Linux-libre 4.9.86-gnu
[librecmc/linux-libre.git] / arch / powerpc / kvm / powerpc.c
1 /*
2  * This program is free software; you can redistribute it and/or modify
3  * it under the terms of the GNU General Public License, version 2, as
4  * published by the Free Software Foundation.
5  *
6  * This program is distributed in the hope that it will be useful,
7  * but WITHOUT ANY WARRANTY; without even the implied warranty of
8  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
9  * GNU General Public License for more details.
10  *
11  * You should have received a copy of the GNU General Public License
12  * along with this program; if not, write to the Free Software
13  * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
14  *
15  * Copyright IBM Corp. 2007
16  *
17  * Authors: Hollis Blanchard <hollisb@us.ibm.com>
18  *          Christian Ehrhardt <ehrhardt@linux.vnet.ibm.com>
19  */
20
21 #include <linux/errno.h>
22 #include <linux/err.h>
23 #include <linux/kvm_host.h>
24 #include <linux/vmalloc.h>
25 #include <linux/hrtimer.h>
26 #include <linux/fs.h>
27 #include <linux/slab.h>
28 #include <linux/file.h>
29 #include <linux/module.h>
30 #include <linux/irqbypass.h>
31 #include <linux/kvm_irqfd.h>
32 #include <asm/cputable.h>
33 #include <asm/uaccess.h>
34 #include <asm/kvm_ppc.h>
35 #include <asm/tlbflush.h>
36 #include <asm/cputhreads.h>
37 #include <asm/irqflags.h>
38 #include <asm/iommu.h>
39 #include "timing.h"
40 #include "irq.h"
41 #include "../mm/mmu_decl.h"
42
43 #define CREATE_TRACE_POINTS
44 #include "trace.h"
45
46 struct kvmppc_ops *kvmppc_hv_ops;
47 EXPORT_SYMBOL_GPL(kvmppc_hv_ops);
48 struct kvmppc_ops *kvmppc_pr_ops;
49 EXPORT_SYMBOL_GPL(kvmppc_pr_ops);
50
51
52 int kvm_arch_vcpu_runnable(struct kvm_vcpu *v)
53 {
54         return !!(v->arch.pending_exceptions) ||
55                v->requests;
56 }
57
58 int kvm_arch_vcpu_should_kick(struct kvm_vcpu *vcpu)
59 {
60         return 1;
61 }
62
63 /*
64  * Common checks before entering the guest world.  Call with interrupts
65  * disabled.
66  *
67  * returns:
68  *
69  * == 1 if we're ready to go into guest state
70  * <= 0 if we need to go back to the host with return value
71  */
72 int kvmppc_prepare_to_enter(struct kvm_vcpu *vcpu)
73 {
74         int r;
75
76         WARN_ON(irqs_disabled());
77         hard_irq_disable();
78
79         while (true) {
80                 if (need_resched()) {
81                         local_irq_enable();
82                         cond_resched();
83                         hard_irq_disable();
84                         continue;
85                 }
86
87                 if (signal_pending(current)) {
88                         kvmppc_account_exit(vcpu, SIGNAL_EXITS);
89                         vcpu->run->exit_reason = KVM_EXIT_INTR;
90                         r = -EINTR;
91                         break;
92                 }
93
94                 vcpu->mode = IN_GUEST_MODE;
95
96                 /*
97                  * Reading vcpu->requests must happen after setting vcpu->mode,
98                  * so we don't miss a request because the requester sees
99                  * OUTSIDE_GUEST_MODE and assumes we'll be checking requests
100                  * before next entering the guest (and thus doesn't IPI).
101                  * This also orders the write to mode from any reads
102                  * to the page tables done while the VCPU is running.
103                  * Please see the comment in kvm_flush_remote_tlbs.
104                  */
105                 smp_mb();
106
107                 if (vcpu->requests) {
108                         /* Make sure we process requests preemptable */
109                         local_irq_enable();
110                         trace_kvm_check_requests(vcpu);
111                         r = kvmppc_core_check_requests(vcpu);
112                         hard_irq_disable();
113                         if (r > 0)
114                                 continue;
115                         break;
116                 }
117
118                 if (kvmppc_core_prepare_to_enter(vcpu)) {
119                         /* interrupts got enabled in between, so we
120                            are back at square 1 */
121                         continue;
122                 }
123
124                 guest_enter_irqoff();
125                 return 1;
126         }
127
128         /* return to host */
129         local_irq_enable();
130         return r;
131 }
132 EXPORT_SYMBOL_GPL(kvmppc_prepare_to_enter);
133
134 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
135 static void kvmppc_swab_shared(struct kvm_vcpu *vcpu)
136 {
137         struct kvm_vcpu_arch_shared *shared = vcpu->arch.shared;
138         int i;
139
140         shared->sprg0 = swab64(shared->sprg0);
141         shared->sprg1 = swab64(shared->sprg1);
142         shared->sprg2 = swab64(shared->sprg2);
143         shared->sprg3 = swab64(shared->sprg3);
144         shared->srr0 = swab64(shared->srr0);
145         shared->srr1 = swab64(shared->srr1);
146         shared->dar = swab64(shared->dar);
147         shared->msr = swab64(shared->msr);
148         shared->dsisr = swab32(shared->dsisr);
149         shared->int_pending = swab32(shared->int_pending);
150         for (i = 0; i < ARRAY_SIZE(shared->sr); i++)
151                 shared->sr[i] = swab32(shared->sr[i]);
152 }
153 #endif
154
155 int kvmppc_kvm_pv(struct kvm_vcpu *vcpu)
156 {
157         int nr = kvmppc_get_gpr(vcpu, 11);
158         int r;
159         unsigned long __maybe_unused param1 = kvmppc_get_gpr(vcpu, 3);
160         unsigned long __maybe_unused param2 = kvmppc_get_gpr(vcpu, 4);
161         unsigned long __maybe_unused param3 = kvmppc_get_gpr(vcpu, 5);
162         unsigned long __maybe_unused param4 = kvmppc_get_gpr(vcpu, 6);
163         unsigned long r2 = 0;
164
165         if (!(kvmppc_get_msr(vcpu) & MSR_SF)) {
166                 /* 32 bit mode */
167                 param1 &= 0xffffffff;
168                 param2 &= 0xffffffff;
169                 param3 &= 0xffffffff;
170                 param4 &= 0xffffffff;
171         }
172
173         switch (nr) {
174         case KVM_HCALL_TOKEN(KVM_HC_PPC_MAP_MAGIC_PAGE):
175         {
176 #if defined(CONFIG_PPC_BOOK3S_64) && defined(CONFIG_KVM_BOOK3S_PR_POSSIBLE)
177                 /* Book3S can be little endian, find it out here */
178                 int shared_big_endian = true;
179                 if (vcpu->arch.intr_msr & MSR_LE)
180                         shared_big_endian = false;
181                 if (shared_big_endian != vcpu->arch.shared_big_endian)
182                         kvmppc_swab_shared(vcpu);
183                 vcpu->arch.shared_big_endian = shared_big_endian;
184 #endif
185
186                 if (!(param2 & MAGIC_PAGE_FLAG_NOT_MAPPED_NX)) {
187                         /*
188                          * Older versions of the Linux magic page code had
189                          * a bug where they would map their trampoline code
190                          * NX. If that's the case, remove !PR NX capability.
