Linux-libre 4.14.132-gnu
[librecmc/linux-libre.git] / arch / mips / kernel / smp.c
1 /*
2  * This program is free software; you can redistribute it and/or
3  * modify it under the terms of the GNU General Public License
4  * as published by the Free Software Foundation; either version 2
5  * of the License, or (at your option) any later version.
6  *
7  * This program is distributed in the hope that it will be useful,
8  * but WITHOUT ANY WARRANTY; without even the implied warranty of
9  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
10  * GNU General Public License for more details.
11  *
12  * You should have received a copy of the GNU General Public License
13  * along with this program; if not, write to the Free Software
14  * Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.
15  *
16  * Copyright (C) 2000, 2001 Kanoj Sarcar
17  * Copyright (C) 2000, 2001 Ralf Baechle
18  * Copyright (C) 2000, 2001 Silicon Graphics, Inc.
19  * Copyright (C) 2000, 2001, 2003 Broadcom Corporation
20  */
21 #include <linux/cache.h>
22 #include <linux/delay.h>
23 #include <linux/init.h>
24 #include <linux/interrupt.h>
25 #include <linux/smp.h>
26 #include <linux/spinlock.h>
27 #include <linux/threads.h>
28 #include <linux/export.h>
29 #include <linux/time.h>
30 #include <linux/timex.h>
31 #include <linux/sched/mm.h>
32 #include <linux/cpumask.h>
33 #include <linux/cpu.h>
34 #include <linux/err.h>
35 #include <linux/ftrace.h>
36 #include <linux/irqdomain.h>
37 #include <linux/of.h>
38 #include <linux/of_irq.h>
39
40 #include <linux/atomic.h>
41 #include <asm/cpu.h>
42 #include <asm/processor.h>
43 #include <asm/idle.h>
44 #include <asm/r4k-timer.h>
45 #include <asm/mips-cps.h>
46 #include <asm/mmu_context.h>
47 #include <asm/time.h>
48 #include <asm/setup.h>
49 #include <asm/maar.h>
50
51 int __cpu_number_map[NR_CPUS];          /* Map physical to logical */
52 EXPORT_SYMBOL(__cpu_number_map);
53
54 int __cpu_logical_map[NR_CPUS];         /* Map logical to physical */
55 EXPORT_SYMBOL(__cpu_logical_map);
56
57 /* Number of TCs (or siblings in Intel speak) per CPU core */
58 int smp_num_siblings = 1;
59 EXPORT_SYMBOL(smp_num_siblings);
60
61 /* representing the TCs (or siblings in Intel speak) of each logical CPU */
62 cpumask_t cpu_sibling_map[NR_CPUS] __read_mostly;
63 EXPORT_SYMBOL(cpu_sibling_map);
64
65 /* representing the core map of multi-core chips of each logical CPU */
66 cpumask_t cpu_core_map[NR_CPUS] __read_mostly;
67 EXPORT_SYMBOL(cpu_core_map);
68
69 static DECLARE_COMPLETION(cpu_starting);
70 static DECLARE_COMPLETION(cpu_running);
71
72 /*
73  * A logcal cpu mask containing only one VPE per core to
74  * reduce the number of IPIs on large MT systems.
