Linux-libre 5.0.10-gnu
[librecmc/linux-libre.git] / arch / mips / kernel / smp-bmips.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 2011 by Kevin Cernekee (cernekee@gmail.com)
7  *
8  * SMP support for BMIPS
9  */
10
11 #include <linux/init.h>
12 #include <linux/sched.h>
13 #include <linux/sched/hotplug.h>
14 #include <linux/sched/task_stack.h>
15 #include <linux/mm.h>
16 #include <linux/delay.h>
17 #include <linux/smp.h>
18 #include <linux/interrupt.h>
19 #include <linux/spinlock.h>
20 #include <linux/cpu.h>
21 #include <linux/cpumask.h>
22 #include <linux/reboot.h>
23 #include <linux/io.h>
24 #include <linux/compiler.h>
25 #include <linux/linkage.h>
26 #include <linux/bug.h>
27 #include <linux/kernel.h>
28 #include <linux/kexec.h>
29
30 #include <asm/time.h>
31 #include <asm/pgtable.h>
32 #include <asm/processor.h>
33 #include <asm/bootinfo.h>
34 #include <asm/pmon.h>
35 #include <asm/cacheflush.h>
36 #include <asm/tlbflush.h>
37 #include <asm/mipsregs.h>
38 #include <asm/bmips.h>
39 #include <asm/traps.h>
40 #include <asm/barrier.h>
41 #include <asm/cpu-features.h>
42
43 static int __maybe_unused max_cpus = 1;
44
45 /* these may be configured by the platform code */
46 int bmips_smp_enabled = 1;
47 int bmips_cpu_offset;
48 cpumask_t bmips_booted_mask;
49 unsigned long bmips_tp1_irqs = IE_IRQ1;
50
51 #define RESET_FROM_KSEG0                0x80080800
52 #define RESET_FROM_KSEG1                0xa0080800
53
54 static void bmips_set_reset_vec(int cpu, u32 val);
55
56 #ifdef CONFIG_SMP
57
58 /* initial $sp, $gp - used by arch/mips/kernel/bmips_vec.S */
59 unsigned long bmips_smp_boot_sp;
60 unsigned long bmips_smp_boot_gp;
61
62 static void bmips43xx_send_ipi_single(int cpu, unsigned int action);
63 static void bmips5000_send_ipi_single(int cpu, unsigned int action);
64 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id);
65 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id);
66
67 /* SW interrupts 0,1 are used for interprocessor signaling */
68 #define IPI0_IRQ                        (MIPS_CPU_IRQ_BASE + 0)
69 #define IPI1_IRQ                        (MIPS_CPU_IRQ_BASE + 1)
70
71 #define CPUNUM(cpu, shift)              (((cpu) + bmips_cpu_offset) << (shift))
72 #define ACTION_CLR_IPI(cpu, ipi)        (0x2000 | CPUNUM(cpu, 9) | ((ipi) << 8))
73 #define ACTION_SET_IPI(cpu, ipi)        (0x3000 | CPUNUM(cpu, 9) | ((ipi) << 8))
74 #define ACTION_BOOT_THREAD(cpu)         (0x08 | CPUNUM(cpu, 0))
75
76 static void __init bmips_smp_setup(void)
77 {
78         int i, cpu = 1, boot_cpu = 0;
79         int cpu_hw_intr;
80
81         switch (current_cpu_type()) {
82         case CPU_BMIPS4350:
83         case CPU_BMIPS4380:
84                 /* arbitration priority */
85                 clear_c0_brcm_cmt_ctrl(0x30);
86
87                 /* NBK and weak order flags */
88                 set_c0_brcm_config_0(0x30000);
89
90                 /* Find out if we are running on TP0 or TP1 */
91                 boot_cpu = !!(read_c0_brcm_cmt_local() & (1 << 31));
92
93                 /*
94                  * MIPS interrupts 0,1 (SW INT 0,1) cross over to the other
95                  * thread
96                  * MIPS interrupt 2 (HW INT 0) is the CPU0 L1 controller output
97                  * MIPS interrupt 3 (HW INT 1) is the CPU1 L1 controller output
98                  */
99                 if (boot_cpu == 0)
100                         cpu_hw_intr = 0x02;
101                 else
102                         cpu_hw_intr = 0x1d;
103
104                 change_c0_brcm_cmt_intr(0xf8018000,
105                                         (cpu_hw_intr << 27) | (0x03 << 15));
106
