Linux-libre 5.0.10-gnu
[librecmc/linux-libre.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/printk.h>
27 #include <linux/uaccess.h>
28
29 #include <asm/cacheflush.h>
30 #include <asm/cputype.h>
31 #include <asm/debug-monitors.h>
32 #include <asm/esr.h>
33 #include <asm/kvm_arm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_hyp.h>
38 #include <asm/kvm_mmu.h>
39 #include <asm/perf_event.h>
40 #include <asm/sysreg.h>
41
42 #include <trace/events/kvm.h>
43
44 #include "sys_regs.h"
45
46 #include "trace.h"
47
48 /*
49  * All of this file is extremly similar to the ARM coproc.c, but the
50  * types are different. My gut feeling is that it should be pretty
51  * easy to merge, but that would be an ABI breakage -- again. VFP
52  * would also need to be abstracted.
53  *
54  * For AArch32, we only take care of what is being trapped. Anything
55  * that has to do with init and userspace access has to go via the
56  * 64bit interface.
57  */
58
59 static bool read_from_write_only(struct kvm_vcpu *vcpu,
60                                  struct sys_reg_params *params,
61                                  const struct sys_reg_desc *r)
62 {
63         WARN_ONCE(1, "Unexpected sys_reg read to write-only register\n");
64         print_sys_reg_instr(params);
65         kvm_inject_undefined(vcpu);
66         return false;
67 }
68
69 static bool write_to_read_only(struct kvm_vcpu *vcpu,
70                                struct sys_reg_params *params,
71                                const struct sys_reg_desc *r)
72 {
73         WARN_ONCE(1, "Unexpected sys_reg write to read-only register\n");
74         print_sys_reg_instr(params);
75         kvm_inject_undefined(vcpu);
76         return false;
77 }
78
79 u64 vcpu_read_sys_reg(const struct kvm_vcpu *vcpu, int reg)
80 {
81         if (!vcpu->arch.sysregs_loaded_on_cpu)
82                 goto immediate_read;
83
84         /*
85          * System registers listed in the switch are not saved on every
86          * exit from the guest but are only saved on vcpu_put.
87          *
88          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
89          * should never be listed below, because the guest cannot modify its
90          * own MPIDR_EL1 and MPIDR_EL1 is accessed for VCPU A from VCPU B's
91          * thread when emulating cross-VCPU communication.
92          */
93         switch (reg) {
94         case CSSELR_EL1:        return read_sysreg_s(SYS_CSSELR_EL1);
95         case SCTLR_EL1:         return read_sysreg_s(sctlr_EL12);
96         case ACTLR_EL1:         return read_sysreg_s(SYS_ACTLR_EL1);
97         case CPACR_EL1:         return read_sysreg_s(cpacr_EL12);
98         case TTBR0_EL1:         return read_sysreg_s(ttbr0_EL12);
99         case TTBR1_EL1:         return read_sysreg_s(ttbr1_EL12);
100         case TCR_EL1:           return read_sysreg_s(tcr_EL12);
101         case ESR_EL1:           return read_sysreg_s(esr_EL12);
102         case AFSR0_EL1:         return read_sysreg_s(afsr0_EL12);
103         case AFSR1_EL1:         return read_sysreg_s(afsr1_EL12);
104         case FAR_EL1:           return read_sysreg_s(far_EL12);
105         case MAIR_EL1:          return read_sysreg_s(mair_EL12);
106         case VBAR_EL1:          return read_sysreg_s(vbar_EL12);
107         case CONTEXTIDR_EL1:    return read_sysreg_s(contextidr_EL12);
108         case TPIDR_EL0:         return read_sysreg_s(SYS_TPIDR_EL0);
109         case TPIDRRO_EL0:       return read_sysreg_s(SYS_TPIDRRO_EL0);
110         case TPIDR_EL1:         return read_sysreg_s(SYS_TPIDR_EL1);
111         case AMAIR_EL1:         return read_sysreg_s(amair_EL12);
112         case CNTKCTL_EL1:       return read_sysreg_s(cntkctl_EL12);
113         case PAR_EL1:           return read_sysreg_s(SYS_PAR_EL1);
114         case DACR32_EL2:        return read_sysreg_s(SYS_DACR32_EL2);
115         case IFSR32_EL2:        return read_sysreg_s(SYS_IFSR32_EL2);
116         case DBGVCR32_EL2:      return read_sysreg_s(SYS_DBGVCR32_EL2);
117         }
118
119 immediate_read:
120         return __vcpu_sys_reg(vcpu, reg);
121 }
122
123 void vcpu_write_sys_reg(struct kvm_vcpu *vcpu, u64 val, int reg)
124 {
125         if (!vcpu->arch.sysregs_loaded_on_cpu)
126                 goto immediate_write;
127
128         /*
129          * System registers listed in the switch are not restored on every
130          * entry to the guest but are only restored on vcpu_load.
131          *
132          * Note that MPIDR_EL1 for the guest is set by KVM via VMPIDR_EL2 but
133          * should never be listed below, because the the MPIDR should only be
134          * set once, before running the VCPU, and never changed later.
135          */
136         switch (reg) {
137         case CSSELR_EL1:        write_sysreg_s(val, SYS_CSSELR_EL1);    return;
138         case SCTLR_EL1:         write_sysreg_s(val, sctlr_EL12);        return;
139         case ACTLR_EL1:         write_sysreg_s(val, SYS_ACTLR_EL1);     return;
140         case CPACR_EL1:         write_sysreg_s(val, cpacr_EL12);        return;
141         case TTBR0_EL1:         write_sysreg_s(val, ttbr0_EL12);        return;
142         case TTBR1_EL1:         write_sysreg_s(val, ttbr1_EL12);        return;
143         case TCR_EL1:           write_sysreg_s(val, tcr_EL12);          return;
144         case ESR_EL1:           write_sysreg_s(val, esr_EL12);          return;
145         case AFSR0_EL1:         write_sysreg_s(val, afsr0_EL12);        return;
146         case AFSR1_EL1:         write_sysreg_s(val, afsr1_EL12);        return;
147         case FAR_EL1:           write_sysreg_s(val, far_EL12);          return;
148         case MAIR_EL1:          write_sysreg_s(val, mair_EL12);         return;
149         case VBAR_EL1:          write_sysreg_s(val, vbar_EL12);         return;
150         case CONTEXTIDR_EL1:    write_sysreg_s(val, contextidr_EL12);   return;
151         case TPIDR_EL0:         write_sysreg_s(val, SYS_TPIDR_EL0);     return;
152         case TPIDRRO_EL0:       write_sysreg_s(val, SYS_TPIDRRO_EL0);   return;
153         case TPIDR_EL1:         write_sysreg_s(val, SYS_TPIDR_EL1);     return;
154         case AMAIR_EL1:         write_sysreg_s(val, amair_EL12);        return;
155         case CNTKCTL_EL1:       write_sysreg_s(val, cntkctl_EL12);      return;
156         case PAR_EL1:           write_sysreg_s(val, SYS_PAR_EL1);       return;
157         case DACR32_EL2:        write_sysreg_s(val, SYS_DACR32_EL2);    return;
158         case IFSR32_EL2:        write_sysreg_s(val, SYS_IFSR32_EL2);    return;
159         case DBGVCR32_EL2:      write_sysreg_s(val, SYS_DBGVCR32_EL2);  return;
160         }
161
162 immediate_write:
163          __vcpu_sys_reg(vcpu, reg) = val;
164 }
165
166 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
167 static u32 cache_levels;
168
169 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
170 #define CSSELR_MAX 12
171
172 /* Which cache CCSIDR represents depends on CSSELR value. */
173 static u32 get_ccsidr(u32 csselr)
174 {
175         u32 ccsidr;
176
177         /* Make sure noone else changes CSSELR during this! */
178         local_irq_disable();
179         write_sysreg(csselr, csselr_el1);
180         isb();
181         ccsidr = read_sysreg(ccsidr_el1);
182         local_irq_enable();
183
184         return ccsidr;
185 }
186
187 /*
188  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
189  */
190 static bool access_dcsw(struct kvm_vcpu *vcpu,
191                         struct sys_reg_params *p,
192                         const struct sys_reg_desc *r)
193 {
194         if (!p->is_write)
195                 return read_from_write_only(vcpu, p, r);
196
197         /*
198          * Only track S/W ops if we don't have FWB. It still indicates
199          * that the guest is a bit broken (S/W operations should only
200          * be done by firmware, knowing that there is only a single
201          * CPU left in the system, and certainly not from non-secure
202          * software).
203          */
204         if (!cpus_have_const_cap(ARM64_HAS_STAGE2_FWB))
205                 kvm_set_way_flush(vcpu);
206
207         return true;
208 }
209
210 /*
211  * Generic accessor for VM registers. Only called as long as HCR_TVM
212  * is set. If the guest enables the MMU, we stop trapping the VM
213  * sys_regs and leave it in complete control of the caches.
214  */
215 static bool access_vm_reg(struct kvm_vcpu *vcpu,
216                           struct sys_reg_params *p,
217                           const struct sys_reg_desc *r)
218 {
219         bool was_enabled = vcpu_has_cache_enabled(vcpu);
220         u64 val;
221         int reg = r->reg;
222
223         BUG_ON(!p->is_write);
224
225         /* See the 32bit mapping in kvm_host.h */
226         if (p->is_aarch32)
227                 reg = r->reg / 2;
228
229         if (!p->is_aarch32 || !p->is_32bit) {
230                 val = p->regval;
231         } else {
232                 val = vcpu_read_sys_reg(vcpu, reg);
233                 if (r->reg % 2)
234                         val = (p->regval << 32) | (u64)lower_32_bits(val);
235                 else
236                         val = ((u64)upper_32_bits(val) << 32) |
237                                 lower_32_bits(p->regval);
238         }
239         vcpu_write_sys_reg(vcpu, val, reg);
240
241         kvm_toggle_cache(vcpu, was_enabled);
242         return true;
243 }
244
245 /*
246  * Trap handler for the GICv3 SGI generation system register.
247  * Forward the request to the VGIC emulation.
248  * The cp15_64 code makes sure this automatically works
249  * for both AArch64 and AArch32 accesses.
250  */
251 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
252                            struct sys_reg_params *p,
253                            const struct sys_reg_desc *r)
254 {
255         bool g1;
256
257         if (!p->is_write)
258                 return read_from_write_only(vcpu, p, r);
259
260         /*
261          * In a system where GICD_CTLR.DS=1, a ICC_SGI0R_EL1 access generates
262          * Group0 SGIs only, while ICC_SGI1R_EL1 can generate either group,
263          * depending on the SGI configuration. ICC_ASGI1R_EL1 is effectively
264          * equivalent to ICC_SGI0R_EL1, as there is no "alternative" secure
265          * group.
