Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / arch / sh / kernel / cpu / sh4a / perf_event.c
1 // SPDX-License-Identifier: GPL-2.0
2 /*
3  * Performance events support for SH-4A performance counters
4  *
5  *  Copyright (C) 2009, 2010  Paul Mundt
6  */
7 #include <linux/kernel.h>
8 #include <linux/init.h>
9 #include <linux/io.h>
10 #include <linux/irq.h>
11 #include <linux/perf_event.h>
12 #include <asm/processor.h>
13
14 #define PPC_CCBR(idx)   (0xff200800 + (sizeof(u32) * idx))
15 #define PPC_PMCTR(idx)  (0xfc100000 + (sizeof(u32) * idx))
16
17 #define CCBR_CIT_MASK   (0x7ff << 6)
18 #define CCBR_DUC        (1 << 3)
19 #define CCBR_CMDS       (1 << 1)
20 #define CCBR_PPCE       (1 << 0)
21
22 #ifdef CONFIG_CPU_SHX3
23 /*
24  * The PMCAT location for SH-X3 CPUs was quietly moved, while the CCBR
25  * and PMCTR locations remains tentatively constant. This change remains
26  * wholly undocumented, and was simply found through trial and error.
27  *
28  * Early cuts of SH-X3 still appear to use the SH-X/SH-X2 locations, and
29  * it's unclear when this ceased to be the case. For now we always use
30  * the new location (if future parts keep up with this trend then
31  * scanning for them at runtime also remains a viable option.)
32  *
33  * The gap in the register space also suggests that there are other
34  * undocumented counters, so this will need to be revisited at a later
35  * point in time.
36  */
37 #define PPC_PMCAT       0xfc100240
38 #else
39 #define PPC_PMCAT       0xfc100080
40 #endif
41
42 #define PMCAT_OVF3      (1 << 27)
43 #define PMCAT_CNN3      (1 << 26)
44 #define PMCAT_CLR3      (1 << 25)
45 #define PMCAT_OVF2      (1 << 19)
46 #define PMCAT_CLR2      (1 << 17)
47 #define PMCAT_OVF1      (1 << 11)
48 #define PMCAT_CNN1      (1 << 10)
49 #define PMCAT_CLR1      (1 << 9)
50 #define PMCAT_OVF0      (1 << 3)
51 #define PMCAT_CLR0      (1 << 1)
52
53 static struct sh_pmu sh4a_pmu;
54
55 /*
56  * Supported raw event codes:
57  *
58  *      Event Code      Description
59  *      ----------      -----------
60  *
61  *      0x0000          number of elapsed cycles
62  *      0x0200          number of elapsed cycles in privileged mode
63  *      0x0280          number of elapsed cycles while SR.BL is asserted
64  *      0x0202          instruction execution
65  *      0x0203          instruction execution in parallel
66  *      0x0204          number of unconditional branches
67  *      0x0208          number of exceptions
68  *      0x0209          number of interrupts
69  *      0x0220          UTLB miss caused by instruction fetch
70  *      0x0222          UTLB miss caused by operand access
71  *      0x02a0          number of ITLB misses
72  *      0x0028          number of accesses to instruction memories
73  *      0x0029          number of accesses to instruction cache
74  *      0x002a          instruction cache miss
75  *      0x022e          number of access to instruction X/Y memory
76  *      0x0030          number of reads to operand memories
77  *      0x0038          number of writes to operand memories
78  *      0x0031          number of operand cache read accesses
79  *      0x0039          number of operand cache write accesses
80  *      0x0032          operand cache read miss
81  *      0x003a          operand cache write miss
82  *      0x0236          number of reads to operand X/Y memory
83  *      0x023e          number of writes to operand X/Y memory
84  *      0x0237          number of reads to operand U memory
85  *      0x023f          number of writes to operand U memory
86  *      0x0337          number of U memory read buffer misses
87  *      0x02b4          number of wait cycles due to operand read access
88  *      0x02bc          number of wait cycles due to operand write access
89  *      0x0033          number of wait cycles due to operand cache read miss
90  *      0x003b          number of wait cycles due to operand cache write miss
91  */
92
93 /*
94  * Special reserved bits used by hardware emulators, read values will
95  * vary, but writes must always be 0.