75  */
76 cpumask_t cpu_foreign_map[NR_CPUS] __read_mostly;
77 EXPORT_SYMBOL(cpu_foreign_map);
78
79 /* representing cpus for which sibling maps can be computed */
80 static cpumask_t cpu_sibling_setup_map;
81
82 /* representing cpus for which core maps can be computed */
83 static cpumask_t cpu_core_setup_map;
84
85 cpumask_t cpu_coherent_mask;
86
87 #ifdef CONFIG_GENERIC_IRQ_IPI
88 static struct irq_desc *call_desc;
89 static struct irq_desc *sched_desc;
90 #endif
91
92 static inline void set_cpu_sibling_map(int cpu)
93 {
94         int i;
95
96         cpumask_set_cpu(cpu, &cpu_sibling_setup_map);
97
98         if (smp_num_siblings > 1) {
99                 for_each_cpu(i, &cpu_sibling_setup_map) {
100                         if (cpus_are_siblings(cpu, i)) {
101                                 cpumask_set_cpu(i, &cpu_sibling_map[cpu]);
102                                 cpumask_set_cpu(cpu, &cpu_sibling_map[i]);
103                         }
104                 }
105         } else
106                 cpumask_set_cpu(cpu, &cpu_sibling_map[cpu]);
107 }
108
109 static inline void set_cpu_core_map(int cpu)
110 {
111         int i;
112
113         cpumask_set_cpu(cpu, &cpu_core_setup_map);
114
115         for_each_cpu(i, &cpu_core_setup_map) {
116                 if (cpu_data[cpu].package == cpu_data[i].package) {
117                         cpumask_set_cpu(i, &cpu_core_map[cpu]);
118                         cpumask_set_cpu(cpu, &cpu_core_map[i]);
119                 }
120         }
121 }
122
123 /*
124  * Calculate a new cpu_foreign_map mask whenever a
125  * new cpu appears or disappears.
126  */
127 void calculate_cpu_foreign_map(void)
128 {
129         int i, k, core_present;
130         cpumask_t temp_foreign_map;
131
132         /* Re-calculate the mask */
133         cpumask_clear(&temp_foreign_map);
134         for_each_online_cpu(i) {
135                 core_present = 0;
136                 for_each_cpu(k, &temp_foreign_map)
137                         if (cpus_are_siblings(i, k))
138                                 core_present = 1;
139                 if (!core_present)
140                         cpumask_set_cpu(i, &temp_foreign_map);
141         }
142
143         for_each_online_cpu(i)
144                 cpumask_andnot(&cpu_foreign_map[i],
145                                &temp_foreign_map, &cpu_sibling_map[i]);
146 }
147
148 const struct plat_smp_ops *mp_ops;
149 EXPORT_SYMBOL(mp_ops);
150
151 void register_smp_ops(const struct plat_smp_ops *ops)
152 {
153         if (mp_ops)
154                 printk(KERN_WARNING "Overriding previously set SMP ops\n");
155
156         mp_ops = ops;
157 }
158
159 #ifdef CONFIG_GENERIC_IRQ_IPI
160 void mips_smp_send_ipi_single(int cpu, unsigned int action)
161 {
162         mips_smp_send_ipi_mask(cpumask_of(cpu), action);
163 }
164
165 void mips_smp_send_ipi_mask(const struct cpumask *mask, unsigned int action)
166 {
167         unsigned long flags;
168         unsigned int core;
169         int cpu;
170
171         local_irq_save(flags);
172
173         switch (action) {
174         case SMP_CALL_FUNCTION:
175                 __ipi_send_mask(call_desc, mask);
176                 break;
177
178         case SMP_RESCHEDULE_YOURSELF:
179                 __ipi_send_mask(sched_desc, mask);
180                 break;
181
182         default:
183                 BUG();
184         }
185
186         if (mips_cpc_present()) {
187                 for_each_cpu(cpu, mask) {
188                         if (cpus_are_siblings(cpu, smp_processor_id()))
189                                 continue;
190
191                         core = cpu_core(&cpu_data[cpu]);
192
193                         while (!cpumask_test_cpu(cpu, &cpu_coherent_mask)) {
194                                 mips_cm_lock_other_cpu(cpu, CM_GCR_Cx_OTHER_BLOCK_LOCAL);
195                                 mips_cpc_lock_other(core);
196                                 write_cpc_co_cmd(CPC_Cx_CMD_PWRUP);
