Linux-libre 5.4.49-gnu
[librecmc/linux-libre.git] / arch / mips / kernel / perf_event_mipsxx.c
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Linux performance counter support for MIPS.
4  *
5  * Copyright (C) 2010 MIPS Technologies, Inc.
6  * Copyright (C) 2011 Cavium Networks, Inc.
7  * Author: Deng-Cheng Zhu
8  *
9  * This code is based on the implementation for ARM, which is in turn
10  * based on the sparc64 perf event code and the x86 code. Performance
11  * counter access is based on the MIPS Oprofile code. And the callchain
12  * support references the code of MIPS stacktrace.c.
13  */
14
15 #include <linux/cpumask.h>
16 #include <linux/interrupt.h>
17 #include <linux/smp.h>
18 #include <linux/kernel.h>
19 #include <linux/perf_event.h>
20 #include <linux/uaccess.h>
21
22 #include <asm/irq.h>
23 #include <asm/irq_regs.h>
24 #include <asm/stacktrace.h>
25 #include <asm/time.h> /* For perf_irq */
26
27 #define MIPS_MAX_HWEVENTS 4
28 #define MIPS_TCS_PER_COUNTER 2
29 #define MIPS_CPUID_TO_COUNTER_MASK (MIPS_TCS_PER_COUNTER - 1)
30
31 struct cpu_hw_events {
32         /* Array of events on this cpu. */
33         struct perf_event       *events[MIPS_MAX_HWEVENTS];
34
35         /*
36          * Set the bit (indexed by the counter number) when the counter
37          * is used for an event.
38          */
39         unsigned long           used_mask[BITS_TO_LONGS(MIPS_MAX_HWEVENTS)];
40
41         /*
42          * Software copy of the control register for each performance counter.
43          * MIPS CPUs vary in performance counters. They use this differently,
44          * and even may not use it.
45          */
46         unsigned int            saved_ctrl[MIPS_MAX_HWEVENTS];
47 };
48 DEFINE_PER_CPU(struct cpu_hw_events, cpu_hw_events) = {
49         .saved_ctrl = {0},
50 };
51
52 /* The description of MIPS performance events. */
53 struct mips_perf_event {
54         unsigned int event_id;
55         /*
56          * MIPS performance counters are indexed starting from 0.
57          * CNTR_EVEN indicates the indexes of the counters to be used are
58          * even numbers.
59          */
60         unsigned int cntr_mask;
61         #define CNTR_EVEN       0x55555555
62         #define CNTR_ODD        0xaaaaaaaa
63         #define CNTR_ALL        0xffffffff
64         enum {
65                 T  = 0,
66                 V  = 1,
67                 P  = 2,
68         } range;
69 };
70
71 static struct mips_perf_event raw_event;
72 static DEFINE_MUTEX(raw_event_mutex);
73
74 #define C(x) PERF_COUNT_HW_CACHE_##x
75
76 struct mips_pmu {
77         u64             max_period;
78         u64             valid_count;
79         u64             overflow;
80         const char      *name;
81         int             irq;
82         u64             (*read_counter)(unsigned int idx);
83         void            (*write_counter)(unsigned int idx, u64 val);
84         const struct mips_perf_event *(*map_raw_event)(u64 config);
85         const struct mips_perf_event (*general_event_map)[PERF_COUNT_HW_MAX];
86         const struct mips_perf_event (*cache_event_map)
87                                 [PERF_COUNT_HW_CACHE_MAX]
88                                 [PERF_COUNT_HW_CACHE_OP_MAX]
89                                 [PERF_COUNT_HW_CACHE_RESULT_MAX];
90         unsigned int    num_counters;
91 };
92
93 static struct mips_pmu mipspmu;
94
95 #define M_PERFCTL_EVENT(event)          (((event) << MIPS_PERFCTRL_EVENT_S) & \
96                                          MIPS_PERFCTRL_EVENT)
97 #define M_PERFCTL_VPEID(vpe)            ((vpe)    << MIPS_PERFCTRL_VPEID_S)
98
99 #ifdef CONFIG_CPU_BMIPS5000
100 #define M_PERFCTL_MT_EN(filter)         0
101 #else /* !CONFIG_CPU_BMIPS5000 */
102 #define M_PERFCTL_MT_EN(filter)         (filter)
103 #endif /* CONFIG_CPU_BMIPS5000 */
104
105 #define    M_TC_EN_ALL                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_ALL)
106 #define    M_TC_EN_VPE                  M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_VPE)
107 #define    M_TC_EN_TC                   M_PERFCTL_MT_EN(MIPS_PERFCTRL_MT_EN_TC)
108
109 #define M_PERFCTL_COUNT_EVENT_WHENEVER  (MIPS_PERFCTRL_EXL |            \
110                                          MIPS_PERFCTRL_K |              \
111                                          MIPS_PERFCTRL_U |              \
112                                          MIPS_PERFCTRL_S |              \
113                                          MIPS_PERFCTRL_IE)
114
115 #ifdef CONFIG_MIPS_MT_SMP
116 #define M_PERFCTL_CONFIG_MASK           0x3fff801f
117 #else
118 #define M_PERFCTL_CONFIG_MASK           0x1f
119 #endif
120
121
122 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
123 static DEFINE_RWLOCK(pmuint_rwlock);
124
125 #if defined(CONFIG_CPU_BMIPS5000)
126 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
127                          0 : (smp_processor_id() & MIPS_CPUID_TO_COUNTER_MASK))
128 #else
129 #define vpe_id()        (cpu_has_mipsmt_pertccounters ? \
130                          0 : cpu_vpe_id(&current_cpu_data))
131 #endif
132
133 /* Copied from op_model_mipsxx.c */
134 static unsigned int vpe_shift(void)
135 {
136         if (num_possible_cpus() > 1)
137                 return 1;
138
139         return 0;
140 }
141
142 static unsigned int counters_total_to_per_cpu(unsigned int counters)
143 {
144         return counters >> vpe_shift();
145 }
146
147 #else /* !CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
148 #define vpe_id()        0
149
150 #endif /* CONFIG_MIPS_PERF_SHARED_TC_COUNTERS */
151
152 static void resume_local_counters(void);
153 static void pause_local_counters(void);
154 static irqreturn_t mipsxx_pmu_handle_irq(int, void *);
155 static int mipsxx_pmu_handle_shared_irq(void);
156
157 static unsigned int mipsxx_pmu_swizzle_perf_idx(unsigned int idx)
158 {
159         if (vpe_id() == 1)
160                 idx = (idx + 2) & 3;
161         return idx;
162 }
163
164 static u64 mipsxx_pmu_read_counter(unsigned int idx)
165 {
166         idx = mipsxx_pmu_swizzle_perf_idx(idx);
167
168         switch (idx) {
169         case 0:
170                 /*
171                  * The counters are unsigned, we must cast to truncate
172                  * off the high bits.
173                  */
174                 return (u32)read_c0_perfcntr0();
175         case 1:
176                 return (u32)read_c0_perfcntr1();
177         case 2:
178                 return (u32)read_c0_perfcntr2();
179         case 3:
180                 return (u32)read_c0_perfcntr3();
181         default:
182                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
183                 return 0;
184         }
185 }
186
187 static u64 mipsxx_pmu_read_counter_64(unsigned int idx)
188 {
189         idx = mipsxx_pmu_swizzle_perf_idx(idx);
190
191         switch (idx) {
192         case 0:
193                 return read_c0_perfcntr0_64();
194         case 1:
195                 return read_c0_perfcntr1_64();
196         case 2:
197                 return read_c0_perfcntr2_64();
198         case 3:
199                 return read_c0_perfcntr3_64();
200         default:
201                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
202                 return 0;
203         }
204 }
205
206 static void mipsxx_pmu_write_counter(unsigned int idx, u64 val)
207 {
208         idx = mipsxx_pmu_swizzle_perf_idx(idx);
209
210         switch (idx) {
211         case 0:
212                 write_c0_perfcntr0(val);
213                 return;
214         case 1:
215                 write_c0_perfcntr1(val);
216                 return;
217         case 2:
218                 write_c0_perfcntr2(val);
219                 return;
220         case 3:
221                 write_c0_perfcntr3(val);
222                 return;
223         }
224 }
225
226 static void mipsxx_pmu_write_counter_64(unsigned int idx, u64 val)
227 {
228         idx = mipsxx_pmu_swizzle_perf_idx(idx);
229
230         switch (idx) {
231         case 0:
232                 write_c0_perfcntr0_64(val);
233                 return;
234         case 1:
235                 write_c0_perfcntr1_64(val);
236                 return;
237         case 2:
238                 write_c0_perfcntr2_64(val);
239                 return;
240         case 3:
241                 write_c0_perfcntr3_64(val);
242                 return;
243         }
244 }
245
246 static unsigned int mipsxx_pmu_read_control(unsigned int idx)
247 {
248         idx = mipsxx_pmu_swizzle_perf_idx(idx);
249
250         switch (idx) {
251         case 0:
252                 return read_c0_perfctrl0();
253         case 1:
254                 return read_c0_perfctrl1();
255         case 2:
256                 return read_c0_perfctrl2();
257         case 3:
258                 return read_c0_perfctrl3();
259         default:
260                 WARN_ONCE(1, "Invalid performance counter number (%d)\n", idx);
261                 return 0;
262         }
263 }
264
265 static void mipsxx_pmu_write_control(unsigned int idx, unsigned int val)
266 {
267         idx = mipsxx_pmu_swizzle_perf_idx(idx);
268
269         switch (idx) {
270         case 0:
271                 write_c0_perfctrl0(val);
272                 return;
273         case 1:
274                 write_c0_perfctrl1(val);
275                 return;
276         case 2:
277                 write_c0_perfctrl2(val);
278                 return;
279         case 3:
280                 write_c0_perfctrl3(val);
281                 return;
282         }
283 }
284
285 static int mipsxx_pmu_alloc_counter(struct cpu_hw_events *cpuc,
286                                     struct hw_perf_event *hwc)
287 {
288         int i;
289
290         /*
291          * We only need to care the counter mask. The range has been
292          * checked definitely.