107                 /* single core, 2 threads (2 pipelines) */
108                 max_cpus = 2;
109
110                 break;
111         case CPU_BMIPS5000:
112                 /* enable raceless SW interrupts */
113                 set_c0_brcm_config(0x03 << 22);
114
115                 /* route HW interrupt 0 to CPU0, HW interrupt 1 to CPU1 */
116                 change_c0_brcm_mode(0x1f << 27, 0x02 << 27);
117
118                 /* N cores, 2 threads per core */
119                 max_cpus = (((read_c0_brcm_config() >> 6) & 0x03) + 1) << 1;
120
121                 /* clear any pending SW interrupts */
122                 for (i = 0; i < max_cpus; i++) {
123                         write_c0_brcm_action(ACTION_CLR_IPI(i, 0));
124                         write_c0_brcm_action(ACTION_CLR_IPI(i, 1));
125                 }
126
127                 break;
128         default:
129                 max_cpus = 1;
130         }
131
132         if (!bmips_smp_enabled)
133                 max_cpus = 1;
134
135         /* this can be overridden by the BSP */
136         if (!board_ebase_setup)
137                 board_ebase_setup = &bmips_ebase_setup;
138
139         __cpu_number_map[boot_cpu] = 0;
140         __cpu_logical_map[0] = boot_cpu;
141
142         for (i = 0; i < max_cpus; i++) {
143                 if (i != boot_cpu) {
144                         __cpu_number_map[i] = cpu;
145                         __cpu_logical_map[cpu] = i;
146                         cpu++;
147                 }
148                 set_cpu_possible(i, 1);
149                 set_cpu_present(i, 1);
150         }
151 }
152
153 /*
154  * IPI IRQ setup - runs on CPU0
155  */
156 static void bmips_prepare_cpus(unsigned int max_cpus)
157 {
158         irqreturn_t (*bmips_ipi_interrupt)(int irq, void *dev_id);
159
160         switch (current_cpu_type()) {
161         case CPU_BMIPS4350:
162         case CPU_BMIPS4380:
163                 bmips_ipi_interrupt = bmips43xx_ipi_interrupt;
164                 break;
165         case CPU_BMIPS5000:
166                 bmips_ipi_interrupt = bmips5000_ipi_interrupt;
167                 break;
168         default:
169                 return;
170         }
171
172         if (request_irq(IPI0_IRQ, bmips_ipi_interrupt,
173                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi0", NULL))
174                 panic("Can't request IPI0 interrupt");
175         if (request_irq(IPI1_IRQ, bmips_ipi_interrupt,
176                         IRQF_PERCPU | IRQF_NO_SUSPEND, "smp_ipi1", NULL))
177                 panic("Can't request IPI1 interrupt");
178 }
179
180 /*
181  * Tell the hardware to boot CPUx - runs on CPU0
182  */
183 static int bmips_boot_secondary(int cpu, struct task_struct *idle)
184 {
185         bmips_smp_boot_sp = __KSTK_TOS(idle);
186         bmips_smp_boot_gp = (unsigned long)task_thread_info(idle);
187         mb();
188
189         /*
190          * Initial boot sequence for secondary CPU:
191          *   bmips_reset_nmi_vec @ a000_0000 ->
192          *   bmips_smp_entry ->
193          *   plat_wired_tlb_setup (cached function call; optional) ->
194          *   start_secondary (cached jump)
195          *
196          * Warm restart sequence:
197          *   play_dead WAIT loop ->
198          *   bmips_smp_int_vec @ BMIPS_WARM_RESTART_VEC ->
199          *   eret to play_dead ->
200          *   bmips_secondary_reentry ->
201          *   start_secondary
202          */
203
204         pr_info("SMP: Booting CPU%d...\n", cpu);
205
206         if (cpumask_test_cpu(cpu, &bmips_booted_mask)) {
207                 /* kseg1 might not exist if this CPU enabled XKS01 */