266          */
267         if (p->is_aarch32) {
268                 switch (p->Op1) {
269                 default:                /* Keep GCC quiet */
270                 case 0:                 /* ICC_SGI1R */
271                         g1 = true;
272                         break;
273                 case 1:                 /* ICC_ASGI1R */
274                 case 2:                 /* ICC_SGI0R */
275                         g1 = false;
276                         break;
277                 }
278         } else {
279                 switch (p->Op2) {
280                 default:                /* Keep GCC quiet */
281                 case 5:                 /* ICC_SGI1R_EL1 */
282                         g1 = true;
283                         break;
284                 case 6:                 /* ICC_ASGI1R_EL1 */
285                 case 7:                 /* ICC_SGI0R_EL1 */
286                         g1 = false;
287                         break;
288                 }
289         }
290
291         vgic_v3_dispatch_sgi(vcpu, p->regval, g1);
292
293         return true;
294 }
295
296 static bool access_gic_sre(struct kvm_vcpu *vcpu,
297                            struct sys_reg_params *p,
298                            const struct sys_reg_desc *r)
299 {
300         if (p->is_write)
301                 return ignore_write(vcpu, p);
302
303         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
304         return true;
305 }
306
307 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
308                         struct sys_reg_params *p,
309                         const struct sys_reg_desc *r)
310 {
311         if (p->is_write)
312                 return ignore_write(vcpu, p);
313         else
314                 return read_zero(vcpu, p);
315 }
316
317 /*
318  * ARMv8.1 mandates at least a trivial LORegion implementation, where all the
319  * RW registers are RES0 (which we can implement as RAZ/WI). On an ARMv8.0
320  * system, these registers should UNDEF. LORID_EL1 being a RO register, we
321  * treat it separately.
322  */
323 static bool trap_loregion(struct kvm_vcpu *vcpu,
324                           struct sys_reg_params *p,
325                           const struct sys_reg_desc *r)
326 {
327         u64 val = read_sanitised_ftr_reg(SYS_ID_AA64MMFR1_EL1);
328         u32 sr = sys_reg((u32)r->Op0, (u32)r->Op1,
329                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
330
331         if (!(val & (0xfUL << ID_AA64MMFR1_LOR_SHIFT))) {
332                 kvm_inject_undefined(vcpu);
333                 return false;
334         }
335
336         if (p->is_write && sr == SYS_LORID_EL1)
337                 return write_to_read_only(vcpu, p, r);
338
339         return trap_raz_wi(vcpu, p, r);
340 }
341
342 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
343                            struct sys_reg_params *p,
344                            const struct sys_reg_desc *r)
345 {
346         if (p->is_write) {
347                 return ignore_write(vcpu, p);
348         } else {
349                 p->regval = (1 << 3);
350                 return true;
351         }
352 }
353
354 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
355                                    struct sys_reg_params *p,
356                                    const struct sys_reg_desc *r)
357 {
358         if (p->is_write) {
359                 return ignore_write(vcpu, p);
360         } else {
361                 p->regval = read_sysreg(dbgauthstatus_el1);
362                 return true;
363         }
364 }
365
366 /*
367  * We want to avoid world-switching all the DBG registers all the
368  * time:
369  * 
370  * - If we've touched any debug register, it is likely that we're
371  *   going to touch more of them. It then makes sense to disable the
372  *   traps and start doing the save/restore dance
373  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
374  *   then mandatory to save/restore the registers, as the guest
375  *   depends on them.
376  * 
377  * For this, we use a DIRTY bit, indicating the guest has modified the
378  * debug registers, used as follow:
379  *
380  * On guest entry:
381  * - If the dirty bit is set (because we're coming back from trapping),
382  *   disable the traps, save host registers, restore guest registers.
383  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
384  *   set the dirty bit, disable the traps, save host registers,
385  *   restore guest registers.
386  * - Otherwise, enable the traps
387  *
388  * On guest exit:
389  * - If the dirty bit is set, save guest registers, restore host
390  *   registers and clear the dirty bit. This ensure that the host can
391  *   now use the debug registers.
392  */
393 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
394                             struct sys_reg_params *p,
395                             const struct sys_reg_desc *r)
396 {
397         if (p->is_write) {
398                 vcpu_write_sys_reg(vcpu, p->regval, r->reg);
399                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
400         } else {
401                 p->regval = vcpu_read_sys_reg(vcpu, r->reg);
402         }
403
404         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
405
406         return true;
407 }
408
409 /*
410  * reg_to_dbg/dbg_to_reg
411  *
412  * A 32 bit write to a debug register leave top bits alone
413  * A 32 bit read from a debug register only returns the bottom bits
414  *
415  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
416  * hyp.S code switches between host and guest values in future.
417  */
418 static void reg_to_dbg(struct kvm_vcpu *vcpu,
419                        struct sys_reg_params *p,
420                        u64 *dbg_reg)
421 {
422         u64 val = p->regval;
423
424         if (p->is_32bit) {
425                 val &= 0xffffffffUL;
426                 val |= ((*dbg_reg >> 32) << 32);
427         }
428
429         *dbg_reg = val;
430         vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
431 }
432
433 static void dbg_to_reg(struct kvm_vcpu *vcpu,
434                        struct sys_reg_params *p,
435                        u64 *dbg_reg)
436 {
437         p->regval = *dbg_reg;
438         if (p->is_32bit)
439                 p->regval &= 0xffffffffUL;
440 }
441
442 static bool trap_bvr(struct kvm_vcpu *vcpu,
443                      struct sys_reg_params *p,
444                      const struct sys_reg_desc *rd)
445 {
446         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
447
448         if (p->is_write)
449                 reg_to_dbg(vcpu, p, dbg_reg);
450         else
451                 dbg_to_reg(vcpu, p, dbg_reg);
452
453         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
454
455         return true;
456 }
457
458 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
459                 const struct kvm_one_reg *reg, void __user *uaddr)
460 {
461         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
462
463         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
464                 return -EFAULT;
465         return 0;
466 }
467
468 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
469         const struct kvm_one_reg *reg, void __user *uaddr)
470 {
471         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
472
473         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
474                 return -EFAULT;
475         return 0;
476 }
477
478 static void reset_bvr(struct kvm_vcpu *vcpu,
479                       const struct sys_reg_desc *rd)
480 {
481         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
482 }
483
484 static bool trap_bcr(struct kvm_vcpu *vcpu,
485                      struct sys_reg_params *p,
486                      const struct sys_reg_desc *rd)
487 {
488         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
489
490         if (p->is_write)
491                 reg_to_dbg(vcpu, p, dbg_reg);
492         else
493                 dbg_to_reg(vcpu, p, dbg_reg);
494
495         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
496
497         return true;
498 }
499
500 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
501                 const struct kvm_one_reg *reg, void __user *uaddr)
502 {
503         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
504
505         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
506                 return -EFAULT;
507
508         return 0;
509 }
510
511 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
512         const struct kvm_one_reg *reg, void __user *uaddr)
513 {
514         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
515
516         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
517                 return -EFAULT;
518         return 0;
519 }
520
521 static void reset_bcr(struct kvm_vcpu *vcpu,
522                       const struct sys_reg_desc *rd)
523 {
524         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
525 }
526
527 static bool trap_wvr(struct kvm_vcpu *vcpu,
528                      struct sys_reg_params *p,
529                      const struct sys_reg_desc *rd)
530 {
531         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
532
533         if (p->is_write)
534                 reg_to_dbg(vcpu, p, dbg_reg);
535         else
536                 dbg_to_reg(vcpu, p, dbg_reg);
537
538         trace_trap_reg(__func__, rd->reg, p->is_write,
539                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
540
541         return true;
542 }
543
544 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
545                 const struct kvm_one_reg *reg, void __user *uaddr)
546 {
547         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
548
549         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
550                 return -EFAULT;
551         return 0;
552 }
553
554 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
555         const struct kvm_one_reg *reg, void __user *uaddr)
556 {
557         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
558
559         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
560                 return -EFAULT;
561         return 0;
562 }
563
564 static void reset_wvr(struct kvm_vcpu *vcpu,
565                       const struct sys_reg_desc *rd)
566 {
567         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
568 }
569
570 static bool trap_wcr(struct kvm_vcpu *vcpu,
571                      struct sys_reg_params *p,
572                      const struct sys_reg_desc *rd)
573 {
574         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
575
576         if (p->is_write)
577                 reg_to_dbg(vcpu, p, dbg_reg);
578         else
579                 dbg_to_reg(vcpu, p, dbg_reg);
580
581         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
582
583         return true;
584 }
585
586 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
587                 const struct kvm_one_reg *reg, void __user *uaddr)
588 {
589         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
590
591         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
592                 return -EFAULT;
593         return 0;
594 }
595
596 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
597         const struct kvm_one_reg *reg, void __user *uaddr)
598 {
599         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
600
601         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
602                 return -EFAULT;
603         return 0;
604 }
605
606 static void reset_wcr(struct kvm_vcpu *vcpu,
607                       const struct sys_reg_desc *rd)
608 {
609         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
610 }
611
612 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
613 {
614         u64 amair = read_sysreg(amair_el1);
615         vcpu_write_sys_reg(vcpu, amair, AMAIR_EL1);
616 }
617
618 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
619 {
620         u64 mpidr;
621
622         /*
623          * Map the vcpu_id into the first three affinity level fields of
624          * the MPIDR. We limit the number of VCPUs in level 0 due to a
625          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
626          * of the GICv3 to be able to address each CPU directly when
627          * sending IPIs.
628          */
629         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
630         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
631         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
632         vcpu_write_sys_reg(vcpu, (1ULL << 31) | mpidr, MPIDR_EL1);
633 }
634
635 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
636 {
637         u64 pmcr, val;
638
639         pmcr = read_sysreg(pmcr_el0);
640         /*
641          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
642          * except PMCR.E resetting to zero.