293          */
294         unsigned long cntr_mask = (hwc->event_base >> 8) & 0xffff;
295
296         for (i = mipspmu.num_counters - 1; i >= 0; i--) {
297                 /*
298                  * Note that some MIPS perf events can be counted by both
299                  * even and odd counters, wheresas many other are only by
300                  * even _or_ odd counters. This introduces an issue that
301                  * when the former kind of event takes the counter the
302                  * latter kind of event wants to use, then the "counter
303                  * allocation" for the latter event will fail. In fact if
304                  * they can be dynamically swapped, they both feel happy.
305                  * But here we leave this issue alone for now.
306                  */
307                 if (test_bit(i, &cntr_mask) &&
308                         !test_and_set_bit(i, cpuc->used_mask))
309                         return i;
310         }
311
312         return -EAGAIN;
313 }
314
315 static void mipsxx_pmu_enable_event(struct hw_perf_event *evt, int idx)
316 {
317         struct perf_event *event = container_of(evt, struct perf_event, hw);
318         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
319         unsigned int range = evt->event_base >> 24;
320
321         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
322
323         cpuc->saved_ctrl[idx] = M_PERFCTL_EVENT(evt->event_base & 0xff) |
324                 (evt->config_base & M_PERFCTL_CONFIG_MASK) |
325                 /* Make sure interrupt enabled. */
326                 MIPS_PERFCTRL_IE;
327
328         if (IS_ENABLED(CONFIG_CPU_BMIPS5000)) {
329                 /* enable the counter for the calling thread */
330                 cpuc->saved_ctrl[idx] |=
331                         (1 << (12 + vpe_id())) | BRCM_PERFCTRL_TC;
332         } else if (IS_ENABLED(CONFIG_MIPS_MT_SMP) && range > V) {
333                 /* The counter is processor wide. Set it up to count all TCs. */
334                 pr_debug("Enabling perf counter for all TCs\n");
335                 cpuc->saved_ctrl[idx] |= M_TC_EN_ALL;
336         } else {
337                 unsigned int cpu, ctrl;
338
339                 /*
340                  * Set up the counter for a particular CPU when event->cpu is
341                  * a valid CPU number. Otherwise set up the counter for the CPU
342                  * scheduling this thread.
343                  */
344                 cpu = (event->cpu >= 0) ? event->cpu : smp_processor_id();
345
346                 ctrl = M_PERFCTL_VPEID(cpu_vpe_id(&cpu_data[cpu]));
347                 ctrl |= M_TC_EN_VPE;
348                 cpuc->saved_ctrl[idx] |= ctrl;
349                 pr_debug("Enabling perf counter for CPU%d\n", cpu);
350         }
351         /*
352          * We do not actually let the counter run. Leave it until start().
353          */
354 }
355
356 static void mipsxx_pmu_disable_event(int idx)
357 {
358         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
359         unsigned long flags;
360
361         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
362
363         local_irq_save(flags);
364         cpuc->saved_ctrl[idx] = mipsxx_pmu_read_control(idx) &
365                 ~M_PERFCTL_COUNT_EVENT_WHENEVER;
366         mipsxx_pmu_write_control(idx, cpuc->saved_ctrl[idx]);
367         local_irq_restore(flags);
368 }
369
370 static int mipspmu_event_set_period(struct perf_event *event,
371                                     struct hw_perf_event *hwc,
372                                     int idx)
373 {
374         u64 left = local64_read(&hwc->period_left);
375         u64 period = hwc->sample_period;
376         int ret = 0;
377
378         if (unlikely((left + period) & (1ULL << 63))) {
379                 /* left underflowed by more than period. */
380                 left = period;
381                 local64_set(&hwc->period_left, left);
382                 hwc->last_period = period;
383                 ret = 1;
384         } else  if (unlikely((left + period) <= period)) {
385                 /* left underflowed by less than period. */
386                 left += period;
387                 local64_set(&hwc->period_left, left);
388                 hwc->last_period = period;
389                 ret = 1;
390         }
391
392         if (left > mipspmu.max_period) {
393                 left = mipspmu.max_period;
394                 local64_set(&hwc->period_left, left);
395         }
396
397         local64_set(&hwc->prev_count, mipspmu.overflow - left);
398
399         mipspmu.write_counter(idx, mipspmu.overflow - left);
400
401         perf_event_update_userpage(event);
402
403         return ret;
404 }
405
406 static void mipspmu_event_update(struct perf_event *event,
407                                  struct hw_perf_event *hwc,
408                                  int idx)
409 {
410         u64 prev_raw_count, new_raw_count;
411         u64 delta;
412
413 again:
414         prev_raw_count = local64_read(&hwc->prev_count);
415         new_raw_count = mipspmu.read_counter(idx);
416
417         if (local64_cmpxchg(&hwc->prev_count, prev_raw_count,
418                                 new_raw_count) != prev_raw_count)
419                 goto again;
420
421         delta = new_raw_count - prev_raw_count;
422
423         local64_add(delta, &event->count);
424         local64_sub(delta, &hwc->period_left);
425 }
426
427 static void mipspmu_start(struct perf_event *event, int flags)
428 {
429         struct hw_perf_event *hwc = &event->hw;
430
431         if (flags & PERF_EF_RELOAD)
432                 WARN_ON_ONCE(!(hwc->state & PERF_HES_UPTODATE));
433
434         hwc->state = 0;
435
436         /* Set the period for the event. */
437         mipspmu_event_set_period(event, hwc, hwc->idx);
438
439         /* Enable the event. */
440         mipsxx_pmu_enable_event(hwc, hwc->idx);
441 }
442
443 static void mipspmu_stop(struct perf_event *event, int flags)
444 {
445         struct hw_perf_event *hwc = &event->hw;
446
447         if (!(hwc->state & PERF_HES_STOPPED)) {
448                 /* We are working on a local event. */
449                 mipsxx_pmu_disable_event(hwc->idx);
450                 barrier();
451                 mipspmu_event_update(event, hwc, hwc->idx);
452                 hwc->state |= PERF_HES_STOPPED | PERF_HES_UPTODATE;
453         }
454 }
455
456 static int mipspmu_add(struct perf_event *event, int flags)
457 {
458         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
459         struct hw_perf_event *hwc = &event->hw;
460         int idx;
461         int err = 0;
462
463         perf_pmu_disable(event->pmu);
464
465         /* To look for a free counter for this event. */
466         idx = mipsxx_pmu_alloc_counter(cpuc, hwc);
467         if (idx < 0) {
468                 err = idx;
469                 goto out;
470         }
471
472         /*
473          * If there is an event in the counter we are going to use then
474          * make sure it is disabled.