191                          */
192                         vcpu->arch.disable_kernel_nx = true;
193                         kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
194                 }
195
196                 vcpu->arch.magic_page_pa = param1 & ~0xfffULL;
197                 vcpu->arch.magic_page_ea = param2 & ~0xfffULL;
198
199 #ifdef CONFIG_PPC_64K_PAGES
200                 /*
201                  * Make sure our 4k magic page is in the same window of a 64k
202                  * page within the guest and within the host's page.
203                  */
204                 if ((vcpu->arch.magic_page_pa & 0xf000) !=
205                     ((ulong)vcpu->arch.shared & 0xf000)) {
206                         void *old_shared = vcpu->arch.shared;
207                         ulong shared = (ulong)vcpu->arch.shared;
208                         void *new_shared;
209
210                         shared &= PAGE_MASK;
211                         shared |= vcpu->arch.magic_page_pa & 0xf000;
212                         new_shared = (void*)shared;
213                         memcpy(new_shared, old_shared, 0x1000);
214                         vcpu->arch.shared = new_shared;
215                 }
216 #endif
217
218                 r2 = KVM_MAGIC_FEAT_SR | KVM_MAGIC_FEAT_MAS0_TO_SPRG7;
219
220                 r = EV_SUCCESS;
221                 break;
222         }
223         case KVM_HCALL_TOKEN(KVM_HC_FEATURES):
224                 r = EV_SUCCESS;
225 #if defined(CONFIG_PPC_BOOK3S) || defined(CONFIG_KVM_E500V2)
226                 r2 |= (1 << KVM_FEATURE_MAGIC_PAGE);
227 #endif
228
229                 /* Second return value is in r4 */
230                 break;
231         case EV_HCALL_TOKEN(EV_IDLE):
232                 r = EV_SUCCESS;
233                 kvm_vcpu_block(vcpu);
234                 clear_bit(KVM_REQ_UNHALT, &vcpu->requests);
235                 break;
236         default:
237                 r = EV_UNIMPLEMENTED;
238                 break;
239         }
240
241         kvmppc_set_gpr(vcpu, 4, r2);
242
243         return r;
244 }
245 EXPORT_SYMBOL_GPL(kvmppc_kvm_pv);
246
247 int kvmppc_sanity_check(struct kvm_vcpu *vcpu)
248 {
249         int r = false;
250
251         /* We have to know what CPU to virtualize */
252         if (!vcpu->arch.pvr)
253                 goto out;
254
255         /* PAPR only works with book3s_64 */
256         if ((vcpu->arch.cpu_type != KVM_CPU_3S_64) && vcpu->arch.papr_enabled)
257                 goto out;
258
259         /* HV KVM can only do PAPR mode for now */
260         if (!vcpu->arch.papr_enabled && is_kvmppc_hv_enabled(vcpu->kvm))
261                 goto out;
262
263 #ifdef CONFIG_KVM_BOOKE_HV
264         if (!cpu_has_feature(CPU_FTR_EMB_HV))
265                 goto out;
266 #endif
267
268         r = true;
269
270 out:
271         vcpu->arch.sane = r;
272         return r ? 0 : -EINVAL;
273 }
274 EXPORT_SYMBOL_GPL(kvmppc_sanity_check);
275
276 int kvmppc_emulate_mmio(struct kvm_run *run, struct kvm_vcpu *vcpu)
277 {
278         enum emulation_result er;
279         int r;
280
281         er = kvmppc_emulate_loadstore(vcpu);
282         switch (er) {
283         case EMULATE_DONE:
284                 /* Future optimization: only reload non-volatiles if they were
285                  * actually modified. */
286                 r = RESUME_GUEST_NV;
287                 break;
288         case EMULATE_AGAIN:
289                 r = RESUME_GUEST;
290                 break;
291         case EMULATE_DO_MMIO:
292                 run->exit_reason = KVM_EXIT_MMIO;
293                 /* We must reload nonvolatiles because "update" load/store
294                  * instructions modify register state. */
295                 /* Future optimization: only reload non-volatiles if they were
296                  * actually modified. */
297                 r = RESUME_HOST_NV;
298                 break;
299         case EMULATE_FAIL:
300         {
301                 u32 last_inst;
302
303                 kvmppc_get_last_inst(vcpu, INST_GENERIC, &last_inst);
304                 /* XXX Deliver Program interrupt to guest. */
305                 pr_emerg("%s: emulation failed (%08x)\n", __func__, last_inst);
306                 r = RESUME_HOST;
307                 break;
308         }
309         default:
310                 WARN_ON(1);
311                 r = RESUME_GUEST;
312         }
313
314         return r;
315 }
316 EXPORT_SYMBOL_GPL(kvmppc_emulate_mmio);
317
318 int kvmppc_st(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
319               bool data)
320 {
321         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
322         struct kvmppc_pte pte;
323         int r;
324
325         vcpu->stat.st++;
326
327         r = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
328                          XLATE_WRITE, &pte);
329         if (r < 0)
330                 return r;
331
332         *eaddr = pte.raddr;
333
334         if (!pte.may_write)
335                 return -EPERM;
336
337         /* Magic page override */
338         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
339             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
340             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
341                 void *magic = vcpu->arch.shared;
342                 magic += pte.eaddr & 0xfff;
343                 memcpy(magic, ptr, size);
344                 return EMULATE_DONE;
345         }
346
347         if (kvm_write_guest(vcpu->kvm, pte.raddr, ptr, size))
348                 return EMULATE_DO_MMIO;
349
350         return EMULATE_DONE;
351 }
352 EXPORT_SYMBOL_GPL(kvmppc_st);
353
354 int kvmppc_ld(struct kvm_vcpu *vcpu, ulong *eaddr, int size, void *ptr,
355                       bool data)
356 {
357         ulong mp_pa = vcpu->arch.magic_page_pa & KVM_PAM & PAGE_MASK;
358         struct kvmppc_pte pte;
359         int rc;
360
361         vcpu->stat.ld++;
362
363         rc = kvmppc_xlate(vcpu, *eaddr, data ? XLATE_DATA : XLATE_INST,
364                           XLATE_READ, &pte);
365         if (rc)
366                 return rc;
367
368         *eaddr = pte.raddr;
369
370         if (!pte.may_read)
371                 return -EPERM;
372
373         if (!data && !pte.may_execute)
374                 return -ENOEXEC;
375
376         /* Magic page override */
377         if (kvmppc_supports_magic_page(vcpu) && mp_pa &&
378             ((pte.raddr & KVM_PAM & PAGE_MASK) == mp_pa) &&
