Linux-libre 5.4.47-gnu
[librecmc/linux-libre.git] / arch / sparc / kernel / of_device_64.c
1 // SPDX-License-Identifier: GPL-2.0
2 #include <linux/string.h>
3 #include <linux/kernel.h>
4 #include <linux/of.h>
5 #include <linux/dma-mapping.h>
6 #include <linux/init.h>
7 #include <linux/export.h>
8 #include <linux/mod_devicetable.h>
9 #include <linux/slab.h>
10 #include <linux/errno.h>
11 #include <linux/irq.h>
12 #include <linux/of_device.h>
13 #include <linux/of_platform.h>
14 #include <asm/spitfire.h>
15
16 #include "of_device_common.h"
17
18 void __iomem *of_ioremap(struct resource *res, unsigned long offset, unsigned long size, char *name)
19 {
20         unsigned long ret = res->start + offset;
21         struct resource *r;
22
23         if (res->flags & IORESOURCE_MEM)
24                 r = request_mem_region(ret, size, name);
25         else
26                 r = request_region(ret, size, name);
27         if (!r)
28                 ret = 0;
29
30         return (void __iomem *) ret;
31 }
32 EXPORT_SYMBOL(of_ioremap);
33
34 void of_iounmap(struct resource *res, void __iomem *base, unsigned long size)
35 {
36         if (res->flags & IORESOURCE_MEM)
37                 release_mem_region((unsigned long) base, size);
38         else
39                 release_region((unsigned long) base, size);
40 }
41 EXPORT_SYMBOL(of_iounmap);
42
43 /*
44  * PCI bus specific translator
45  */
46
47 static int of_bus_pci_match(struct device_node *np)
48 {
49         if (of_node_name_eq(np, "pci")) {
50                 const char *model = of_get_property(np, "model", NULL);
51
52                 if (model && !strcmp(model, "SUNW,simba"))
53                         return 0;
54
55                 /* Do not do PCI specific frobbing if the
56                  * PCI bridge lacks a ranges property.  We
57                  * want to pass it through up to the next
58                  * parent as-is, not with the PCI translate
59                  * method which chops off the top address cell.
60                  */
61                 if (!of_find_property(np, "ranges", NULL))
62                         return 0;
63
64                 return 1;
65         }
66
67         return 0;
68 }
69
70 static int of_bus_simba_match(struct device_node *np)
71 {
72         const char *model = of_get_property(np, "model", NULL);
73
74         if (model && !strcmp(model, "SUNW,simba"))
75                 return 1;
76
77         /* Treat PCI busses lacking ranges property just like
78          * simba.
79          */
80         if (of_node_name_eq(np, "pci")) {
81                 if (!of_find_property(np, "ranges", NULL))
82                         return 1;
83         }
84
85         return 0;
86 }
87
88 static int of_bus_simba_map(u32 *addr, const u32 *range,
89                             int na, int ns, int pna)
90 {
91         return 0;
92 }
93
94 static void of_bus_pci_count_cells(struct device_node *np,
95                                    int *addrc, int *sizec)
96 {
97         if (addrc)
98                 *addrc = 3;
99         if (sizec)
100                 *sizec = 2;
101 }
102
103 static int of_bus_pci_map(u32 *addr, const u32 *range,
104                           int na, int ns, int pna)
105 {
106         u32 result[OF_MAX_ADDR_CELLS];
107         int i;
108
109         /* Check address type match */
110         if (!((addr[0] ^ range[0]) & 0x03000000))
111                 goto type_match;
112
113         /* Special exception, we can map a 64-bit address into
114          * a 32-bit range.
