Linux-libre 4.9.189-gnu
[librecmc/linux-libre.git] / arch / arm64 / kvm / sys_regs.c
1 /*
2  * Copyright (C) 2012,2013 - ARM Ltd
3  * Author: Marc Zyngier <marc.zyngier@arm.com>
4  *
5  * Derived from arch/arm/kvm/coproc.c:
6  * Copyright (C) 2012 - Virtual Open Systems and Columbia University
7  * Authors: Rusty Russell <rusty@rustcorp.com.au>
8  *          Christoffer Dall <c.dall@virtualopensystems.com>
9  *
10  * This program is free software; you can redistribute it and/or modify
11  * it under the terms of the GNU General Public License, version 2, as
12  * published by the Free Software Foundation.
13  *
14  * This program is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
17  * GNU General Public License for more details.
18  *
19  * You should have received a copy of the GNU General Public License
20  * along with this program.  If not, see <http://www.gnu.org/licenses/>.
21  */
22
23 #include <linux/bsearch.h>
24 #include <linux/kvm_host.h>
25 #include <linux/mm.h>
26 #include <linux/uaccess.h>
27
28 #include <asm/cacheflush.h>
29 #include <asm/cputype.h>
30 #include <asm/debug-monitors.h>
31 #include <asm/esr.h>
32 #include <asm/kvm_arm.h>
33 #include <asm/kvm_asm.h>
34 #include <asm/kvm_coproc.h>
35 #include <asm/kvm_emulate.h>
36 #include <asm/kvm_host.h>
37 #include <asm/kvm_mmu.h>
38 #include <asm/perf_event.h>
39 #include <asm/sysreg.h>
40
41 #include <trace/events/kvm.h>
42
43 #include "sys_regs.h"
44
45 #include "trace.h"
46
47 /*
48  * All of this file is extremly similar to the ARM coproc.c, but the
49  * types are different. My gut feeling is that it should be pretty
50  * easy to merge, but that would be an ABI breakage -- again. VFP
51  * would also need to be abstracted.
52  *
53  * For AArch32, we only take care of what is being trapped. Anything
54  * that has to do with init and userspace access has to go via the
55  * 64bit interface.
56  */
57
58 /* 3 bits per cache level, as per CLIDR, but non-existent caches always 0 */
59 static u32 cache_levels;
60
61 /* CSSELR values; used to index KVM_REG_ARM_DEMUX_ID_CCSIDR */
62 #define CSSELR_MAX 12
63
64 /* Which cache CCSIDR represents depends on CSSELR value. */
65 static u32 get_ccsidr(u32 csselr)
66 {
67         u32 ccsidr;
68
69         /* Make sure noone else changes CSSELR during this! */
70         local_irq_disable();
71         write_sysreg(csselr, csselr_el1);
72         isb();
73         ccsidr = read_sysreg(ccsidr_el1);
74         local_irq_enable();
75
76         return ccsidr;
77 }
78
79 /*
80  * See note at ARMv7 ARM B1.14.4 (TL;DR: S/W ops are not easily virtualized).
81  */
82 static bool access_dcsw(struct kvm_vcpu *vcpu,
83                         struct sys_reg_params *p,
84                         const struct sys_reg_desc *r)
85 {
86         if (!p->is_write)
87                 return read_from_write_only(vcpu, p);
88
89         kvm_set_way_flush(vcpu);
90         return true;
91 }
92
93 /*
94  * Generic accessor for VM registers. Only called as long as HCR_TVM
95  * is set. If the guest enables the MMU, we stop trapping the VM
96  * sys_regs and leave it in complete control of the caches.
97  */
98 static bool access_vm_reg(struct kvm_vcpu *vcpu,
99                           struct sys_reg_params *p,
100                           const struct sys_reg_desc *r)
101 {
102         bool was_enabled = vcpu_has_cache_enabled(vcpu);
103
104         BUG_ON(!p->is_write);
105
106         if (!p->is_aarch32) {
107                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
108         } else {
109                 if (!p->is_32bit)
110                         vcpu_cp15_64_high(vcpu, r->reg) = upper_32_bits(p->regval);
111                 vcpu_cp15_64_low(vcpu, r->reg) = lower_32_bits(p->regval);
112         }
113
114         kvm_toggle_cache(vcpu, was_enabled);
115         return true;
116 }
117
118 /*
119  * Trap handler for the GICv3 SGI generation system register.