208                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG0);
209
210                 switch (current_cpu_type()) {
211                 case CPU_BMIPS4350:
212                 case CPU_BMIPS4380:
213                         bmips43xx_send_ipi_single(cpu, 0);
214                         break;
215                 case CPU_BMIPS5000:
216                         bmips5000_send_ipi_single(cpu, 0);
217                         break;
218                 }
219         } else {
220                 bmips_set_reset_vec(cpu, RESET_FROM_KSEG1);
221
222                 switch (current_cpu_type()) {
223                 case CPU_BMIPS4350:
224                 case CPU_BMIPS4380:
225                         /* Reset slave TP1 if booting from TP0 */
226                         if (cpu_logical_map(cpu) == 1)
227                                 set_c0_brcm_cmt_ctrl(0x01);
228                         break;
229                 case CPU_BMIPS5000:
230                         write_c0_brcm_action(ACTION_BOOT_THREAD(cpu));
231                         break;
232                 }
233                 cpumask_set_cpu(cpu, &bmips_booted_mask);
234         }
235
236         return 0;
237 }
238
239 /*
240  * Early setup - runs on secondary CPU after cache probe
241  */
242 static void bmips_init_secondary(void)
243 {
244         switch (current_cpu_type()) {
245         case CPU_BMIPS4350:
246         case CPU_BMIPS4380:
247                 clear_c0_cause(smp_processor_id() ? C_SW1 : C_SW0);
248                 break;
249         case CPU_BMIPS5000:
250                 write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), 0));
251                 cpu_set_core(&current_cpu_data, (read_c0_brcm_config() >> 25) & 3);
252                 break;
253         }
254 }
255
256 /*
257  * Late setup - runs on secondary CPU before entering the idle loop
258  */
259 static void bmips_smp_finish(void)
260 {
261         pr_info("SMP: CPU%d is running\n", smp_processor_id());
262
263         /* make sure there won't be a timer interrupt for a little while */
264         write_c0_compare(read_c0_count() + mips_hpt_frequency / HZ);
265
266         irq_enable_hazard();
267         set_c0_status(IE_SW0 | IE_SW1 | bmips_tp1_irqs | IE_IRQ5 | ST0_IE);
268         irq_enable_hazard();
269 }
270
271 /*
272  * BMIPS5000 raceless IPIs
273  *
274  * Each CPU has two inbound SW IRQs which are independent of all other CPUs.
275  * IPI0 is used for SMP_RESCHEDULE_YOURSELF
276  * IPI1 is used for SMP_CALL_FUNCTION
277  */
278
279 static void bmips5000_send_ipi_single(int cpu, unsigned int action)
280 {
281         write_c0_brcm_action(ACTION_SET_IPI(cpu, action == SMP_CALL_FUNCTION));
282 }
283
284 static irqreturn_t bmips5000_ipi_interrupt(int irq, void *dev_id)
285 {
286         int action = irq - IPI0_IRQ;
287
288         write_c0_brcm_action(ACTION_CLR_IPI(smp_processor_id(), action));
289
290         if (action == 0)
291                 scheduler_ipi();
292         else
293                 generic_smp_call_function_interrupt();
294
295         return IRQ_HANDLED;
296 }
297
298 static void bmips5000_send_ipi_mask(const struct cpumask *mask,
299         unsigned int action)
300 {
301         unsigned int i;
302
303         for_each_cpu(i, mask)
304                 bmips5000_send_ipi_single(i, action);
305 }
306
307 /*
308  * BMIPS43xx racey IPIs
309  *
310  * We use one inbound SW IRQ for each CPU.
311  *
312  * A spinlock must be held in order to keep CPUx from accidentally clearing
313  * an incoming IPI when it writes CP0 CAUSE to raise an IPI on CPUy.  The
314  * same spinlock is used to protect the action masks.