475          */
476         event->hw.idx = idx;
477         mipsxx_pmu_disable_event(idx);
478         cpuc->events[idx] = event;
479
480         hwc->state = PERF_HES_STOPPED | PERF_HES_UPTODATE;
481         if (flags & PERF_EF_START)
482                 mipspmu_start(event, PERF_EF_RELOAD);
483
484         /* Propagate our changes to the userspace mapping. */
485         perf_event_update_userpage(event);
486
487 out:
488         perf_pmu_enable(event->pmu);
489         return err;
490 }
491
492 static void mipspmu_del(struct perf_event *event, int flags)
493 {
494         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
495         struct hw_perf_event *hwc = &event->hw;
496         int idx = hwc->idx;
497
498         WARN_ON(idx < 0 || idx >= mipspmu.num_counters);
499
500         mipspmu_stop(event, PERF_EF_UPDATE);
501         cpuc->events[idx] = NULL;
502         clear_bit(idx, cpuc->used_mask);
503
504         perf_event_update_userpage(event);
505 }
506
507 static void mipspmu_read(struct perf_event *event)
508 {
509         struct hw_perf_event *hwc = &event->hw;
510
511         /* Don't read disabled counters! */
512         if (hwc->idx < 0)
513                 return;
514
515         mipspmu_event_update(event, hwc, hwc->idx);
516 }
517
518 static void mipspmu_enable(struct pmu *pmu)
519 {
520 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
521         write_unlock(&pmuint_rwlock);
522 #endif
523         resume_local_counters();
524 }
525
526 /*
527  * MIPS performance counters can be per-TC. The control registers can
528  * not be directly accessed across CPUs. Hence if we want to do global
529  * control, we need cross CPU calls. on_each_cpu() can help us, but we
530  * can not make sure this function is called with interrupts enabled. So
531  * here we pause local counters and then grab a rwlock and leave the
532  * counters on other CPUs alone. If any counter interrupt raises while
533  * we own the write lock, simply pause local counters on that CPU and
534  * spin in the handler. Also we know we won't be switched to another
535  * CPU after pausing local counters and before grabbing the lock.
536  */
537 static void mipspmu_disable(struct pmu *pmu)
538 {
539         pause_local_counters();
540 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
541         write_lock(&pmuint_rwlock);
542 #endif
543 }
544
545 static atomic_t active_events = ATOMIC_INIT(0);
546 static DEFINE_MUTEX(pmu_reserve_mutex);
547 static int (*save_perf_irq)(void);
548
549 static int mipspmu_get_irq(void)
550 {
551         int err;
552
553         if (mipspmu.irq >= 0) {
554                 /* Request my own irq handler. */
555                 err = request_irq(mipspmu.irq, mipsxx_pmu_handle_irq,
556                                   IRQF_PERCPU | IRQF_NOBALANCING |
557                                   IRQF_NO_THREAD | IRQF_NO_SUSPEND |
558                                   IRQF_SHARED,
559                                   "mips_perf_pmu", &mipspmu);
560                 if (err) {
561                         pr_warn("Unable to request IRQ%d for MIPS performance counters!\n",
562                                 mipspmu.irq);
563                 }
564         } else if (cp0_perfcount_irq < 0) {
565                 /*
566                  * We are sharing the irq number with the timer interrupt.
567                  */
568                 save_perf_irq = perf_irq;
569                 perf_irq = mipsxx_pmu_handle_shared_irq;
570                 err = 0;
571         } else {
572                 pr_warn("The platform hasn't properly defined its interrupt controller\n");
573                 err = -ENOENT;
574         }
575
576         return err;
577 }
578
579 static void mipspmu_free_irq(void)
580 {
581         if (mipspmu.irq >= 0)
582                 free_irq(mipspmu.irq, &mipspmu);
583         else if (cp0_perfcount_irq < 0)
584                 perf_irq = save_perf_irq;
585 }
586
587 /*
588  * mipsxx/rm9000/loongson2 have different performance counters, they have
589  * specific low-level init routines.
590  */
591 static void reset_counters(void *arg);
592 static int __hw_perf_event_init(struct perf_event *event);
593
594 static void hw_perf_event_destroy(struct perf_event *event)
595 {
596         if (atomic_dec_and_mutex_lock(&active_events,
597                                 &pmu_reserve_mutex)) {
598                 /*
599                  * We must not call the destroy function with interrupts
600                  * disabled.
601                  */
602                 on_each_cpu(reset_counters,
603                         (void *)(long)mipspmu.num_counters, 1);
604                 mipspmu_free_irq();
605                 mutex_unlock(&pmu_reserve_mutex);
606         }
607 }
608
609 static int mipspmu_event_init(struct perf_event *event)
610 {
611         int err = 0;
612
613         /* does not support taken branch sampling */
614         if (has_branch_stack(event))
615                 return -EOPNOTSUPP;
616
617         switch (event->attr.type) {
618         case PERF_TYPE_RAW:
619         case PERF_TYPE_HARDWARE:
620         case PERF_TYPE_HW_CACHE:
621                 break;
622
623         default:
624                 return -ENOENT;
625         }
626
627         if (event->cpu >= 0 && !cpu_online(event->cpu))
628                 return -ENODEV;
629
630         if (!atomic_inc_not_zero(&active_events)) {
631                 mutex_lock(&pmu_reserve_mutex);
632                 if (atomic_read(&active_events) == 0)
633                         err = mipspmu_get_irq();
634
635                 if (!err)
636                         atomic_inc(&active_events);
637                 mutex_unlock(&pmu_reserve_mutex);
638         }
639
640         if (err)
641                 return err;
642
643         return __hw_perf_event_init(event);
644 }
645
646 static struct pmu pmu = {
647         .pmu_enable     = mipspmu_enable,
648         .pmu_disable    = mipspmu_disable,
649         .event_init     = mipspmu_event_init,
650         .add            = mipspmu_add,
651         .del            = mipspmu_del,
652         .start          = mipspmu_start,
653         .stop           = mipspmu_stop,
654         .read           = mipspmu_read,
655 };
656
657 static unsigned int mipspmu_perf_event_encode(const struct mips_perf_event *pev)
658 {
659 /*
660  * Top 8 bits for range, next 16 bits for cntr_mask, lowest 8 bits for
661  * event_id.
662  */
663 #ifdef CONFIG_MIPS_MT_SMP
664         if (num_possible_cpus() > 1)
665                 return ((unsigned int)pev->range << 24) |
666                         (pev->cntr_mask & 0xffff00) |
667                         (pev->event_id & 0xff);
668         else
669 #endif /* CONFIG_MIPS_MT_SMP */
670                 return ((pev->cntr_mask & 0xffff00) |
671                         (pev->event_id & 0xff));
672 }
673
674 static const struct mips_perf_event *mipspmu_map_general_event(int idx)
675 {
676
677         if ((*mipspmu.general_event_map)[idx].cntr_mask == 0)
678                 return ERR_PTR(-EOPNOTSUPP);
679         return &(*mipspmu.general_event_map)[idx];
680 }
681
682 static const struct mips_perf_event *mipspmu_map_cache_event(u64 config)
683 {
684         unsigned int cache_type, cache_op, cache_result;
685         const struct mips_perf_event *pev;
686
687         cache_type = (config >> 0) & 0xff;
688         if (cache_type >= PERF_COUNT_HW_CACHE_MAX)
689                 return ERR_PTR(-EINVAL);
690
691         cache_op = (config >> 8) & 0xff;
692         if (cache_op >= PERF_COUNT_HW_CACHE_OP_MAX)
693                 return ERR_PTR(-EINVAL);
694
695         cache_result = (config >> 16) & 0xff;
696         if (cache_result >= PERF_COUNT_HW_CACHE_RESULT_MAX)
697                 return ERR_PTR(-EINVAL);
698
699         pev = &((*mipspmu.cache_event_map)
700                                         [cache_type]
701                                         [cache_op]
702                                         [cache_result]);
703
704         if (pev->cntr_mask == 0)
705                 return ERR_PTR(-EOPNOTSUPP);
706
707         return pev;
708
709 }
710
711 static int validate_group(struct perf_event *event)
712 {
713         struct perf_event *sibling, *leader = event->group_leader;
714         struct cpu_hw_events fake_cpuc;
715
716         memset(&fake_cpuc, 0, sizeof(fake_cpuc));
717
718         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &leader->hw) < 0)
719                 return -EINVAL;
720
721         for_each_sibling_event(sibling, leader) {
722                 if (mipsxx_pmu_alloc_counter(&fake_cpuc, &sibling->hw) < 0)
723                         return -EINVAL;
724         }
725
726         if (mipsxx_pmu_alloc_counter(&fake_cpuc, &event->hw) < 0)
727                 return -EINVAL;
728
729         return 0;
730 }
731
732 /* This is needed by specific irq handlers in perf_event_*.c */
733 static void handle_associated_event(struct cpu_hw_events *cpuc,
734                                     int idx, struct perf_sample_data *data,
735                                     struct pt_regs *regs)
736 {
737         struct perf_event *event = cpuc->events[idx];
738         struct hw_perf_event *hwc = &event->hw;
739
740         mipspmu_event_update(event, hwc, idx);
741         data->period = event->hw.last_period;
742         if (!mipspmu_event_set_period(event, hwc, idx))
743                 return;
744
745         if (perf_event_overflow(event, data, regs))