115          */
116         if ((addr[0] & 0x03000000) == 0x03000000 &&
117             (range[0] & 0x03000000) == 0x02000000)
118                 goto type_match;
119
120         return -EINVAL;
121
122 type_match:
123         if (of_out_of_range(addr + 1, range + 1, range + na + pna,
124                             na - 1, ns))
125                 return -EINVAL;
126
127         /* Start with the parent range base.  */
128         memcpy(result, range + na, pna * 4);
129
130         /* Add in the child address offset, skipping high cell.  */
131         for (i = 0; i < na - 1; i++)
132                 result[pna - 1 - i] +=
133                         (addr[na - 1 - i] -
134                          range[na - 1 - i]);
135
136         memcpy(addr, result, pna * 4);
137
138         return 0;
139 }
140
141 static unsigned long of_bus_pci_get_flags(const u32 *addr, unsigned long flags)
142 {
143         u32 w = addr[0];
144
145         /* For PCI, we override whatever child busses may have used.  */
146         flags = 0;
147         switch((w >> 24) & 0x03) {
148         case 0x01:
149                 flags |= IORESOURCE_IO;
150                 break;
151
152         case 0x02: /* 32 bits */
153         case 0x03: /* 64 bits */
154                 flags |= IORESOURCE_MEM;
155                 break;
156         }
157         if (w & 0x40000000)
158                 flags |= IORESOURCE_PREFETCH;
159         return flags;
160 }
161
162 /*
163  * FHC/Central bus specific translator.
164  *
165  * This is just needed to hard-code the address and size cell
166  * counts.  'fhc' and 'central' nodes lack the #address-cells and
167  * #size-cells properties, and if you walk to the root on such
168  * Enterprise boxes all you'll get is a #size-cells of 2 which is
169  * not what we want to use.
170  */
171 static int of_bus_fhc_match(struct device_node *np)
172 {
173         return of_node_name_eq(np, "fhc") ||
174                 of_node_name_eq(np, "central");
175 }
176
177 #define of_bus_fhc_count_cells of_bus_sbus_count_cells
178
179 /*
180  * Array of bus specific translators
181  */
182
183 static struct of_bus of_busses[] = {
184         /* PCI */
185         {
186                 .name = "pci",
187                 .addr_prop_name = "assigned-addresses",
188                 .match = of_bus_pci_match,
189                 .count_cells = of_bus_pci_count_cells,
190                 .map = of_bus_pci_map,
191                 .get_flags = of_bus_pci_get_flags,
192         },
193         /* SIMBA */
194         {
195                 .name = "simba",
196                 .addr_prop_name = "assigned-addresses",
197                 .match = of_bus_simba_match,
198                 .count_cells = of_bus_pci_count_cells,
199                 .map = of_bus_simba_map,
200                 .get_flags = of_bus_pci_get_flags,
201         },
202         /* SBUS */
203         {
204                 .name = "sbus",
205                 .addr_prop_name = "reg",
206                 .match = of_bus_sbus_match,
207                 .count_cells = of_bus_sbus_count_cells,
208                 .map = of_bus_default_map,
209                 .get_flags = of_bus_default_get_flags,
210         },
211         /* FHC */
212         {
213                 .name = "fhc",
214                 .addr_prop_name = "reg",
215                 .match = of_bus_fhc_match,
216                 .count_cells = of_bus_fhc_count_cells,
217                 .map = of_bus_default_map,
218                 .get_flags = of_bus_default_get_flags,
219         },
220         /* Default */
221         {
222                 .name = "default",
223                 .addr_prop_name = "reg",
224                 .match = NULL,
225                 .count_cells = of_bus_default_count_cells,
226                 .map = of_bus_default_map,
227                 .get_flags = of_bus_default_get_flags,
228         },
229 };
230
231 static struct of_bus *of_match_bus(struct device_node *np)
232 {
233         int i;
234
235         for (i = 0; i < ARRAY_SIZE(of_busses); i ++)
236                 if (!of_busses[i].match || of_busses[i].match(np))
237                         return &of_busses[i];
238         BUG();
239         return NULL;
240 }
241
242 static int __init build_one_resource(struct device_node *parent,
243                                      struct of_bus *bus,
244                                      struct of_bus *pbus,
245                                      u32 *addr,
246                                      int na, int ns, int pna)
247 {
248         const u32 *ranges;
249         int rone, rlen;
250
251         ranges = of_get_property(parent, "ranges", &rlen);
252         if (ranges == NULL || rlen == 0) {
253                 u32 result[OF_MAX_ADDR_CELLS];
254                 int i;
255
256                 memset(result, 0, pna * 4);
257                 for (i = 0; i < na; i++)
258                         result[pna - 1 - i] =
259                                 addr[na - 1 - i];
260
261                 memcpy(addr, result, pna * 4);
262                 return 0;
263         }
264
265         /* Now walk through the ranges */
266         rlen /= 4;
267         rone = na + pna + ns;
268         for (; rlen >= rone; rlen -= rone, ranges += rone) {
269                 if (!bus->map(addr, ranges, na, ns, pna))
270                         return 0;
271         }
272
273         /* When we miss an I/O space match on PCI, just pass it up
274          * to the next PCI bridge and/or controller.