120  * Forward the request to the VGIC emulation.
121  * The cp15_64 code makes sure this automatically works
122  * for both AArch64 and AArch32 accesses.
123  */
124 static bool access_gic_sgi(struct kvm_vcpu *vcpu,
125                            struct sys_reg_params *p,
126                            const struct sys_reg_desc *r)
127 {
128         if (!p->is_write)
129                 return read_from_write_only(vcpu, p);
130
131         vgic_v3_dispatch_sgi(vcpu, p->regval);
132
133         return true;
134 }
135
136 static bool access_gic_sre(struct kvm_vcpu *vcpu,
137                            struct sys_reg_params *p,
138                            const struct sys_reg_desc *r)
139 {
140         if (p->is_write)
141                 return ignore_write(vcpu, p);
142
143         p->regval = vcpu->arch.vgic_cpu.vgic_v3.vgic_sre;
144         return true;
145 }
146
147 static bool trap_raz_wi(struct kvm_vcpu *vcpu,
148                         struct sys_reg_params *p,
149                         const struct sys_reg_desc *r)
150 {
151         if (p->is_write)
152                 return ignore_write(vcpu, p);
153         else
154                 return read_zero(vcpu, p);
155 }
156
157 static bool trap_oslsr_el1(struct kvm_vcpu *vcpu,
158                            struct sys_reg_params *p,
159                            const struct sys_reg_desc *r)
160 {
161         if (p->is_write) {
162                 return ignore_write(vcpu, p);
163         } else {
164                 p->regval = (1 << 3);
165                 return true;
166         }
167 }
168
169 static bool trap_dbgauthstatus_el1(struct kvm_vcpu *vcpu,
170                                    struct sys_reg_params *p,
171                                    const struct sys_reg_desc *r)
172 {
173         if (p->is_write) {
174                 return ignore_write(vcpu, p);
175         } else {
176                 p->regval = read_sysreg(dbgauthstatus_el1);
177                 return true;
178         }
179 }
180
181 /*
182  * We want to avoid world-switching all the DBG registers all the
183  * time:
184  * 
185  * - If we've touched any debug register, it is likely that we're
186  *   going to touch more of them. It then makes sense to disable the
187  *   traps and start doing the save/restore dance
188  * - If debug is active (DBG_MDSCR_KDE or DBG_MDSCR_MDE set), it is
189  *   then mandatory to save/restore the registers, as the guest
190  *   depends on them.
191  * 
192  * For this, we use a DIRTY bit, indicating the guest has modified the
193  * debug registers, used as follow:
194  *
195  * On guest entry:
196  * - If the dirty bit is set (because we're coming back from trapping),
197  *   disable the traps, save host registers, restore guest registers.
198  * - If debug is actively in use (DBG_MDSCR_KDE or DBG_MDSCR_MDE set),
199  *   set the dirty bit, disable the traps, save host registers,
200  *   restore guest registers.
201  * - Otherwise, enable the traps
202  *
203  * On guest exit:
204  * - If the dirty bit is set, save guest registers, restore host
205  *   registers and clear the dirty bit. This ensure that the host can
206  *   now use the debug registers.
207  */
208 static bool trap_debug_regs(struct kvm_vcpu *vcpu,
209                             struct sys_reg_params *p,
210                             const struct sys_reg_desc *r)
211 {
212         if (p->is_write) {
213                 vcpu_sys_reg(vcpu, r->reg) = p->regval;
214                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
215         } else {
216                 p->regval = vcpu_sys_reg(vcpu, r->reg);
217         }
218
219         trace_trap_reg(__func__, r->reg, p->is_write, p->regval);
220
221         return true;
222 }
223
224 /*
225  * reg_to_dbg/dbg_to_reg
226  *
227  * A 32 bit write to a debug register leave top bits alone
228  * A 32 bit read from a debug register only returns the bottom bits
229  *
230  * All writes will set the KVM_ARM64_DEBUG_DIRTY flag to ensure the
231  * hyp.S code switches between host and guest values in future.