746                 mipsxx_pmu_disable_event(idx);
747 }
748
749
750 static int __n_counters(void)
751 {
752         if (!cpu_has_perf)
753                 return 0;
754         if (!(read_c0_perfctrl0() & MIPS_PERFCTRL_M))
755                 return 1;
756         if (!(read_c0_perfctrl1() & MIPS_PERFCTRL_M))
757                 return 2;
758         if (!(read_c0_perfctrl2() & MIPS_PERFCTRL_M))
759                 return 3;
760
761         return 4;
762 }
763
764 static int n_counters(void)
765 {
766         int counters;
767
768         switch (current_cpu_type()) {
769         case CPU_R10000:
770                 counters = 2;
771                 break;
772
773         case CPU_R12000:
774         case CPU_R14000:
775         case CPU_R16000:
776                 counters = 4;
777                 break;
778
779         default:
780                 counters = __n_counters();
781         }
782
783         return counters;
784 }
785
786 static void reset_counters(void *arg)
787 {
788         int counters = (int)(long)arg;
789         switch (counters) {
790         case 4:
791                 mipsxx_pmu_write_control(3, 0);
792                 mipspmu.write_counter(3, 0);
793                 /* fall through */
794         case 3:
795                 mipsxx_pmu_write_control(2, 0);
796                 mipspmu.write_counter(2, 0);
797                 /* fall through */
798         case 2:
799                 mipsxx_pmu_write_control(1, 0);
800                 mipspmu.write_counter(1, 0);
801                 /* fall through */
802         case 1:
803                 mipsxx_pmu_write_control(0, 0);
804                 mipspmu.write_counter(0, 0);
805                 /* fall through */
806         }
807 }
808
809 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same event map. */
810 static const struct mips_perf_event mipsxxcore_event_map
811                                 [PERF_COUNT_HW_MAX] = {
812         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
813         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
814         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x02, CNTR_EVEN, T },
815         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
816 };
817
818 /* 74K/proAptiv core has different branch event code. */
819 static const struct mips_perf_event mipsxxcore_event_map2
820                                 [PERF_COUNT_HW_MAX] = {
821         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, P },
822         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
823         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x27, CNTR_EVEN, T },
824         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x27, CNTR_ODD, T },
825 };
826
827 static const struct mips_perf_event i6x00_event_map[PERF_COUNT_HW_MAX] = {
828         [PERF_COUNT_HW_CPU_CYCLES]          = { 0x00, CNTR_EVEN | CNTR_ODD },
829         [PERF_COUNT_HW_INSTRUCTIONS]        = { 0x01, CNTR_EVEN | CNTR_ODD },
830         /* These only count dcache, not icache */
831         [PERF_COUNT_HW_CACHE_REFERENCES]    = { 0x45, CNTR_EVEN | CNTR_ODD },
832         [PERF_COUNT_HW_CACHE_MISSES]        = { 0x48, CNTR_EVEN | CNTR_ODD },
833         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x15, CNTR_EVEN | CNTR_ODD },
834         [PERF_COUNT_HW_BRANCH_MISSES]       = { 0x16, CNTR_EVEN | CNTR_ODD },
835 };
836
837 static const struct mips_perf_event loongson3_event_map[PERF_COUNT_HW_MAX] = {
838         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN },
839         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x00, CNTR_ODD },
840         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x01, CNTR_EVEN },
841         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x01, CNTR_ODD },
842 };
843
844 static const struct mips_perf_event octeon_event_map[PERF_COUNT_HW_MAX] = {
845         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
846         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x03, CNTR_ALL },
847         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x2b, CNTR_ALL },
848         [PERF_COUNT_HW_CACHE_MISSES] = { 0x2e, CNTR_ALL  },
849         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x08, CNTR_ALL },
850         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x09, CNTR_ALL },
851         [PERF_COUNT_HW_BUS_CYCLES] = { 0x25, CNTR_ALL },
852 };
853
854 static const struct mips_perf_event bmips5000_event_map
855                                 [PERF_COUNT_HW_MAX] = {
856         [PERF_COUNT_HW_CPU_CYCLES] = { 0x00, CNTR_EVEN | CNTR_ODD, T },
857         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x01, CNTR_EVEN | CNTR_ODD, T },
858         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x02, CNTR_ODD, T },
859 };
860
861 static const struct mips_perf_event xlp_event_map[PERF_COUNT_HW_MAX] = {
862         [PERF_COUNT_HW_CPU_CYCLES] = { 0x01, CNTR_ALL },
863         [PERF_COUNT_HW_INSTRUCTIONS] = { 0x18, CNTR_ALL }, /* PAPI_TOT_INS */
864         [PERF_COUNT_HW_CACHE_REFERENCES] = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
865         [PERF_COUNT_HW_CACHE_MISSES] = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
866         [PERF_COUNT_HW_BRANCH_INSTRUCTIONS] = { 0x1b, CNTR_ALL }, /* PAPI_BR_CN */
867         [PERF_COUNT_HW_BRANCH_MISSES] = { 0x1c, CNTR_ALL }, /* PAPI_BR_MSP */
868 };
869
870 /* 24K/34K/1004K/interAptiv/loongson1 cores share the same cache event map. */
871 static const struct mips_perf_event mipsxxcore_cache_map
872                                 [PERF_COUNT_HW_CACHE_MAX]
873                                 [PERF_COUNT_HW_CACHE_OP_MAX]
874                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
875 [C(L1D)] = {
876         /*
877          * Like some other architectures (e.g. ARM), the performance
878          * counters don't differentiate between read and write
879          * accesses/misses, so this isn't strictly correct, but it's the
880          * best we can do. Writes and reads get combined.
881          */
882         [C(OP_READ)] = {
883                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
884                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
885         },
886         [C(OP_WRITE)] = {
887                 [C(RESULT_ACCESS)]      = { 0x0a, CNTR_EVEN, T },
888                 [C(RESULT_MISS)]        = { 0x0b, CNTR_EVEN | CNTR_ODD, T },
889         },
890 },
891 [C(L1I)] = {
892         [C(OP_READ)] = {
893                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
894                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
895         },
896         [C(OP_WRITE)] = {
897                 [C(RESULT_ACCESS)]      = { 0x09, CNTR_EVEN, T },
898                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD, T },
899         },
900         [C(OP_PREFETCH)] = {
901                 [C(RESULT_ACCESS)]      = { 0x14, CNTR_EVEN, T },
902                 /*
903                  * Note that MIPS has only "hit" events countable for
904                  * the prefetch operation.
905                  */
906         },
907 },
908 [C(LL)] = {
909         [C(OP_READ)] = {
910                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
911                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
912         },
913         [C(OP_WRITE)] = {
914                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_ODD, P },
915                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN, P },
916         },
917 },
918 [C(DTLB)] = {
919         [C(OP_READ)] = {
920                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
921                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
922         },
923         [C(OP_WRITE)] = {
924                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
925                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
926         },
927 },
928 [C(ITLB)] = {
929         [C(OP_READ)] = {
930                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
931                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
932         },
933         [C(OP_WRITE)] = {
934                 [C(RESULT_ACCESS)]      = { 0x05, CNTR_EVEN, T },
935                 [C(RESULT_MISS)]        = { 0x05, CNTR_ODD, T },
936         },
937 },
938 [C(BPU)] = {
939         /* Using the same code for *HW_BRANCH* */
940         [C(OP_READ)] = {
941                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
942                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
943         },
944         [C(OP_WRITE)] = {
945                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN, T },
946                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
947         },
948 },
949 };
950
951 /* 74K/proAptiv core has completely different cache event map. */
952 static const struct mips_perf_event mipsxxcore_cache_map2
953                                 [PERF_COUNT_HW_CACHE_MAX]
954                                 [PERF_COUNT_HW_CACHE_OP_MAX]
955                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
956 [C(L1D)] = {
957         /*
958          * Like some other architectures (e.g. ARM), the performance
959          * counters don't differentiate between read and write
960          * accesses/misses, so this isn't strictly correct, but it's the
961          * best we can do. Writes and reads get combined.