315  */
316
317 static DEFINE_SPINLOCK(ipi_lock);
318 static DEFINE_PER_CPU(int, ipi_action_mask);
319
320 static void bmips43xx_send_ipi_single(int cpu, unsigned int action)
321 {
322         unsigned long flags;
323
324         spin_lock_irqsave(&ipi_lock, flags);
325         set_c0_cause(cpu ? C_SW1 : C_SW0);
326         per_cpu(ipi_action_mask, cpu) |= action;
327         irq_enable_hazard();
328         spin_unlock_irqrestore(&ipi_lock, flags);
329 }
330
331 static irqreturn_t bmips43xx_ipi_interrupt(int irq, void *dev_id)
332 {
333         unsigned long flags;
334         int action, cpu = irq - IPI0_IRQ;
335
336         spin_lock_irqsave(&ipi_lock, flags);
337         action = __this_cpu_read(ipi_action_mask);
338         per_cpu(ipi_action_mask, cpu) = 0;
339         clear_c0_cause(cpu ? C_SW1 : C_SW0);
340         spin_unlock_irqrestore(&ipi_lock, flags);
341
342         if (action & SMP_RESCHEDULE_YOURSELF)
343                 scheduler_ipi();
344         if (action & SMP_CALL_FUNCTION)
345                 generic_smp_call_function_interrupt();
346
347         return IRQ_HANDLED;
348 }
349
350 static void bmips43xx_send_ipi_mask(const struct cpumask *mask,
351         unsigned int action)
352 {
353         unsigned int i;
354
355         for_each_cpu(i, mask)
356                 bmips43xx_send_ipi_single(i, action);
357 }
358
359 #ifdef CONFIG_HOTPLUG_CPU
360
361 static int bmips_cpu_disable(void)
362 {
363         unsigned int cpu = smp_processor_id();
364
365         if (cpu == 0)
366                 return -EBUSY;
367
368         pr_info("SMP: CPU%d is offline\n", cpu);
369
370         set_cpu_online(cpu, false);
371         calculate_cpu_foreign_map();
372         irq_cpu_offline();
373         clear_c0_status(IE_IRQ5);
374
375         local_flush_tlb_all();
376         local_flush_icache_range(0, ~0);
377
378         return 0;
379 }
380
381 static void bmips_cpu_die(unsigned int cpu)
382 {
383 }
384
385 void __ref play_dead(void)
386 {
387         idle_task_exit();
388
389         /* flush data cache */
390         _dma_cache_wback_inv(0, ~0);
391
392         /*
393          * Wakeup is on SW0 or SW1; disable everything else
394          * Use BEV !IV (BMIPS_WARM_RESTART_VEC) to avoid the regular Linux
395          * IRQ handlers; this clears ST0_IE and returns immediately.
396          */
397         clear_c0_cause(CAUSEF_IV | C_SW0 | C_SW1);
398         change_c0_status(
399                 IE_IRQ5 | bmips_tp1_irqs | IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV,
400                 IE_SW0 | IE_SW1 | ST0_IE | ST0_BEV);
401         irq_disable_hazard();
402
403         /*
404          * wait for SW interrupt from bmips_boot_secondary(), then jump
405          * back to start_secondary()
406          */
407         __asm__ __volatile__(
408         "       wait\n"
409         "       j       bmips_secondary_reentry\n"
410         : : : "memory");
411 }
412
413 #endif /* CONFIG_HOTPLUG_CPU */
414
415 const struct plat_smp_ops bmips43xx_smp_ops = {
416         .smp_setup              = bmips_smp_setup,
417         .prepare_cpus           = bmips_prepare_cpus,
418         .boot_secondary         = bmips_boot_secondary,
419         .smp_finish             = bmips_smp_finish,
420         .init_secondary         = bmips_init_secondary,
421         .send_ipi_single        = bmips43xx_send_ipi_single,
422         .send_ipi_mask          = bmips43xx_send_ipi_mask,
423 #ifdef CONFIG_HOTPLUG_CPU
424         .cpu_disable            = bmips_cpu_disable,
425         .cpu_die                = bmips_cpu_die,
426 #endif
427 #ifdef CONFIG_KEXEC
428         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
429 #endif
430 };
431
432 const struct plat_smp_ops bmips5000_smp_ops = {
433         .smp_setup              = bmips_smp_setup,
434         .prepare_cpus           = bmips_prepare_cpus,
435         .boot_secondary         = bmips_boot_secondary,
436         .smp_finish             = bmips_smp_finish,
437         .init_secondary         = bmips_init_secondary,
438         .send_ipi_single        = bmips5000_send_ipi_single,
439         .send_ipi_mask          = bmips5000_send_ipi_mask,
440 #ifdef CONFIG_HOTPLUG_CPU
441         .cpu_disable            = bmips_cpu_disable,
442         .cpu_die                = bmips_cpu_die,
443 #endif
444 #ifdef CONFIG_KEXEC
445         .kexec_nonboot_cpu      = kexec_nonboot_cpu_jump,
446 #endif
447 };
448
449 #endif /* CONFIG_SMP */
450
451 /***********************************************************************
452  * BMIPS vector relocation
453  * This is primarily used for SMP boot, but it is applicable to some
454  * UP BMIPS systems as well.