232  */
233 static void reg_to_dbg(struct kvm_vcpu *vcpu,
234                        struct sys_reg_params *p,
235                        u64 *dbg_reg)
236 {
237         u64 val = p->regval;
238
239         if (p->is_32bit) {
240                 val &= 0xffffffffUL;
241                 val |= ((*dbg_reg >> 32) << 32);
242         }
243
244         *dbg_reg = val;
245         vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
246 }
247
248 static void dbg_to_reg(struct kvm_vcpu *vcpu,
249                        struct sys_reg_params *p,
250                        u64 *dbg_reg)
251 {
252         p->regval = *dbg_reg;
253         if (p->is_32bit)
254                 p->regval &= 0xffffffffUL;
255 }
256
257 static bool trap_bvr(struct kvm_vcpu *vcpu,
258                      struct sys_reg_params *p,
259                      const struct sys_reg_desc *rd)
260 {
261         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
262
263         if (p->is_write)
264                 reg_to_dbg(vcpu, p, dbg_reg);
265         else
266                 dbg_to_reg(vcpu, p, dbg_reg);
267
268         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
269
270         return true;
271 }
272
273 static int set_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
274                 const struct kvm_one_reg *reg, void __user *uaddr)
275 {
276         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
277
278         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
279                 return -EFAULT;
280         return 0;
281 }
282
283 static int get_bvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
284         const struct kvm_one_reg *reg, void __user *uaddr)
285 {
286         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
287
288         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
289                 return -EFAULT;
290         return 0;
291 }
292
293 static void reset_bvr(struct kvm_vcpu *vcpu,
294                       const struct sys_reg_desc *rd)
295 {
296         vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg] = rd->val;
297 }
298
299 static bool trap_bcr(struct kvm_vcpu *vcpu,
300                      struct sys_reg_params *p,
301                      const struct sys_reg_desc *rd)
302 {
303         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
304
305         if (p->is_write)
306                 reg_to_dbg(vcpu, p, dbg_reg);
307         else
308                 dbg_to_reg(vcpu, p, dbg_reg);
309
310         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
311
312         return true;
313 }
314
315 static int set_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
316                 const struct kvm_one_reg *reg, void __user *uaddr)
317 {
318         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
319
320         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
321                 return -EFAULT;
322
323         return 0;
324 }
325
326 static int get_bcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
327         const struct kvm_one_reg *reg, void __user *uaddr)
328 {
329         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg];
330
331         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
332                 return -EFAULT;
333         return 0;
334 }
335
336 static void reset_bcr(struct kvm_vcpu *vcpu,
337                       const struct sys_reg_desc *rd)
338 {
339         vcpu->arch.vcpu_debug_state.dbg_bcr[rd->reg] = rd->val;
340 }
341
342 static bool trap_wvr(struct kvm_vcpu *vcpu,
343                      struct sys_reg_params *p,
344                      const struct sys_reg_desc *rd)
345 {
346         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
347
348         if (p->is_write)
349                 reg_to_dbg(vcpu, p, dbg_reg);