96  */
97 #define PMCAT_EMU_CLR_MASK      ((1 << 24) | (1 << 16) | (1 << 8) | (1 << 0))
98
99 static const int sh4a_general_events[] = {
100         [PERF_COUNT_HW_CPU_CYCLES]              = 0x0000,
101         [PERF_COUNT_HW_INSTRUCTIONS]            = 0x0202,
102         [PERF_COUNT_HW_CACHE_REFERENCES]        = 0x0029,       /* I-cache */
103         [PERF_COUNT_HW_CACHE_MISSES]            = 0x002a,       /* I-cache */
104         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS]     = 0x0204,
105         [PERF_COUNT_HW_BRANCH_MISSES]           = -1,
106         [PERF_COUNT_HW_BUS_CYCLES]              = -1,
107 };
108
109 #define C(x)    PERF_COUNT_HW_CACHE_##x
110
111 static const int sh4a_cache_events
112                         [PERF_COUNT_HW_CACHE_MAX]
113                         [PERF_COUNT_HW_CACHE_OP_MAX]
114                         [PERF_COUNT_HW_CACHE_RESULT_MAX] =
115 {
116         [ C(L1D) ] = {
117                 [ C(OP_READ) ] = {
118                         [ C(RESULT_ACCESS) ] = 0x0031,
119                         [ C(RESULT_MISS)   ] = 0x0032,
120                 },
121                 [ C(OP_WRITE) ] = {
122                         [ C(RESULT_ACCESS) ] = 0x0039,
123                         [ C(RESULT_MISS)   ] = 0x003a,
124                 },
125                 [ C(OP_PREFETCH) ] = {
126                         [ C(RESULT_ACCESS) ] = 0,
127                         [ C(RESULT_MISS)   ] = 0,
128                 },
129         },
130
131         [ C(L1I) ] = {
132                 [ C(OP_READ) ] = {
133                         [ C(RESULT_ACCESS) ] = 0x0029,
134                         [ C(RESULT_MISS)   ] = 0x002a,
135                 },
136                 [ C(OP_WRITE) ] = {
137                         [ C(RESULT_ACCESS) ] = -1,
138                         [ C(RESULT_MISS)   ] = -1,
139                 },
140                 [ C(OP_PREFETCH) ] = {
141                         [ C(RESULT_ACCESS) ] = 0,
142                         [ C(RESULT_MISS)   ] = 0,
143                 },
144         },
145
146         [ C(LL) ] = {
147                 [ C(OP_READ) ] = {
148                         [ C(RESULT_ACCESS) ] = 0x0030,
149                         [ C(RESULT_MISS)   ] = 0,
150                 },
151                 [ C(OP_WRITE) ] = {
152                         [ C(RESULT_ACCESS) ] = 0x0038,
153                         [ C(RESULT_MISS)   ] = 0,
154                 },
155                 [ C(OP_PREFETCH) ] = {
156                         [ C(RESULT_ACCESS) ] = 0,
157                         [ C(RESULT_MISS)   ] = 0,
158                 },
159         },
160
161         [ C(DTLB) ] = {
162                 [ C(OP_READ) ] = {
163                         [ C(RESULT_ACCESS) ] = 0x0222,
164                         [ C(RESULT_MISS)   ] = 0x0220,
165                 },
166                 [ C(OP_WRITE) ] = {
167                         [ C(RESULT_ACCESS) ] = 0,
168                         [ C(RESULT_MISS)   ] = 0,
169                 },
170                 [ C(OP_PREFETCH) ] = {
171                         [ C(RESULT_ACCESS) ] = 0,
172                         [ C(RESULT_MISS)   ] = 0,
173                 },
174         },
175
176         [ C(ITLB) ] = {
177                 [ C(OP_READ) ] = {
178                         [ C(RESULT_ACCESS) ] = 0,
179                         [ C(RESULT_MISS)   ] = 0x02a0,
180                 },
181                 [ C(OP_WRITE) ] = {
182                         [ C(RESULT_ACCESS) ] = -1,
183                         [ C(RESULT_MISS)   ] = -1,
184                 },
185                 [ C(OP_PREFETCH) ] = {
186                         [ C(RESULT_ACCESS) ] = -1,
