active) != 0);
830                 }
831                 atomic_inc(&active_events);
832         }
833         mutex_unlock(&pmc_grab_mutex);
834 }
835
836 void perf_event_release_pmc(void)
837 {
838         if (atomic_dec_and_mutex_lock(&active_events, &pmc_grab_mutex)) {
839                 if (atomic_read(&nmi_active) == 0)
840                         on_each_cpu(start_nmi_watchdog, NULL, 1);
841                 mutex_unlock(&pmc_grab_mutex);
842         }
843 }
844
845 static const struct perf_event_map *sparc_map_cache_event(u64 config)
846 {
847         unsigned int cache_type, cache_op, cache_result;
848         const struct perf_event_map *pmap;
849
850         if (!sparc_pmu->cache_map)
851                 return ERR_PTR(-ENOENT);
852
853         cache_type = (config >>  0) & 0xff;
854         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
855                 return ERR_PTR(-EINVAL);
856
857         cache_op = (config >>  8) & 0xff;
858         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
859                 return ERR_PTR(-EINVAL);
860
861         cache_result = (config >> 16) & 0xff;
862         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
863                 return ERR_PTR(-EINVAL);
864
865         pmap = &((*sparc_pmu->cache_map)[cache_type][cache_op][cache_result]);
866
867         if (pmap->encoding == CACHE_OP_UNSUPPORTED)
868                 return ERR_PTR(-ENOENT);
869
870         if (pmap->encoding == CACHE_OP_NONSENSE)
871                 return ERR_PTR(-EINVAL);
872
873         return pmap;
874 }
875
876 static void hw_perf_event_destroy(struct perf_event *event)
877 {
878         perf_event_release_pmc();
879 }
880
881 /* Make sure all events can be scheduled into the hardware at
882  * the same time.  This is simplified by the fact that we only
883  * need to support 2 simultaneous HW events.
884  *
885  * As a side effect, the evts[]->hw.idx values will be assigned
886  * on success.  These are pending indexes.  When the events are
887  * actually programmed into the chip, these values will propagate
888  * to the per-cpu cpuc->current_idx[] slots, see the code in
889  * maybe_change_configuration() for details.
890  */
891 static int sparc_check_constraints(struct perf_event **evts,
892                                    unsigned long *events, int n_ev)
893 {
894         u8 msk0 = 0, msk1 = 0;
895         int idx0 = 0;
896
897         /* This case is possible when we are invoked from
898          * hw_perf_group_sched_in().
899          */
900         if (!n_ev)
901                 return 0;
902
903         if (n_ev > MAX_HWEVENTS)
904                 return -1;
905
906         msk0 = perf_event_get_msk(events[0]);
907         if (n_ev == 1) {
908                 if (msk0 & PIC_LOWER)
909                         idx0 = 1;
910                 goto success;
911         }
912         BUG_ON(n_ev != 2);
913         msk1 = perf_event_get_msk(events[1]);
914
915         /* If both events can go on any counter, OK.  */
916         if (msk0 == (PIC_UPPER | PIC_LOWER) &&
917             msk1 == (PIC_UPPER | PIC_LOWER))
918                 goto success;
919
920         /* If one event is limited to a specific counter,
921          * and the other can go on both, OK.