197                                 mips_cpc_unlock_other();
198                                 mips_cm_unlock_other();
199                         }
200                 }
201         }
202
203         local_irq_restore(flags);
204 }
205
206
207 static irqreturn_t ipi_resched_interrupt(int irq, void *dev_id)
208 {
209         scheduler_ipi();
210
211         return IRQ_HANDLED;
212 }
213
214 static irqreturn_t ipi_call_interrupt(int irq, void *dev_id)
215 {
216         generic_smp_call_function_interrupt();
217
218         return IRQ_HANDLED;
219 }
220
221 static struct irqaction irq_resched = {
222         .handler        = ipi_resched_interrupt,
223         .flags          = IRQF_PERCPU,
224         .name           = "IPI resched"
225 };
226
227 static struct irqaction irq_call = {
228         .handler        = ipi_call_interrupt,
229         .flags          = IRQF_PERCPU,
230         .name           = "IPI call"
231 };
232
233 static void smp_ipi_init_one(unsigned int virq,
234                                     struct irqaction *action)
235 {
236         int ret;
237
238         irq_set_handler(virq, handle_percpu_irq);
239         ret = setup_irq(virq, action);
240         BUG_ON(ret);
241 }
242
243 static unsigned int call_virq, sched_virq;
244
245 int mips_smp_ipi_allocate(const struct cpumask *mask)
246 {
247         int virq;
248         struct irq_domain *ipidomain;
249         struct device_node *node;
250
251         node = of_irq_find_parent(of_root);
252         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
253
254         /*
255          * Some platforms have half DT setup. So if we found irq node but
256          * didn't find an ipidomain, try to search for one that is not in the
257          * DT.
258          */
259         if (node && !ipidomain)
260                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
261
262         /*
263          * There are systems which use IPI IRQ domains, but only have one
264          * registered when some runtime condition is met. For example a Malta
265          * kernel may include support for GIC & CPU interrupt controller IPI
266          * IRQ domains, but if run on a system with no GIC & no MT ASE then
267          * neither will be supported or registered.
268          *
269          * We only have a problem if we're actually using multiple CPUs so fail
270          * loudly if that is the case. Otherwise simply return, skipping IPI
271          * setup, if we're running with only a single CPU.
272          */
273         if (!ipidomain) {
274                 BUG_ON(num_present_cpus() > 1);
275                 return 0;
276         }
277
278         virq = irq_reserve_ipi(ipidomain, mask);
279         BUG_ON(!virq);
280         if (!call_virq)
281                 call_virq = virq;
282
283         virq = irq_reserve_ipi(ipidomain, mask);
284         BUG_ON(!virq);
285         if (!sched_virq)
286                 sched_virq = virq;
287
288         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
289                 int cpu;
290
291                 for_each_cpu(cpu, mask) {
292                         smp_ipi_init_one(call_virq + cpu, &irq_call);
293                         smp_ipi_init_one(sched_virq + cpu, &irq_resched);
294                 }
295         } else {
296                 smp_ipi_init_one(call_virq, &irq_call);
297                 smp_ipi_init_one(sched_virq, &irq_resched);
298         }
299
300         return 0;
301 }
302
303 int mips_smp_ipi_free(const struct cpumask *mask)
304 {
305         struct irq_domain *ipidomain;
306         struct device_node *node;
307
308         node = of_irq_find_parent(of_root);
309         ipidomain = irq_find_matching_host(node, DOMAIN_BUS_IPI);
310
311         /*
312          * Some platforms have half DT setup. So if we found irq node but
313          * didn't find an ipidomain, try to search for one that is not in the
314          * DT.