275          */
276         if (!strcmp(bus->name, "pci") &&
277             (addr[0] & 0x03000000) == 0x01000000)
278                 return 0;
279
280         return 1;
281 }
282
283 static int __init use_1to1_mapping(struct device_node *pp)
284 {
285         /* If we have a ranges property in the parent, use it.  */
286         if (of_find_property(pp, "ranges", NULL) != NULL)
287                 return 0;
288
289         /* If the parent is the dma node of an ISA bus, pass
290          * the translation up to the root.
291          *
292          * Some SBUS devices use intermediate nodes to express
293          * hierarchy within the device itself.  These aren't
294          * real bus nodes, and don't have a 'ranges' property.
295          * But, we should still pass the translation work up
296          * to the SBUS itself.
297          */
298         if (of_node_name_eq(pp, "dma") ||
299             of_node_name_eq(pp, "espdma") ||
300             of_node_name_eq(pp, "ledma") ||
301             of_node_name_eq(pp, "lebuffer"))
302                 return 0;
303
304         /* Similarly for all PCI bridges, if we get this far
305          * it lacks a ranges property, and this will include
306          * cases like Simba.
307          */
308         if (of_node_name_eq(pp, "pci"))
309                 return 0;
310
311         return 1;
312 }
313
314 static int of_resource_verbose;
315
316 static void __init build_device_resources(struct platform_device *op,
317                                           struct device *parent)
318 {
319         struct platform_device *p_op;
320         struct of_bus *bus;
321         int na, ns;
322         int index, num_reg;
323         const void *preg;
324
325         if (!parent)
326                 return;
327
328         p_op = to_platform_device(parent);
329         bus = of_match_bus(p_op->dev.of_node);
330         bus->count_cells(op->dev.of_node, &na, &ns);
331
332         preg = of_get_property(op->dev.of_node, bus->addr_prop_name, &num_reg);
333         if (!preg || num_reg == 0)
334                 return;
335
336         /* Convert to num-cells.  */
337         num_reg /= 4;
338
339         /* Convert to num-entries.  */
340         num_reg /= na + ns;
341
342         /* Prevent overrunning the op->resources[] array.  */
343         if (num_reg > PROMREG_MAX) {
344                 printk(KERN_WARNING "%pOF: Too many regs (%d), "
345                        "limiting to %d.\n",
346                        op->dev.of_node, num_reg, PROMREG_MAX);
347                 num_reg = PROMREG_MAX;
348         }
349
350         op->resource = op->archdata.resource;
351         op->num_resources = num_reg;
352         for (index = 0; index < num_reg; index++) {
353                 struct resource *r = &op->resource[index];
354                 u32 addr[OF_MAX_ADDR_CELLS];
355                 const u32 *reg = (preg + (index * ((na + ns) * 4)));
356                 struct device_node *dp = op->dev.of_node;
357                 struct device_node *pp = p_op->dev.of_node;
358                 struct of_bus *pbus, *dbus;
359                 u64 size, result = OF_BAD_ADDR;
360                 unsigned long flags;
361                 int dna, dns;
362                 int pna, pns;
363
364                 size = of_read_addr(reg + na, ns);
365                 memcpy(addr, reg, na * 4);
366
367                 flags = bus->get_flags(addr, 0);
368
369                 if (use_1to1_mapping(pp)) {
370                         result = of_read_addr(addr, na);
371                         goto build_res;
372                 }
373
374                 dna = na;
375                 dns = ns;
376                 dbus = bus;
377
378                 while (1) {
379                         dp = pp;
380                         pp = dp->parent;
381                         if (!pp) {
382                                 result = of_read_addr(addr, dna);
383                                 break;
384                         }
385
386                         pbus = of_match_bus(pp);
387                         pbus->count_cells(dp, &pna, &pns);
388