187                         [ C(RESULT_MISS)   ] = -1,
188                 },
189         },
190
191         [ C(BPU) ] = {
192                 [ C(OP_READ) ] = {
193                         [ C(RESULT_ACCESS) ] = -1,
194                         [ C(RESULT_MISS)   ] = -1,
195                 },
196                 [ C(OP_WRITE) ] = {
197                         [ C(RESULT_ACCESS) ] = -1,
198                         [ C(RESULT_MISS)   ] = -1,
199                 },
200                 [ C(OP_PREFETCH) ] = {
201                         [ C(RESULT_ACCESS) ] = -1,
202                         [ C(RESULT_MISS)   ] = -1,
203                 },
204         },
205
206         [ C(NODE) ] = {
207                 [ C(OP_READ) ] = {
208                         [ C(RESULT_ACCESS) ] = -1,
209                         [ C(RESULT_MISS)   ] = -1,
210                 },
211                 [ C(OP_WRITE) ] = {
212                         [ C(RESULT_ACCESS) ] = -1,
213                         [ C(RESULT_MISS)   ] = -1,
214                 },
215                 [ C(OP_PREFETCH) ] = {
216                         [ C(RESULT_ACCESS) ] = -1,
217                         [ C(RESULT_MISS)   ] = -1,
218                 },
219         },
220 };
221
222 static int sh4a_event_map(int event)
223 {
224         return sh4a_general_events[event];
225 }
226
227 static u64 sh4a_pmu_read(int idx)
228 {
229         return __raw_readl(PPC_PMCTR(idx));
230 }
231
232 static void sh4a_pmu_disable(struct hw_perf_event *hwc, int idx)
233 {
234         unsigned int tmp;
235
236         tmp = __raw_readl(PPC_CCBR(idx));
237         tmp &= ~(CCBR_CIT_MASK | CCBR_DUC);
238         __raw_writel(tmp, PPC_CCBR(idx));
239 }
240
241 static void sh4a_pmu_enable(struct hw_perf_event *hwc, int idx)
242 {
243         unsigned int tmp;
244
245         tmp = __raw_readl(PPC_PMCAT);
246         tmp &= ~PMCAT_EMU_CLR_MASK;
247         tmp |= idx ? PMCAT_CLR1 : PMCAT_CLR0;
248         __raw_writel(tmp, PPC_PMCAT);
249
250         tmp = __raw_readl(PPC_CCBR(idx));
251         tmp |= (hwc->config << 6) | CCBR_CMDS | CCBR_PPCE;
252         __raw_writel(tmp, PPC_CCBR(idx));
253
254         __raw_writel(__raw_readl(PPC_CCBR(idx)) | CCBR_DUC, PPC_CCBR(idx));
255 }
256
257 static void sh4a_pmu_disable_all(void)
258 {
259         int i;
260
261         for (i = 0; i < sh4a_pmu.num_events; i++)
262                 __raw_writel(__raw_readl(PPC_CCBR(i)) & ~CCBR_DUC, PPC_CCBR(i));
263 }
264
265 static void sh4a_pmu_enable_all(void)
266 {
267         int i;
268
269         for (i = 0; i < sh4a_pmu.num_events; i++)
270                 __raw_writel(__raw_readl(PPC_CCBR(i)) | CCBR_DUC, PPC_CCBR(i));
271 }
272
273 static struct sh_pmu sh4a_pmu = {
274         .name           = "sh4a",
275         .num_events     = 2,
276         .event_map      = sh4a_event_map,
277         .max_events     = ARRAY_SIZE(sh4a_general_events),
278         .raw_event_mask = 0x3ff,
279         .cache_events   = &sh4a_cache_events,
280         .read           = sh4a_pmu_read,
281         .disable        = sh4a_pmu_disable,
282         .enable         = sh4a_pmu_enable,
283         .disable_all    = sh4a_pmu_disable_all,
284         .enable_all     = sh4a_pmu_enable_all,
285 };
286
287 static int __init sh4a_pmu_init(void)
288 {
289         /*
290          * Make sure this CPU actually has perf counters.
291          */
292         if (!(boot_cpu_data.flags & CPU_HAS_PERF_COUNTER)) {
293                 pr_notice("HW perf events unsupported, software events only.\n");
294                 return -ENODEV;
295         }
296
297         return register_sh_pmu(&sh4a_pmu);
298 }
299 early_initcall(sh4a_pmu_init);