315          */
316         if (node && !ipidomain)
317                 ipidomain = irq_find_matching_host(NULL, DOMAIN_BUS_IPI);
318
319         BUG_ON(!ipidomain);
320
321         if (irq_domain_is_ipi_per_cpu(ipidomain)) {
322                 int cpu;
323
324                 for_each_cpu(cpu, mask) {
325                         remove_irq(call_virq + cpu, &irq_call);
326                         remove_irq(sched_virq + cpu, &irq_resched);
327                 }
328         }
329         irq_destroy_ipi(call_virq, mask);
330         irq_destroy_ipi(sched_virq, mask);
331         return 0;
332 }
333
334
335 static int __init mips_smp_ipi_init(void)
336 {
337         if (num_possible_cpus() == 1)
338                 return 0;
339
340         mips_smp_ipi_allocate(cpu_possible_mask);
341
342         call_desc = irq_to_desc(call_virq);
343         sched_desc = irq_to_desc(sched_virq);
344
345         return 0;
346 }
347 early_initcall(mips_smp_ipi_init);
348 #endif
349
350 /*
351  * First C code run on the secondary CPUs after being started up by
352  * the master.
353  */
354 asmlinkage void start_secondary(void)
355 {
356         unsigned int cpu;
357
358         cpu_probe();
359         per_cpu_trap_init(false);
360         mips_clockevent_init();
361         mp_ops->init_secondary();
362         cpu_report();
363         maar_init();
364
365         /*
366          * XXX parity protection should be folded in here when it's converted
367          * to an option instead of something based on .cputype
368          */
369
370         calibrate_delay();
371         preempt_disable();
372         cpu = smp_processor_id();
373         cpu_data[cpu].udelay_val = loops_per_jiffy;
374
375         cpumask_set_cpu(cpu, &cpu_coherent_mask);
376         notify_cpu_starting(cpu);
377
378         /* Notify boot CPU that we're starting & ready to sync counters */
379         complete(&cpu_starting);
380
381         synchronise_count_slave(cpu);
382
383         /* The CPU is running and counters synchronised, now mark it online */
384         set_cpu_online(cpu, true);
385
386         set_cpu_sibling_map(cpu);
387         set_cpu_core_map(cpu);
388
389         calculate_cpu_foreign_map();
390
391         /*
392          * Notify boot CPU that we're up & online and it can safely return
393          * from __cpu_up
394          */
395         complete(&cpu_running);
396
397         /*
398          * irq will be enabled in ->smp_finish(), enabling it too early
399          * is dangerous.
400          */
401         WARN_ON_ONCE(!irqs_disabled());
402         mp_ops->smp_finish();
403
404         cpu_startup_entry(CPUHP_AP_ONLINE_IDLE);
405 }
406
407 static void stop_this_cpu(void *dummy)
408 {
409         /*
410          * Remove this CPU:
411          */
412
413         set_cpu_online(smp_processor_id(), false);
414         calculate_cpu_foreign_map();
415         local_irq_disable();
416         while (1);
417 }
418
419 void smp_send_stop(void)
420 {
421         smp_call_function(stop_this_cpu, NULL, 0);
422 }
423
424 void __init smp_cpus_done(unsigned int max_cpus)
425 {
426 }
427
428 /* called from main before smp_init() */
429 void __init smp_prepare_cpus(unsigned int max_cpus)
430 {
431         init_new_context(current, &init_mm);
432         current_thread_info()->cpu = 0;
433         mp_ops->prepare_cpus(max_cpus);
434         set_cpu_sibling_map(0);
435         set_cpu_core_map(0);
436         calculate_cpu_foreign_map();
437 #ifndef CONFIG_HOTPLUG_CPU
438         init_cpu_present(cpu_possible_mask);
439 #endif
440         cpumask_copy(&cpu_coherent_mask, cpu_possible_mask);
441 }
442
443 /* preload SMP state for boot cpu */
444 void smp_prepare_boot_cpu(void)
445 {
446         set_cpu_possible(0, true);
447         set_cpu_online(0, true);
448 }
449
450 int __cpu_up(unsigned int cpu, struct task_struct *tidle)
451 {
452         int err;
453
454         err = mp_ops->boot_secondary(cpu, tidle);
455         if (err)
456                 return err;
457
458         /* Wait for CPU to start and be ready to sync counters */
459         if (!wait_for_completion_timeout(&cpu_starting,
460                                          msecs_to_jiffies(1000))) {
461                 pr_crit("CPU%u: failed to start\n", cpu);
462                 return -EIO;
463         }
464
465         synchronise_count_master(cpu);
466
467         /* Wait for CPU to finish startup & mark itself online before return */
468         wait_for_completion(&cpu_running);
469         return 0;
470 }
471
472 /* Not really SMP stuff ... */
473 int setup_profiling_timer(unsigned int multiplier)
474 {
475         return 0;
476 }
477
478 static void flush_tlb_all_ipi(void *info)
479 {
480         local_flush_tlb_all();
481 }
482
483 void flush_tlb_all(void)
484 {
485         on_each_cpu(flush_tlb_all_ipi, NULL, 1);
486 }
487
488 static void flush_tlb_mm_ipi(void *mm)
489 {
490         local_flush_tlb_mm((struct mm_struct *)mm);
491 }
492
493 /*
494  * Special Variant of smp_call_function for use by TLB functions:
495  *
496  *  o No return value
497  *  o collapses to normal function call on UP kernels
498  *  o collapses to normal function call on systems with a single shared
499  *    primary cache.