379             !(kvmppc_get_msr(vcpu) & MSR_PR)) {
380                 void *magic = vcpu->arch.shared;
381                 magic += pte.eaddr & 0xfff;
382                 memcpy(ptr, magic, size);
383                 return EMULATE_DONE;
384         }
385
386         if (kvm_read_guest(vcpu->kvm, pte.raddr, ptr, size))
387                 return EMULATE_DO_MMIO;
388
389         return EMULATE_DONE;
390 }
391 EXPORT_SYMBOL_GPL(kvmppc_ld);
392
393 int kvm_arch_hardware_enable(void)
394 {
395         return 0;
396 }
397
398 int kvm_arch_hardware_setup(void)
399 {
400         return 0;
401 }
402
403 void kvm_arch_check_processor_compat(void *rtn)
404 {
405         *(int *)rtn = kvmppc_core_check_processor_compat();
406 }
407
408 int kvm_arch_init_vm(struct kvm *kvm, unsigned long type)
409 {
410         struct kvmppc_ops *kvm_ops = NULL;
411         /*
412          * if we have both HV and PR enabled, default is HV
413          */
414         if (type == 0) {
415                 if (kvmppc_hv_ops)
416                         kvm_ops = kvmppc_hv_ops;
417                 else
418                         kvm_ops = kvmppc_pr_ops;
419                 if (!kvm_ops)
420                         goto err_out;
421         } else  if (type == KVM_VM_PPC_HV) {
422                 if (!kvmppc_hv_ops)
423                         goto err_out;
424                 kvm_ops = kvmppc_hv_ops;
425         } else if (type == KVM_VM_PPC_PR) {
426                 if (!kvmppc_pr_ops)
427                         goto err_out;
428                 kvm_ops = kvmppc_pr_ops;
429         } else
430                 goto err_out;
431
432         if (kvm_ops->owner && !try_module_get(kvm_ops->owner))
433                 return -ENOENT;
434
435         kvm->arch.kvm_ops = kvm_ops;
436         return kvmppc_core_init_vm(kvm);
437 err_out:
438         return -EINVAL;
439 }
440
441 bool kvm_arch_has_vcpu_debugfs(void)
442 {
443         return false;
444 }
445
446 int kvm_arch_create_vcpu_debugfs(struct kvm_vcpu *vcpu)
447 {
448         return 0;
449 }
450
451 void kvm_arch_destroy_vm(struct kvm *kvm)
452 {
453         unsigned int i;
454         struct kvm_vcpu *vcpu;
455
456 #ifdef CONFIG_KVM_XICS
457         /*
458          * We call kick_all_cpus_sync() to ensure that all
459          * CPUs have executed any pending IPIs before we
460          * continue and free VCPUs structures below.
461          */
462         if (is_kvmppc_hv_enabled(kvm))
463                 kick_all_cpus_sync();
464 #endif
465
466         kvm_for_each_vcpu(i, vcpu, kvm)
467                 kvm_arch_vcpu_free(vcpu);
468
469         mutex_lock(&kvm->lock);
470         for (i = 0; i < atomic_read(&kvm->online_vcpus); i++)
471                 kvm->vcpus[i] = NULL;
472
473         atomic_set(&kvm->online_vcpus, 0);
474
475         kvmppc_core_destroy_vm(kvm);
476
477         mutex_unlock(&kvm->lock);
478
479         /* drop the module reference */
480         module_put(kvm->arch.kvm_ops->owner);
481 }
482
483 int kvm_vm_ioctl_check_extension(struct kvm *kvm, long ext)
484 {
485         int r;
486         /* Assume we're using HV mode when the HV module is loaded */
487         int hv_enabled = kvmppc_hv_ops ? 1 : 0;
488
489         if (kvm) {
490                 /*
491                  * Hooray - we know which VM type we're running on. Depend on
492                  * that rather than the guess above.
493                  */
494                 hv_enabled = is_kvmppc_hv_enabled(kvm);
495         }
496
497         switch (ext) {
498 #ifdef CONFIG_BOOKE
499         case KVM_CAP_PPC_BOOKE_SREGS:
500         case KVM_CAP_PPC_BOOKE_WATCHDOG:
501         case KVM_CAP_PPC_EPR:
502 #else
503         case KVM_CAP_PPC_SEGSTATE:
504         case KVM_CAP_PPC_HIOR:
505         case KVM_CAP_PPC_PAPR:
506 #endif
507         case KVM_CAP_PPC_UNSET_IRQ:
508         case KVM_CAP_PPC_IRQ_LEVEL:
509         case KVM_CAP_ENABLE_CAP:
510         case KVM_CAP_ENABLE_CAP_VM:
511         case KVM_CAP_ONE_REG:
512         case KVM_CAP_IOEVENTFD:
513         case KVM_CAP_DEVICE_CTRL:
514                 r = 1;
515                 break;
516         case KVM_CAP_PPC_PAIRED_SINGLES:
517         case KVM_CAP_PPC_OSI:
518         case KVM_CAP_PPC_GET_PVINFO:
519 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
520         case KVM_CAP_SW_TLB:
521 #endif
522                 /* We support this only for PR */
523                 r = !hv_enabled;
524                 break;
525 #ifdef CONFIG_KVM_MMIO
526         case KVM_CAP_COALESCED_MMIO:
527                 r = KVM_COALESCED_MMIO_PAGE_OFFSET;
528                 break;
529 #endif
530 #ifdef CONFIG_KVM_MPIC
531         case KVM_CAP_IRQ_MPIC:
532                 r = 1;
533                 break;
534 #endif
535
536 #ifdef CONFIG_PPC_BOOK3S_64
537         case KVM_CAP_SPAPR_TCE:
538         case KVM_CAP_SPAPR_TCE_64:
539         case KVM_CAP_PPC_ALLOC_HTAB:
540         case KVM_CAP_PPC_RTAS:
541         case KVM_CAP_PPC_FIXUP_HCALL:
542         case KVM_CAP_PPC_ENABLE_HCALL:
543 #ifdef CONFIG_KVM_XICS
544         case KVM_CAP_IRQ_XICS:
545 #endif
546                 r = 1;
547                 break;
548 #endif /* CONFIG_PPC_BOOK3S_64 */
549 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
550         case KVM_CAP_PPC_SMT:
551                 if (hv_enabled)
552                         r = threads_per_subcore;
553                 else
554                         r = 0;
555                 break;
556         case KVM_CAP_PPC_RMA:
557                 r = 0;
558                 break;
559         case KVM_CAP_PPC_HWRNG:
560                 r = kvmppc_hwrng_present();
561                 break;
562 #endif
563         case KVM_CAP_SYNC_MMU:
564 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
565                 r = hv_enabled;
566 #elif defined(KVM_ARCH_WANT_MMU_NOTIFIER)
567                 r = 1;
568 #else
569                 r = 0;
570 #endif
571                 break;
572 #ifdef CONFIG_KVM_BOOK3S_HV_POSSIBLE
573         case KVM_CAP_PPC_HTAB_FD:
574                 r = hv_enabled;
575                 break;
576 #endif
577         case KVM_CAP_NR_VCPUS:
578                 /*
579                  * Recommending a number of CPUs is somewhat arbitrary; we
580                  * return the number of present CPUs for -HV (since a host
581                  * will have secondary threads "offline"), and for other KVM
582                  * implementations just count online CPUs.