922          */
923         if ((msk0 == PIC_UPPER || msk0 == PIC_LOWER) &&
924             msk1 == (PIC_UPPER | PIC_LOWER)) {
925                 if (msk0 & PIC_LOWER)
926                         idx0 = 1;
927                 goto success;
928         }
929
930         if ((msk1 == PIC_UPPER || msk1 == PIC_LOWER) &&
931             msk0 == (PIC_UPPER | PIC_LOWER)) {
932                 if (msk1 & PIC_UPPER)
933                         idx0 = 1;
934                 goto success;
935         }
936
937         /* If the events are fixed to different counters, OK.  */
938         if ((msk0 == PIC_UPPER && msk1 == PIC_LOWER) ||
939             (msk0 == PIC_LOWER && msk1 == PIC_UPPER)) {
940                 if (msk0 & PIC_LOWER)
941                         idx0 = 1;
942                 goto success;
943         }
944
945         /* Otherwise, there is a conflict.  */
946         return -1;
947
948 success:
949         evts[0]->hw.idx = idx0;
950         if (n_ev == 2)
951                 evts[1]->hw.idx = idx0 ^ 1;
952         return 0;
953 }
954
955 static int check_excludes(struct perf_event **evts, int n_prev, int n_new)
956 {
957         int eu = 0, ek = 0, eh = 0;
958         struct perf_event *event;
959         int i, n, first;
960
961         n = n_prev + n_new;
962         if (n <= 1)
963                 return 0;
964
965         first = 1;
966         for (i = 0; i < n; i++) {
967                 event = evts[i];
968                 if (first) {
969                         eu = event->attr.exclude_user;
970                         ek = event->attr.exclude_kernel;
971                         eh = event->attr.exclude_hv;
972                         first = 0;
973                 } else if (event->attr.exclude_user != eu ||
974                            event->attr.exclude_kernel != ek ||
975                            event->attr.exclude_hv != eh) {
976                         return -EAGAIN;
977                 }
978         }
979
980         return 0;
981 }
982
983 static int collect_events(struct perf_event *group, int max_count,
984                           struct perf_event *evts[], unsigned long *events,
985                           int *current_idx)
986 {
987         struct perf_event *event;
988         int n = 0;
989
990         if (!is_software_event(group)) {
991                 if (n >= max_count)
992                         return -1;
993                 evts[n] = group;
994                 events[n] = group->hw.event_base;
995                 current_idx[n++] = PIC_NO_INDEX;
996         }
997         list_for_each_entry(event, &group->sibling_list, group_entry) {
998                 if (!is_software_event(event) &&
999                     event->state != PERF_EVENT_STATE_OFF) {
1000                         if (n >= max_count)
1001                                 return -1;
1002                         evts[n] = event;
1003                         events[n] = event->hw.event_base;
1004                         current_idx[n++] = PIC_NO_INDEX;
1005                 }
1006         }
1007         return n;
1008 }
1009
1010 static int sparc_pmu_add(struct perf_event *event, int ef_flags)
1011 {
1012         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1013         int n0, ret = -EAGAIN;
1014         unsigned long flags;
1015
1016         local_irq_save(flags);
1017         perf_pmu_disable(event->pmu);
1018
1019         n0 = cpuc->n_events;
1020         if (n0 >= MAX_HWEVENTS)
1021                 goto out;
1022
1023         cpuc->event[n0] = event;
1024         cpuc->events[n0] = event->hw.event_base;
1025         cpuc->current_idx[n0] = PIC_NO_INDEX;
1026
1027         event->hw.state = PERF_HES_UPTODATE;
1028         if (!(ef_flags & PERF_EF_START))
1029                 event->hw.state |= PERF_HES_STOPPED;
1030
1031         /*
1032          * If group events scheduling transaction was started,
1033          * skip the schedulability test here, it will be performed
1034          * at commit time(->commit_txn) as a whole
1035          */
1036         if (cpuc->group_flag & PERF_EVENT_TXN)
1037                 goto nocheck;
1038
1039         if (check_excludes(cpuc->event, n0, 1))
1040                 goto out;
1041         if (sparc_check_constraints(cpuc->event, cpuc->events, n0 + 1))
1042                 goto out;
1043
1044 nocheck:
1045         cpuc->n_events++;
1046         cpuc->n_added++;
1047
1048         ret = 0;
1049 out:
1050         perf_pmu_enable(event->pmu);
1051         local_irq_restore(flags);
1052         return ret;
1053 }
1054
1055 static int sparc_pmu_event_init(struct perf_event *event)
1056 {
1057         struct perf_event_attr *attr = &event->attr;
1058         struct perf_event *evts[MAX_HWEVENTS];
1059         struct hw_perf_event *hwc = &event->hw;
1060         unsigned long events[MAX_HWEVENTS];
1061         int current_idx_dmy[MAX_HWEVENTS];
1062         const struct perf_event_map *pmap;
1063         int n;
1064
1065         if (atomic_read(&nmi_active) < 0)
1066                 return -ENODEV;
1067
1068         switch (attr->type) {
1069         case PERF_TYPE_HARDWARE:
1070                 if (attr->config >= sparc_pmu->max_events)
1071                         return -EINVAL;
1072                 pmap = sparc_pmu->event_map(attr->config);
1073                 break;
1074
1075         case PERF_TYPE_HW_CACHE:
1076                 pmap = sparc_map_cache_event(attr->config);
1077                 if (IS_ERR(pmap))
1078                         return PTR_ERR(pmap);
1079                 break;
1080
1081         case PERF_TYPE_RAW:
1082                 pmap = NULL;
1083                 break;
1084
1085         default:
1086                 return -ENOENT;
1087
1088         }
1089
1090         if (pmap) {
1091                 hwc->event_base = perf_event_encode(pmap);
1092         } else {
1093                 /*
1094                  * User gives us "(encoding << 16) | pic_mask" for
1095                  * PERF_TYPE_RAW events.