389                         if (build_one_resource(dp, dbus, pbus, addr,
390                                                dna, dns, pna))
391                                 break;
392
393                         flags = pbus->get_flags(addr, flags);
394
395                         dna = pna;
396                         dns = pns;
397                         dbus = pbus;
398                 }
399
400         build_res:
401                 memset(r, 0, sizeof(*r));
402
403                 if (of_resource_verbose)
404                         printk("%pOF reg[%d] -> %llx\n",
405                                op->dev.of_node, index,
406                                result);
407
408                 if (result != OF_BAD_ADDR) {
409                         if (tlb_type == hypervisor)
410                                 result &= 0x0fffffffffffffffUL;
411
412                         r->start = result;
413                         r->end = result + size - 1;
414                         r->flags = flags;
415                 }
416                 r->name = op->dev.of_node->full_name;
417         }
418 }
419
420 static struct device_node * __init
421 apply_interrupt_map(struct device_node *dp, struct device_node *pp,
422                     const u32 *imap, int imlen, const u32 *imask,
423                     unsigned int *irq_p)
424 {
425         struct device_node *cp;
426         unsigned int irq = *irq_p;
427         struct of_bus *bus;
428         phandle handle;
429         const u32 *reg;
430         int na, num_reg, i;
431
432         bus = of_match_bus(pp);
433         bus->count_cells(dp, &na, NULL);
434
435         reg = of_get_property(dp, "reg", &num_reg);
436         if (!reg || !num_reg)
437                 return NULL;
438
439         imlen /= ((na + 3) * 4);
440         handle = 0;
441         for (i = 0; i < imlen; i++) {
442                 int j;
443
444                 for (j = 0; j < na; j++) {
445                         if ((reg[j] & imask[j]) != imap[j])
446                                 goto next;
447                 }
448                 if (imap[na] == irq) {
449                         handle = imap[na + 1];
450                         irq = imap[na + 2];
451                         break;
452                 }
453
454         next:
455                 imap += (na + 3);
456         }
457         if (i == imlen) {
458                 /* Psycho and Sabre PCI controllers can have 'interrupt-map'
459                  * properties that do not include the on-board device
460                  * interrupts.  Instead, the device's 'interrupts' property
461                  * is already a fully specified INO value.
462                  *
463                  * Handle this by deciding that, if we didn't get a
464                  * match in the parent's 'interrupt-map', and the
465                  * parent is an IRQ translator, then use the parent as
466                  * our IRQ controller.
467                  */
468                 if (pp->irq_trans)
469                         return pp;
470
471                 return NULL;
472         }
473
474         *irq_p = irq;
475         cp = of_find_node_by_phandle(handle);
476
477         return cp;
478 }
479
480 static unsigned int __init pci_irq_swizzle(struct device_node *dp,
481                                            struct device_node *pp,
482                                            unsigned int irq)
483 {
484         const struct linux_prom_pci_registers *regs;
485         unsigned int bus, devfn, slot, ret;
486
487         if (irq < 1 || irq > 4)
488                 return irq;
489
490         regs = of_get_property(dp, "reg", NULL);
491         if (!regs)
492                 return irq;
493
494         bus = (regs->phys_hi >> 16) & 0xff;
495         devfn = (regs->phys_hi >> 8) & 0xff;
496         slot = (devfn >> 3) & 0x1f;
497
498         if (pp->irq_trans) {
499                 /* Derived from Table 8-3, U2P User's Manual.  This branch
500                  * is handling a PCI controller that lacks a proper set of
501                  * interrupt-map and interrupt-map-mask properties.  The
502                  * Ultra-E450 is one example.