350         else
351                 dbg_to_reg(vcpu, p, dbg_reg);
352
353         trace_trap_reg(__func__, rd->reg, p->is_write,
354                 vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg]);
355
356         return true;
357 }
358
359 static int set_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
360                 const struct kvm_one_reg *reg, void __user *uaddr)
361 {
362         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
363
364         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
365                 return -EFAULT;
366         return 0;
367 }
368
369 static int get_wvr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
370         const struct kvm_one_reg *reg, void __user *uaddr)
371 {
372         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg];
373
374         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
375                 return -EFAULT;
376         return 0;
377 }
378
379 static void reset_wvr(struct kvm_vcpu *vcpu,
380                       const struct sys_reg_desc *rd)
381 {
382         vcpu->arch.vcpu_debug_state.dbg_wvr[rd->reg] = rd->val;
383 }
384
385 static bool trap_wcr(struct kvm_vcpu *vcpu,
386                      struct sys_reg_params *p,
387                      const struct sys_reg_desc *rd)
388 {
389         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
390
391         if (p->is_write)
392                 reg_to_dbg(vcpu, p, dbg_reg);
393         else
394                 dbg_to_reg(vcpu, p, dbg_reg);
395
396         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
397
398         return true;
399 }
400
401 static int set_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
402                 const struct kvm_one_reg *reg, void __user *uaddr)
403 {
404         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
405
406         if (copy_from_user(r, uaddr, KVM_REG_SIZE(reg->id)) != 0)
407                 return -EFAULT;
408         return 0;
409 }
410
411 static int get_wcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *rd,
412         const struct kvm_one_reg *reg, void __user *uaddr)
413 {
414         __u64 *r = &vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg];
415
416         if (copy_to_user(uaddr, r, KVM_REG_SIZE(reg->id)) != 0)
417                 return -EFAULT;
418         return 0;
419 }
420
421 static void reset_wcr(struct kvm_vcpu *vcpu,
422                       const struct sys_reg_desc *rd)
423 {
424         vcpu->arch.vcpu_debug_state.dbg_wcr[rd->reg] = rd->val;
425 }
426
427 static void reset_amair_el1(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
428 {
429         vcpu_sys_reg(vcpu, AMAIR_EL1) = read_sysreg(amair_el1);
430 }
431
432 static void reset_mpidr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
433 {
434         u64 mpidr;
435
436         /*
437          * Map the vcpu_id into the first three affinity level fields of
438          * the MPIDR. We limit the number of VCPUs in level 0 due to a
439          * limitation to 16 CPUs in that level in the ICC_SGIxR registers
440          * of the GICv3 to be able to address each CPU directly when
441          * sending IPIs.
442          */
443         mpidr = (vcpu->vcpu_id & 0x0f) << MPIDR_LEVEL_SHIFT(0);
444         mpidr |= ((vcpu->vcpu_id >> 4) & 0xff) << MPIDR_LEVEL_SHIFT(1);
445         mpidr |= ((vcpu->vcpu_id >> 12) & 0xff) << MPIDR_LEVEL_SHIFT(2);
446         vcpu_sys_reg(vcpu, MPIDR_EL1) = (1ULL << 31) | mpidr;
447 }
448
449 static void reset_pmcr(struct kvm_vcpu *vcpu, const struct sys_reg_desc *r)
450 {
451         u64 pmcr, val;
452
453         pmcr = read_sysreg(pmcr_el0);
454         /*
455          * Writable bits of PMCR_EL0 (ARMV8_PMU_PMCR_MASK) are reset to UNKNOWN
456          * except PMCR.E resetting to zero.