583                  */
584                 if (hv_enabled)
585                         r = num_present_cpus();
586                 else
587                         r = num_online_cpus();
588                 break;
589         case KVM_CAP_NR_MEMSLOTS:
590                 r = KVM_USER_MEM_SLOTS;
591                 break;
592         case KVM_CAP_MAX_VCPUS:
593                 r = KVM_MAX_VCPUS;
594                 break;
595 #ifdef CONFIG_PPC_BOOK3S_64
596         case KVM_CAP_PPC_GET_SMMU_INFO:
597                 r = 1;
598                 break;
599         case KVM_CAP_SPAPR_MULTITCE:
600                 r = 1;
601                 break;
602 #endif
603         case KVM_CAP_PPC_HTM:
604                 r = cpu_has_feature(CPU_FTR_TM_COMP) && hv_enabled;
605                 break;
606         default:
607                 r = 0;
608                 break;
609         }
610         return r;
611
612 }
613
614 long kvm_arch_dev_ioctl(struct file *filp,
615                         unsigned int ioctl, unsigned long arg)
616 {
617         return -EINVAL;
618 }
619
620 void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
621                            struct kvm_memory_slot *dont)
622 {
623         kvmppc_core_free_memslot(kvm, free, dont);
624 }
625
626 int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
627                             unsigned long npages)
628 {
629         return kvmppc_core_create_memslot(kvm, slot, npages);
630 }
631
632 int kvm_arch_prepare_memory_region(struct kvm *kvm,
633                                    struct kvm_memory_slot *memslot,
634                                    const struct kvm_userspace_memory_region *mem,
635                                    enum kvm_mr_change change)
636 {
637         return kvmppc_core_prepare_memory_region(kvm, memslot, mem);
638 }
639
640 void kvm_arch_commit_memory_region(struct kvm *kvm,
641                                    const struct kvm_userspace_memory_region *mem,
642                                    const struct kvm_memory_slot *old,
643                                    const struct kvm_memory_slot *new,
644                                    enum kvm_mr_change change)
645 {
646         kvmppc_core_commit_memory_region(kvm, mem, old, new);
647 }
648
649 void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
650                                    struct kvm_memory_slot *slot)
651 {
652         kvmppc_core_flush_memslot(kvm, slot);
653 }
654
655 struct kvm_vcpu *kvm_arch_vcpu_create(struct kvm *kvm, unsigned int id)
656 {
657         struct kvm_vcpu *vcpu;
658         vcpu = kvmppc_core_vcpu_create(kvm, id);
659         if (!IS_ERR(vcpu)) {
660                 vcpu->arch.wqp = &vcpu->wq;
661                 kvmppc_create_vcpu_debugfs(vcpu, id);
662         }
663         return vcpu;
664 }
665
666 void kvm_arch_vcpu_postcreate(struct kvm_vcpu *vcpu)
667 {
668 }
669
670 void kvm_arch_vcpu_free(struct kvm_vcpu *vcpu)
671 {
672         /* Make sure we're not using the vcpu anymore */
673         hrtimer_cancel(&vcpu->arch.dec_timer);
674
675         kvmppc_remove_vcpu_debugfs(vcpu);
676
677         switch (vcpu->arch.irq_type) {
678         case KVMPPC_IRQ_MPIC:
679                 kvmppc_mpic_disconnect_vcpu(vcpu->arch.mpic, vcpu);
680                 break;
681         case KVMPPC_IRQ_XICS:
682                 kvmppc_xics_free_icp(vcpu);
683                 break;
684         }
685
686         kvmppc_core_vcpu_free(vcpu);
687 }
688
689 void kvm_arch_vcpu_destroy(struct kvm_vcpu *vcpu)
690 {
691         kvm_arch_vcpu_free(vcpu);
692 }
693
694 int kvm_cpu_has_pending_timer(struct kvm_vcpu *vcpu)
695 {
696         return kvmppc_core_pending_dec(vcpu);
697 }
698
699 static enum hrtimer_restart kvmppc_decrementer_wakeup(struct hrtimer *timer)
700 {
701         struct kvm_vcpu *vcpu;
702
703         vcpu = container_of(timer, struct kvm_vcpu, arch.dec_timer);
704         kvmppc_decrementer_func(vcpu);
705
706         return HRTIMER_NORESTART;
707 }
708
709 int kvm_arch_vcpu_init(struct kvm_vcpu *vcpu)
710 {
711         int ret;
712
713         hrtimer_init(&vcpu->arch.dec_timer, CLOCK_REALTIME, HRTIMER_MODE_ABS);
714         vcpu->arch.dec_timer.function = kvmppc_decrementer_wakeup;
715         vcpu->arch.dec_expires = ~(u64)0;
716
717 #ifdef CONFIG_KVM_EXIT_TIMING
718         mutex_init(&vcpu->arch.exit_timing_lock);
719 #endif
720         ret = kvmppc_subarch_vcpu_init(vcpu);
721         return ret;
722 }
723
724 void kvm_arch_vcpu_uninit(struct kvm_vcpu *vcpu)
725 {
726         kvmppc_mmu_destroy(vcpu);
727         kvmppc_subarch_vcpu_uninit(vcpu);
728 }
729
730 void kvm_arch_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
731 {
732 #ifdef CONFIG_BOOKE
733         /*
734          * vrsave (formerly usprg0) isn't used by Linux, but may
735          * be used by the guest.
736          *
737          * On non-booke this is associated with Altivec and
738          * is handled by code in book3s.c.
739          */
740         mtspr(SPRN_VRSAVE, vcpu->arch.vrsave);
741 #endif
742         kvmppc_core_vcpu_load(vcpu, cpu);
743 }
744
745 void kvm_arch_vcpu_put(struct kvm_vcpu *vcpu)
746 {
747         kvmppc_core_vcpu_put(vcpu);
748 #ifdef CONFIG_BOOKE
749         vcpu->arch.vrsave = mfspr(SPRN_VRSAVE);
750 #endif
751 }
752
753 /*
754  * irq_bypass_add_producer and irq_bypass_del_producer are only
755  * useful if the architecture supports PCI passthrough.
756  * irq_bypass_stop and irq_bypass_start are not needed and so
757  * kvm_ops are not defined for them.