503                  *
504                  * The bit layout is BSSLL, where:
505                  * B: 0 on bus A, 1 on bus B
506                  * D: 2-bit slot number, derived from PCI device number as
507                  *    (dev - 1) for bus A, or (dev - 2) for bus B
508                  * L: 2-bit line number
509                  */
510                 if (bus & 0x80) {
511                         /* PBM-A */
512                         bus  = 0x00;
513                         slot = (slot - 1) << 2;
514                 } else {
515                         /* PBM-B */
516                         bus  = 0x10;
517                         slot = (slot - 2) << 2;
518                 }
519                 irq -= 1;
520
521                 ret = (bus | slot | irq);
522         } else {
523                 /* Going through a PCI-PCI bridge that lacks a set of
524                  * interrupt-map and interrupt-map-mask properties.
525                  */
526                 ret = ((irq - 1 + (slot & 3)) & 3) + 1;
527         }
528
529         return ret;
530 }
531
532 static int of_irq_verbose;
533
534 static unsigned int __init build_one_device_irq(struct platform_device *op,
535                                                 struct device *parent,
536                                                 unsigned int irq)
537 {
538         struct device_node *dp = op->dev.of_node;
539         struct device_node *pp, *ip;
540         unsigned int orig_irq = irq;
541         int nid;
542
543         if (irq == 0xffffffff)
544                 return irq;
545
546         if (dp->irq_trans) {
547                 irq = dp->irq_trans->irq_build(dp, irq,
548                                                dp->irq_trans->data);
549
550                 if (of_irq_verbose)
551                         printk("%pOF: direct translate %x --> %x\n",
552                                dp, orig_irq, irq);
553
554                 goto out;
555         }
556
557         /* Something more complicated.  Walk up to the root, applying
558          * interrupt-map or bus specific translations, until we hit
559          * an IRQ translator.
560          *
561          * If we hit a bus type or situation we cannot handle, we
562          * stop and assume that the original IRQ number was in a
563          * format which has special meaning to it's immediate parent.
564          */
565         pp = dp->parent;
566         ip = NULL;
567         while (pp) {
568                 const void *imap, *imsk;
569                 int imlen;
570
571                 imap = of_get_property(pp, "interrupt-map", &imlen);
572                 imsk = of_get_property(pp, "interrupt-map-mask", NULL);
573                 if (imap && imsk) {
574                         struct device_node *iret;
575                         int this_orig_irq = irq;
576
577                         iret = apply_interrupt_map(dp, pp,
578                                                    imap, imlen, imsk,
579                                                    &irq);
580
581                         if (of_irq_verbose)
582                                 printk("%pOF: Apply [%pOF:%x] imap --> [%pOF:%x]\n",
583                                        op->dev.of_node,
584                                        pp, this_orig_irq, iret, irq);
585
586                         if (!iret)
587                                 break;
588
589                         if (iret->irq_trans) {
590                                 ip = iret;
591                                 break;
592                         }
593                 } else {
594                         if (of_node_name_eq(pp, "pci")) {
595                                 unsigned int this_orig_irq = irq;
596
597                                 irq = pci_irq_swizzle(dp, pp, irq);
598                                 if (of_irq_verbose)
599                                         printk("%pOF: PCI swizzle [%pOF] "
600                                                "%x --> %x\n",
601                                                op->dev.of_node,
602                                                pp, this_orig_irq,