457          */
458         val = ((pmcr & ~ARMV8_PMU_PMCR_MASK)
459                | (ARMV8_PMU_PMCR_MASK & 0xdecafbad)) & (~ARMV8_PMU_PMCR_E);
460         vcpu_sys_reg(vcpu, PMCR_EL0) = val;
461 }
462
463 static bool pmu_access_el0_disabled(struct kvm_vcpu *vcpu)
464 {
465         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
466
467         return !((reg & ARMV8_PMU_USERENR_EN) || vcpu_mode_priv(vcpu));
468 }
469
470 static bool pmu_write_swinc_el0_disabled(struct kvm_vcpu *vcpu)
471 {
472         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
473
474         return !((reg & (ARMV8_PMU_USERENR_SW | ARMV8_PMU_USERENR_EN))
475                  || vcpu_mode_priv(vcpu));
476 }
477
478 static bool pmu_access_cycle_counter_el0_disabled(struct kvm_vcpu *vcpu)
479 {
480         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
481
482         return !((reg & (ARMV8_PMU_USERENR_CR | ARMV8_PMU_USERENR_EN))
483                  || vcpu_mode_priv(vcpu));
484 }
485
486 static bool pmu_access_event_counter_el0_disabled(struct kvm_vcpu *vcpu)
487 {
488         u64 reg = vcpu_sys_reg(vcpu, PMUSERENR_EL0);
489
490         return !((reg & (ARMV8_PMU_USERENR_ER | ARMV8_PMU_USERENR_EN))
491                  || vcpu_mode_priv(vcpu));
492 }
493
494 static bool access_pmcr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
495                         const struct sys_reg_desc *r)
496 {
497         u64 val;
498
499         if (!kvm_arm_pmu_v3_ready(vcpu))
500                 return trap_raz_wi(vcpu, p, r);
501
502         if (pmu_access_el0_disabled(vcpu))
503                 return false;
504
505         if (p->is_write) {
506                 /* Only update writeable bits of PMCR */
507                 val = vcpu_sys_reg(vcpu, PMCR_EL0);
508                 val &= ~ARMV8_PMU_PMCR_MASK;
509                 val |= p->regval & ARMV8_PMU_PMCR_MASK;
510                 vcpu_sys_reg(vcpu, PMCR_EL0) = val;
511                 kvm_pmu_handle_pmcr(vcpu, val);
512         } else {
513                 /* PMCR.P & PMCR.C are RAZ */
514                 val = vcpu_sys_reg(vcpu, PMCR_EL0)
515                       & ~(ARMV8_PMU_PMCR_P | ARMV8_PMU_PMCR_C);
516                 p->regval = val;
517         }
518
519         return true;
520 }
521
522 static bool access_pmselr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
523                           const struct sys_reg_desc *r)
524 {
525         if (!kvm_arm_pmu_v3_ready(vcpu))
526                 return trap_raz_wi(vcpu, p, r);
527
528         if (pmu_access_event_counter_el0_disabled(vcpu))
529                 return false;
530
531         if (p->is_write)
532                 vcpu_sys_reg(vcpu, PMSELR_EL0) = p->regval;
533         else
534                 /* return PMSELR.SEL field */
535                 p->regval = vcpu_sys_reg(vcpu, PMSELR_EL0)
536                             & ARMV8_PMU_COUNTER_MASK;
537
538         return true;
539 }
540
541 static bool access_pmceid(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
542                           const struct sys_reg_desc *r)
543 {
544         u64 pmceid;
545
546         if (!kvm_arm_pmu_v3_ready(vcpu))
547                 return trap_raz_wi(vcpu, p, r);
548
549         BUG_ON(p->is_write);
550
551         if (pmu_access_el0_disabled(vcpu))
552                 return false;
553
554         if (!(p->Op2 & 1))
555                 pmceid = read_sysreg(pmceid0_el0);
556         else
557                 pmceid = read_sysreg(pmceid1_el0);
558
559         p->regval = pmceid;
560
561         return true;
562 }
563
564 static bool pmu_counter_idx_valid(struct kvm_vcpu *vcpu, u64 idx)
565 {
566         u64 pmcr, val;
567
568         pmcr = vcpu_sys_reg(vcpu, PMCR_EL0);
569         val = (pmcr >> ARMV8_PMU_PMCR_N_SHIFT) & ARMV8_PMU_PMCR_N_MASK;
570         if (idx >= val && idx != ARMV8_PMU_CYCLE_IDX)
571                 return false;
572
573         return true;
574 }
575
576 static bool access_pmu_evcntr(struct kvm_vcpu *vcpu,
577                               struct sys_reg_params *p,
578                               const struct sys_reg_desc *r)
579 {
580         u64 idx;
581
582         if (!kvm_arm_pmu_v3_ready(vcpu))
583                 return trap_raz_wi(vcpu, p, r);
584
585         if (r->CRn == 9 && r->CRm == 13) {
586                 if (r->Op2 == 2) {
587                         /* PMXEVCNTR_EL0 */
588                         if (pmu_access_event_counter_el0_disabled(vcpu))
589                                 return false;
590
591                         idx = vcpu_sys_reg(vcpu, PMSELR_EL0)
592                               & ARMV8_PMU_COUNTER_MASK;