962          */
963         [C(OP_READ)] = {
964                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
965                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
966         },
967         [C(OP_WRITE)] = {
968                 [C(RESULT_ACCESS)]      = { 0x17, CNTR_ODD, T },
969                 [C(RESULT_MISS)]        = { 0x18, CNTR_ODD, T },
970         },
971 },
972 [C(L1I)] = {
973         [C(OP_READ)] = {
974                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
975                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
976         },
977         [C(OP_WRITE)] = {
978                 [C(RESULT_ACCESS)]      = { 0x06, CNTR_EVEN, T },
979                 [C(RESULT_MISS)]        = { 0x06, CNTR_ODD, T },
980         },
981         [C(OP_PREFETCH)] = {
982                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_EVEN, T },
983                 /*
984                  * Note that MIPS has only "hit" events countable for
985                  * the prefetch operation.
986                  */
987         },
988 },
989 [C(LL)] = {
990         [C(OP_READ)] = {
991                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
992                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
993         },
994         [C(OP_WRITE)] = {
995                 [C(RESULT_ACCESS)]      = { 0x1c, CNTR_ODD, P },
996                 [C(RESULT_MISS)]        = { 0x1d, CNTR_EVEN, P },
997         },
998 },
999 /*
1000  * 74K core does not have specific DTLB events. proAptiv core has
1001  * "speculative" DTLB events which are numbered 0x63 (even/odd) and
1002  * not included here. One can use raw events if really needed.
1003  */
1004 [C(ITLB)] = {
1005         [C(OP_READ)] = {
1006                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1007                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1008         },
1009         [C(OP_WRITE)] = {
1010                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_EVEN, T },
1011                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD, T },
1012         },
1013 },
1014 [C(BPU)] = {
1015         /* Using the same code for *HW_BRANCH* */
1016         [C(OP_READ)] = {
1017                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1018                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1019         },
1020         [C(OP_WRITE)] = {
1021                 [C(RESULT_ACCESS)]      = { 0x27, CNTR_EVEN, T },
1022                 [C(RESULT_MISS)]        = { 0x27, CNTR_ODD, T },
1023         },
1024 },
1025 };
1026
1027 static const struct mips_perf_event i6x00_cache_map
1028                                 [PERF_COUNT_HW_CACHE_MAX]
1029                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1030                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1031 [C(L1D)] = {
1032         [C(OP_READ)] = {
1033                 [C(RESULT_ACCESS)]      = { 0x46, CNTR_EVEN | CNTR_ODD },
1034                 [C(RESULT_MISS)]        = { 0x49, CNTR_EVEN | CNTR_ODD },
1035         },
1036         [C(OP_WRITE)] = {
1037                 [C(RESULT_ACCESS)]      = { 0x47, CNTR_EVEN | CNTR_ODD },
1038                 [C(RESULT_MISS)]        = { 0x4a, CNTR_EVEN | CNTR_ODD },
1039         },
1040 },
1041 [C(L1I)] = {
1042         [C(OP_READ)] = {
1043                 [C(RESULT_ACCESS)]      = { 0x84, CNTR_EVEN | CNTR_ODD },
1044                 [C(RESULT_MISS)]        = { 0x85, CNTR_EVEN | CNTR_ODD },
1045         },
1046 },
1047 [C(DTLB)] = {
1048         /* Can't distinguish read & write */
1049         [C(OP_READ)] = {
1050                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1051                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1052         },
1053         [C(OP_WRITE)] = {
1054                 [C(RESULT_ACCESS)]      = { 0x40, CNTR_EVEN | CNTR_ODD },
1055                 [C(RESULT_MISS)]        = { 0x41, CNTR_EVEN | CNTR_ODD },
1056         },
1057 },
1058 [C(BPU)] = {
1059         /* Conditional branches / mispredicted */
1060         [C(OP_READ)] = {
1061                 [C(RESULT_ACCESS)]      = { 0x15, CNTR_EVEN | CNTR_ODD },
1062                 [C(RESULT_MISS)]        = { 0x16, CNTR_EVEN | CNTR_ODD },
1063         },
1064 },
1065 };
1066
1067 static const struct mips_perf_event loongson3_cache_map
1068                                 [PERF_COUNT_HW_CACHE_MAX]
1069                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1070                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1071 [C(L1D)] = {
1072         /*
1073          * Like some other architectures (e.g. ARM), the performance
1074          * counters don't differentiate between read and write
1075          * accesses/misses, so this isn't strictly correct, but it's the
1076          * best we can do. Writes and reads get combined.
1077          */
1078         [C(OP_READ)] = {
1079                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1080         },
1081         [C(OP_WRITE)] = {
1082                 [C(RESULT_MISS)]        = { 0x04, CNTR_ODD },
1083         },
1084 },
1085 [C(L1I)] = {
1086         [C(OP_READ)] = {
1087                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1088         },
1089         [C(OP_WRITE)] = {
1090                 [C(RESULT_MISS)]        = { 0x04, CNTR_EVEN },
1091         },
1092 },
1093 [C(DTLB)] = {
1094         [C(OP_READ)] = {
1095                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1096         },
1097         [C(OP_WRITE)] = {
1098                 [C(RESULT_MISS)]        = { 0x09, CNTR_ODD },
1099         },
1100 },
1101 [C(ITLB)] = {
1102         [C(OP_READ)] = {
1103                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1104         },
1105         [C(OP_WRITE)] = {
1106                 [C(RESULT_MISS)]        = { 0x0c, CNTR_ODD },
1107         },
1108 },
1109 [C(BPU)] = {
1110         /* Using the same code for *HW_BRANCH* */
1111         [C(OP_READ)] = {
1112                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1113                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1114         },
1115         [C(OP_WRITE)] = {
1116                 [C(RESULT_ACCESS)]      = { 0x02, CNTR_EVEN },
1117                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD },
1118         },
1119 },
1120 };
1121
1122 /* BMIPS5000 */
1123 static const struct mips_perf_event bmips5000_cache_map
1124                                 [PERF_COUNT_HW_CACHE_MAX]
1125                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1126                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1127 [C(L1D)] = {
1128         /*
1129          * Like some other architectures (e.g. ARM), the performance
1130          * counters don't differentiate between read and write
1131          * accesses/misses, so this isn't strictly correct, but it's the
1132          * best we can do. Writes and reads get combined.
1133          */
1134         [C(OP_READ)] = {
1135                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1136                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1137         },
1138         [C(OP_WRITE)] = {
1139                 [C(RESULT_ACCESS)]      = { 12, CNTR_EVEN, T },
1140                 [C(RESULT_MISS)]        = { 12, CNTR_ODD, T },
1141         },
1142 },
1143 [C(L1I)] = {
1144         [C(OP_READ)] = {
1145                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1146                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1147         },
1148         [C(OP_WRITE)] = {
1149                 [C(RESULT_ACCESS)]      = { 10, CNTR_EVEN, T },
1150                 [C(RESULT_MISS)]        = { 10, CNTR_ODD, T },
1151         },
1152         [C(OP_PREFETCH)] = {
1153                 [C(RESULT_ACCESS)]      = { 23, CNTR_EVEN, T },
1154                 /*
1155                  * Note that MIPS has only "hit" events countable for
1156                  * the prefetch operation.
1157                  */
1158         },
1159 },
1160 [C(LL)] = {
1161         [C(OP_READ)] = {
1162                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1163                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1164         },
1165         [C(OP_WRITE)] = {
1166                 [C(RESULT_ACCESS)]      = { 28, CNTR_EVEN, P },
1167                 [C(RESULT_MISS)]        = { 28, CNTR_ODD, P },
1168         },
1169 },
1170 [C(BPU)] = {
1171         /* Using the same code for *HW_BRANCH* */
1172         [C(OP_READ)] = {
1173                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1174         },
1175         [C(OP_WRITE)] = {
1176                 [C(RESULT_MISS)]        = { 0x02, CNTR_ODD, T },
1177         },
1178 },
1179 };
1180
1181
1182 static const struct mips_perf_event octeon_cache_map
1183                                 [PERF_COUNT_HW_CACHE_MAX]
1184                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1185                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1186 [C(L1D)] = {
1187         [C(OP_READ)] = {
1188                 [C(RESULT_ACCESS)]      = { 0x2b, CNTR_ALL },
1189                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL },
1190         },
1191         [C(OP_WRITE)] = {
1192                 [C(RESULT_ACCESS)]      = { 0x30, CNTR_ALL },
1193         },
1194 },
1195 [C(L1I)] = {
1196         [C(OP_READ)] = {
1197                 [C(RESULT_ACCESS)]      = { 0x18, CNTR_ALL },
1198         },
1199         [C(OP_PREFETCH)] = {
1200                 [C(RESULT_ACCESS)]      = { 0x19, CNTR_ALL },
1201         },
1202 },
1203 [C(DTLB)] = {
1204         /*
1205          * Only general DTLB misses are counted use the same event for
1206          * read and write.
