Linux-libre 3.4.28-gnu1
[librecmc/linux-libre.git] / arch / ia64 / mm / contig.c
1 /*
2  * This file is subject to the terms and conditions of the GNU General Public
3  * License.  See the file "COPYING" in the main directory of this archive
4  * for more details.
5  *
6  * Copyright (C) 1998-2003 Hewlett-Packard Co
7  *      David Mosberger-Tang <davidm@hpl.hp.com>
8  *      Stephane Eranian <eranian@hpl.hp.com>
9  * Copyright (C) 2000, Rohit Seth <rohit.seth@intel.com>
10  * Copyright (C) 1999 VA Linux Systems
11  * Copyright (C) 1999 Walt Drummond <drummond@valinux.com>
12  * Copyright (C) 2003 Silicon Graphics, Inc. All rights reserved.
13  *
14  * Routines used by ia64 machines with contiguous (or virtually contiguous)
15  * memory.
16  */
17 #include <linux/bootmem.h>
18 #include <linux/efi.h>
19 #include <linux/memblock.h>
20 #include <linux/mm.h>
21 #include <linux/nmi.h>
22 #include <linux/swap.h>
23
24 #include <asm/meminit.h>
25 #include <asm/pgalloc.h>
26 #include <asm/pgtable.h>
27 #include <asm/sections.h>
28 #include <asm/mca.h>
29
30 #ifdef CONFIG_VIRTUAL_MEM_MAP
31 static unsigned long max_gap;
32 #endif
33
34 /**
35  * show_mem - give short summary of memory stats
36  *
37  * Shows a simple page count of reserved and used pages in the system.
38  * For discontig machines, it does this on a per-pgdat basis.
39  */
40 void show_mem(unsigned int filter)
41 {
42         int i, total_reserved = 0;
43         int total_shared = 0, total_cached = 0;
44         unsigned long total_present = 0;
45         pg_data_t *pgdat;
46
47         printk(KERN_INFO "Mem-info:\n");
48         show_free_areas(filter);
49         printk(KERN_INFO "Node memory in pages:\n");
50         for_each_online_pgdat(pgdat) {
51                 unsigned long present;
52                 unsigned long flags;
53                 int shared = 0, cached = 0, reserved = 0;
54                 int nid = pgdat->node_id;
55
56                 if (skip_free_areas_node(filter, nid))
57                         continue;
58                 pgdat_resize_lock(pgdat, &flags);
59                 present = pgdat->node_present_pages;
60                 for(i = 0; i < pgdat->node_spanned_pages; i++) {
61                         struct page *page;
62                         if (unlikely(i % MAX_ORDER_NR_PAGES == 0))
63                                 touch_nmi_watchdog();
64                         if (pfn_valid(pgdat->node_start_pfn + i))
65                                 page = pfn_to_page(pgdat->node_start_pfn + i);
66                         else {
67 #ifdef CONFIG_VIRTUAL_MEM_MAP
68                                 if (max_gap < LARGE_GAP)
69                                         continue;
70 #endif
71                                 i = vmemmap_find_next_valid_pfn(nid, i) - 1;
72                                 continue;
73                         }
74                         if (PageReserved(page))
75                                 reserved++;
76                         else if (PageSwapCache(page))
77                                 cached++;
78                         else if (page_count(page))
79                                 shared += page_count(page)-1;
80                 }
81                 pgdat_resize_unlock(pgdat, &flags);
82                 total_present += present;
83                 total_reserved += reserved;
84                 total_cached += cached;
85                 total_shared += shared;
86                 printk(KERN_INFO "Node %4d:  RAM: %11ld, rsvd: %8d, "
87                        "shrd: %10d, swpd: %10d\n", nid,
88                        present, reserved, shared, cached);
89         }
90         printk(KERN_INFO "%ld pages of RAM\n", total_present);
91         printk(KERN_INFO "%d reserved pages\n", total_reserved);
92         printk(KERN_INFO "%d pages shared\n", total_shared);
93         printk(KERN_INFO "%d pages swap cached\n", total_cached);
94         printk(KERN_INFO "Total of %ld pages in page table cache\n",
95                quicklist_total_size());
96         printk(KERN_INFO "%d free buffer pages\n", nr_free_buffer_pages());
97 }
98
99
100 /* physical address where the bootmem map is located */
101 unsigned long bootmap_start;
102
103 /**
104  * find_bootmap_location - callback to find a memory area for the bootmap
105  * @start: start of region
106  * @end: end of region
107  * @arg: unused callback data
108  *
109  * Find a place to put the bootmap and return its starting address in
110  * bootmap_start.  This address must be page-aligned.