593                 } else if (r->Op2 == 0) {
594                         /* PMCCNTR_EL0 */
595                         if (pmu_access_cycle_counter_el0_disabled(vcpu))
596                                 return false;
597
598                         idx = ARMV8_PMU_CYCLE_IDX;
599                 } else {
600                         return false;
601                 }
602         } else if (r->CRn == 0 && r->CRm == 9) {
603                 /* PMCCNTR */
604                 if (pmu_access_event_counter_el0_disabled(vcpu))
605                         return false;
606
607                 idx = ARMV8_PMU_CYCLE_IDX;
608         } else if (r->CRn == 14 && (r->CRm & 12) == 8) {
609                 /* PMEVCNTRn_EL0 */
610                 if (pmu_access_event_counter_el0_disabled(vcpu))
611                         return false;
612
613                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
614         } else {
615                 return false;
616         }
617
618         if (!pmu_counter_idx_valid(vcpu, idx))
619                 return false;
620
621         if (p->is_write) {
622                 if (pmu_access_el0_disabled(vcpu))
623                         return false;
624
625                 kvm_pmu_set_counter_value(vcpu, idx, p->regval);
626         } else {
627                 p->regval = kvm_pmu_get_counter_value(vcpu, idx);
628         }
629
630         return true;
631 }
632
633 static bool access_pmu_evtyper(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
634                                const struct sys_reg_desc *r)
635 {
636         u64 idx, reg;
637
638         if (!kvm_arm_pmu_v3_ready(vcpu))
639                 return trap_raz_wi(vcpu, p, r);
640
641         if (pmu_access_el0_disabled(vcpu))
642                 return false;
643
644         if (r->CRn == 9 && r->CRm == 13 && r->Op2 == 1) {
645                 /* PMXEVTYPER_EL0 */
646                 idx = vcpu_sys_reg(vcpu, PMSELR_EL0) & ARMV8_PMU_COUNTER_MASK;
647                 reg = PMEVTYPER0_EL0 + idx;
648         } else if (r->CRn == 14 && (r->CRm & 12) == 12) {
649                 idx = ((r->CRm & 3) << 3) | (r->Op2 & 7);
650                 if (idx == ARMV8_PMU_CYCLE_IDX)
651                         reg = PMCCFILTR_EL0;
652                 else
653                         /* PMEVTYPERn_EL0 */
654                         reg = PMEVTYPER0_EL0 + idx;
655         } else {
656                 BUG();
657         }
658
659         if (!pmu_counter_idx_valid(vcpu, idx))
660                 return false;
661
662         if (p->is_write) {
663                 kvm_pmu_set_counter_event_type(vcpu, p->regval, idx);
664                 vcpu_sys_reg(vcpu, reg) = p->regval & ARMV8_PMU_EVTYPE_MASK;
665         } else {
666                 p->regval = vcpu_sys_reg(vcpu, reg) & ARMV8_PMU_EVTYPE_MASK;
667         }
668
669         return true;
670 }
671
672 static bool access_pmcnten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
673                            const struct sys_reg_desc *r)
674 {
675         u64 val, mask;
676
677         if (!kvm_arm_pmu_v3_ready(vcpu))
678                 return trap_raz_wi(vcpu, p, r);
679
680         if (pmu_access_el0_disabled(vcpu))
681                 return false;
682
683         mask = kvm_pmu_valid_counter_mask(vcpu);
684         if (p->is_write) {
685                 val = p->regval & mask;
686                 if (r->Op2 & 0x1) {
687                         /* accessing PMCNTENSET_EL0 */
688                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) |= val;
689                         kvm_pmu_enable_counter(vcpu, val);
690                 } else {
691                         /* accessing PMCNTENCLR_EL0 */
692                         vcpu_sys_reg(vcpu, PMCNTENSET_EL0) &= ~val;
693                         kvm_pmu_disable_counter(vcpu, val);
694                 }
695         } else {
696                 p->regval = vcpu_sys_reg(vcpu, PMCNTENSET_EL0) & mask;
697         }
698
699         return true;
700 }
701
702 static bool access_pminten(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
703                            const struct sys_reg_desc *r)
704 {
705         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
706
707         if (!kvm_arm_pmu_v3_ready(vcpu))
708                 return trap_raz_wi(vcpu, p, r);
709
710         if (!vcpu_mode_priv(vcpu))
711                 return false;
712
713         if (p->is_write) {
714                 u64 val = p->regval & mask;
715
716                 if (r->Op2 & 0x1)
717                         /* accessing PMINTENSET_EL1 */