1207          */
1208         [C(OP_READ)] = {
1209                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1210         },
1211         [C(OP_WRITE)] = {
1212                 [C(RESULT_MISS)]        = { 0x35, CNTR_ALL },
1213         },
1214 },
1215 [C(ITLB)] = {
1216         [C(OP_READ)] = {
1217                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL },
1218         },
1219 },
1220 };
1221
1222 static const struct mips_perf_event xlp_cache_map
1223                                 [PERF_COUNT_HW_CACHE_MAX]
1224                                 [PERF_COUNT_HW_CACHE_OP_MAX]
1225                                 [PERF_COUNT_HW_CACHE_RESULT_MAX] = {
1226 [C(L1D)] = {
1227         [C(OP_READ)] = {
1228                 [C(RESULT_ACCESS)]      = { 0x31, CNTR_ALL }, /* PAPI_L1_DCR */
1229                 [C(RESULT_MISS)]        = { 0x30, CNTR_ALL }, /* PAPI_L1_LDM */
1230         },
1231         [C(OP_WRITE)] = {
1232                 [C(RESULT_ACCESS)]      = { 0x2f, CNTR_ALL }, /* PAPI_L1_DCW */
1233                 [C(RESULT_MISS)]        = { 0x2e, CNTR_ALL }, /* PAPI_L1_STM */
1234         },
1235 },
1236 [C(L1I)] = {
1237         [C(OP_READ)] = {
1238                 [C(RESULT_ACCESS)]      = { 0x04, CNTR_ALL }, /* PAPI_L1_ICA */
1239                 [C(RESULT_MISS)]        = { 0x07, CNTR_ALL }, /* PAPI_L1_ICM */
1240         },
1241 },
1242 [C(LL)] = {
1243         [C(OP_READ)] = {
1244                 [C(RESULT_ACCESS)]      = { 0x35, CNTR_ALL }, /* PAPI_L2_DCR */
1245                 [C(RESULT_MISS)]        = { 0x37, CNTR_ALL }, /* PAPI_L2_LDM */
1246         },
1247         [C(OP_WRITE)] = {
1248                 [C(RESULT_ACCESS)]      = { 0x34, CNTR_ALL }, /* PAPI_L2_DCA */
1249                 [C(RESULT_MISS)]        = { 0x36, CNTR_ALL }, /* PAPI_L2_DCM */
1250         },
1251 },
1252 [C(DTLB)] = {
1253         /*
1254          * Only general DTLB misses are counted use the same event for
1255          * read and write.
1256          */
1257         [C(OP_READ)] = {
1258                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1259         },
1260         [C(OP_WRITE)] = {
1261                 [C(RESULT_MISS)]        = { 0x2d, CNTR_ALL }, /* PAPI_TLB_DM */
1262         },
1263 },
1264 [C(ITLB)] = {
1265         [C(OP_READ)] = {
1266                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1267         },
1268         [C(OP_WRITE)] = {
1269                 [C(RESULT_MISS)]        = { 0x08, CNTR_ALL }, /* PAPI_TLB_IM */
1270         },
1271 },
1272 [C(BPU)] = {
1273         [C(OP_READ)] = {
1274                 [C(RESULT_MISS)]        = { 0x25, CNTR_ALL },
1275         },
1276 },
1277 };
1278
1279 static int __hw_perf_event_init(struct perf_event *event)
1280 {
1281         struct perf_event_attr *attr = &event->attr;
1282         struct hw_perf_event *hwc = &event->hw;
1283         const struct mips_perf_event *pev;
1284         int err;
1285
1286         /* Returning MIPS event descriptor for generic perf event. */
1287         if (PERF_TYPE_HARDWARE == event->attr.type) {
1288                 if (event->attr.config >= PERF_COUNT_HW_MAX)
1289                         return -EINVAL;
1290                 pev = mipspmu_map_general_event(event->attr.config);
1291         } else if (PERF_TYPE_HW_CACHE == event->attr.type) {
1292                 pev = mipspmu_map_cache_event(event->attr.config);
1293         } else if (PERF_TYPE_RAW == event->attr.type) {
1294                 /* We are working on the global raw event. */
1295                 mutex_lock(&raw_event_mutex);
1296                 pev = mipspmu.map_raw_event(event->attr.config);
1297         } else {
1298                 /* The event type is not (yet) supported. */
1299                 return -EOPNOTSUPP;
1300         }
1301
1302         if (IS_ERR(pev)) {
1303                 if (PERF_TYPE_RAW == event->attr.type)
1304                         mutex_unlock(&raw_event_mutex);
1305                 return PTR_ERR(pev);
1306         }
1307
1308         /*
1309          * We allow max flexibility on how each individual counter shared
1310          * by the single CPU operates (the mode exclusion and the range).
1311          */
1312         hwc->config_base = MIPS_PERFCTRL_IE;
1313
1314         hwc->event_base = mipspmu_perf_event_encode(pev);
1315         if (PERF_TYPE_RAW == event->attr.type)
1316                 mutex_unlock(&raw_event_mutex);
1317
1318         if (!attr->exclude_user)
1319                 hwc->config_base |= MIPS_PERFCTRL_U;
1320         if (!attr->exclude_kernel) {
1321                 hwc->config_base |= MIPS_PERFCTRL_K;
1322                 /* MIPS kernel mode: KSU == 00b || EXL == 1 || ERL == 1 */
1323                 hwc->config_base |= MIPS_PERFCTRL_EXL;
1324         }
1325         if (!attr->exclude_hv)
1326                 hwc->config_base |= MIPS_PERFCTRL_S;
1327
1328         hwc->config_base &= M_PERFCTL_CONFIG_MASK;
1329         /*
1330          * The event can belong to another cpu. We do not assign a local
1331          * counter for it for now.
1332          */
1333         hwc->idx = -1;
1334         hwc->config = 0;
1335
1336         if (!hwc->sample_period) {
1337                 hwc->sample_period  = mipspmu.max_period;
1338                 hwc->last_period    = hwc->sample_period;
1339                 local64_set(&hwc->period_left, hwc->sample_period);
1340         }
1341
1342         err = 0;
1343         if (event->group_leader != event)
1344                 err = validate_group(event);
1345
1346         event->destroy = hw_perf_event_destroy;
1347
1348         if (err)
1349                 event->destroy(event);
1350
1351         return err;
1352 }
1353
1354 static void pause_local_counters(void)
1355 {
1356         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1357         int ctr = mipspmu.num_counters;
1358         unsigned long flags;
1359
1360         local_irq_save(flags);
1361         do {
1362                 ctr--;
1363                 cpuc->saved_ctrl[ctr] = mipsxx_pmu_read_control(ctr);
1364                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr] &
1365                                          ~M_PERFCTL_COUNT_EVENT_WHENEVER);
1366         } while (ctr > 0);
1367         local_irq_restore(flags);
1368 }
1369
1370 static void resume_local_counters(void)
1371 {
1372         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1373         int ctr = mipspmu.num_counters;
1374
1375         do {
1376                 ctr--;
1377                 mipsxx_pmu_write_control(ctr, cpuc->saved_ctrl[ctr]);
1378         } while (ctr > 0);
1379 }
1380
1381 static int mipsxx_pmu_handle_shared_irq(void)
1382 {
1383         struct cpu_hw_events *cpuc = this_cpu_ptr(&cpu_hw_events);
1384         struct perf_sample_data data;
1385         unsigned int counters = mipspmu.num_counters;
1386         u64 counter;
1387         int n, handled = IRQ_NONE;
1388         struct pt_regs *regs;
1389
1390         if (cpu_has_perf_cntr_intr_bit && !(read_c0_cause() & CAUSEF_PCI))
1391                 return handled;
1392         /*
1393          * First we pause the local counters, so that when we are locked
1394          * here, the counters are all paused. When it gets locked due to
1395          * perf_disable(), the timer interrupt handler will be delayed.
1396          *
1397          * See also mipsxx_pmu_start().
1398          */
1399         pause_local_counters();
1400 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1401         read_lock(&pmuint_rwlock);
1402 #endif
1403
1404         regs = get_irq_regs();
1405
1406         perf_sample_data_init(&data, 0, 0);
1407
1408         for (n = counters - 1; n >= 0; n--) {
1409                 if (!test_bit(n, cpuc->used_mask))
1410                         continue;
1411
1412                 counter = mipspmu.read_counter(n);
1413                 if (!(counter & mipspmu.overflow))
1414                         continue;
1415
1416                 handle_associated_event(cpuc, n, &data, regs);
1417                 handled = IRQ_HANDLED;
1418         }
1419
1420 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1421         read_unlock(&pmuint_rwlock);
1422 #endif
1423         resume_local_counters();
1424
1425         /*
1426          * Do all the work for the pending perf events. We can do this
1427          * in here because the performance counter interrupt is a regular
1428          * interrupt, not NMI.