1096                  */
1097                 hwc->event_base = attr->config;
1098         }
1099
1100         /* We save the enable bits in the config_base.  */
1101         hwc->config_base = sparc_pmu->irq_bit;
1102         if (!attr->exclude_user)
1103                 hwc->config_base |= PCR_UTRACE;
1104         if (!attr->exclude_kernel)
1105                 hwc->config_base |= PCR_STRACE;
1106         if (!attr->exclude_hv)
1107                 hwc->config_base |= sparc_pmu->hv_bit;
1108
1109         n = 0;
1110         if (event->group_leader != event) {
1111                 n = collect_events(event->group_leader,
1112                                    MAX_HWEVENTS - 1,
1113                                    evts, events, current_idx_dmy);
1114                 if (n < 0)
1115                         return -EINVAL;
1116         }
1117         events[n] = hwc->event_base;
1118         evts[n] = event;
1119
1120         if (check_excludes(evts, n, 1))
1121                 return -EINVAL;
1122
1123         if (sparc_check_constraints(evts, events, n + 1))
1124                 return -EINVAL;
1125
1126         hwc->idx = PIC_NO_INDEX;
1127
1128         /* Try to do all error checking before this point, as unwinding
1129          * state after grabbing the PMC is difficult.
1130          */
1131         perf_event_grab_pmc();
1132         event->destroy = hw_perf_event_destroy;
1133
1134         if (!hwc->sample_period) {
1135                 hwc->sample_period = MAX_PERIOD;
1136                 hwc->last_period = hwc->sample_period;
1137                 local64_set(&hwc->period_left, hwc->sample_period);
1138         }
1139
1140         return 0;
1141 }
1142
1143 /*
1144  * Start group events scheduling transaction
1145  * Set the flag to make pmu::enable() not perform the
1146  * schedulability test, it will be performed at commit time
1147  */
1148 static void sparc_pmu_start_txn(struct pmu *pmu)
1149 {
1150         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1151
1152         perf_pmu_disable(pmu);
1153         cpuhw->group_flag |= PERF_EVENT_TXN;
1154 }
1155
1156 /*
1157  * Stop group events scheduling transaction
1158  * Clear the flag and pmu::enable() will perform the
1159  * schedulability test.
1160  */
1161 static void sparc_pmu_cancel_txn(struct pmu *pmu)
1162 {
1163         struct cpu_hw_events *cpuhw = &__get_cpu_var(cpu_hw_events);
1164
1165         cpuhw->group_flag &= ~PERF_EVENT_TXN;
1166         perf_pmu_enable(pmu);
1167 }
1168
1169 /*
1170  * Commit group events scheduling transaction
1171  * Perform the group schedulability test as a whole
1172  * Return 0 if success
1173  */
1174 static int sparc_pmu_commit_txn(struct pmu *pmu)
1175 {
1176         struct cpu_hw_events *cpuc = &__get_cpu_var(cpu_hw_events);
1177         int n;
1178
1179         if (!sparc_pmu)
1180                 return -EINVAL;
1181
1182         cpuc = &__get_cpu_var(cpu_hw_events);
1183         n = cpuc->n_events;
1184         if (check_excludes(cpuc->event, 0, n))
1185                 return -EINVAL;
1186         if (sparc_check_constraints(cpuc->event, cpuc->events, n))
1187                 return -EAGAIN;
1188
1189         cpuc->group_flag &= ~PERF_EVENT_TXN;
1190         perf_pmu_enable(pmu);
1191         return 0;
1192 }
1193
1194 static struct pmu pmu = {
1195         .pmu_enable     = sparc_pmu_enable,
1196         .pmu_disable    = sparc_pmu_disable,
1197         .event_init     = sparc_pmu_event_init,
1198         .add            = sparc_pmu_add,
1199         .del            = sparc_pmu_del,
1200         .start          = sparc_pmu_start,
1201         .stop           = sparc_pmu_stop,
1202         .read           = sparc_pmu_read,
1203         .start_txn      = sparc_pmu_start_txn,
1204         .cancel_txn     = sparc_pmu_cancel_txn,
1205         .commit_txn     = sparc_pmu_commit_txn,
1206 };
1207
1208 void perf_event_print_debug(void)