643          */
644         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
645                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
646         __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
647 }
648
649 static bool check_pmu_access_disabled(struct kvm_vcpu *vcpu, u64 flags)
650 {
651         u64 reg = __vcpu_sys_reg(vcpu, PMUSERENR_EL0);
652         bool enabled = (reg & flags) || vcpu_mode_priv(vcpu);
653
654         if (!enabled)
655                 kvm_inject_undefined(vcpu);
656
657         return !enabled;
658 }
659
660 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
661 {
662         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_EN);
663 }
664
665 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
666 {
667         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN);
668 }
669
670 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
671 {
672         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN);
673 }
674
675 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
676 {
677         return check_pmu_access_disabled(vcpu, ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN);
678 }
679
680 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
681                         const struct sys_reg_desc *r)
682 {
683         u64 val;
684
685         if (!kvm_arm_pmu_v3_ready(vcpu))
686                 return trap_raz_wi(vcpu, p, r);
687
688         if (pmu_access_el0_disabled(vcpu))
689                 return false;
690
691         if (p->is_write) {
692                 /* Only update writeable bits of PMCR */
693                 val = __vcpu_sys_reg(vcpu, PMCR_EL0);
694                 val &= ~ARMV8_PMU_PMCR_MASK;
695                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
696                 __vcpu_sys_reg(vcpu, PMCR_EL0) = val;
697                 kvm_pmu_handle_pmcr(vcpu, val);
698         } else {
699                 /* PMCR.P & PMCR.C are RAZ */
700                 val = __vcpu_sys_reg(vcpu, PMCR_EL0)
701                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
702                 p->regval = val;
703         }
704
705         return true;
706 }
707
708 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
709                           const struct sys_reg_desc *r)
710 {
711         if (!kvm_arm_pmu_v3_ready(vcpu))
712                 return trap_raz_wi(vcpu, p, r);
713
714         if (pmu_access_event_counter_el0_disabled(vcpu))
715                 return false;
716
717         if (p->is_write)
718                 __vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
719         else
720                 /* return PMSELR.SEL field */
721                 p->regval = __vcpu_sys_reg(vcpu, PMSELR_EL0)
722                             & ARMV8_PMU_COUNTER_MASK;
723
724         return true;
725 }
726
727 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
728                           const struct sys_reg_desc *r)
729 {
730         u64 pmceid;
731
732         if (!kvm_arm_pmu_v3_ready(vcpu))
733                 return trap_raz_wi(vcpu, p, r);
734
735         BUG_ON(p->is_write);
736
737         if (pmu_access_el0_disabled(vcpu))
738                 return false;
739
740         if (!(p->Op2 & 1))
741                 pmceid = read_sysreg(pmceid0_el0);
742         else
743                 pmceid = read_sysreg(pmceid1_el0);
744
745         p->regval = pmceid;
746
747         return true;
748 }
749
750 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
751 {
752         u64 pmcr, val;
753
754         pmcr = __vcpu_sys_reg(vcpu, PMCR_EL0);
755         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
756         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX) {
757                 kvm_inject_undefined(vcpu);
758                 return false;
759         }
760
761         return true;
762 }
763
764 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
765                               struct sys_reg_params *p,
766                               const struct sys_reg_desc *r)
767 {
768         u64 idx;
769
770         if (!kvm_arm_pmu_v3_ready(vcpu))
771                 return trap_raz_wi(vcpu, p, r);
772
773         if (r->CRn == 9 && r->CRm == 13) {
774                 if (r->Op2 == 2) {
775                         /* PMXEVCNTR_EL0 */
776                         if (pmu_access_event_counter_el0_disabled(vcpu))
777                                 return false;
778
779                         idx = __vcpu_sys_reg(vcpu, PMSELR_EL0)
780                               & ARMV8_PMU_COUNTER_MASK;
781                 } else if (r->Op2 == 0) {
782                         /* PMCCNTR_EL0 */
783                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
784                                 return false;
785
786                         idx = ARMV8_PMU_CYCLE_IDX;
787                 } else {
788                         return false;
789                 }
790         } else if (r->CRn == 0 && r->CRm == 9) {
791                 /* PMCCNTR */
792                 if (pmu_access_event_counter_el0_disabled(vcpu))
793                         return false;
794
795                 idx = ARMV8_PMU_CYCLE_IDX;
796         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
797                 /* PMEVCNTRn_EL0 */
798                 if (pmu_access_event_counter_el0_disabled(vcpu))
799                         return false;
800
801                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
802         } else {
803                 return false;
804         }
805
806         if (!pmu_counter_idx_valid(vcpu, idx))
807                 return false;
808
809         if (p->is_write) {
810                 if (pmu_access_el0_disabled(vcpu))
811                         return false;
812
813                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
814         } else {
815                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
816         }
817
818         return true;
819 }
820
821 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
822                                const struct sys_reg_desc *r)
823 {
824         u64 idx, reg;
825
826         if (!kvm_arm_pmu_v3_ready(vcpu))
827                 return trap_raz_wi(vcpu, p, r);
828
829         if (pmu_access_el0_disabled(vcpu))
830                 return false;
831
832         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
833                 /* PMXEVTYPER_EL0 */
834                 idx = __vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
835                 reg = PMEVTYPER0_EL0 + idx;
836         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
837                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
838                 if (idx == ARMV8_PMU_CYCLE_IDX)
839                         reg = PMCCFILTR_EL0;
840                 else
841                         /* PMEVTYPERn_EL0 */
842                         reg = PMEVTYPER0_EL0 + idx;
843         } else {
844                 BUG();
845         }
846
847         if (!pmu_counter_idx_valid(vcpu, idx))
848                 return false;
849
850         if (p->is_write) {
851                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
852                 __vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
853         } else {
854                 p->regval = __vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
855         }
856
857         return true;
858 }
859
860 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
861                            const struct sys_reg_desc *r)
862 {
863         u64 val, mask;
864
865         if (!kvm_arm_pmu_v3_ready(vcpu))
866                 return trap_raz_wi(vcpu, p, r);
867
868         if (pmu_access_el0_disabled(vcpu))
869                 return false;
870
871         mask = kvm_pmu_valid_counter_mask(vcpu);
872         if (p->is_write) {
873                 val = p->regval & mask;
874                 if (r->Op2 & 0x1) {
875                         /* accessing PMCNTENSET_EL0 */
876                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
877                         kvm_pmu_enable_counter(vcpu, val);
878                 } else {
879                         /* accessing PMCNTENCLR_EL0 */
880                         __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
881                         kvm_pmu_disable_counter(vcpu, val);
882                 }
883         } else {
884                 p->regval = __vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
885         }
886
887         return true;
888 }
889
890 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
891                            const struct sys_reg_desc *r)
892 {
893         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
894
895         if (!kvm_arm_pmu_v3_ready(vcpu))
896                 return trap_raz_wi(vcpu, p, r);
897
898         if (!vcpu_mode_priv(vcpu)) {
899                 kvm_inject_undefined(vcpu);
900                 return false;
901         }
902
903         if (p->is_write) {
904                 u64 val = p->regval & mask;
905
906                 if (r->Op2 & 0x1)
907                         /* accessing PMINTENSET_EL1 */
908                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
909                 else
910                         /* accessing PMINTENCLR_EL1 */
911                         __vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
912         } else {
913                 p->regval = __vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
914         }
915
916         return true;
917 }
918
919 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
920                          const struct sys_reg_desc *r)
921 {
922         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
923
924         if (!kvm_arm_pmu_v3_ready(vcpu))
925                 return trap_raz_wi(vcpu, p, r);
926
927         if (pmu_access_el0_disabled(vcpu))
928                 return false;
929
930         if (p->is_write) {
931                 if (r->CRm & 0x2)
932                         /* accessing PMOVSSET_EL0 */
933                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) |= (p->regval & mask);
934                 else
935                         /* accessing PMOVSCLR_EL0 */
936                         __vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
937         } else {
938                 p->regval = __vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
939         }
940
941         return true;
942 }
943
944 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
945                            const struct sys_reg_desc *r)
946 {
947         u64 mask;
948
949         if (!kvm_arm_pmu_v3_ready(vcpu))
950                 return trap_raz_wi(vcpu, p, r);
951
952         if (!p->is_write)
953                 return read_from_write_only(vcpu, p, r);
954
955         if (pmu_write_swinc_el0_disabled(vcpu))
956                 return false;
957
958         mask = kvm_pmu_valid_counter_mask(vcpu);
959         kvm_pmu_software_increment(vcpu, p->regval & mask);
960         return true;
961 }
962
963 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
964                              const struct sys_reg_desc *r)
965 {
966         if (!kvm_arm_pmu_v3_ready(vcpu))
967                 return trap_raz_wi(vcpu, p, r);
968
969         if (p->is_write) {
970                 if (!vcpu_mode_priv(vcpu)) {
971                         kvm_inject_undefined(vcpu);
972                         return false;
973                 }
974
975                 __vcpu_sys_reg(vcpu, PMUSERENR_EL0) =
976                                p->regval & ARMV8_PMU_USERENR_MASK;
977         } else {
978                 p->regval = __vcpu_sys_reg(vcpu, PMUSERENR_EL0)
979                             & ARMV8_PMU_USERENR_MASK;
980         }
981
982         return true;
983 }
984
985 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
986 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
987         { SYS_DESC(SYS_DBGBVRn_EL1(n)),                                 \
988           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
989         { SYS_DESC(SYS_DBGBCRn_EL1(n)),                                 \
990           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
991         { SYS_DESC(SYS_DBGWVRn_EL1(n)),                                 \
992           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
993         { SYS_DESC(SYS_DBGWCRn_EL1(n)),                                 \
994           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
995
996 /* Macro to expand the PMEVCNTRn_EL0 register */
997 #define PMU_PMEVCNTR_EL0(n)                                             \
998         { SYS_DESC(SYS_PMEVCNTRn_EL0(n)),                                       \
999           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
1000
1001 /* Macro to expand the PMEVTYPERn_EL0 register */
1002 #define PMU_PMEVTYPER_EL0(n)                                            \
1003         { SYS_DESC(SYS_PMEVTYPERn_EL0(n)),                                      \
1004           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
1005
1006 static bool access_cntp_tval(struct kvm_vcpu *vcpu,
1007                 struct sys_reg_params *p,
1008                 const struct sys_reg_desc *r)
1009 {
1010         u64 now = kvm_phys_timer_read();
1011         u64 cval;
1012
1013         if (p->is_write) {
1014                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL,
1015                                       p->regval + now);
1016         } else {
1017                 cval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1018                 p->regval = cval - now;
1019         }
1020
1021         return true;
1022 }
1023
1024 static bool access_cntp_ctl(struct kvm_vcpu *vcpu,
1025                 struct sys_reg_params *p,
1026                 const struct sys_reg_desc *r)
1027 {
1028         if (p->is_write)
1029                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CTL, p->regval);
1030         else
1031                 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CTL);
1032
1033         return true;
1034 }
1035
1036 static bool access_cntp_cval(struct kvm_vcpu *vcpu,
1037                 struct sys_reg_params *p,
1038                 const struct sys_reg_desc *r)
1039 {
1040         if (p->is_write)
1041                 kvm_arm_timer_set_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL, p->regval);
1042         else
1043                 p->regval = kvm_arm_timer_get_reg(vcpu, KVM_REG_ARM_PTIMER_CVAL);
1044
1045         return true;
1046 }
1047
1048 /* Read a sanitised cpufeature ID register by sys_reg_desc */
1049 static u64 read_id_reg(struct sys_reg_desc const *r, bool raz)
1050 {
1051         u32 id = sys_reg((u32)r->Op0, (u32)r->Op1,
1052                          (u32)r->CRn, (u32)r->CRm, (u32)r->Op2);
1053         u64 val = raz ? 0 : read_sanitised_ftr_reg(id);
1054
1055         if (id == SYS_ID_AA64PFR0_EL1) {
1056                 if (val & (0xfUL << ID_AA64PFR0_SVE_SHIFT))
1057                         kvm_debug("SVE unsupported for guests, suppressing\n");
1058
1059                 val &= ~(0xfUL << ID_AA64PFR0_SVE_SHIFT);
1060         } else if (id == SYS_ID_AA64ISAR1_EL1) {
1061                 const u64 ptrauth_mask = (0xfUL << ID_AA64ISAR1_APA_SHIFT) |
1062                                          (0xfUL << ID_AA64ISAR1_API_SHIFT) |
1063                                          (0xfUL << ID_AA64ISAR1_GPA_SHIFT) |
1064                                          (0xfUL << ID_AA64ISAR1_GPI_SHIFT);
1065                 if (val & ptrauth_mask)
1066                         kvm_debug("ptrauth unsupported for guests, suppressing\n");
1067                 val &= ~ptrauth_mask;
1068         }
1069
1070         return val;
1071 }
1072
1073 /* cpufeature ID register access trap handlers */
1074
1075 static bool __access_id_reg(struct kvm_vcpu *vcpu,
1076                             struct sys_reg_params *p,
1077                             const struct sys_reg_desc *r,
1078                             bool raz)
1079 {
1080         if (p->is_write)
1081                 return write_to_read_only(vcpu, p, r);
1082
1083         p->regval = read_id_reg(r, raz);
1084         return true;
1085 }
1086
1087 static bool access_id_reg(struct kvm_vcpu *vcpu,
1088                           struct sys_reg_params *p,
1089                           const struct sys_reg_desc *r)
1090 {
1091         return __access_id_reg(vcpu, p, r, false);
1092 }
1093
1094 static bool access_raz_id_reg(struct kvm_vcpu *vcpu,
1095                               struct sys_reg_params *p,
1096                               const struct sys_reg_desc *r)
1097 {
1098         return __access_id_reg(vcpu, p, r, true);
1099 }
1100
1101 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id);
1102 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id);
1103 static u64 sys_reg_to_index(const struct sys_reg_desc *reg);
1104
1105 /*
1106  * cpufeature ID register user accessors
1107  *
1108  * For now, these registers are immutable for userspace, so no values
1109  * are stored, and for set_id_reg() we don't allow the effective value
1110  * to be changed.