758  */
759 bool kvm_arch_has_irq_bypass(void)
760 {
761         return ((kvmppc_hv_ops && kvmppc_hv_ops->irq_bypass_add_producer) ||
762                 (kvmppc_pr_ops && kvmppc_pr_ops->irq_bypass_add_producer));
763 }
764
765 int kvm_arch_irq_bypass_add_producer(struct irq_bypass_consumer *cons,
766                                      struct irq_bypass_producer *prod)
767 {
768         struct kvm_kernel_irqfd *irqfd =
769                 container_of(cons, struct kvm_kernel_irqfd, consumer);
770         struct kvm *kvm = irqfd->kvm;
771
772         if (kvm->arch.kvm_ops->irq_bypass_add_producer)
773                 return kvm->arch.kvm_ops->irq_bypass_add_producer(cons, prod);
774
775         return 0;
776 }
777
778 void kvm_arch_irq_bypass_del_producer(struct irq_bypass_consumer *cons,
779                                       struct irq_bypass_producer *prod)
780 {
781         struct kvm_kernel_irqfd *irqfd =
782                 container_of(cons, struct kvm_kernel_irqfd, consumer);
783         struct kvm *kvm = irqfd->kvm;
784
785         if (kvm->arch.kvm_ops->irq_bypass_del_producer)
786                 kvm->arch.kvm_ops->irq_bypass_del_producer(cons, prod);
787 }
788
789 static void kvmppc_complete_mmio_load(struct kvm_vcpu *vcpu,
790                                       struct kvm_run *run)
791 {
792         u64 uninitialized_var(gpr);
793
794         if (run->mmio.len > sizeof(gpr)) {
795                 printk(KERN_ERR "bad MMIO length: %d\n", run->mmio.len);
796                 return;
797         }
798
799         if (!vcpu->arch.mmio_host_swabbed) {
800                 switch (run->mmio.len) {
801                 case 8: gpr = *(u64 *)run->mmio.data; break;
802                 case 4: gpr = *(u32 *)run->mmio.data; break;
803                 case 2: gpr = *(u16 *)run->mmio.data; break;
804                 case 1: gpr = *(u8 *)run->mmio.data; break;
805                 }
806         } else {
807                 switch (run->mmio.len) {
808                 case 8: gpr = swab64(*(u64 *)run->mmio.data); break;
809                 case 4: gpr = swab32(*(u32 *)run->mmio.data); break;
810                 case 2: gpr = swab16(*(u16 *)run->mmio.data); break;
811                 case 1: gpr = *(u8 *)run->mmio.data; break;
812                 }
813         }
814
815         if (vcpu->arch.mmio_sign_extend) {
816                 switch (run->mmio.len) {
817 #ifdef CONFIG_PPC64
818                 case 4:
819                         gpr = (s64)(s32)gpr;
820                         break;
821 #endif
822                 case 2:
823                         gpr = (s64)(s16)gpr;
824                         break;
825                 case 1:
826                         gpr = (s64)(s8)gpr;
827                         break;
828                 }
829         }
830
831         kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
832
833         switch (vcpu->arch.io_gpr & KVM_MMIO_REG_EXT_MASK) {
834         case KVM_MMIO_REG_GPR:
835                 kvmppc_set_gpr(vcpu, vcpu->arch.io_gpr, gpr);
836                 break;
837         case KVM_MMIO_REG_FPR:
838                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
839                 break;
840 #ifdef CONFIG_PPC_BOOK3S
841         case KVM_MMIO_REG_QPR:
842                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
843                 break;
844         case KVM_MMIO_REG_FQPR:
845                 VCPU_FPR(vcpu, vcpu->arch.io_gpr & KVM_MMIO_REG_MASK) = gpr;
846                 vcpu->arch.qpr[vcpu->arch.io_gpr & KVM_MMIO_REG_MASK] = gpr;
847                 break;
848 #endif
849         default:
850                 BUG();
851         }
852 }
853
854 static int __kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
855                                 unsigned int rt, unsigned int bytes,
856                                 int is_default_endian, int sign_extend)
857 {
858         int idx, ret;
859         bool host_swabbed;
860
861         /* Pity C doesn't have a logical XOR operator */
862         if (kvmppc_need_byteswap(vcpu)) {
863                 host_swabbed = is_default_endian;
864         } else {
865                 host_swabbed = !is_default_endian;
866         }
867
868         if (bytes > sizeof(run->mmio.data)) {
869                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
870                        run->mmio.len);
871         }
872
873         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
874         run->mmio.len = bytes;
875         run->mmio.is_write = 0;
876
877         vcpu->arch.io_gpr = rt;
878         vcpu->arch.mmio_host_swabbed = host_swabbed;
879         vcpu->mmio_needed = 1;
880         vcpu->mmio_is_write = 0;
881         vcpu->arch.mmio_sign_extend = sign_extend;
882
883         idx = srcu_read_lock(&vcpu->kvm->srcu);
884
885         ret = kvm_io_bus_read(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
886                               bytes, &run->mmio.data);
887
888         srcu_read_unlock(&vcpu->kvm->srcu, idx);
889
890         if (!ret) {
891                 kvmppc_complete_mmio_load(vcpu, run);
892                 vcpu->mmio_needed = 0;
893                 return EMULATE_DONE;
894         }
895
896         return EMULATE_DO_MMIO;
897 }
898
899 int kvmppc_handle_load(struct kvm_run *run, struct kvm_vcpu *vcpu,
900                        unsigned int rt, unsigned int bytes,
901                        int is_default_endian)
902 {
903         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 0);
904 }
905 EXPORT_SYMBOL_GPL(kvmppc_handle_load);
906
907 /* Same as above, but sign extends */
908 int kvmppc_handle_loads(struct kvm_run *run, struct kvm_vcpu *vcpu,
909                         unsigned int rt, unsigned int bytes,
910                         int is_default_endian)
911 {
912         return __kvmppc_handle_load(run, vcpu, rt, bytes, is_default_endian, 1);
913 }
914
915 int kvmppc_handle_store(struct kvm_run *run, struct kvm_vcpu *vcpu,
916                         u64 val, unsigned int bytes, int is_default_endian)
917 {
918         void *data = run->mmio.data;
919         int idx, ret;
920         bool host_swabbed;
921
922         /* Pity C doesn't have a logical XOR operator */
923         if (kvmppc_need_byteswap(vcpu)) {
924                 host_swabbed = is_default_endian;
925         } else {
926                 host_swabbed = !is_default_endian;
927         }
928
929         if (bytes > sizeof(run->mmio.data)) {
930                 printk(KERN_ERR "%s: bad MMIO length: %d\n", __func__,
931                        run->mmio.len);
932         }
933
934         run->mmio.phys_addr = vcpu->arch.paddr_accessed;
935         run->mmio.len = bytes;
936         run->mmio.is_write = 1;
937         vcpu->mmio_needed = 1;