718                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) |= val;
719                 else
720                         /* accessing PMINTENCLR_EL1 */
721                         vcpu_sys_reg(vcpu, PMINTENSET_EL1) &= ~val;
722         } else {
723                 p->regval = vcpu_sys_reg(vcpu, PMINTENSET_EL1) & mask;
724         }
725
726         return true;
727 }
728
729 static bool access_pmovs(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
730                          const struct sys_reg_desc *r)
731 {
732         u64 mask = kvm_pmu_valid_counter_mask(vcpu);
733
734         if (!kvm_arm_pmu_v3_ready(vcpu))
735                 return trap_raz_wi(vcpu, p, r);
736
737         if (pmu_access_el0_disabled(vcpu))
738                 return false;
739
740         if (p->is_write) {
741                 if (r->CRm & 0x2)
742                         /* accessing PMOVSSET_EL0 */
743                         kvm_pmu_overflow_set(vcpu, p->regval & mask);
744                 else
745                         /* accessing PMOVSCLR_EL0 */
746                         vcpu_sys_reg(vcpu, PMOVSSET_EL0) &= ~(p->regval & mask);
747         } else {
748                 p->regval = vcpu_sys_reg(vcpu, PMOVSSET_EL0) & mask;
749         }
750
751         return true;
752 }
753
754 static bool access_pmswinc(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
755                            const struct sys_reg_desc *r)
756 {
757         u64 mask;
758
759         if (!kvm_arm_pmu_v3_ready(vcpu))
760                 return trap_raz_wi(vcpu, p, r);
761
762         if (pmu_write_swinc_el0_disabled(vcpu))
763                 return false;
764
765         if (p->is_write) {
766                 mask = kvm_pmu_valid_counter_mask(vcpu);
767                 kvm_pmu_software_increment(vcpu, p->regval & mask);
768                 return true;
769         }
770
771         return false;
772 }
773
774 static bool access_pmuserenr(struct kvm_vcpu *vcpu, struct sys_reg_params *p,
775                              const struct sys_reg_desc *r)
776 {
777         if (!kvm_arm_pmu_v3_ready(vcpu))
778                 return trap_raz_wi(vcpu, p, r);
779
780         if (p->is_write) {
781                 if (!vcpu_mode_priv(vcpu))
782                         return false;
783
784                 vcpu_sys_reg(vcpu, PMUSERENR_EL0) = p->regval
785                                                     & ARMV8_PMU_USERENR_MASK;
786         } else {
787                 p->regval = vcpu_sys_reg(vcpu, PMUSERENR_EL0)
788                             & ARMV8_PMU_USERENR_MASK;
789         }
790
791         return true;
792 }
793
794 /* Silly macro to expand the DBG{BCR,BVR,WVR,WCR}n_EL1 registers in one go */
795 #define DBG_BCR_BVR_WCR_WVR_EL1(n)                                      \
796         /* DBGBVRn_EL1 */                                               \
797         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b100),     \
798           trap_bvr, reset_bvr, n, 0, get_bvr, set_bvr },                \
799         /* DBGBCRn_EL1 */                                               \
800         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b101),     \
801           trap_bcr, reset_bcr, n, 0, get_bcr, set_bcr },                \
802         /* DBGWVRn_EL1 */                                               \
803         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b110),     \
804           trap_wvr, reset_wvr, n, 0,  get_wvr, set_wvr },               \
805         /* DBGWCRn_EL1 */                                               \
806         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm((n)), Op2(0b111),     \
807           trap_wcr, reset_wcr, n, 0,  get_wcr, set_wcr }
808
809 /* Macro to expand the PMEVCNTRn_EL0 register */
810 #define PMU_PMEVCNTR_EL0(n)                                             \
811         /* PMEVCNTRn_EL0 */                                             \
812         { Op0(0b11), Op1(0b011), CRn(0b1110),                           \
813           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
814           access_pmu_evcntr, reset_unknown, (PMEVCNTR0_EL0 + n), }
815
816 /* Macro to expand the PMEVTYPERn_EL0 register */
817 #define PMU_PMEVTYPER_EL0(n)                                            \
818         /* PMEVTYPERn_EL0 */                                            \
819         { Op0(0b11), Op1(0b011), CRn(0b1110),                           \
820           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
821           access_pmu_evtyper, reset_unknown, (PMEVTYPER0_EL0 + n), }
822
823 /*
824  * Architected system registers.