111  */
112 static int __init
113 find_bootmap_location (u64 start, u64 end, void *arg)
114 {
115         u64 needed = *(unsigned long *)arg;
116         u64 range_start, range_end, free_start;
117         int i;
118
119 #if IGNORE_PFN0
120         if (start == PAGE_OFFSET) {
121                 start += PAGE_SIZE;
122                 if (start >= end)
123                         return 0;
124         }
125 #endif
126
127         free_start = PAGE_OFFSET;
128
129         for (i = 0; i < num_rsvd_regions; i++) {
130                 range_start = max(start, free_start);
131                 range_end   = min(end, rsvd_region[i].start & PAGE_MASK);
132
133                 free_start = PAGE_ALIGN(rsvd_region[i].end);
134
135                 if (range_end <= range_start)
136                         continue; /* skip over empty range */
137
138                 if (range_end - range_start >= needed) {
139                         bootmap_start = __pa(range_start);
140                         return -1;      /* done */
141                 }
142
143                 /* nothing more available in this segment */
144                 if (range_end == end)
145                         return 0;
146         }
147         return 0;
148 }
149
150 #ifdef CONFIG_SMP
151 static void *cpu_data;
152 /**
153  * per_cpu_init - setup per-cpu variables
154  *
155  * Allocate and setup per-cpu data areas.
156  */
157 void * __cpuinit
158 per_cpu_init (void)
159 {
160         static bool first_time = true;
161         void *cpu0_data = __cpu0_per_cpu;
162         unsigned int cpu;
163
164         if (!first_time)
165                 goto skip;
166         first_time = false;
167
168         /*
169          * get_free_pages() cannot be used before cpu_init() done.
170          * BSP allocates PERCPU_PAGE_SIZE bytes for all possible CPUs
171          * to avoid that AP calls get_zeroed_page().
172          */
173         for_each_possible_cpu(cpu) {
174                 void *src = cpu == 0 ? cpu0_data : __phys_per_cpu_start;
175
176                 memcpy(cpu_data, src, __per_cpu_end - __per_cpu_start);
177                 __per_cpu_offset[cpu] = (char *)cpu_data - __per_cpu_start;
178                 per_cpu(local_per_cpu_offset, cpu) = __per_cpu_offset[cpu];
179
180                 /*
181                  * percpu area for cpu0 is moved from the __init area
182                  * which is setup by head.S and used till this point.
183                  * Update ar.k3.  This move is ensures that percpu
184                  * area for cpu0 is on the correct node and its
185                  * virtual address isn't insanely far from other
186                  * percpu areas which is important for congruent
187                  * percpu allocator.
188                  */
189                 if (cpu == 0)
190                         ia64_set_kr(IA64_KR_PER_CPU_DATA, __pa(cpu_data) -
191                                     (unsigned long)__per_cpu_start);
192
193                 cpu_data += PERCPU_PAGE_SIZE;
194         }
195 skip:
196         return __per_cpu_start + __per_cpu_offset[smp_processor_id()];
197 }
198
199 static inline void
200 alloc_per_cpu_data(void)
201 {
202         cpu_data = __alloc_bootmem(PERCPU_PAGE_SIZE * num_possible_cpus(),
203                                    PERCPU_PAGE_SIZE, __pa(MAX_DMA_ADDRESS));
204 }
205
206 /**
207  * setup_per_cpu_areas - setup percpu areas
208  *
209  * Arch code has already allocated and initialized percpu areas.  All
210  * this function has to do is to teach the determined layout to the
211  * dynamic percpu allocator, which happens to be more complex than
212  * creating whole new ones using helpers.
213  */
214 void __init
215 setup_per_cpu_areas(void)
216 {
217         struct pcpu_alloc_info *ai;
218         struct pcpu_group_info *gi;
219         unsigned int cpu;
220         ssize_t static_size, reserved_size, dyn_size;
221         int rc;
222
223         ai = pcpu_alloc_alloc_info(1, num_possible_cpus());
224         if (!ai)
225                 panic("failed to allocate pcpu_alloc_info");
226         gi = &ai->groups[0];
227
228         /* units are assigned consecutively to possible cpus */
229         for_each_possible_cpu(cpu)
230                 gi->cpu_map[gi->nr_units++] = cpu;
231
232         /* set parameters */
233         static_size = __per_cpu_end - __per_cpu_start;
234         reserved_size = PERCPU_MODULE_RESERVE;
235         dyn_size = PERCPU_PAGE_SIZE - static_size - reserved_size;
236         if (dyn_size < 0)
237                 panic("percpu area overflow static=%zd reserved=%zd\n",
238                       static_size, reserved_size);
239
240         ai->static_size         = static_size;
241         ai->reserved_size       = reserved_size;
242         ai->dyn_size            = dyn_size;
243         ai->unit_size           = PERCPU_PAGE_SIZE;
244         ai->atom_size           = PAGE_SIZE;
245         ai->alloc_size          = PERCPU_PAGE_SIZE;
246
247         rc = pcpu_setup_first_chunk(ai, __per_cpu_start + __per_cpu_offset[0]);
248         if (rc)
249                 panic("failed to setup percpu area (err=%d)", rc);
250
251         pcpu_free_alloc_info(ai);
252 }
253 #else
254 #define alloc_per_cpu_data() do { } while (0)
255 #endif /* CONFIG_SMP */
256
257 /**
258  * find_memory - setup memory map
259  *
260  * Walk the EFI memory map and find usable memory for the system, taking
261  * into account reserved areas.