603                                                irq);
604
605                         }
606
607                         if (pp->irq_trans) {
608                                 ip = pp;
609                                 break;
610                         }
611                 }
612                 dp = pp;
613                 pp = pp->parent;
614         }
615         if (!ip)
616                 return orig_irq;
617
618         irq = ip->irq_trans->irq_build(op->dev.of_node, irq,
619                                        ip->irq_trans->data);
620         if (of_irq_verbose)
621                 printk("%pOF: Apply IRQ trans [%pOF] %x --> %x\n",
622                       op->dev.of_node, ip, orig_irq, irq);
623
624 out:
625         nid = of_node_to_nid(dp);
626         if (nid != -1) {
627                 cpumask_t numa_mask;
628
629                 cpumask_copy(&numa_mask, cpumask_of_node(nid));
630                 irq_set_affinity(irq, &numa_mask);
631         }
632
633         return irq;
634 }
635
636 static struct platform_device * __init scan_one_device(struct device_node *dp,
637                                                  struct device *parent)
638 {
639         struct platform_device *op = kzalloc(sizeof(*op), GFP_KERNEL);
640         const unsigned int *irq;
641         struct dev_archdata *sd;
642         int len, i;
643
644         if (!op)
645                 return NULL;
646
647         sd = &op->dev.archdata;
648         sd->op = op;
649
650         op->dev.of_node = dp;
651
652         irq = of_get_property(dp, "interrupts", &len);
653         if (irq) {
654                 op->archdata.num_irqs = len / 4;
655
656                 /* Prevent overrunning the op->irqs[] array.  */
657                 if (op->archdata.num_irqs > PROMINTR_MAX) {
658                         printk(KERN_WARNING "%pOF: Too many irqs (%d), "
659                                "limiting to %d.\n",
660                                dp, op->archdata.num_irqs, PROMINTR_MAX);
661                         op->archdata.num_irqs = PROMINTR_MAX;
662                 }
663                 memcpy(op->archdata.irqs, irq, op->archdata.num_irqs * 4);
664         } else {
665                 op->archdata.num_irqs = 0;
666         }
667
668         build_device_resources(op, parent);
669         for (i = 0; i < op->archdata.num_irqs; i++)
670                 op->archdata.irqs[i] = build_one_device_irq(op, parent, op->archdata.irqs[i]);
671
672         op->dev.parent = parent;
673         op->dev.bus = &platform_bus_type;
674         if (!parent)
675                 dev_set_name(&op->dev, "root");
676         else
677                 dev_set_name(&op->dev, "%08x", dp->phandle);
678         op->dev.coherent_dma_mask = DMA_BIT_MASK(32);
679         op->dev.dma_mask = &op->dev.coherent_dma_mask;
680
681         if (of_device_register(op)) {
682                 printk("%pOF: Could not register of device.\n", dp);
683                 kfree(op);
684                 op = NULL;
685         }
686
687         return op;
688 }
689
690 static void __init scan_tree(struct device_node *dp, struct device *parent)
691 {
692         while (dp) {
693                 struct platform_device *op = scan_one_device(dp, parent);
694
695                 if (op)
696                         scan_tree(dp->child, &op->dev);
697
698                 dp = dp->sibling;
699         }
700 }
701
702 static int __init scan_of_devices(void)
703 {
704         struct device_node *root = of_find_node_by_path("/");
705         struct platform_device *parent;
706
707         parent = scan_one_device(root, NULL);
708         if (!parent)
709                 return 0;
710
711         scan_tree(root->child, &parent->dev);
712         return 0;
713 }
714 postcore_initcall(scan_of_devices);
715
716 static int __init of_debug(char *str)
717 {
718         int val = 0;
719
720         get_option(&str, &val);
721         if (val & 1)
722                 of_resource_verbose = 1;
723         if (val & 2)
724                 of_irq_verbose = 1;
725         return 1;
726 }
727
728 __setup("of_debug=", of_debug);