500  */
501 static inline void smp_on_other_tlbs(void (*func) (void *info), void *info)
502 {
503         smp_call_function(func, info, 1);
504 }
505
506 static inline void smp_on_each_tlb(void (*func) (void *info), void *info)
507 {
508         preempt_disable();
509
510         smp_on_other_tlbs(func, info);
511         func(info);
512
513         preempt_enable();
514 }
515
516 /*
517  * The following tlb flush calls are invoked when old translations are
518  * being torn down, or pte attributes are changing. For single threaded
519  * address spaces, a new context is obtained on the current cpu, and tlb
520  * context on other cpus are invalidated to force a new context allocation
521  * at switch_mm time, should the mm ever be used on other cpus. For
522  * multithreaded address spaces, intercpu interrupts have to be sent.
523  * Another case where intercpu interrupts are required is when the target
524  * mm might be active on another cpu (eg debuggers doing the flushes on
525  * behalf of debugees, kswapd stealing pages from another process etc).
526  * Kanoj 07/00.
527  */
528
529 void flush_tlb_mm(struct mm_struct *mm)
530 {
531         preempt_disable();
532
533         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
534                 smp_on_other_tlbs(flush_tlb_mm_ipi, mm);
535         } else {
536                 unsigned int cpu;
537
538                 for_each_online_cpu(cpu) {
539                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
540                                 cpu_context(cpu, mm) = 0;
541                 }
542         }
543         local_flush_tlb_mm(mm);
544
545         preempt_enable();
546 }
547
548 struct flush_tlb_data {
549         struct vm_area_struct *vma;
550         unsigned long addr1;
551         unsigned long addr2;
552 };
553
554 static void flush_tlb_range_ipi(void *info)
555 {
556         struct flush_tlb_data *fd = info;
557
558         local_flush_tlb_range(fd->vma, fd->addr1, fd->addr2);
559 }
560
561 void flush_tlb_range(struct vm_area_struct *vma, unsigned long start, unsigned long end)
562 {
563         struct mm_struct *mm = vma->vm_mm;
564
565         preempt_disable();
566         if ((atomic_read(&mm->mm_users) != 1) || (current->mm != mm)) {
567                 struct flush_tlb_data fd = {
568                         .vma = vma,
569                         .addr1 = start,
570                         .addr2 = end,
571                 };
572
573                 smp_on_other_tlbs(flush_tlb_range_ipi, &fd);
574         } else {
575                 unsigned int cpu;
576                 int exec = vma->vm_flags & VM_EXEC;
577
578                 for_each_online_cpu(cpu) {
579                         /*
580                          * flush_cache_range() will only fully flush icache if
581                          * the VMA is executable, otherwise we must invalidate
582                          * ASID without it appearing to has_valid_asid() as if
583                          * mm has been completely unused by that CPU.