262  */
263 void __init
264 find_memory (void)
265 {
266         unsigned long bootmap_size;
267
268         reserve_memory();
269
270         /* first find highest page frame number */
271         min_low_pfn = ~0UL;
272         max_low_pfn = 0;
273         efi_memmap_walk(find_max_min_low_pfn, NULL);
274         max_pfn = max_low_pfn;
275         /* how many bytes to cover all the pages */
276         bootmap_size = bootmem_bootmap_pages(max_pfn) << PAGE_SHIFT;
277
278         /* look for a location to hold the bootmap */
279         bootmap_start = ~0UL;
280         efi_memmap_walk(find_bootmap_location, &bootmap_size);
281         if (bootmap_start == ~0UL)
282                 panic("Cannot find %ld bytes for bootmap\n", bootmap_size);
283
284         bootmap_size = init_bootmem_node(NODE_DATA(0),
285                         (bootmap_start >> PAGE_SHIFT), 0, max_pfn);
286
287         /* Free all available memory, then mark bootmem-map as being in use. */
288         efi_memmap_walk(filter_rsvd_memory, free_bootmem);
289         reserve_bootmem(bootmap_start, bootmap_size, BOOTMEM_DEFAULT);
290
291         find_initrd();
292
293         alloc_per_cpu_data();
294 }
295
296 static int count_pages(u64 start, u64 end, void *arg)
297 {
298         unsigned long *count = arg;
299
300         *count += (end - start) >> PAGE_SHIFT;
301         return 0;
302 }
303
304 /*
305  * Set up the page tables.
306  */
307
308 void __init
309 paging_init (void)
310 {
311         unsigned long max_dma;
312         unsigned long max_zone_pfns[MAX_NR_ZONES];
313
314         num_physpages = 0;
315         efi_memmap_walk(count_pages, &num_physpages);
316
317         memset(max_zone_pfns, 0, sizeof(max_zone_pfns));
318 #ifdef CONFIG_ZONE_DMA
319         max_dma = virt_to_phys((void *) MAX_DMA_ADDRESS) >> PAGE_SHIFT;
320         max_zone_pfns[ZONE_DMA] = max_dma;
321 #endif
322         max_zone_pfns[ZONE_NORMAL] = max_low_pfn;
323
324 #ifdef CONFIG_VIRTUAL_MEM_MAP
325         efi_memmap_walk(filter_memory, register_active_ranges);
326         efi_memmap_walk(find_largest_hole, (u64 *)&max_gap);
327         if (max_gap < LARGE_GAP) {
328                 vmem_map = (struct page *) 0;
329                 free_area_init_nodes(max_zone_pfns);
330         } else {
331                 unsigned long map_size;
332
333                 /* allocate virtual_mem_map */
334
335                 map_size = PAGE_ALIGN(ALIGN(max_low_pfn, MAX_ORDER_NR_PAGES) *
336                         sizeof(struct page));
337                 VMALLOC_END -= map_size;
338                 vmem_map = (struct page *) VMALLOC_END;
339                 efi_memmap_walk(create_mem_map_page_table, NULL);
340
341                 /*
342                  * alloc_node_mem_map makes an adjustment for mem_map
343                  * which isn't compatible with vmem_map.
344                  */
345                 NODE_DATA(0)->node_mem_map = vmem_map +
346                         find_min_pfn_with_active_regions();
347                 free_area_init_nodes(max_zone_pfns);
348
349                 printk("Virtual mem_map starts at 0x%p\n", mem_map);
350         }
351 #else /* !CONFIG_VIRTUAL_MEM_MAP */
352         memblock_add_node(0, PFN_PHYS(max_low_pfn), 0);
353         free_area_init_nodes(max_zone_pfns);
354 #endif /* !CONFIG_VIRTUAL_MEM_MAP */
355         zero_page_memmap_ptr = virt_to_page(ia64_imva(empty_zero_page));
356 }