938         vcpu->mmio_is_write = 1;
939
940         /* Store the value at the lowest bytes in 'data'. */
941         if (!host_swabbed) {
942                 switch (bytes) {
943                 case 8: *(u64 *)data = val; break;
944                 case 4: *(u32 *)data = val; break;
945                 case 2: *(u16 *)data = val; break;
946                 case 1: *(u8  *)data = val; break;
947                 }
948         } else {
949                 switch (bytes) {
950                 case 8: *(u64 *)data = swab64(val); break;
951                 case 4: *(u32 *)data = swab32(val); break;
952                 case 2: *(u16 *)data = swab16(val); break;
953                 case 1: *(u8  *)data = val; break;
954                 }
955         }
956
957         idx = srcu_read_lock(&vcpu->kvm->srcu);
958
959         ret = kvm_io_bus_write(vcpu, KVM_MMIO_BUS, run->mmio.phys_addr,
960                                bytes, &run->mmio.data);
961
962         srcu_read_unlock(&vcpu->kvm->srcu, idx);
963
964         if (!ret) {
965                 vcpu->mmio_needed = 0;
966                 return EMULATE_DONE;
967         }
968
969         return EMULATE_DO_MMIO;
970 }
971 EXPORT_SYMBOL_GPL(kvmppc_handle_store);
972
973 int kvm_vcpu_ioctl_get_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
974 {
975         int r = 0;
976         union kvmppc_one_reg val;
977         int size;
978
979         size = one_reg_size(reg->id);
980         if (size > sizeof(val))
981                 return -EINVAL;
982
983         r = kvmppc_get_one_reg(vcpu, reg->id, &val);
984         if (r == -EINVAL) {
985                 r = 0;
986                 switch (reg->id) {
987 #ifdef CONFIG_ALTIVEC
988                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
989                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
990                                 r = -ENXIO;
991                                 break;
992                         }
993                         val.vval = vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0];
994                         break;
995                 case KVM_REG_PPC_VSCR:
996                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
997                                 r = -ENXIO;
998                                 break;
999                         }
1000                         val = get_reg_val(reg->id, vcpu->arch.vr.vscr.u[3]);
1001                         break;
1002                 case KVM_REG_PPC_VRSAVE:
1003                         val = get_reg_val(reg->id, vcpu->arch.vrsave);
1004                         break;
1005 #endif /* CONFIG_ALTIVEC */
1006                 default:
1007                         r = -EINVAL;
1008                         break;
1009                 }
1010         }
1011
1012         if (r)
1013                 return r;
1014
1015         if (copy_to_user((char __user *)(unsigned long)reg->addr, &val, size))
1016                 r = -EFAULT;
1017
1018         return r;
1019 }
1020
1021 int kvm_vcpu_ioctl_set_one_reg(struct kvm_vcpu *vcpu, struct kvm_one_reg *reg)
1022 {
1023         int r;
1024         union kvmppc_one_reg val;
1025         int size;
1026
1027         size = one_reg_size(reg->id);
1028         if (size > sizeof(val))
1029                 return -EINVAL;
1030
1031         if (copy_from_user(&val, (char __user *)(unsigned long)reg->addr, size))
1032                 return -EFAULT;
1033
1034         r = kvmppc_set_one_reg(vcpu, reg->id, &val);
1035         if (r == -EINVAL) {
1036                 r = 0;
1037                 switch (reg->id) {
1038 #ifdef CONFIG_ALTIVEC
1039                 case KVM_REG_PPC_VR0 ... KVM_REG_PPC_VR31:
1040                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1041                                 r = -ENXIO;
1042                                 break;
1043                         }
1044                         vcpu->arch.vr.vr[reg->id - KVM_REG_PPC_VR0] = val.vval;
1045                         break;
1046                 case KVM_REG_PPC_VSCR:
1047                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1048                                 r = -ENXIO;
1049                                 break;
1050                         }
1051                         vcpu->arch.vr.vscr.u[3] = set_reg_val(reg->id, val);
1052                         break;
1053                 case KVM_REG_PPC_VRSAVE:
1054                         if (!cpu_has_feature(CPU_FTR_ALTIVEC)) {
1055                                 r = -ENXIO;
1056                                 break;
1057                         }
1058                         vcpu->arch.vrsave = set_reg_val(reg->id, val);
1059                         break;
1060 #endif /* CONFIG_ALTIVEC */
1061                 default:
1062                         r = -EINVAL;
1063                         break;
1064                 }
1065         }
1066
1067         return r;
1068 }
1069
1070 int kvm_arch_vcpu_ioctl_run(struct kvm_vcpu *vcpu, struct kvm_run *run)
1071 {
1072         int r;
1073         sigset_t sigsaved;
1074
1075         if (vcpu->sigset_active)
1076                 sigprocmask(SIG_SETMASK, &vcpu->sigset, &sigsaved);
1077
1078         if (vcpu->mmio_needed) {
1079                 if (!vcpu->mmio_is_write)
1080                         kvmppc_complete_mmio_load(vcpu, run);
1081                 vcpu->mmio_needed = 0;
1082         } else if (vcpu->arch.osi_needed) {
1083                 u64 *gprs = run->osi.gprs;
1084                 int i;
1085
1086                 for (i = 0; i < 32; i++)
1087                         kvmppc_set_gpr(vcpu, i, gprs[i]);
1088                 vcpu->arch.osi_needed = 0;
1089         } else if (vcpu->arch.hcall_needed) {
1090                 int i;
1091
1092                 kvmppc_set_gpr(vcpu, 3, run->papr_hcall.ret);
1093                 for (i = 0; i < 9; ++i)
1094                         kvmppc_set_gpr(vcpu, 4 + i, run->papr_hcall.args[i]);
1095                 vcpu->arch.hcall_needed = 0;
1096 #ifdef CONFIG_BOOKE
1097         } else if (vcpu->arch.epr_needed) {
1098                 kvmppc_set_epr(vcpu, run->epr.epr);
1099                 vcpu->arch.epr_needed = 0;
1100 #endif
1101         }
1102
1103         r = kvmppc_vcpu_run(run, vcpu);
1104
1105         if (vcpu->sigset_active)
1106                 sigprocmask(SIG_SETMASK, &sigsaved, NULL);
1107
1108         return r;
1109 }
1110
1111 int kvm_vcpu_ioctl_interrupt(struct kvm_vcpu *vcpu, struct kvm_interrupt *irq)
1112 {
1113         if (irq->irq == KVM_INTERRUPT_UNSET) {
1114                 kvmppc_core_dequeue_external(vcpu);
1115                 return 0;
1116         }
1117
1118         kvmppc_core_queue_external(vcpu, irq);
1119
1120         kvm_vcpu_kick(vcpu);