1209 {
1210         unsigned long flags;
1211         u64 pcr, pic;
1212         int cpu;
1213
1214         if (!sparc_pmu)
1215                 return;
1216
1217         local_irq_save(flags);
1218
1219         cpu = smp_processor_id();
1220
1221         pcr = pcr_ops->read();
1222         read_pic(pic);
1223
1224         pr_info("\n");
1225         pr_info("CPU#%d: PCR[%016llx] PIC[%016llx]\n",
1226                 cpu, pcr, pic);
1227
1228         local_irq_restore(flags);
1229 }
1230
1231 static int __kprobes perf_event_nmi_handler(struct notifier_block *self,
1232                                             unsigned long cmd, void *__args)
1233 {
1234         struct die_args *args = __args;
1235         struct perf_sample_data data;
1236         struct cpu_hw_events *cpuc;
1237         struct pt_regs *regs;
1238         int i;
1239
1240         if (!atomic_read(&active_events))
1241                 return NOTIFY_DONE;
1242
1243         switch (cmd) {
1244         case DIE_NMI:
1245                 break;
1246
1247         default:
1248                 return NOTIFY_DONE;
1249         }
1250
1251         regs = args->regs;
1252
1253         perf_sample_data_init(&data, 0);
1254
1255         cpuc = &__get_cpu_var(cpu_hw_events);
1256
1257         /* If the PMU has the TOE IRQ enable bits, we need to do a
1258          * dummy write to the %pcr to clear the overflow bits and thus
1259          * the interrupt.
1260          *
1261          * Do this before we peek at the counters to determine
1262          * overflow so we don't lose any events.
1263          */
1264         if (sparc_pmu->irq_bit)
1265                 pcr_ops->write(cpuc->pcr);
1266
1267         for (i = 0; i < cpuc->n_events; i++) {
1268                 struct perf_event *event = cpuc->event[i];
1269                 int idx = cpuc->current_idx[i];
1270                 struct hw_perf_event *hwc;
1271                 u64 val;
1272
1273                 hwc = &event->hw;
1274                 val = sparc_perf_event_update(event, hwc, idx);
1275                 if (val & (1ULL << 31))
1276                         continue;
1277
1278                 data.period = event->hw.last_period;
1279                 if (!sparc_perf_event_set_period(event, hwc, idx))
1280                         continue;
1281
1282                 if (perf_event_overflow(event, 1, &data, regs))
1283                         sparc_pmu_stop(event, 0);
1284         }
1285
1286         return NOTIFY_STOP;
1287 }
1288
1289 static __read_mostly struct notifier_block perf_event_nmi_notifier = {
1290         .notifier_call          = perf_event_nmi_handler,
1291 };
1292
1293 static bool __init supported_pmu(void)
1294 {
1295         if (!strcmp(sparc_pmu_type, "ultra3") ||
1296             !strcmp(sparc_pmu_type, "ultra3+") ||
1297             !strcmp(sparc_pmu_type, "ultra3i") ||
1298             !strcmp(sparc_pmu_type, "ultra4+")) {
1299                 sparc_pmu = &ultra3_pmu;
1300                 return true;
1301         }
1302         if (!strcmp(sparc_pmu_type, "niagara")) {
1303                 sparc_pmu = &niagara1_pmu;
1304                 return true;
1305         }
1306         if (!strcmp(sparc_pmu_type, "niagara2") ||
1307             !strcmp(sparc_pmu_type, "niagara3")) {
1308                 sparc_pmu = &niagara2_pmu;
1309                 return true;
1310         }
1311         return false;
1312 }
1313
1314 int __init init_hw_perf_events(void)
1315 {
1316         pr_info("Performance events: ");
1317
1318         if (!supported_pmu()) {
1319                 pr_cont("No support for PMU type '%s'\n", sparc_pmu_type);
1320                 return 0;
1321         }
1322
1323         pr_cont("Supported PMU type is '%s'\n", sparc_pmu_type);
1324
1325         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1326         register_die_notifier(&perf_event_nmi_notifier);
1327
1328         return 0;