1111  */
1112 static int __get_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1113                         bool raz)
1114 {
1115         const u64 id = sys_reg_to_index(rd);
1116         const u64 val = read_id_reg(rd, raz);
1117
1118         return reg_to_user(uaddr, &val, id);
1119 }
1120
1121 static int __set_id_reg(const struct sys_reg_desc *rd, void __user *uaddr,
1122                         bool raz)
1123 {
1124         const u64 id = sys_reg_to_index(rd);
1125         int err;
1126         u64 val;
1127
1128         err = reg_from_user(&val, uaddr, id);
1129         if (err)
1130                 return err;
1131
1132         /* This is what we mean by invariant: you can't change it. */
1133         if (val != read_id_reg(rd, raz))
1134                 return -EINVAL;
1135
1136         return 0;
1137 }
1138
1139 static int get_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1140                       const struct kvm_one_reg *reg, void __user *uaddr)
1141 {
1142         return __get_id_reg(rd, uaddr, false);
1143 }
1144
1145 static int set_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1146                       const struct kvm_one_reg *reg, void __user *uaddr)
1147 {
1148         return __set_id_reg(rd, uaddr, false);
1149 }
1150
1151 static int get_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1152                           const struct kvm_one_reg *reg, void __user *uaddr)
1153 {
1154         return __get_id_reg(rd, uaddr, true);
1155 }
1156
1157 static int set_raz_id_reg(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
1158                           const struct kvm_one_reg *reg, void __user *uaddr)
1159 {
1160         return __set_id_reg(rd, uaddr, true);
1161 }
1162
1163 /* sys_reg_desc initialiser for known cpufeature ID registers */
1164 #define ID_SANITISED(name) {                    \
1165         SYS_DESC(SYS_##name),                   \
1166         .access = access_id_reg,                \
1167         .get_user = get_id_reg,                 \
1168         .set_user = set_id_reg,                 \
1169 }
1170
1171 /*
1172  * sys_reg_desc initialiser for architecturally unallocated cpufeature ID
1173  * register with encoding Op0=3, Op1=0, CRn=0, CRm=crm, Op2=op2
1174  * (1 <= crm < 8, 0 <= Op2 < 8).
1175  */
1176 #define ID_UNALLOCATED(crm, op2) {                      \
1177         Op0(3), Op1(0), CRn(0), CRm(crm), Op2(op2),     \
1178         .access = access_raz_id_reg,                    \
1179         .get_user = get_raz_id_reg,                     \
1180         .set_user = set_raz_id_reg,                     \
1181 }
1182
1183 /*
1184  * sys_reg_desc initialiser for known ID registers that we hide from guests.
1185  * For now, these are exposed just like unallocated ID regs: they appear
1186  * RAZ for the guest.
1187  */
1188 #define ID_HIDDEN(name) {                       \
1189         SYS_DESC(SYS_##name),                   \
1190         .access = access_raz_id_reg,            \
1191         .get_user = get_raz_id_reg,             \
1192         .set_user = set_raz_id_reg,             \
1193 }
1194
1195 /*
1196  * Architected system registers.
1197  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
1198  *
1199  * Debug handling: We do trap most, if not all debug related system
1200  * registers. The implementation is good enough to ensure that a guest
1201  * can use these with minimal performance degradation. The drawback is
1202  * that we don't implement any of the external debug, none of the
1203  * OSlock protocol. This should be revisited if we ever encounter a
1204  * more demanding guest...
1205  */
1206 static const struct sys_reg_desc sys_reg_descs[] = {
1207         { SYS_DESC(SYS_DC_ISW), access_dcsw },
1208         { SYS_DESC(SYS_DC_CSW), access_dcsw },
1209         { SYS_DESC(SYS_DC_CISW), access_dcsw },
1210
1211         DBG_BCR_BVR_WCR_WVR_EL1(0),
1212         DBG_BCR_BVR_WCR_WVR_EL1(1),
1213         { SYS_DESC(SYS_MDCCINT_EL1), trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
1214         { SYS_DESC(SYS_MDSCR_EL1), trap_debug_regs, reset_val, MDSCR_EL1, 0 },
1215         DBG_BCR_BVR_WCR_WVR_EL1(2),
1216         DBG_BCR_BVR_WCR_WVR_EL1(3),
1217         DBG_BCR_BVR_WCR_WVR_EL1(4),
1218         DBG_BCR_BVR_WCR_WVR_EL1(5),
1219         DBG_BCR_BVR_WCR_WVR_EL1(6),
1220         DBG_BCR_BVR_WCR_WVR_EL1(7),
1221         DBG_BCR_BVR_WCR_WVR_EL1(8),
1222         DBG_BCR_BVR_WCR_WVR_EL1(9),
1223         DBG_BCR_BVR_WCR_WVR_EL1(10),
1224         DBG_BCR_BVR_WCR_WVR_EL1(11),
1225         DBG_BCR_BVR_WCR_WVR_EL1(12),
1226         DBG_BCR_BVR_WCR_WVR_EL1(13),
1227         DBG_BCR_BVR_WCR_WVR_EL1(14),
1228         DBG_BCR_BVR_WCR_WVR_EL1(15),
1229
1230         { SYS_DESC(SYS_MDRAR_EL1), trap_raz_wi },
1231         { SYS_DESC(SYS_OSLAR_EL1), trap_raz_wi },
1232         { SYS_DESC(SYS_OSLSR_EL1), trap_oslsr_el1 },
1233         { SYS_DESC(SYS_OSDLR_EL1), trap_raz_wi },
1234         { SYS_DESC(SYS_DBGPRCR_EL1), trap_raz_wi },
1235         { SYS_DESC(SYS_DBGCLAIMSET_EL1), trap_raz_wi },
1236         { SYS_DESC(SYS_DBGCLAIMCLR_EL1), trap_raz_wi },
1237         { SYS_DESC(SYS_DBGAUTHSTATUS_EL1), trap_dbgauthstatus_el1 },
1238
1239         { SYS_DESC(SYS_MDCCSR_EL0), trap_raz_wi },
1240         { SYS_DESC(SYS_DBGDTR_EL0), trap_raz_wi },
1241         // DBGDTR[TR]X_EL0 share the same encoding
1242         { SYS_DESC(SYS_DBGDTRTX_EL0), trap_raz_wi },
1243
1244         { SYS_DESC(SYS_DBGVCR32_EL2), NULL, reset_val, DBGVCR32_EL2, 0 },
1245
1246         { SYS_DESC(SYS_MPIDR_EL1), NULL, reset_mpidr, MPIDR_EL1 },
1247
1248         /*
1249          * ID regs: all ID_SANITISED() entries here must have corresponding
1250          * entries in arm64_ftr_regs[].
1251          */
1252
1253         /* AArch64 mappings of the AArch32 ID registers */
1254         /* CRm=1 */
1255         ID_SANITISED(ID_PFR0_EL1),
1256         ID_SANITISED(ID_PFR1_EL1),
1257         ID_SANITISED(ID_DFR0_EL1),
1258         ID_HIDDEN(ID_AFR0_EL1),
1259         ID_SANITISED(ID_MMFR0_EL1),
1260         ID_SANITISED(ID_MMFR1_EL1),
1261         ID_SANITISED(ID_MMFR2_EL1),
1262         ID_SANITISED(ID_MMFR3_EL1),
1263
1264         /* CRm=2 */
1265         ID_SANITISED(ID_ISAR0_EL1),
1266         ID_SANITISED(ID_ISAR1_EL1),
1267         ID_SANITISED(ID_ISAR2_EL1),
1268         ID_SANITISED(ID_ISAR3_EL1),
1269         ID_SANITISED(ID_ISAR4_EL1),
1270         ID_SANITISED(ID_ISAR5_EL1),
1271         ID_SANITISED(ID_MMFR4_EL1),
1272         ID_UNALLOCATED(2,7),
1273
1274         /* CRm=3 */
1275         ID_SANITISED(MVFR0_EL1),
1276         ID_SANITISED(MVFR1_EL1),
1277         ID_SANITISED(MVFR2_EL1),
1278         ID_UNALLOCATED(3,3),
1279         ID_UNALLOCATED(3,4),
1280         ID_UNALLOCATED(3,5),
1281         ID_UNALLOCATED(3,6),
1282         ID_UNALLOCATED(3,7),
1283
1284         /* AArch64 ID registers */
1285         /* CRm=4 */
1286         ID_SANITISED(ID_AA64PFR0_EL1),
1287         ID_SANITISED(ID_AA64PFR1_EL1),
1288         ID_UNALLOCATED(4,2),
1289         ID_UNALLOCATED(4,3),
1290         ID_UNALLOCATED(4,4),
1291         ID_UNALLOCATED(4,5),
1292         ID_UNALLOCATED(4,6),
1293         ID_UNALLOCATED(4,7),
1294
1295         /* CRm=5 */
1296         ID_SANITISED(ID_AA64DFR0_EL1),
1297         ID_SANITISED(ID_AA64DFR1_EL1),
1298         ID_UNALLOCATED(5,2),
1299         ID_UNALLOCATED(5,3),
1300         ID_HIDDEN(ID_AA64AFR0_EL1),
1301         ID_HIDDEN(ID_AA64AFR1_EL1),
1302         ID_UNALLOCATED(5,6),
1303         ID_UNALLOCATED(5,7),
1304
1305         /* CRm=6 */
1306         ID_SANITISED(ID_AA64ISAR0_EL1),
1307         ID_SANITISED(ID_AA64ISAR1_EL1),
1308         ID_UNALLOCATED(6,2),
1309         ID_UNALLOCATED(6,3),