584                          */
585                         if (cpu != smp_processor_id() && cpu_context(cpu, mm))
586                                 cpu_context(cpu, mm) = !exec;
587                 }
588         }
589         local_flush_tlb_range(vma, start, end);
590         preempt_enable();
591 }
592
593 static void flush_tlb_kernel_range_ipi(void *info)
594 {
595         struct flush_tlb_data *fd = info;
596
597         local_flush_tlb_kernel_range(fd->addr1, fd->addr2);
598 }
599
600 void flush_tlb_kernel_range(unsigned long start, unsigned long end)
601 {
602         struct flush_tlb_data fd = {
603                 .addr1 = start,
604                 .addr2 = end,
605         };
606
607         on_each_cpu(flush_tlb_kernel_range_ipi, &fd, 1);
608 }
609
610 static void flush_tlb_page_ipi(void *info)
611 {
612         struct flush_tlb_data *fd = info;
613
614         local_flush_tlb_page(fd->vma, fd->addr1);
615 }
616
617 void flush_tlb_page(struct vm_area_struct *vma, unsigned long page)
618 {
619         preempt_disable();
620         if ((atomic_read(&vma->vm_mm->mm_users) != 1) || (current->mm != vma->vm_mm)) {
621                 struct flush_tlb_data fd = {
622                         .vma = vma,
623                         .addr1 = page,
624                 };
625
626                 smp_on_other_tlbs(flush_tlb_page_ipi, &fd);
627         } else {
628                 unsigned int cpu;
629
630                 for_each_online_cpu(cpu) {
631                         /*
632                          * flush_cache_page() only does partial flushes, so
633                          * invalidate ASID without it appearing to
634                          * has_valid_asid() as if mm has been completely unused
635                          * by that CPU.
636                          */
637                         if (cpu != smp_processor_id() && cpu_context(cpu, vma->vm_mm))
638                                 cpu_context(cpu, vma->vm_mm) = 1;
639                 }
640         }
641         local_flush_tlb_page(vma, page);
642         preempt_enable();
643 }
644
645 static void flush_tlb_one_ipi(void *info)
646 {
647         unsigned long vaddr = (unsigned long) info;
648
649         local_flush_tlb_one(vaddr);
650 }
651
652 void flush_tlb_one(unsigned long vaddr)
653 {
654         smp_on_each_tlb(flush_tlb_one_ipi, (void *) vaddr);
655 }
656
657 EXPORT_SYMBOL(flush_tlb_page);
658 EXPORT_SYMBOL(flush_tlb_one);
659
660 #ifdef CONFIG_GENERIC_CLOCKEVENTS_BROADCAST
661
662 static DEFINE_PER_CPU(atomic_t, tick_broadcast_count);
663 static DEFINE_PER_CPU(call_single_data_t, tick_broadcast_csd);
664
665 void tick_broadcast(const struct cpumask *mask)
666 {
667         atomic_t *count;
668         call_single_data_t *csd;
669         int cpu;
670
671         for_each_cpu(cpu, mask) {
672                 count = &per_cpu(tick_broadcast_count, cpu);
673                 csd = &per_cpu(tick_broadcast_csd, cpu);
674
675                 if (atomic_inc_return(count) == 1)
676                         smp_call_function_single_async(cpu, csd);
677         }
678 }
679
680 static void tick_broadcast_callee(void *info)
681 {
682         int cpu = smp_processor_id();
683         tick_receive_broadcast();
684         atomic_set(&per_cpu(tick_broadcast_count, cpu), 0);
685 }
686
687 static int __init tick_broadcast_init(void)
688 {
689         call_single_data_t *csd;
690         int cpu;
691
692         for (cpu = 0; cpu < NR_CPUS; cpu++) {
693                 csd = &per_cpu(tick_broadcast_csd, cpu);
694                 csd->func = tick_broadcast_callee;
695         }
696
697         return 0;
698 }
699 early_initcall(tick_broadcast_init);
700
701 #endif /* CONFIG_GENERIC_CLOCKEVENTS_BROADCAST */