1121
1122         return 0;
1123 }
1124
1125 static int kvm_vcpu_ioctl_enable_cap(struct kvm_vcpu *vcpu,
1126                                      struct kvm_enable_cap *cap)
1127 {
1128         int r;
1129
1130         if (cap->flags)
1131                 return -EINVAL;
1132
1133         switch (cap->cap) {
1134         case KVM_CAP_PPC_OSI:
1135                 r = 0;
1136                 vcpu->arch.osi_enabled = true;
1137                 break;
1138         case KVM_CAP_PPC_PAPR:
1139                 r = 0;
1140                 vcpu->arch.papr_enabled = true;
1141                 break;
1142         case KVM_CAP_PPC_EPR:
1143                 r = 0;
1144                 if (cap->args[0])
1145                         vcpu->arch.epr_flags |= KVMPPC_EPR_USER;
1146                 else
1147                         vcpu->arch.epr_flags &= ~KVMPPC_EPR_USER;
1148                 break;
1149 #ifdef CONFIG_BOOKE
1150         case KVM_CAP_PPC_BOOKE_WATCHDOG:
1151                 r = 0;
1152                 vcpu->arch.watchdog_enabled = true;
1153                 break;
1154 #endif
1155 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1156         case KVM_CAP_SW_TLB: {
1157                 struct kvm_config_tlb cfg;
1158                 void __user *user_ptr = (void __user *)(uintptr_t)cap->args[0];
1159
1160                 r = -EFAULT;
1161                 if (copy_from_user(&cfg, user_ptr, sizeof(cfg)))
1162                         break;
1163
1164                 r = kvm_vcpu_ioctl_config_tlb(vcpu, &cfg);
1165                 break;
1166         }
1167 #endif
1168 #ifdef CONFIG_KVM_MPIC
1169         case KVM_CAP_IRQ_MPIC: {
1170                 struct fd f;
1171                 struct kvm_device *dev;
1172
1173                 r = -EBADF;
1174                 f = fdget(cap->args[0]);
1175                 if (!f.file)
1176                         break;
1177
1178                 r = -EPERM;
1179                 dev = kvm_device_from_filp(f.file);
1180                 if (dev)
1181                         r = kvmppc_mpic_connect_vcpu(dev, vcpu, cap->args[1]);
1182
1183                 fdput(f);
1184                 break;
1185         }
1186 #endif
1187 #ifdef CONFIG_KVM_XICS
1188         case KVM_CAP_IRQ_XICS: {
1189                 struct fd f;
1190                 struct kvm_device *dev;
1191
1192                 r = -EBADF;
1193                 f = fdget(cap->args[0]);
1194                 if (!f.file)
1195                         break;
1196
1197                 r = -EPERM;
1198                 dev = kvm_device_from_filp(f.file);
1199                 if (dev)
1200                         r = kvmppc_xics_connect_vcpu(dev, vcpu, cap->args[1]);
1201
1202                 fdput(f);
1203                 break;
1204         }
1205 #endif /* CONFIG_KVM_XICS */
1206         default:
1207                 r = -EINVAL;
1208                 break;
1209         }
1210
1211         if (!r)
1212                 r = kvmppc_sanity_check(vcpu);
1213
1214         return r;
1215 }
1216
1217 bool kvm_arch_intc_initialized(struct kvm *kvm)
1218 {
1219 #ifdef CONFIG_KVM_MPIC
1220         if (kvm->arch.mpic)
1221                 return true;
1222 #endif
1223 #ifdef CONFIG_KVM_XICS
1224         if (kvm->arch.xics)
1225                 return true;
1226 #endif
1227         return false;
1228 }
1229
1230 int kvm_arch_vcpu_ioctl_get_mpstate(struct kvm_vcpu *vcpu,
1231                                     struct kvm_mp_state *mp_state)
1232 {
1233         return -EINVAL;
1234 }
1235
1236 int kvm_arch_vcpu_ioctl_set_mpstate(struct kvm_vcpu *vcpu,
1237                                     struct kvm_mp_state *mp_state)
1238 {
1239         return -EINVAL;
1240 }
1241
1242 long kvm_arch_vcpu_ioctl(struct file *filp,
1243                          unsigned int ioctl, unsigned long arg)
1244 {
1245         struct kvm_vcpu *vcpu = filp->private_data;
1246         void __user *argp = (void __user *)arg;
1247         long r;
1248
1249         switch (ioctl) {
1250         case KVM_INTERRUPT: {
1251                 struct kvm_interrupt irq;
1252                 r = -EFAULT;
1253                 if (copy_from_user(&irq, argp, sizeof(irq)))
1254                         goto out;
1255                 r = kvm_vcpu_ioctl_interrupt(vcpu, &irq);
1256                 goto out;
1257         }
1258
1259         case KVM_ENABLE_CAP:
1260         {
1261                 struct kvm_enable_cap cap;
1262                 r = -EFAULT;
1263                 if (copy_from_user(&cap, argp, sizeof(cap)))
1264                         goto out;
1265                 r = kvm_vcpu_ioctl_enable_cap(vcpu, &cap);
1266                 break;
1267         }
1268
1269         case KVM_SET_ONE_REG:
1270         case KVM_GET_ONE_REG:
1271         {
1272                 struct kvm_one_reg reg;
1273                 r = -EFAULT;
1274                 if (copy_from_user(&reg, argp, sizeof(reg)))
1275                         goto out;
1276                 if (ioctl == KVM_SET_ONE_REG)
1277                         r = kvm_vcpu_ioctl_set_one_reg(vcpu, &reg);
1278                 else
1279                         r = kvm_vcpu_ioctl_get_one_reg(vcpu, &reg);
1280                 break;
1281         }
1282
1283 #if defined(CONFIG_KVM_E500V2) || defined(CONFIG_KVM_E500MC)
1284         case KVM_DIRTY_TLB: {
1285                 struct kvm_dirty_tlb dirty;
1286                 r = -EFAULT;
1287                 if (copy_from_user(&dirty, argp, sizeof(dirty)))
1288                         goto out;
1289                 r = kvm_vcpu_ioctl_dirty_tlb(vcpu, &dirty);
1290                 break;
1291         }
1292 #endif
1293         default:
1294                 r = -EINVAL;
1295         }
1296
1297 out:
1298         return r;
1299 }
1300
1301 int kvm_arch_vcpu_fault(struct kvm_vcpu *vcpu, struct vm_fault *vmf)
1302 {
1303         return VM_FAULT_SIGBUS;
1304 }
1305
1306 static int kvm_vm_ioctl_get_pvinfo(struct kvm_ppc_pvinfo *pvinfo)
1307 {
1308         u32 inst_nop = 0x60000000;
1309 #ifdef CONFIG_KVM_BOOKE_HV
1310         u32 inst_sc1 = 0x44000022;
1311         pvinfo->hcall[0] = cpu_to_be32(inst_sc1);
1312         pvinfo->hcall[1] = cpu_to_be32(inst_nop);
1313         pvinfo->hcall[2] = cpu_to_be32(inst_nop);
1314         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1315 #else
1316         u32 inst_lis = 0x3c000000;
1317         u32 inst_ori = 0x60000000;
1318         u32 inst_sc = 0x44000002;
1319         u32 inst_imm_mask = 0xffff;
1320
1321         /*
1322          * The hypercall to get into KVM from within guest context is as
1323          * follows:
1324          *
1325          *    lis r0, r0, KVM_SC_MAGIC_R0@h
1326          *    ori r0, KVM_SC_MAGIC_R0@l
1327          *    sc
1328          *    nop