1310         ID_UNALLOCATED(6,4),
1311         ID_UNALLOCATED(6,5),
1312         ID_UNALLOCATED(6,6),
1313         ID_UNALLOCATED(6,7),
1314
1315         /* CRm=7 */
1316         ID_SANITISED(ID_AA64MMFR0_EL1),
1317         ID_SANITISED(ID_AA64MMFR1_EL1),
1318         ID_SANITISED(ID_AA64MMFR2_EL1),
1319         ID_UNALLOCATED(7,3),
1320         ID_UNALLOCATED(7,4),
1321         ID_UNALLOCATED(7,5),
1322         ID_UNALLOCATED(7,6),
1323         ID_UNALLOCATED(7,7),
1324
1325         { SYS_DESC(SYS_SCTLR_EL1), access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
1326         { SYS_DESC(SYS_CPACR_EL1), NULL, reset_val, CPACR_EL1, 0 },
1327         { SYS_DESC(SYS_TTBR0_EL1), access_vm_reg, reset_unknown, TTBR0_EL1 },
1328         { SYS_DESC(SYS_TTBR1_EL1), access_vm_reg, reset_unknown, TTBR1_EL1 },
1329         { SYS_DESC(SYS_TCR_EL1), access_vm_reg, reset_val, TCR_EL1, 0 },
1330
1331         { SYS_DESC(SYS_AFSR0_EL1), access_vm_reg, reset_unknown, AFSR0_EL1 },
1332         { SYS_DESC(SYS_AFSR1_EL1), access_vm_reg, reset_unknown, AFSR1_EL1 },
1333         { SYS_DESC(SYS_ESR_EL1), access_vm_reg, reset_unknown, ESR_EL1 },
1334
1335         { SYS_DESC(SYS_ERRIDR_EL1), trap_raz_wi },
1336         { SYS_DESC(SYS_ERRSELR_EL1), trap_raz_wi },
1337         { SYS_DESC(SYS_ERXFR_EL1), trap_raz_wi },
1338         { SYS_DESC(SYS_ERXCTLR_EL1), trap_raz_wi },
1339         { SYS_DESC(SYS_ERXSTATUS_EL1), trap_raz_wi },
1340         { SYS_DESC(SYS_ERXADDR_EL1), trap_raz_wi },
1341         { SYS_DESC(SYS_ERXMISC0_EL1), trap_raz_wi },
1342         { SYS_DESC(SYS_ERXMISC1_EL1), trap_raz_wi },
1343
1344         { SYS_DESC(SYS_FAR_EL1), access_vm_reg, reset_unknown, FAR_EL1 },
1345         { SYS_DESC(SYS_PAR_EL1), NULL, reset_unknown, PAR_EL1 },
1346
1347         { SYS_DESC(SYS_PMINTENSET_EL1), access_pminten, reset_unknown, PMINTENSET_EL1 },
1348         { SYS_DESC(SYS_PMINTENCLR_EL1), access_pminten, NULL, PMINTENSET_EL1 },
1349
1350         { SYS_DESC(SYS_MAIR_EL1), access_vm_reg, reset_unknown, MAIR_EL1 },
1351         { SYS_DESC(SYS_AMAIR_EL1), access_vm_reg, reset_amair_el1, AMAIR_EL1 },
1352
1353         { SYS_DESC(SYS_LORSA_EL1), trap_loregion },
1354         { SYS_DESC(SYS_LOREA_EL1), trap_loregion },
1355         { SYS_DESC(SYS_LORN_EL1), trap_loregion },
1356         { SYS_DESC(SYS_LORC_EL1), trap_loregion },
1357         { SYS_DESC(SYS_LORID_EL1), trap_loregion },
1358
1359         { SYS_DESC(SYS_VBAR_EL1), NULL, reset_val, VBAR_EL1, 0 },
1360         { SYS_DESC(SYS_DISR_EL1), NULL, reset_val, DISR_EL1, 0 },
1361
1362         { SYS_DESC(SYS_ICC_IAR0_EL1), write_to_read_only },
1363         { SYS_DESC(SYS_ICC_EOIR0_EL1), read_from_write_only },
1364         { SYS_DESC(SYS_ICC_HPPIR0_EL1), write_to_read_only },
1365         { SYS_DESC(SYS_ICC_DIR_EL1), read_from_write_only },
1366         { SYS_DESC(SYS_ICC_RPR_EL1), write_to_read_only },
1367         { SYS_DESC(SYS_ICC_SGI1R_EL1), access_gic_sgi },
1368         { SYS_DESC(SYS_ICC_ASGI1R_EL1), access_gic_sgi },
1369         { SYS_DESC(SYS_ICC_SGI0R_EL1), access_gic_sgi },
1370         { SYS_DESC(SYS_ICC_IAR1_EL1), write_to_read_only },
1371         { SYS_DESC(SYS_ICC_EOIR1_EL1), read_from_write_only },
1372         { SYS_DESC(SYS_ICC_HPPIR1_EL1), write_to_read_only },
1373         { SYS_DESC(SYS_ICC_SRE_EL1), access_gic_sre },
1374
1375         { SYS_DESC(SYS_CONTEXTIDR_EL1), access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
1376         { SYS_DESC(SYS_TPIDR_EL1), NULL, reset_unknown, TPIDR_EL1 },
1377
1378         { SYS_DESC(SYS_CNTKCTL_EL1), NULL, reset_val, CNTKCTL_EL1, 0},
1379
1380         { SYS_DESC(SYS_CSSELR_EL1), NULL, reset_unknown, CSSELR_EL1 },
1381
1382         { SYS_DESC(SYS_PMCR_EL0), access_pmcr, reset_pmcr, },
1383         { SYS_DESC(SYS_PMCNTENSET_EL0), access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
1384         { SYS_DESC(SYS_PMCNTENCLR_EL0), access_pmcnten, NULL, PMCNTENSET_EL0 },
1385         { SYS_DESC(SYS_PMOVSCLR_EL0), access_pmovs, NULL, PMOVSSET_EL0 },
1386         { SYS_DESC(SYS_PMSWINC_EL0), access_pmswinc, reset_unknown, PMSWINC_EL0 },
1387         { SYS_DESC(SYS_PMSELR_EL0), access_pmselr, reset_unknown, PMSELR_EL0 },
1388         { SYS_DESC(SYS_PMCEID0_EL0), access_pmceid },
1389         { SYS_DESC(SYS_PMCEID1_EL0), access_pmceid },
1390         { SYS_DESC(SYS_PMCCNTR_EL0), access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1391         { SYS_DESC(SYS_PMXEVTYPER_EL0), access_pmu_evtyper },
1392         { SYS_DESC(SYS_PMXEVCNTR_EL0), access_pmu_evcntr },
1393         /*
1394          * PMUSERENR_EL0 resets as unknown in 64bit mode while it resets as zero
1395          * in 32bit mode. Here we choose to reset it as zero for consistency.
1396          */
1397         { SYS_DESC(SYS_PMUSERENR_EL0), access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1398         { SYS_DESC(SYS_PMOVSSET_EL0), access_pmovs, reset_unknown, PMOVSSET_EL0 },
1399
1400         { SYS_DESC(SYS_TPIDR_EL0), NULL, reset_unknown, TPIDR_EL0 },
1401         { SYS_DESC(SYS_TPIDRRO_EL0), NULL, reset_unknown, TPIDRRO_EL0 },
1402
1403         { SYS_DESC(SYS_CNTP_TVAL_EL0), access_cntp_tval },
1404         { SYS_DESC(SYS_CNTP_CTL_EL0), access_cntp_ctl },
1405         { SYS_DESC(SYS_CNTP_CVAL_EL0), access_cntp_cval },
1406
1407         /* PMEVCNTRn_EL0 */
1408         PMU_PMEVCNTR_EL0(0),
1409         PMU_PMEVCNTR_EL0(1),
1410         PMU_PMEVCNTR_EL0(2),
1411         PMU_PMEVCNTR_EL0(3),
1412         PMU_PMEVCNTR_EL0(4),
1413         PMU_PMEVCNTR_EL0(5),
1414         PMU_PMEVCNTR_EL0(6),
1415         PMU_PMEVCNTR_EL0(7),
1416         PMU_PMEVCNTR_EL0(8),
1417         PMU_PMEVCNTR_EL0(9),
1418         PMU_PMEVCNTR_EL0(10),
1419         PMU_PMEVCNTR_EL0(11),
1420         PMU_PMEVCNTR_EL0(12),
1421         PMU_PMEVCNTR_EL0(13),
1422         PMU_PMEVCNTR_EL0(14),
1423         PMU_PMEVCNTR_EL0(15),
1424         PMU_PMEVCNTR_EL0(16),
1425         PMU_PMEVCNTR_EL0(17),
1426         PMU_PMEVCNTR_EL0(18),
1427         PMU_PMEVCNTR_EL0(19),
1428         PMU_PMEVCNTR_EL0(20),
1429         PMU_PMEVCNTR_EL0(21),
1430         PMU_PMEVCNTR_EL0(22),
1431         PMU_PMEVCNTR_EL0(23),
1432         PMU_PMEVCNTR_EL0(24),
1433         PMU_PMEVCNTR_EL0(25),
1434         PMU_PMEVCNTR_EL0(26),
1435         PMU_PMEVCNTR_EL0(27),
1436         PMU_PMEVCNTR_EL0(28),
1437         PMU_PMEVCNTR_EL0(29),
1438         PMU_PMEVCNTR_EL0(30),
1439         /* PMEVTYPERn_EL0 */
1440         PMU_PMEVTYPER_EL0(0),
1441         PMU_PMEVTYPER_EL0(1),
1442         PMU_PMEVTYPER_EL0(2),
1443         PMU_PMEVTYPER_EL0(3),
1444         PMU_PMEVTYPER_EL0(4),
1445         PMU_PMEVTYPER_EL0(5),
1446         PMU_PMEVTYPER_EL0(6),
1447         PMU_PMEVTYPER_EL0(7),
1448         PMU_PMEVTYPER_EL0(8),
1449         PMU_PMEVTYPER_EL0(9),
1450         PMU_PMEVTYPER_EL0(10),
1451         PMU_PMEVTYPER_EL0(11),
1452         PMU_PMEVTYPER_EL0(12),
1453         PMU_PMEVTYPER_EL0(13),
1454         PMU_PMEVTYPER_EL0(14),
1455         PMU_PMEVTYPER_EL0(15),
1456         PMU_PMEVTYPER_EL0(16),
1457         PMU_PMEVTYPER_EL0(17),
1458         PMU_PMEVTYPER_EL0(18),
1459         PMU_PMEVTYPER_EL0(19),
1460         PMU_PMEVTYPER_EL0(20),
1461         PMU_PMEVTYPER_EL0(21),
1462         PMU_PMEVTYPER_EL0(22),
1463         PMU_PMEVTYPER_EL0(23),
1464         PMU_PMEVTYPER_EL0(24),
1465         PMU_PMEVTYPER_EL0(25),
1466         PMU_PMEVTYPER_EL0(26),
1467         PMU_PMEVTYPER_EL0(27),
1468         PMU_PMEVTYPER_EL0(28),
1469         PMU_PMEVTYPER_EL0(29),
1470         PMU_PMEVTYPER_EL0(30),
1471         /*
1472          * PMCCFILTR_EL0 resets as unknown in 64bit mode while it resets as zero
1473          * in 32bit mode. Here we choose to reset it as zero for consistency.