1429          */
1430         if (handled == IRQ_HANDLED)
1431                 irq_work_run();
1432
1433         return handled;
1434 }
1435
1436 static irqreturn_t mipsxx_pmu_handle_irq(int irq, void *dev)
1437 {
1438         return mipsxx_pmu_handle_shared_irq();
1439 }
1440
1441 /* 24K */
1442 #define IS_BOTH_COUNTERS_24K_EVENT(b)                                   \
1443         ((b) == 0 || (b) == 1 || (b) == 11)
1444
1445 /* 34K */
1446 #define IS_BOTH_COUNTERS_34K_EVENT(b)                                   \
1447         ((b) == 0 || (b) == 1 || (b) == 11)
1448 #ifdef CONFIG_MIPS_MT_SMP
1449 #define IS_RANGE_P_34K_EVENT(r, b)                                      \
1450         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1451          (b) == 25 || (b) == 39 || (r) == 44 || (r) == 174 ||           \
1452          (r) == 176 || ((b) >= 50 && (b) <= 55) ||                      \
1453          ((b) >= 64 && (b) <= 67))
1454 #define IS_RANGE_V_34K_EVENT(r) ((r) == 47)
1455 #endif
1456
1457 /* 74K */
1458 #define IS_BOTH_COUNTERS_74K_EVENT(b)                                   \
1459         ((b) == 0 || (b) == 1)
1460
1461 /* proAptiv */
1462 #define IS_BOTH_COUNTERS_PROAPTIV_EVENT(b)                              \
1463         ((b) == 0 || (b) == 1)
1464 /* P5600 */
1465 #define IS_BOTH_COUNTERS_P5600_EVENT(b)                                 \
1466         ((b) == 0 || (b) == 1)
1467
1468 /* 1004K */
1469 #define IS_BOTH_COUNTERS_1004K_EVENT(b)                                 \
1470         ((b) == 0 || (b) == 1 || (b) == 11)
1471 #ifdef CONFIG_MIPS_MT_SMP
1472 #define IS_RANGE_P_1004K_EVENT(r, b)                                    \
1473         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1474          (b) == 25 || (b) == 36 || (b) == 39 || (r) == 44 ||            \
1475          (r) == 174 || (r) == 176 || ((b) >= 50 && (b) <= 59) ||        \
1476          (r) == 188 || (b) == 61 || (b) == 62 ||                        \
1477          ((b) >= 64 && (b) <= 67))
1478 #define IS_RANGE_V_1004K_EVENT(r)       ((r) == 47)
1479 #endif
1480
1481 /* interAptiv */
1482 #define IS_BOTH_COUNTERS_INTERAPTIV_EVENT(b)                            \
1483         ((b) == 0 || (b) == 1 || (b) == 11)
1484 #ifdef CONFIG_MIPS_MT_SMP
1485 /* The P/V/T info is not provided for "(b) == 38" in SUM, assume P. */
1486 #define IS_RANGE_P_INTERAPTIV_EVENT(r, b)                               \
1487         ((b) == 0 || (r) == 18 || (b) == 21 || (b) == 22 ||             \
1488          (b) == 25 || (b) == 36 || (b) == 38 || (b) == 39 ||            \
1489          (r) == 44 || (r) == 174 || (r) == 176 || ((b) >= 50 &&         \
1490          (b) <= 59) || (r) == 188 || (b) == 61 || (b) == 62 ||          \
1491          ((b) >= 64 && (b) <= 67))
1492 #define IS_RANGE_V_INTERAPTIV_EVENT(r)  ((r) == 47 || (r) == 175)
1493 #endif
1494
1495 /* BMIPS5000 */
1496 #define IS_BOTH_COUNTERS_BMIPS5000_EVENT(b)                             \
1497         ((b) == 0 || (b) == 1)
1498
1499
1500 /*
1501  * For most cores the user can use 0-255 raw events, where 0-127 for the events
1502  * of even counters, and 128-255 for odd counters. Note that bit 7 is used to
1503  * indicate the even/odd bank selector. So, for example, when user wants to take
1504  * the Event Num of 15 for odd counters (by referring to the user manual), then
1505  * 128 needs to be added to 15 as the input for the event config, i.e., 143 (0x8F)
1506  * to be used.
1507  *
1508  * Some newer cores have even more events, in which case the user can use raw
1509  * events 0-511, where 0-255 are for the events of even counters, and 256-511
1510  * are for odd counters, so bit 8 is used to indicate the even/odd bank selector.
1511  */
1512 static const struct mips_perf_event *mipsxx_pmu_map_raw_event(u64 config)
1513 {
1514         /* currently most cores have 7-bit event numbers */
1515         unsigned int raw_id = config & 0xff;
1516         unsigned int base_id = raw_id & 0x7f;
1517
1518         switch (current_cpu_type()) {
1519         case CPU_24K:
1520                 if (IS_BOTH_COUNTERS_24K_EVENT(base_id))
1521                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1522                 else
1523                         raw_event.cntr_mask =
1524                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1525 #ifdef CONFIG_MIPS_MT_SMP
1526                 /*
1527                  * This is actually doing nothing. Non-multithreading
1528                  * CPUs will not check and calculate the range.
1529                  */
1530                 raw_event.range = P;
1531 #endif
1532                 break;
1533         case CPU_34K:
1534                 if (IS_BOTH_COUNTERS_34K_EVENT(base_id))
1535                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1536                 else
1537                         raw_event.cntr_mask =
1538                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1539 #ifdef CONFIG_MIPS_MT_SMP
1540                 if (IS_RANGE_P_34K_EVENT(raw_id, base_id))
1541                         raw_event.range = P;
1542                 else if (unlikely(IS_RANGE_V_34K_EVENT(raw_id)))
1543                         raw_event.range = V;
1544                 else
1545                         raw_event.range = T;
1546 #endif
1547                 break;
1548         case CPU_74K:
1549         case CPU_1074K:
1550                 if (IS_BOTH_COUNTERS_74K_EVENT(base_id))
1551                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1552                 else
1553                         raw_event.cntr_mask =
1554                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1555 #ifdef CONFIG_MIPS_MT_SMP
1556                 raw_event.range = P;
1557 #endif
1558                 break;
1559         case CPU_PROAPTIV:
1560                 if (IS_BOTH_COUNTERS_PROAPTIV_EVENT(base_id))
1561                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1562                 else
1563                         raw_event.cntr_mask =
1564                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1565 #ifdef CONFIG_MIPS_MT_SMP
1566                 raw_event.range = P;
1567 #endif
1568                 break;
1569         case CPU_P5600:
1570         case CPU_P6600:
1571                 /* 8-bit event numbers */
1572                 raw_id = config & 0x1ff;
1573                 base_id = raw_id & 0xff;
1574                 if (IS_BOTH_COUNTERS_P5600_EVENT(base_id))
1575                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1576                 else
1577                         raw_event.cntr_mask =
1578                                 raw_id > 255 ? CNTR_ODD : CNTR_EVEN;
1579 #ifdef CONFIG_MIPS_MT_SMP
1580                 raw_event.range = P;
1581 #endif
1582                 break;
1583         case CPU_I6400:
1584         case CPU_I6500:
1585                 /* 8-bit event numbers */
1586                 base_id = config & 0xff;
1587                 raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1588                 break;
1589         case CPU_1004K:
1590                 if (IS_BOTH_COUNTERS_1004K_EVENT(base_id))
1591                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1592                 else
1593                         raw_event.cntr_mask =
1594                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1595 #ifdef CONFIG_MIPS_MT_SMP
1596                 if (IS_RANGE_P_1004K_EVENT(raw_id, base_id))
1597                         raw_event.range = P;
1598                 else if (unlikely(IS_RANGE_V_1004K_EVENT(raw_id)))
1599                         raw_event.range = V;
1600                 else
1601                         raw_event.range = T;
1602 #endif
1603                 break;
1604         case CPU_INTERAPTIV:
1605                 if (IS_BOTH_COUNTERS_INTERAPTIV_EVENT(base_id))
1606                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1607                 else
1608                         raw_event.cntr_mask =
1609                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1610 #ifdef CONFIG_MIPS_MT_SMP
1611                 if (IS_RANGE_P_INTERAPTIV_EVENT(raw_id, base_id))
1612                         raw_event.range = P;
1613                 else if (unlikely(IS_RANGE_V_INTERAPTIV_EVENT(raw_id)))
1614                         raw_event.range = V;
1615                 else
1616                         raw_event.range = T;
1617 #endif
1618                 break;
1619         case CPU_BMIPS5000:
1620                 if (IS_BOTH_COUNTERS_BMIPS5000_EVENT(base_id))