1329          */
1330         pvinfo->hcall[0] = cpu_to_be32(inst_lis | ((KVM_SC_MAGIC_R0 >> 16) & inst_imm_mask));
1331         pvinfo->hcall[1] = cpu_to_be32(inst_ori | (KVM_SC_MAGIC_R0 & inst_imm_mask));
1332         pvinfo->hcall[2] = cpu_to_be32(inst_sc);
1333         pvinfo->hcall[3] = cpu_to_be32(inst_nop);
1334 #endif
1335
1336         pvinfo->flags = KVM_PPC_PVINFO_FLAGS_EV_IDLE;
1337
1338         return 0;
1339 }
1340
1341 int kvm_vm_ioctl_irq_line(struct kvm *kvm, struct kvm_irq_level *irq_event,
1342                           bool line_status)
1343 {
1344         if (!irqchip_in_kernel(kvm))
1345                 return -ENXIO;
1346
1347         irq_event->status = kvm_set_irq(kvm, KVM_USERSPACE_IRQ_SOURCE_ID,
1348                                         irq_event->irq, irq_event->level,
1349                                         line_status);
1350         return 0;
1351 }
1352
1353
1354 static int kvm_vm_ioctl_enable_cap(struct kvm *kvm,
1355                                    struct kvm_enable_cap *cap)
1356 {
1357         int r;
1358
1359         if (cap->flags)
1360                 return -EINVAL;
1361
1362         switch (cap->cap) {
1363 #ifdef CONFIG_KVM_BOOK3S_64_HANDLER
1364         case KVM_CAP_PPC_ENABLE_HCALL: {
1365                 unsigned long hcall = cap->args[0];
1366
1367                 r = -EINVAL;
1368                 if (hcall > MAX_HCALL_OPCODE || (hcall & 3) ||
1369                     cap->args[1] > 1)
1370                         break;
1371                 if (!kvmppc_book3s_hcall_implemented(kvm, hcall))
1372                         break;
1373                 if (cap->args[1])
1374                         set_bit(hcall / 4, kvm->arch.enabled_hcalls);
1375                 else
1376                         clear_bit(hcall / 4, kvm->arch.enabled_hcalls);
1377                 r = 0;
1378                 break;
1379         }
1380 #endif
1381         default:
1382                 r = -EINVAL;
1383                 break;
1384         }
1385
1386         return r;
1387 }
1388
1389 long kvm_arch_vm_ioctl(struct file *filp,
1390                        unsigned int ioctl, unsigned long arg)
1391 {
1392         struct kvm *kvm __maybe_unused = filp->private_data;
1393         void __user *argp = (void __user *)arg;
1394         long r;
1395
1396         switch (ioctl) {
1397         case KVM_PPC_GET_PVINFO: {
1398                 struct kvm_ppc_pvinfo pvinfo;
1399                 memset(&pvinfo, 0, sizeof(pvinfo));
1400                 r = kvm_vm_ioctl_get_pvinfo(&pvinfo);
1401                 if (copy_to_user(argp, &pvinfo, sizeof(pvinfo))) {
1402                         r = -EFAULT;
1403                         goto out;
1404                 }
1405
1406                 break;
1407         }
1408         case KVM_ENABLE_CAP:
1409         {
1410                 struct kvm_enable_cap cap;
1411                 r = -EFAULT;
1412                 if (copy_from_user(&cap, argp, sizeof(cap)))
1413                         goto out;
1414                 r = kvm_vm_ioctl_enable_cap(kvm, &cap);
1415                 break;
1416         }
1417 #ifdef CONFIG_PPC_BOOK3S_64
1418         case KVM_CREATE_SPAPR_TCE_64: {
1419                 struct kvm_create_spapr_tce_64 create_tce_64;
1420
1421                 r = -EFAULT;
1422                 if (copy_from_user(&create_tce_64, argp, sizeof(create_tce_64)))
1423                         goto out;
1424                 if (create_tce_64.flags) {
1425                         r = -EINVAL;
1426                         goto out;
1427                 }
1428                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1429                 goto out;
1430         }
1431         case KVM_CREATE_SPAPR_TCE: {
1432                 struct kvm_create_spapr_tce create_tce;
1433                 struct kvm_create_spapr_tce_64 create_tce_64;
1434
1435                 r = -EFAULT;
1436                 if (copy_from_user(&create_tce, argp, sizeof(create_tce)))
1437                         goto out;
1438
1439                 create_tce_64.liobn = create_tce.liobn;
1440                 create_tce_64.page_shift = IOMMU_PAGE_SHIFT_4K;
1441                 create_tce_64.offset = 0;
1442                 create_tce_64.size = create_tce.window_size >>
1443                                 IOMMU_PAGE_SHIFT_4K;
1444                 create_tce_64.flags = 0;
1445                 r = kvm_vm_ioctl_create_spapr_tce(kvm, &create_tce_64);
1446                 goto out;
1447         }
1448         case KVM_PPC_GET_SMMU_INFO: {
1449                 struct kvm_ppc_smmu_info info;
1450                 struct kvm *kvm = filp->private_data;
1451
1452                 memset(&info, 0, sizeof(info));
1453                 r = kvm->arch.kvm_ops->get_smmu_info(kvm, &info);
1454                 if (r >= 0 && copy_to_user(argp, &info, sizeof(info)))
1455                         r = -EFAULT;
1456                 break;
1457         }
1458         case KVM_PPC_RTAS_DEFINE_TOKEN: {
1459                 struct kvm *kvm = filp->private_data;
1460
1461                 r = kvm_vm_ioctl_rtas_define_token(kvm, argp);
1462                 break;
1463         }
1464         default: {
1465                 struct kvm *kvm = filp->private_data;
1466                 r = kvm->arch.kvm_ops->arch_vm_ioctl(filp, ioctl, arg);
1467         }
1468 #else /* CONFIG_PPC_BOOK3S_64 */
1469         default:
1470                 r = -ENOTTY;
1471 #endif
1472         }
1473 out:
1474         return r;
1475 }
1476
1477 static unsigned long lpid_inuse[BITS_TO_LONGS(KVMPPC_NR_LPIDS)];
1478 static unsigned long nr_lpids;
1479
1480 long kvmppc_alloc_lpid(void)
1481 {
1482         long lpid;
1483
1484         do {
1485                 lpid = find_first_zero_bit(lpid_inuse, KVMPPC_NR_LPIDS);
1486                 if (lpid >= nr_lpids) {
1487                         pr_err("%s: No LPIDs free\n", __func__);
1488                         return -ENOMEM;
1489                 }
1490         } while (test_and_set_bit(lpid, lpid_inuse));
1491
1492         return lpid;
1493 }
1494 EXPORT_SYMBOL_GPL(kvmppc_alloc_lpid);
1495
1496 void kvmppc_claim_lpid(long lpid)
1497 {
1498         set_bit(lpid, lpid_inuse);
1499 }
1500 EXPORT_SYMBOL_GPL(kvmppc_claim_lpid);
1501
1502 void kvmppc_free_lpid(long lpid)
1503 {
1504         clear_bit(lpid, lpid_inuse);
1505 }
1506 EXPORT_SYMBOL_GPL(kvmppc_free_lpid);
1507
1508 void kvmppc_init_lpid(unsigned long nr_lpids_param)
1509 {
1510         nr_lpids = min_t(unsigned long, KVMPPC_NR_LPIDS, nr_lpids_param);
1511         memset(lpid_inuse, 0, sizeof(lpid_inuse));
1512 }
1513 EXPORT_SYMBOL_GPL(kvmppc_init_lpid);
1514
1515 int kvm_arch_init(void *opaque)
1516 {
1517         return 0;
1518 }
1519
1520 EXPORT_TRACEPOINT_SYMBOL_GPL(kvm_ppc_instr);