1474          */
1475         { SYS_DESC(SYS_PMCCFILTR_EL0), access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1476
1477         { SYS_DESC(SYS_DACR32_EL2), NULL, reset_unknown, DACR32_EL2 },
1478         { SYS_DESC(SYS_IFSR32_EL2), NULL, reset_unknown, IFSR32_EL2 },
1479         { SYS_DESC(SYS_FPEXC32_EL2), NULL, reset_val, FPEXC32_EL2, 0x700 },
1480 };
1481
1482 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1483                         struct sys_reg_params *p,
1484                         const struct sys_reg_desc *r)
1485 {
1486         if (p->is_write) {
1487                 return ignore_write(vcpu, p);
1488         } else {
1489                 u64 dfr = read_sanitised_ftr_reg(SYS_ID_AA64DFR0_EL1);
1490                 u64 pfr = read_sanitised_ftr_reg(SYS_ID_AA64PFR0_EL1);
1491                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1492
1493                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1494                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1495                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1496                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1497                 return true;
1498         }
1499 }
1500
1501 static bool trap_debug32(struct kvm_vcpu *vcpu,
1502                          struct sys_reg_params *p,
1503                          const struct sys_reg_desc *r)
1504 {
1505         if (p->is_write) {
1506                 vcpu_cp14(vcpu, r->reg) = p->regval;
1507                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1508         } else {
1509                 p->regval = vcpu_cp14(vcpu, r->reg);
1510         }
1511
1512         return true;
1513 }
1514
1515 /* AArch32 debug register mappings
1516  *
1517  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1518  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1519  *
1520  * All control registers and watchpoint value registers are mapped to
1521  * the lower 32 bits of their AArch64 equivalents. We share the trap
1522  * handlers with the above AArch64 code which checks what mode the
1523  * system is in.
1524  */
1525
1526 static bool trap_xvr(struct kvm_vcpu *vcpu,
1527                      struct sys_reg_params *p,
1528                      const struct sys_reg_desc *rd)
1529 {
1530         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1531
1532         if (p->is_write) {
1533                 u64 val = *dbg_reg;
1534
1535                 val &= 0xffffffffUL;
1536                 val |= p->regval << 32;
1537                 *dbg_reg = val;
1538
1539                 vcpu->arch.flags |= KVM_ARM64_DEBUG_DIRTY;
1540         } else {
1541                 p->regval = *dbg_reg >> 32;
1542         }
1543
1544         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1545
1546         return true;
1547 }
1548
1549 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1550         /* DBGBVRn */                                                   \
1551         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1552         /* DBGBCRn */                                                   \
1553         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1554         /* DBGWVRn */                                                   \
1555         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1556         /* DBGWCRn */                                                   \
1557         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1558
1559 #define DBGBXVR(n)                                                      \
1560         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1561
1562 /*
1563  * Trapped cp14 registers. We generally ignore most of the external
1564  * debug, on the principle that they don't really make sense to a
1565  * guest. Revisit this one day, would this principle change.
1566  */
1567 static const struct sys_reg_desc cp14_regs[] = {
1568         /* DBGIDR */
1569         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1570         /* DBGDTRRXext */
1571         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1572
1573         DBG_BCR_BVR_WCR_WVR(0),
1574         /* DBGDSCRint */
1575         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1576         DBG_BCR_BVR_WCR_WVR(1),
1577         /* DBGDCCINT */
1578         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1579         /* DBGDSCRext */
1580         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1581         DBG_BCR_BVR_WCR_WVR(2),
1582         /* DBGDTR[RT]Xint */
1583         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1584         /* DBGDTR[RT]Xext */
1585         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1586         DBG_BCR_BVR_WCR_WVR(3),
1587         DBG_BCR_BVR_WCR_WVR(4),
1588         DBG_BCR_BVR_WCR_WVR(5),
1589         /* DBGWFAR */
1590         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1591         /* DBGOSECCR */
1592         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1593         DBG_BCR_BVR_WCR_WVR(6),
1594         /* DBGVCR */
1595         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1596         DBG_BCR_BVR_WCR_WVR(7),
1597         DBG_BCR_BVR_WCR_WVR(8),
1598         DBG_BCR_BVR_WCR_WVR(9),
1599         DBG_BCR_BVR_WCR_WVR(10),
1600         DBG_BCR_BVR_WCR_WVR(11),
1601         DBG_BCR_BVR_WCR_WVR(12),
1602         DBG_BCR_BVR_WCR_WVR(13),
1603         DBG_BCR_BVR_WCR_WVR(14),
1604         DBG_BCR_BVR_WCR_WVR(15),
1605
1606         /* DBGDRAR (32bit) */
1607         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1608
1609         DBGBXVR(0),
1610         /* DBGOSLAR */
1611         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1612         DBGBXVR(1),
1613         /* DBGOSLSR */
1614         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1615         DBGBXVR(2),
1616         DBGBXVR(3),
1617         /* DBGOSDLR */
1618         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1619         DBGBXVR(4),
1620         /* DBGPRCR */
1621         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1622         DBGBXVR(5),
1623         DBGBXVR(6),
1624         DBGBXVR(7),
1625         DBGBXVR(8),
1626         DBGBXVR(9),
1627         DBGBXVR(10),
1628         DBGBXVR(11),
1629         DBGBXVR(12),
1630         DBGBXVR(13),
1631         DBGBXVR(14),
1632         DBGBXVR(15),
1633
1634         /* DBGDSAR (32bit) */
1635         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1636
1637         /* DBGDEVID2 */
1638         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1639         /* DBGDEVID1 */
1640         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1641         /* DBGDEVID */
1642         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1643         /* DBGCLAIMSET */
1644         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1645         /* DBGCLAIMCLR */
1646         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1647         /* DBGAUTHSTATUS */
1648         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1649 };
1650
1651 /* Trapped cp14 64bit registers */
1652 static const struct sys_reg_desc cp14_64_regs[] = {
1653         /* DBGDRAR (64bit) */
1654         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1655
1656         /* DBGDSAR (64bit) */
1657         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1658 };
1659
1660 /* Macro to expand the PMEVCNTRn register */
1661 #define PMU_PMEVCNTR(n)                                                 \
1662         /* PMEVCNTRn */                                                 \
1663         { Op1(0), CRn(0b1110),                                          \
1664           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1665           access_pmu_evcntr }
1666
1667 /* Macro to expand the PMEVTYPERn register */
1668 #define PMU_PMEVTYPER(n)                                                \
1669         /* PMEVTYPERn */                                                \
1670         { Op1(0), CRn(0b1110),                                          \
1671           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1672           access_pmu_evtyper }
1673
1674 /*
1675  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1676  * depending on the way they are accessed (as a 32bit or a 64bit
1677  * register).
1678  */
1679 static const struct sys_reg_desc cp15_regs[] = {
1680         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1681         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1682         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1683         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1684         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1685         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1686         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1687         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1688         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1689         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1690         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1691
1692         /*
1693          * DC{C,I,CI}SW operations:
1694          */
1695         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1696         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1697         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1698
1699         /* PMU */
1700         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1701         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1702         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1703         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1704         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1705         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1706         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1707         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1708         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1709         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1710         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1711         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1712         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1713         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1714         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1715
1716         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1717         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1718         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1719         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1720
1721         /* ICC_SRE */
1722         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1723
1724         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1725
1726         /* CNTP_TVAL */
1727         { Op1( 0), CRn(14), CRm( 2), Op2( 0), access_cntp_tval },
1728         /* CNTP_CTL */
1729         { Op1( 0), CRn(14), CRm( 2), Op2( 1), access_cntp_ctl },
1730
1731         /* PMEVCNTRn */
1732         PMU_PMEVCNTR(0),
1733         PMU_PMEVCNTR(1),
1734         PMU_PMEVCNTR(2),
1735         PMU_PMEVCNTR(3),
1736         PMU_PMEVCNTR(4),
1737         PMU_PMEVCNTR(5),
1738         PMU_PMEVCNTR(6),
1739         PMU_PMEVCNTR(7),
1740         PMU_PMEVCNTR(8),
1741         PMU_PMEVCNTR(9),
1742         PMU_PMEVCNTR(10),
1743         PMU_PMEVCNTR(11),
1744         PMU_PMEVCNTR(12),
1745         PMU_PMEVCNTR(13),
1746         PMU_PMEVCNTR(14),
1747         PMU_PMEVCNTR(15),
1748         PMU_PMEVCNTR(16),
1749         PMU_PMEVCNTR(17),
1750         PMU_PMEVCNTR(18),
1751         PMU_PMEVCNTR(19),
1752         PMU_PMEVCNTR(20),
1753         PMU_PMEVCNTR(21),
1754         PMU_PMEVCNTR(22),
1755         PMU_PMEVCNTR(23),
1756         PMU_PMEVCNTR(24),
1757         PMU_PMEVCNTR(25),
1758         PMU_PMEVCNTR(26),
1759         PMU_PMEVCNTR(27),
1760         PMU_PMEVCNTR(28),
1761         PMU_PMEVCNTR(29),
1762         PMU_PMEVCNTR(30),
1763         /* PMEVTYPERn */
1764         PMU_PMEVTYPER(0),
1765         PMU_PMEVTYPER(1),
1766         PMU_PMEVTYPER(2),
1767         PMU_PMEVTYPER(3),
1768         PMU_PMEVTYPER(4),
1769         PMU_PMEVTYPER(5),
1770         PMU_PMEVTYPER(6),
1771         PMU_PMEVTYPER(7),
1772         PMU_PMEVTYPER(8),
1773         PMU_PMEVTYPER(9),
1774         PMU_PMEVTYPER(10),
1775         PMU_PMEVTYPER(11),
1776         PMU_PMEVTYPER(12),
1777         PMU_PMEVTYPER(13),
1778         PMU_PMEVTYPER(14),
1779         PMU_PMEVTYPER(15),
1780         PMU_PMEVTYPER(16),
1781         PMU_PMEVTYPER(17),
1782         PMU_PMEVTYPER(18),
1783         PMU_PMEVTYPER(19),
1784         PMU_PMEVTYPER(20),
1785         PMU_PMEVTYPER(21),
1786         PMU_PMEVTYPER(22),
1787         PMU_PMEVTYPER(23),
1788         PMU_PMEVTYPER(24),
1789         PMU_PMEVTYPER(25),
1790         PMU_PMEVTYPER(26),
1791         PMU_PMEVTYPER(27),
1792         PMU_PMEVTYPER(28),
1793         PMU_PMEVTYPER(29),
1794         PMU_PMEVTYPER(30),
1795         /* PMCCFILTR */
1796         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1797 };
1798
1799 static const struct sys_reg_desc cp15_64_regs[] = {
1800         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1801         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1802         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI1R */
1803         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1804         { Op1( 1), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_ASGI1R */
1805         { Op1( 2), CRn( 0), CRm(12), Op2( 0), access_gic_sgi }, /* ICC_SGI0R */
1806         { Op1( 2), CRn( 0), CRm(14), Op2( 0), access_cntp_cval },
1807 };
1808
1809 /* Target specific emulation tables */
1810 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1811
1812 void kvm_register_target_sys_reg_table(unsigned int target,
1813                                        struct kvm_sys_reg_target_table *table)
1814 {
1815         target_tables[target] = table;
1816 }
1817
1818 /* Get specific register table for this target. */
1819 static const struct sys_reg_desc *get_target_table(unsigned target,
1820                                                    bool mode_is_64,
1821                                                    size_t *num)
1822 {
1823         struct kvm_sys_reg_target_table *table;
1824
1825         table = target_tables[target];
1826         if (mode_is_64) {
1827                 *num = table->table64.num;
1828                 return table->table64.table;
1829         } else {
1830                 *num = table->table32.num;
1831                 return table->table32.table;
1832         }
1833 }
1834
1835 #define reg_to_match_value(x)                                           \
1836         ({                                                              \
1837                 unsigned long val;                                      \
1838                 val  = (x)->Op0 << 14;                                  \
1839                 val |= (x)->Op1 << 11;                                  \
1840                 val |= (x)->CRn << 7;                                   \
1841                 val |= (x)->CRm << 3;                                   \
1842                 val |= (x)->Op2;                                        \
1843                 val;                                                    \
1844          })
1845
1846 static int match_sys_reg(const void *key, const void *elt)
1847 {
1848         const unsigned long pval = (unsigned long)key;
1849         const struct sys_reg_desc *r = elt;
1850
1851         return pval - reg_to_match_value(r);
1852 }
1853
1854 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1855                                          const struct sys_reg_desc table[],
1856                                          unsigned int num)
1857 {
1858         unsigned long pval = reg_to_match_value(params);
1859
1860         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1861 }
1862
1863 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1864 {
1865         kvm_inject_undefined(vcpu);
1866         return 1;
1867 }
1868
1869 static void perform_access(struct kvm_vcpu *vcpu,
1870                            struct sys_reg_params *params,
1871                            const struct sys_reg_desc *r)
1872 {
1873         trace_kvm_sys_access(*vcpu_pc(vcpu), params, r);
1874
1875         /*
1876          * Not having an accessor means that we have configured a trap
1877          * that we don't know how to handle. This certainly qualifies
1878          * as a gross bug that should be fixed right away.
