Linux-libre 4.14.69-gnu
[librecmc/linux-libre.git] / arch / sh / include / asm / unaligned-sh4a.h
1 /* SPDX-License-Identifier: GPL-2.0 */
2 #ifndef __ASM_SH_UNALIGNED_SH4A_H
3 #define __ASM_SH_UNALIGNED_SH4A_H
4
5 /*
6  * SH-4A has support for unaligned 32-bit loads, and 32-bit loads only.
7  * Support for 64-bit accesses are done through shifting and masking
8  * relative to the endianness. Unaligned stores are not supported by the
9  * instruction encoding, so these continue to use the packed
10  * struct.
11  *
12  * The same note as with the movli.l/movco.l pair applies here, as long
13  * as the load is guaranteed to be inlined, nothing else will hook in to
14  * r0 and we get the return value for free.
15  *
16  * NOTE: Due to the fact we require r0 encoding, care should be taken to
17  * avoid mixing these heavily with other r0 consumers, such as the atomic
18  * ops. Failure to adhere to this can result in the compiler running out
19  * of spill registers and blowing up when building at low optimization
20  * levels. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=34777.
21  */
22 #include <linux/unaligned/packed_struct.h>
23 #include <linux/types.h>
24 #include <asm/byteorder.h>
25
26 static inline u16 sh4a_get_unaligned_cpu16(const u8 *p)
27 {
28 #ifdef __LITTLE_ENDIAN
29         return p[0] | p[1] << 8;
30 #else
31         return p[0] << 8 | p[1];
32 #endif
33 }
34
35 static __always_inline u32 sh4a_get_unaligned_cpu32(const u8 *p)
36 {
37         unsigned long unaligned;
38
39         __asm__ __volatile__ (
40                 "movua.l        @%1, %0\n\t"
41                  : "=z" (unaligned)
42                  : "r" (p)
43         );
44
45         return unaligned;
46 }
47
48 /*
49  * Even though movua.l supports auto-increment on the read side, it can
50  * only store to r0 due to instruction encoding constraints, so just let
51  * the compiler sort it out on its own.
52  */
53 static inline u64 sh4a_get_unaligned_cpu64(const u8 *p)
54 {
55 #ifdef __LITTLE_ENDIAN
56         return (u64)sh4a_get_unaligned_cpu32(p + 4) << 32 |
57                     sh4a_get_unaligned_cpu32(p);
58 #else
59         return (u64)sh4a_get_unaligned_cpu32(p) << 32 |
60                     sh4a_get_unaligned_cpu32(p + 4);
61 #endif
62 }
63
64 static inline u16 get_unaligned_le16(const void *p)
65 {
66         return le16_to_cpu(sh4a_get_unaligned_cpu16(p));
67 }
68
69 static inline u32 get_unaligned_le32(const void *p)
70 {
71         return le32_to_cpu(sh4a_get_unaligned_cpu32(p));
72 }
73
74 static inline u64 get_unaligned_le64(const void *p)
75 {
76         return le64_to_cpu(sh4a_get_unaligned_cpu64(p));
77 }
78
79 static inline u16 get_unaligned_be16(const void *p)
80 {
81         return be16_to_cpu(sh4a_get_unaligned_cpu16(p));
82 }
83
84 static inline u32 get_unaligned_be32(const void *p)
85 {
86         return be32_to_cpu(sh4a_get_unaligned_cpu32(p));
87 }
88
89 static inline u64 get_unaligned_be64(const void *p)
90 {
91         return be64_to_cpu(sh4a_get_unaligned_cpu64(p));
92 }
93
94 static inline void nonnative_put_le16(u16 val, u8 *p)
95 {
96         *p++ = val;
97         *p++ = val >> 8;
98 }
99
100 static inline void nonnative_put_le32(u32 val, u8 *p)
101 {
102         nonnative_put_le16(val, p);
103         nonnative_put_le16(val >> 16, p + 2);
104 }
105
106 static inline void nonnative_put_le64(u64 val, u8 *p)
107 {
108         nonnative_put_le32(val, p);
109         nonnative_put_le32(val >> 32, p + 4);
110 }
111
112 static inline void nonnative_put_be16(u16 val, u8 *p)
113 {
114         *p++ = val >> 8;
115         *p++ = val;
116 }
117
118 static inline void nonnative_put_be32(u32 val, u8 *p)
119 {
120         nonnative_put_be16(val >> 16, p);
121         nonnative_put_be16(val, p + 2);
122 }
123
124 static inline void nonnative_put_be64(u64 val, u8 *p)
125 {
126         nonnative_put_be32(val >> 32, p);
127         nonnative_put_be32(val, p + 4);
128 }
129
130 static inline void put_unaligned_le16(u16 val, void *p)
131 {
132 #ifdef __LITTLE_ENDIAN
133         __put_unaligned_cpu16(val, p);
134 #else
135         nonnative_put_le16(val, p);
136 #endif
137 }
138
139 static inline void put_unaligned_le32(u32 val, void *p)
140 {
141 #ifdef __LITTLE_ENDIAN
142         __put_unaligned_cpu32(val, p);
143 #else
144         nonnative_put_le32(val, p);
145 #endif
146 }
147
148 static inline void put_unaligned_le64(u64 val, void *p)
149 {
150 #ifdef __LITTLE_ENDIAN
151         __put_unaligned_cpu64(val, p);
152 #else
153         nonnative_put_le64(val, p);
154 #endif
155 }
156
157 static inline void put_unaligned_be16(u16 val, void *p)
158 {
159 #ifdef __BIG_ENDIAN
160         __put_unaligned_cpu16(val, p);
161 #else
162         nonnative_put_be16(val, p);
163 #endif
164 }
165
166 static inline void put_unaligned_be32(u32 val, void *p)
167 {
168 #ifdef __BIG_ENDIAN
169         __put_unaligned_cpu32(val, p);
170 #else
171         nonnative_put_be32(val, p);
172 #endif
173 }
174
175 static inline void put_unaligned_be64(u64 val, void *p)
176 {
177 #ifdef __BIG_ENDIAN
178         __put_unaligned_cpu64(val, p);
179 #else
180         nonnative_put_be64(val, p);
181 #endif
182 }
183
184 /*
185  * While it's a bit non-obvious, even though the generic le/be wrappers
186  * use the __get/put_xxx prefixing, they actually wrap in to the
187  * non-prefixed get/put_xxx variants as provided above.
188  */
189 #include <linux/unaligned/generic.h>
190
191 #ifdef __LITTLE_ENDIAN
192 # define get_unaligned __get_unaligned_le
193 # define put_unaligned __put_unaligned_le
194 #else
195 # define get_unaligned __get_unaligned_be
196 # define put_unaligned __put_unaligned_be
197 #endif
198
199 #endif /* __ASM_SH_UNALIGNED_SH4A_H */