455  ***********************************************************************/
456
457 static void bmips_wr_vec(unsigned long dst, char *start, char *end)
458 {
459         memcpy((void *)dst, start, end - start);
460         dma_cache_wback(dst, end - start);
461         local_flush_icache_range(dst, dst + (end - start));
462         instruction_hazard();
463 }
464
465 static inline void bmips_nmi_handler_setup(void)
466 {
467         bmips_wr_vec(BMIPS_NMI_RESET_VEC, &bmips_reset_nmi_vec,
468                 &bmips_reset_nmi_vec_end);
469         bmips_wr_vec(BMIPS_WARM_RESTART_VEC, &bmips_smp_int_vec,
470                 &bmips_smp_int_vec_end);
471 }
472
473 struct reset_vec_info {
474         int cpu;
475         u32 val;
476 };
477
478 static void bmips_set_reset_vec_remote(void *vinfo)
479 {
480         struct reset_vec_info *info = vinfo;
481         int shift = info->cpu & 0x01 ? 16 : 0;
482         u32 mask = ~(0xffff << shift), val = info->val >> 16;
483
484         preempt_disable();
485         if (smp_processor_id() > 0) {
486                 smp_call_function_single(0, &bmips_set_reset_vec_remote,
487                                          info, 1);
488         } else {
489                 if (info->cpu & 0x02) {
490                         /* BMIPS5200 "should" use mask/shift, but it's buggy */
491                         bmips_write_zscm_reg(0xa0, (val << 16) | val);
492                         bmips_read_zscm_reg(0xa0);
493                 } else {
494                         write_c0_brcm_bootvec((read_c0_brcm_bootvec() & mask) |
495                                               (val << shift));
496                 }
497         }
498         preempt_enable();
499 }
500
501 static void bmips_set_reset_vec(int cpu, u32 val)
502 {
503         struct reset_vec_info info;
504
505         if (current_cpu_type() == CPU_BMIPS5000) {
506                 /* this needs to run from CPU0 (which is always online) */
507                 info.cpu = cpu;
508                 info.val = val;
509                 bmips_set_reset_vec_remote(&info);
510         } else {
511                 void __iomem *cbr = BMIPS_GET_CBR();
512
513                 if (cpu == 0)
514                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_0);
515                 else {
516                         if (current_cpu_type() != CPU_BMIPS4380)
517                                 return;
518                         __raw_writel(val, cbr + BMIPS_RELO_VECTOR_CONTROL_1);
519                 }
520         }
521         __sync();
522         back_to_back_c0_hazard();
523 }
524
525 void bmips_ebase_setup(void)
526 {
527         unsigned long new_ebase = ebase;
528
529         BUG_ON(ebase != CKSEG0);
530
531         switch (current_cpu_type()) {
532         case CPU_BMIPS4350:
533                 /*
534                  * BMIPS4350 cannot relocate the normal vectors, but it
535                  * can relocate the BEV=1 vectors.  So CPU1 starts up at
536                  * the relocated BEV=1, IV=0 general exception vector @
537                  * 0xa000_0380.
538                  *
539                  * set_uncached_handler() is used here because:
540                  *  - CPU1 will run this from uncached space
541                  *  - None of the cacheflush functions are set up yet
542                  */
543                 set_uncached_handler(BMIPS_WARM_RESTART_VEC - CKSEG0,
544                         &bmips_smp_int_vec, 0x80);
545                 __sync();
546                 return;
547         case CPU_BMIPS3300:
548         case CPU_BMIPS4380:
549                 /*
550                  * 0x8000_0000: reset/NMI (initially in kseg1)
551                  * 0x8000_0400: normal vectors
552                  */
553                 new_ebase = 0x80000400;
554                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
555                 break;
556         case CPU_BMIPS5000:
557                 /*
558                  * 0x8000_0000: reset/NMI (initially in kseg1)
559                  * 0x8000_1000: normal vectors
560                  */
561                 new_ebase = 0x80001000;
562                 bmips_set_reset_vec(0, RESET_FROM_KSEG0);
563                 write_c0_ebase(new_ebase);
564                 break;
565         default:
566                 return;
567         }
568
569         board_nmi_handler_setup = &bmips_nmi_handler_setup;
570         ebase = new_ebase;
571 }
572
573 asmlinkage void __weak plat_wired_tlb_setup(void)
574 {
575         /*
576          * Called when starting/restarting a secondary CPU.