1879          */
1880         BUG_ON(!r->access);
1881
1882         /* Skip instruction if instructed so */
1883         if (likely(r->access(vcpu, params, r)))
1884                 kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1885 }
1886
1887 /*
1888  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1889  *                call the corresponding trap handler.
1890  *
1891  * @params: pointer to the descriptor of the access
1892  * @table: array of trap descriptors
1893  * @num: size of the trap descriptor array
1894  *
1895  * Return 0 if the access has been handled, and -1 if not.
1896  */
1897 static int emulate_cp(struct kvm_vcpu *vcpu,
1898                       struct sys_reg_params *params,
1899                       const struct sys_reg_desc *table,
1900                       size_t num)
1901 {
1902         const struct sys_reg_desc *r;
1903
1904         if (!table)
1905                 return -1;      /* Not handled */
1906
1907         r = find_reg(params, table, num);
1908
1909         if (r) {
1910                 perform_access(vcpu, params, r);
1911                 return 0;
1912         }
1913
1914         /* Not handled */
1915         return -1;
1916 }
1917
1918 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1919                                 struct sys_reg_params *params)
1920 {
1921         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1922         int cp = -1;
1923
1924         switch(hsr_ec) {
1925         case ESR_ELx_EC_CP15_32:
1926         case ESR_ELx_EC_CP15_64:
1927                 cp = 15;
1928                 break;
1929         case ESR_ELx_EC_CP14_MR:
1930         case ESR_ELx_EC_CP14_64:
1931                 cp = 14;
1932                 break;
1933         default:
1934                 WARN_ON(1);
1935         }
1936
1937         kvm_err("Unsupported guest CP%d access at: %08lx [%08lx]\n",
1938                 cp, *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
1939         print_sys_reg_instr(params);
1940         kvm_inject_undefined(vcpu);
1941 }
1942
1943 /**
1944  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1945  * @vcpu: The VCPU pointer
1946  * @run:  The kvm_run struct
1947  */
1948 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1949                             const struct sys_reg_desc *global,
1950                             size_t nr_global,
1951                             const struct sys_reg_desc *target_specific,
1952                             size_t nr_specific)
1953 {
1954         struct sys_reg_params params;
1955         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1956         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1957         int Rt2 = (hsr >> 10) & 0x1f;
1958
1959         params.is_aarch32 = true;
1960         params.is_32bit = false;
1961         params.CRm = (hsr >> 1) & 0xf;
1962         params.is_write = ((hsr & 1) == 0);
1963
1964         params.Op0 = 0;
1965         params.Op1 = (hsr >> 16) & 0xf;
1966         params.Op2 = 0;
1967         params.CRn = 0;
1968
1969         /*
1970          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1971          * backends between AArch32 and AArch64, we get away with it.
1972          */
1973         if (params.is_write) {
1974                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1975                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1976         }
1977
1978         /*
1979          * Try to emulate the coprocessor access using the target
1980          * specific table first, and using the global table afterwards.
1981          * If either of the tables contains a handler, handle the
1982          * potential register operation in the case of a read and return
1983          * with success.
1984          */
1985         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1986             !emulate_cp(vcpu, &params, global, nr_global)) {
1987                 /* Split up the value between registers for the read side */
1988                 if (!params.is_write) {
1989                         vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1990                         vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1991                 }
1992
1993                 return 1;
1994         }
1995
1996         unhandled_cp_access(vcpu, &params);
1997         return 1;
1998 }
1999
2000 /**
2001  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
2002  * @vcpu: The VCPU pointer
2003  * @run:  The kvm_run struct
2004  */
2005 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
2006                             const struct sys_reg_desc *global,
2007                             size_t nr_global,
2008                             const struct sys_reg_desc *target_specific,
2009                             size_t nr_specific)
2010 {
2011         struct sys_reg_params params;
2012         u32 hsr = kvm_vcpu_get_hsr(vcpu);
2013         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
2014
2015         params.is_aarch32 = true;
2016         params.is_32bit = true;
2017         params.CRm = (hsr >> 1) & 0xf;
2018         params.regval = vcpu_get_reg(vcpu, Rt);
2019         params.is_write = ((hsr & 1) == 0);
2020         params.CRn = (hsr >> 10) & 0xf;
2021         params.Op0 = 0;
2022         params.Op1 = (hsr >> 14) & 0x7;
2023         params.Op2 = (hsr >> 17) & 0x7;
2024
2025         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
2026             !emulate_cp(vcpu, &params, global, nr_global)) {
2027                 if (!params.is_write)
2028                         vcpu_set_reg(vcpu, Rt, params.regval);
2029                 return 1;
2030         }
2031
2032         unhandled_cp_access(vcpu, &params);
2033         return 1;
2034 }
2035
2036 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2037 {
2038         const struct sys_reg_desc *target_specific;
2039         size_t num;
2040
2041         target_specific = get_target_table(vcpu->arch.target, false, &num);
2042         return kvm_handle_cp_64(vcpu,
2043                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
2044                                 target_specific, num);
2045 }
2046
2047 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2048 {
2049         const struct sys_reg_desc *target_specific;
2050         size_t num;
2051
2052         target_specific = get_target_table(vcpu->arch.target, false, &num);
2053         return kvm_handle_cp_32(vcpu,
2054                                 cp15_regs, ARRAY_SIZE(cp15_regs),
2055                                 target_specific, num);
2056 }
2057
2058 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
2059 {
2060         return kvm_handle_cp_64(vcpu,
2061                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
2062                                 NULL, 0);
2063 }
2064
2065 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
2066 {
2067         return kvm_handle_cp_32(vcpu,
2068                                 cp14_regs, ARRAY_SIZE(cp14_regs),
2069                                 NULL, 0);
2070 }
2071
2072 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
2073                            struct sys_reg_params *params)
2074 {
2075         size_t num;
2076         const struct sys_reg_desc *table, *r;
2077
2078         table = get_target_table(vcpu->arch.target, true, &num);
2079
2080         /* Search target-specific then generic table. */
2081         r = find_reg(params, table, num);
2082         if (!r)
2083                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2084
2085         if (likely(r)) {
2086                 perform_access(vcpu, params, r);
2087         } else {
2088                 kvm_err("Unsupported guest sys_reg access at: %lx [%08lx]\n",
2089                         *vcpu_pc(vcpu), *vcpu_cpsr(vcpu));
2090                 print_sys_reg_instr(params);
2091                 kvm_inject_undefined(vcpu);
2092         }
2093         return 1;
2094 }
2095
2096 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
2097                               const struct sys_reg_desc *table, size_t num)
2098 {
2099         unsigned long i;
2100
2101         for (i = 0; i < num; i++)
2102                 if (table[i].reset)
2103                         table[i].reset(vcpu, &table[i]);
2104 }
2105
2106 /**
2107  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
2108  * @vcpu: The VCPU pointer
2109  * @run:  The kvm_run struct
2110  */
2111 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
2112 {
2113         struct sys_reg_params params;
2114         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
2115         int Rt = kvm_vcpu_sys_get_rt(vcpu);
2116         int ret;
2117
2118         trace_kvm_handle_sys_reg(esr);
2119
2120         params.is_aarch32 = false;
2121         params.is_32bit = false;
2122         params.Op0 = (esr >> 20) & 3;
2123         params.Op1 = (esr >> 14) & 0x7;
2124         params.CRn = (esr >> 10) & 0xf;
2125         params.CRm = (esr >> 1) & 0xf;
2126         params.Op2 = (esr >> 17) & 0x7;
2127         params.regval = vcpu_get_reg(vcpu, Rt);
2128         params.is_write = !(esr & 1);
2129
2130         ret = emulate_sys_reg(vcpu, &params);
2131
2132         if (!params.is_write)
2133                 vcpu_set_reg(vcpu, Rt, params.regval);
2134         return ret;
2135 }
2136
2137 /******************************************************************************
2138  * Userspace API
2139  *****************************************************************************/
2140
2141 static bool index_to_params(u64 id, struct sys_reg_params *params)
2142 {
2143         switch (id & KVM_REG_SIZE_MASK) {
2144         case KVM_REG_SIZE_U64:
2145                 /* Any unused index bits means it's not valid. */
2146                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
2147                               | KVM_REG_ARM_COPROC_MASK
2148                               | KVM_REG_ARM64_SYSREG_OP0_MASK
2149                               | KVM_REG_ARM64_SYSREG_OP1_MASK
2150                               | KVM_REG_ARM64_SYSREG_CRN_MASK
2151                               | KVM_REG_ARM64_SYSREG_CRM_MASK
2152                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
2153                         return false;
2154                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
2155                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
2156                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
2157                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
2158                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
2159                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
2160                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
2161                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
2162                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
2163                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
2164                 return true;
2165         default:
2166                 return false;
2167         }
2168 }
2169
2170 const struct sys_reg_desc *find_reg_by_id(u64 id,
2171                                           struct sys_reg_params *params,
2172                                           const struct sys_reg_desc table[],
2173                                           unsigned int num)
2174 {
2175         if (!index_to_params(id, params))
2176                 return NULL;
2177
2178         return find_reg(params, table, num);
2179 }
2180
2181 /* Decode an index value, and find the sys_reg_desc entry. */
2182 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
2183                                                     u64 id)
2184 {
2185         size_t num;
2186         const struct sys_reg_desc *table, *r;
2187         struct sys_reg_params params;
2188
2189         /* We only do sys_reg for now. */
2190         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
2191                 return NULL;
2192
2193         table = get_target_table(vcpu->arch.target, true, &num);
2194         r = find_reg_by_id(id, &params, table, num);
2195         if (!r)
2196                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2197
2198         /* Not saved in the sys_reg array and not otherwise accessible? */
2199         if (r && !(r->reg || r->get_user))
2200                 r = NULL;
2201
2202         return r;
2203 }
2204
2205 /*
2206  * These are the invariant sys_reg registers: we let the guest see the
2207  * host versions of these, so they're part of the guest state.
2208  *
2209  * A future CPU may provide a mechanism to present different values to
2210  * the guest, or a future kvm may trap them.