1621                         raw_event.cntr_mask = CNTR_EVEN | CNTR_ODD;
1622                 else
1623                         raw_event.cntr_mask =
1624                                 raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1625                 break;
1626         case CPU_LOONGSON3:
1627                 raw_event.cntr_mask = raw_id > 127 ? CNTR_ODD : CNTR_EVEN;
1628         break;
1629         }
1630
1631         raw_event.event_id = base_id;
1632
1633         return &raw_event;
1634 }
1635
1636 static const struct mips_perf_event *octeon_pmu_map_raw_event(u64 config)
1637 {
1638         unsigned int raw_id = config & 0xff;
1639         unsigned int base_id = raw_id & 0x7f;
1640
1641
1642         raw_event.cntr_mask = CNTR_ALL;
1643         raw_event.event_id = base_id;
1644
1645         if (current_cpu_type() == CPU_CAVIUM_OCTEON2) {
1646                 if (base_id > 0x42)
1647                         return ERR_PTR(-EOPNOTSUPP);
1648         } else {
1649                 if (base_id > 0x3a)
1650                         return ERR_PTR(-EOPNOTSUPP);
1651         }
1652
1653         switch (base_id) {
1654         case 0x00:
1655         case 0x0f:
1656         case 0x1e:
1657         case 0x1f:
1658         case 0x2f:
1659         case 0x34:
1660         case 0x3b ... 0x3f:
1661                 return ERR_PTR(-EOPNOTSUPP);
1662         default:
1663                 break;
1664         }
1665
1666         return &raw_event;
1667 }
1668
1669 static const struct mips_perf_event *xlp_pmu_map_raw_event(u64 config)
1670 {
1671         unsigned int raw_id = config & 0xff;
1672
1673         /* Only 1-63 are defined */
1674         if ((raw_id < 0x01) || (raw_id > 0x3f))
1675                 return ERR_PTR(-EOPNOTSUPP);
1676
1677         raw_event.cntr_mask = CNTR_ALL;
1678         raw_event.event_id = raw_id;
1679
1680         return &raw_event;
1681 }
1682
1683 static int __init
1684 init_hw_perf_events(void)
1685 {
1686         int counters, irq;
1687         int counter_bits;
1688
1689         pr_info("Performance counters: ");
1690
1691         counters = n_counters();
1692         if (counters == 0) {
1693                 pr_cont("No available PMU.\n");
1694                 return -ENODEV;
1695         }
1696
1697 #ifdef CONFIG_MIPS_PERF_SHARED_TC_COUNTERS
1698         if (!cpu_has_mipsmt_pertccounters)
1699                 counters = counters_total_to_per_cpu(counters);
1700 #endif
1701
1702         if (get_c0_perfcount_int)
1703                 irq = get_c0_perfcount_int();
1704         else if (cp0_perfcount_irq >= 0)
1705                 irq = MIPS_CPU_IRQ_BASE + cp0_perfcount_irq;
1706         else
1707                 irq = -1;
1708
1709         mipspmu.map_raw_event = mipsxx_pmu_map_raw_event;
1710
1711         switch (current_cpu_type()) {
1712         case CPU_24K:
1713                 mipspmu.name = "mips/24K";
1714                 mipspmu.general_event_map = &mipsxxcore_event_map;
1715                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1716                 break;
1717         case CPU_34K:
1718                 mipspmu.name = "mips/34K";
1719                 mipspmu.general_event_map = &mipsxxcore_event_map;
1720                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1721                 break;
1722         case CPU_74K:
1723                 mipspmu.name = "mips/74K";
1724                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1725                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1726                 break;
1727         case CPU_PROAPTIV:
1728                 mipspmu.name = "mips/proAptiv";
1729                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1730                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1731                 break;
1732         case CPU_P5600:
1733                 mipspmu.name = "mips/P5600";
1734                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1735                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1736                 break;
1737         case CPU_P6600:
1738                 mipspmu.name = "mips/P6600";
1739                 mipspmu.general_event_map = &mipsxxcore_event_map2;
1740                 mipspmu.cache_event_map = &mipsxxcore_cache_map2;
1741                 break;
1742         case CPU_I6400:
1743                 mipspmu.name = "mips/I6400";
1744                 mipspmu.general_event_map = &i6x00_event_map;
1745                 mipspmu.cache_event_map = &i6x00_cache_map;
1746                 break;
1747         case CPU_I6500:
1748                 mipspmu.name = "mips/I6500";
1749                 mipspmu.general_event_map = &i6x00_event_map;
1750                 mipspmu.cache_event_map = &i6x00_cache_map;
1751                 break;
1752         case CPU_1004K:
1753                 mipspmu.name = "mips/1004K";
1754                 mipspmu.general_event_map = &mipsxxcore_event_map;
1755                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1756                 break;
1757         case CPU_1074K:
1758                 mipspmu.name = "mips/1074K";
1759                 mipspmu.general_event_map = &mipsxxcore_event_map;
1760                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1761                 break;
1762         case CPU_INTERAPTIV:
1763                 mipspmu.name = "mips/interAptiv";
1764                 mipspmu.general_event_map = &mipsxxcore_event_map;
1765                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1766                 break;
1767         case CPU_LOONGSON1:
1768                 mipspmu.name = "mips/loongson1";
1769                 mipspmu.general_event_map = &mipsxxcore_event_map;
1770                 mipspmu.cache_event_map = &mipsxxcore_cache_map;
1771                 break;
1772         case CPU_LOONGSON3:
1773                 mipspmu.name = "mips/loongson3";
1774                 mipspmu.general_event_map = &loongson3_event_map;
1775                 mipspmu.cache_event_map = &loongson3_cache_map;
1776                 break;
1777         case CPU_CAVIUM_OCTEON:
1778         case CPU_CAVIUM_OCTEON_PLUS:
1779         case CPU_CAVIUM_OCTEON2:
1780                 mipspmu.name = "octeon";
1781                 mipspmu.general_event_map = &octeon_event_map;
1782                 mipspmu.cache_event_map = &octeon_cache_map;
1783                 mipspmu.map_raw_event = octeon_pmu_map_raw_event;
1784                 break;
1785         case CPU_BMIPS5000:
1786                 mipspmu.name = "BMIPS5000";
1787                 mipspmu.general_event_map = &bmips5000_event_map;
1788                 mipspmu.cache_event_map = &bmips5000_cache_map;
1789                 break;
1790         case CPU_XLP:
1791                 mipspmu.name = "xlp";
1792                 mipspmu.general_event_map = &xlp_event_map;
1793                 mipspmu.cache_event_map = &xlp_cache_map;
1794                 mipspmu.map_raw_event = xlp_pmu_map_raw_event;
1795                 break;
1796         default:
1797                 pr_cont("Either hardware does not support performance "
1798                         "counters, or not yet implemented.\n");
1799                 return -ENODEV;
1800         }
1801
1802         mipspmu.num_counters = counters;
1803         mipspmu.irq = irq;
1804
1805         if (read_c0_perfctrl0() & MIPS_PERFCTRL_W) {
1806                 mipspmu.max_period = (1ULL << 63) - 1;
1807                 mipspmu.valid_count = (1ULL << 63) - 1;
1808                 mipspmu.overflow = 1ULL << 63;
1809                 mipspmu.read_counter = mipsxx_pmu_read_counter_64;
1810                 mipspmu.write_counter = mipsxx_pmu_write_counter_64;
1811                 counter_bits = 64;
1812         } else {
1813                 mipspmu.max_period = (1ULL << 31) - 1;
1814                 mipspmu.valid_count = (1ULL << 31) - 1;
1815                 mipspmu.overflow = 1ULL << 31;
1816                 mipspmu.read_counter = mipsxx_pmu_read_counter;
1817                 mipspmu.write_counter = mipsxx_pmu_write_counter;
1818                 counter_bits = 32;
1819         }
1820
1821         on_each_cpu(reset_counters, (void *)(long)counters, 1);
1822
1823         pr_cont("%s PMU enabled, %d %d-bit counters available to each "
1824                 "CPU, irq %d%s\n", mipspmu.name, counters, counter_bits, irq,
1825                 irq < 0 ? " (share with timer interrupt)" : "");
1826
1827         perf_pmu_register(&pmu, "cpu", PERF_TYPE_RAW);
1828
1829         return 0;
1830 }
1831 early_initcall(init_hw_perf_events);