577          * Kernel stacks and other important data might only be accessible
578          * once the wired entries are present.
579          */
580 }
581
582 void bmips_cpu_setup(void)
583 {
584         void __iomem __maybe_unused *cbr = BMIPS_GET_CBR();
585         u32 __maybe_unused cfg;
586
587         switch (current_cpu_type()) {
588         case CPU_BMIPS3300:
589                 /* Set BIU to async mode */
590                 set_c0_brcm_bus_pll(BIT(22));
591                 __sync();
592
593                 /* put the BIU back in sync mode */
594                 clear_c0_brcm_bus_pll(BIT(22));
595
596                 /* clear BHTD to enable branch history table */
597                 clear_c0_brcm_reset(BIT(16));
598
599                 /* Flush and enable RAC */
600                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
601                 __raw_writel(cfg | 0x100, cbr + BMIPS_RAC_CONFIG);
602                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
603
604                 cfg = __raw_readl(cbr + BMIPS_RAC_CONFIG);
605                 __raw_writel(cfg | 0xf, cbr + BMIPS_RAC_CONFIG);
606                 __raw_readl(cbr + BMIPS_RAC_CONFIG);
607
608                 cfg = __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
609                 __raw_writel(cfg | 0x0fff0000, cbr + BMIPS_RAC_ADDRESS_RANGE);
610                 __raw_readl(cbr + BMIPS_RAC_ADDRESS_RANGE);
611                 break;
612
613         case CPU_BMIPS4380:
614                 /* CBG workaround for early BMIPS4380 CPUs */
615                 switch (read_c0_prid()) {
616                 case 0x2a040:
617                 case 0x2a042:
618                 case 0x2a044:
619                 case 0x2a060:
620                         cfg = __raw_readl(cbr + BMIPS_L2_CONFIG);
621                         __raw_writel(cfg & ~0x07000000, cbr + BMIPS_L2_CONFIG);
622                         __raw_readl(cbr + BMIPS_L2_CONFIG);
623                 }
624
625                 /* clear BHTD to enable branch history table */
626                 clear_c0_brcm_config_0(BIT(21));
627
628                 /* XI/ROTR enable */
629                 set_c0_brcm_config_0(BIT(23));
630                 set_c0_brcm_cmt_ctrl(BIT(15));
631                 break;
632
633         case CPU_BMIPS5000:
634                 /* enable RDHWR, BRDHWR */
635                 set_c0_brcm_config(BIT(17) | BIT(21));
636
637                 /* Disable JTB */
638                 __asm__ __volatile__(
639                 "       .set    noreorder\n"
640                 "       li      $8, 0x5a455048\n"
641                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
642                 "       .word   0x4008b008\n"   /* mfc0 t0, $22, 8 */
643                 "       li      $9, 0x00008000\n"
644                 "       or      $8, $8, $9\n"
645                 "       .word   0x4088b008\n"   /* mtc0 t0, $22, 8 */
646                 "       sync\n"
647                 "       li      $8, 0x0\n"
648                 "       .word   0x4088b00f\n"   /* mtc0 t0, $22, 15 */
649                 "       .set    reorder\n"
650                 : : : "$8", "$9");
651
652                 /* XI enable */
653                 set_c0_brcm_config(BIT(27));
654
655                 /* enable MIPS32R2 ROR instruction for XI TLB handlers */
656                 __asm__ __volatile__(
657                 "       li      $8, 0x5a455048\n"
658                 "       .word   0x4088b00f\n"   /* mtc0 $8, $22, 15 */
659                 "       nop; nop; nop\n"
660                 "       .word   0x4008b008\n"   /* mfc0 $8, $22, 8 */
661                 "       lui     $9, 0x0100\n"
662                 "       or      $8, $9\n"
663                 "       .word   0x4088b008\n"   /* mtc0 $8, $22, 8 */
664                 : : : "$8", "$9");
665                 break;
666         }
667 }