2211  */
2212
2213 #define FUNCTION_INVARIANT(reg)                                         \
2214         static void get_##reg(struct kvm_vcpu *v,                       \
2215                               const struct sys_reg_desc *r)             \
2216         {                                                               \
2217                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
2218         }
2219
2220 FUNCTION_INVARIANT(midr_el1)
2221 FUNCTION_INVARIANT(ctr_el0)
2222 FUNCTION_INVARIANT(revidr_el1)
2223 FUNCTION_INVARIANT(clidr_el1)
2224 FUNCTION_INVARIANT(aidr_el1)
2225
2226 /* ->val is filled in by kvm_sys_reg_table_init() */
2227 static struct sys_reg_desc invariant_sys_regs[] = {
2228         { SYS_DESC(SYS_MIDR_EL1), NULL, get_midr_el1 },
2229         { SYS_DESC(SYS_REVIDR_EL1), NULL, get_revidr_el1 },
2230         { SYS_DESC(SYS_CLIDR_EL1), NULL, get_clidr_el1 },
2231         { SYS_DESC(SYS_AIDR_EL1), NULL, get_aidr_el1 },
2232         { SYS_DESC(SYS_CTR_EL0), NULL, get_ctr_el0 },
2233 };
2234
2235 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
2236 {
2237         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
2238                 return -EFAULT;
2239         return 0;
2240 }
2241
2242 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
2243 {
2244         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
2245                 return -EFAULT;
2246         return 0;
2247 }
2248
2249 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
2250 {
2251         struct sys_reg_params params;
2252         const struct sys_reg_desc *r;
2253
2254         r = find_reg_by_id(id, &params, invariant_sys_regs,
2255                            ARRAY_SIZE(invariant_sys_regs));
2256         if (!r)
2257                 return -ENOENT;
2258
2259         return reg_to_user(uaddr, &r->val, id);
2260 }
2261
2262 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
2263 {
2264         struct sys_reg_params params;
2265         const struct sys_reg_desc *r;
2266         int err;
2267         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
2268
2269         r = find_reg_by_id(id, &params, invariant_sys_regs,
2270                            ARRAY_SIZE(invariant_sys_regs));
2271         if (!r)
2272                 return -ENOENT;
2273
2274         err = reg_from_user(&val, uaddr, id);
2275         if (err)
2276                 return err;
2277
2278         /* This is what we mean by invariant: you can't change it. */
2279         if (r->val != val)
2280                 return -EINVAL;
2281
2282         return 0;
2283 }
2284
2285 static bool is_valid_cache(u32 val)
2286 {
2287         u32 level, ctype;
2288
2289         if (val >= CSSELR_MAX)
2290                 return false;
2291
2292         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
2293         level = (val >> 1);
2294         ctype = (cache_levels >> (level * 3)) & 7;
2295
2296         switch (ctype) {
2297         case 0: /* No cache */
2298                 return false;
2299         case 1: /* Instruction cache only */
2300                 return (val & 1);
2301         case 2: /* Data cache only */
2302         case 4: /* Unified cache */
2303                 return !(val & 1);
2304         case 3: /* Separate instruction and data caches */
2305                 return true;
2306         default: /* Reserved: we can't know instruction or data. */
2307                 return false;
2308         }
2309 }
2310
2311 static int demux_c15_get(u64 id, void __user *uaddr)
2312 {
2313         u32 val;
2314         u32 __user *uval = uaddr;
2315
2316         /* Fail if we have unknown bits set. */
2317         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2318                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2319                 return -ENOENT;
2320
2321         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2322         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2323                 if (KVM_REG_SIZE(id) != 4)
2324                         return -ENOENT;
2325                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2326                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2327                 if (!is_valid_cache(val))
2328                         return -ENOENT;
2329
2330                 return put_user(get_ccsidr(val), uval);
2331         default:
2332                 return -ENOENT;
2333         }
2334 }
2335
2336 static int demux_c15_set(u64 id, void __user *uaddr)
2337 {
2338         u32 val, newval;
2339         u32 __user *uval = uaddr;
2340
2341         /* Fail if we have unknown bits set. */
2342         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2343                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2344                 return -ENOENT;
2345
2346         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2347         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2348                 if (KVM_REG_SIZE(id) != 4)
2349                         return -ENOENT;
2350                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2351                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2352                 if (!is_valid_cache(val))
2353                         return -ENOENT;
2354
2355                 if (get_user(newval, uval))
2356                         return -EFAULT;
2357
2358                 /* This is also invariant: you can't change it. */
2359                 if (newval != get_ccsidr(val))
2360                         return -EINVAL;
2361                 return 0;
2362         default:
2363                 return -ENOENT;
2364         }
2365 }
2366
2367 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2368 {
2369         const struct sys_reg_desc *r;
2370         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2371
2372         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2373                 return demux_c15_get(reg->id, uaddr);
2374
2375         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2376                 return -ENOENT;
2377
2378         r = index_to_sys_reg_desc(vcpu, reg->id);
2379         if (!r)
2380                 return get_invariant_sys_reg(reg->id, uaddr);
2381
2382         if (r->get_user)
2383                 return (r->get_user)(vcpu, r, reg, uaddr);
2384
2385         return reg_to_user(uaddr, &__vcpu_sys_reg(vcpu, r->reg), reg->id);
2386 }
2387
2388 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2389 {
2390         const struct sys_reg_desc *r;
2391         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2392
2393         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2394                 return demux_c15_set(reg->id, uaddr);
2395
2396         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2397                 return -ENOENT;
2398
2399         r = index_to_sys_reg_desc(vcpu, reg->id);
2400         if (!r)
2401                 return set_invariant_sys_reg(reg->id, uaddr);
2402
2403         if (r->set_user)
2404                 return (r->set_user)(vcpu, r, reg, uaddr);
2405
2406         return reg_from_user(&__vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2407 }
2408
2409 static unsigned int num_demux_regs(void)
2410 {
2411         unsigned int i, count = 0;
2412
2413         for (i = 0; i < CSSELR_MAX; i++)
2414                 if (is_valid_cache(i))
2415                         count++;
2416
2417         return count;
2418 }
2419
2420 static int write_demux_regids(u64 __user *uindices)
2421 {
2422         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2423         unsigned int i;
2424
2425         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2426         for (i = 0; i < CSSELR_MAX; i++) {
2427                 if (!is_valid_cache(i))
2428                         continue;
2429                 if (put_user(val | i, uindices))
2430                         return -EFAULT;
2431                 uindices++;
2432         }
2433         return 0;
2434 }
2435
2436 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2437 {
2438         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2439                 KVM_REG_ARM64_SYSREG |
2440                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2441                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2442                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2443                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2444                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2445 }
2446
2447 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2448 {
2449         if (!*uind)
2450                 return true;
2451
2452         if (put_user(sys_reg_to_index(reg), *uind))
2453                 return false;
2454
2455         (*uind)++;
2456         return true;
2457 }
2458
2459 static int walk_one_sys_reg(const struct sys_reg_desc *rd,
2460                             u64 __user **uind,
2461                             unsigned int *total)
2462 {
2463         /*
2464          * Ignore registers we trap but don't save,
2465          * and for which no custom user accessor is provided.
2466          */
2467         if (!(rd->reg || rd->get_user))
2468                 return 0;
2469
2470         if (!copy_reg_to_user(rd, uind))
2471                 return -EFAULT;
2472
2473         (*total)++;
2474         return 0;
2475 }
2476
2477 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2478 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2479 {
2480         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2481         unsigned int total = 0;
2482         size_t num;
2483         int err;
2484
2485         /* We check for duplicates here, to allow arch-specific overrides. */
2486         i1 = get_target_table(vcpu->arch.target, true, &num);
2487         end1 = i1 + num;
2488         i2 = sys_reg_descs;
2489         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2490
2491         BUG_ON(i1 == end1 || i2 == end2);
2492
2493         /* Walk carefully, as both tables may refer to the same register. */
2494         while (i1 || i2) {
2495                 int cmp = cmp_sys_reg(i1, i2);
2496                 /* target-specific overrides generic entry. */
2497                 if (cmp <= 0)
2498                         err = walk_one_sys_reg(i1, &uind, &total);
2499                 else
2500                         err = walk_one_sys_reg(i2, &uind, &total);
2501
2502                 if (err)
2503                         return err;
2504
2505                 if (cmp <= 0 && ++i1 == end1)
2506                         i1 = NULL;
2507                 if (cmp >= 0 && ++i2 == end2)
2508                         i2 = NULL;
2509         }
2510         return total;
2511 }
2512
2513 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2514 {
2515         return ARRAY_SIZE(invariant_sys_regs)
2516                 + num_demux_regs()
2517                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2518 }
2519
2520 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2521 {
2522         unsigned int i;
2523         int err;
2524
2525         /* Then give them all the invariant registers' indices. */
2526         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2527                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2528                         return -EFAULT;
2529                 uindices++;
2530         }
2531
2532         err = walk_sys_regs(vcpu, uindices);
2533         if (err < 0)
2534                 return err;
2535         uindices += err;
2536
2537         return write_demux_regids(uindices);
2538 }
2539
2540 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2541 {
2542         unsigned int i;
2543
2544         for (i = 1; i < n; i++) {
2545                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2546                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2547                         return 1;
2548                 }
2549         }
2550
2551         return 0;
2552 }
2553
2554 void kvm_sys_reg_table_init(void)
2555 {
2556         unsigned int i;
2557         struct sys_reg_desc clidr;
2558
2559         /* Make sure tables are unique and in order. */
2560         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2561         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2562         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2563         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2564         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2565         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2566
2567         /* We abuse the reset function to overwrite the table itself. */
2568         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2569                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2570
2571         /*
2572          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2573          *
2574          *   If software reads the Cache Type fields from Ctype1
2575          *   upwards, once it has seen a value of 0b000, no caches
2576          *   exist at further-out levels of the hierarchy. So, for
2577          *   example, if Ctype3 is the first Cache Type field with a
2578          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2579          *   ignored.
2580          */
2581         get_clidr_el1(NULL, &clidr); /* Ugly... */
2582         cache_levels = clidr.val;
2583         for (i = 0; i < 7; i++)
2584                 if (((cache_levels >> (i*3)) & 7) == 0)
2585                         break;
2586         /* Clear all higher bits. */
2587         cache_levels &= (1 << (i*3))-1;
2588 }
2589
2590 /**
2591  * kvm_reset_sys_regs - sets system registers to reset value
2592  * @vcpu: The VCPU pointer
2593  *
2594  * This function finds the right table above and sets the registers on the
2595  * virtual CPU struct to their architecturally defined reset values.
2596  */
2597 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2598 {
2599         size_t num;
2600         const struct sys_reg_desc *table;
2601
2602         /* Catch someone adding a register without putting in reset entry. */
2603         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2604
2605         /* Generic chip reset first (so target could override). */
2606         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2607
2608         table = get_target_table(vcpu->arch.target, true, &num);
2609         reset_sys_reg_descs(vcpu, table, num);
2610
2611         for (num = 1; num < NR_SYS_REGS; num++) {
2612                 if (WARN(__vcpu_sys_reg(vcpu, num) == 0x4242424242424242,
2613                          "Didn't reset __vcpu_sys_reg(%zi)\n", num))
2614                         break;
2615         }
2616 }