1329 }
1330 early_initcall(init_hw_perf_events);
1331
1332 void perf_callchain_kernel(struct perf_callchain_entry *entry,
1333                            struct pt_regs *regs)
1334 {
1335         unsigned long ksp, fp;
1336 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1337         int graph = 0;
1338 #endif
1339
1340         stack_trace_flush();
1341
1342         perf_callchain_store(entry, regs->tpc);
1343
1344         ksp = regs->u_regs[UREG_I6];
1345         fp = ksp + STACK_BIAS;
1346         do {
1347                 struct sparc_stackf *sf;
1348                 struct pt_regs *regs;
1349                 unsigned long pc;
1350
1351                 if (!kstack_valid(current_thread_info(), fp))
1352                         break;
1353
1354                 sf = (struct sparc_stackf *) fp;
1355                 regs = (struct pt_regs *) (sf + 1);
1356
1357                 if (kstack_is_trap_frame(current_thread_info(), regs)) {
1358                         if (user_mode(regs))
1359                                 break;
1360                         pc = regs->tpc;
1361                         fp = regs->u_regs[UREG_I6] + STACK_BIAS;
1362                 } else {
1363                         pc = sf->callers_pc;
1364                         fp = (unsigned long)sf->fp + STACK_BIAS;
1365                 }
1366                 perf_callchain_store(entry, pc);
1367 #ifdef CONFIG_FUNCTION_GRAPH_TRACER
1368                 if ((pc + 8UL) == (unsigned long) &return_to_handler) {
1369                         int index = current->curr_ret_stack;
1370                         if (current->ret_stack && index >= graph) {
1371                                 pc = current->ret_stack[index - graph].ret;
1372                                 perf_callchain_store(entry, pc);
1373                                 graph++;
1374                         }
1375                 }
1376 #endif
1377         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1378 }
1379
1380 static void perf_callchain_user_64(struct perf_callchain_entry *entry,
1381                                    struct pt_regs *regs)
1382 {
1383         unsigned long ufp;
1384
1385         ufp = regs->u_regs[UREG_I6] + STACK_BIAS;
1386         do {
1387                 struct sparc_stackf *usf, sf;
1388                 unsigned long pc;
1389
1390                 usf = (struct sparc_stackf *) ufp;
1391                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1392                         break;
1393
1394                 pc = sf.callers_pc;
1395                 ufp = (unsigned long)sf.fp + STACK_BIAS;
1396                 perf_callchain_store(entry, pc);
1397         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1398 }
1399
1400 static void perf_callchain_user_32(struct perf_callchain_entry *entry,
1401                                    struct pt_regs *regs)
1402 {
1403         unsigned long ufp;
1404
1405         ufp = regs->u_regs[UREG_I6] & 0xffffffffUL;
1406         do {
1407                 struct sparc_stackf32 *usf, sf;
1408                 unsigned long pc;
1409
1410                 usf = (struct sparc_stackf32 *) ufp;
1411                 if (__copy_from_user_inatomic(&sf, usf, sizeof(sf)))
1412                         break;
1413
1414                 pc = sf.callers_pc;
1415                 ufp = (unsigned long)sf.fp;
1416                 perf_callchain_store(entry, pc);
1417         } while (entry->nr < PERF_MAX_STACK_DEPTH);
1418 }
1419
1420 void
1421 perf_callchain_user(struct perf_callchain_entry *entry, struct pt_regs *regs)
1422 {
1423         perf_callchain_store(entry, regs->tpc);
1424
1425         if (!current->mm)
1426                 return;
1427
1428         flushw_user();
1429         if (test_thread_flag(TIF_32BIT))
1430                 perf_callchain_user_32(entry, regs);
1431         else
1432                 perf_callchain_user_64(entry, regs);
1433 }