825  * Important: Must be sorted ascending by Op0, Op1, CRn, CRm, Op2
826  *
827  * Debug handling: We do trap most, if not all debug related system
828  * registers. The implementation is good enough to ensure that a guest
829  * can use these with minimal performance degradation. The drawback is
830  * that we don't implement any of the external debug, none of the
831  * OSlock protocol. This should be revisited if we ever encounter a
832  * more demanding guest...
833  */
834 static const struct sys_reg_desc sys_reg_descs[] = {
835         /* DC ISW */
836         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b0110), Op2(0b010),
837           access_dcsw },
838         /* DC CSW */
839         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1010), Op2(0b010),
840           access_dcsw },
841         /* DC CISW */
842         { Op0(0b01), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b010),
843           access_dcsw },
844
845         DBG_BCR_BVR_WCR_WVR_EL1(0),
846         DBG_BCR_BVR_WCR_WVR_EL1(1),
847         /* MDCCINT_EL1 */
848         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
849           trap_debug_regs, reset_val, MDCCINT_EL1, 0 },
850         /* MDSCR_EL1 */
851         { Op0(0b10), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
852           trap_debug_regs, reset_val, MDSCR_EL1, 0 },
853         DBG_BCR_BVR_WCR_WVR_EL1(2),
854         DBG_BCR_BVR_WCR_WVR_EL1(3),
855         DBG_BCR_BVR_WCR_WVR_EL1(4),
856         DBG_BCR_BVR_WCR_WVR_EL1(5),
857         DBG_BCR_BVR_WCR_WVR_EL1(6),
858         DBG_BCR_BVR_WCR_WVR_EL1(7),
859         DBG_BCR_BVR_WCR_WVR_EL1(8),
860         DBG_BCR_BVR_WCR_WVR_EL1(9),
861         DBG_BCR_BVR_WCR_WVR_EL1(10),
862         DBG_BCR_BVR_WCR_WVR_EL1(11),
863         DBG_BCR_BVR_WCR_WVR_EL1(12),
864         DBG_BCR_BVR_WCR_WVR_EL1(13),
865         DBG_BCR_BVR_WCR_WVR_EL1(14),
866         DBG_BCR_BVR_WCR_WVR_EL1(15),
867
868         /* MDRAR_EL1 */
869         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
870           trap_raz_wi },
871         /* OSLAR_EL1 */
872         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b100),
873           trap_raz_wi },
874         /* OSLSR_EL1 */
875         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0001), Op2(0b100),
876           trap_oslsr_el1 },
877         /* OSDLR_EL1 */
878         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0011), Op2(0b100),
879           trap_raz_wi },
880         /* DBGPRCR_EL1 */
881         { Op0(0b10), Op1(0b000), CRn(0b0001), CRm(0b0100), Op2(0b100),
882           trap_raz_wi },
883         /* DBGCLAIMSET_EL1 */
884         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1000), Op2(0b110),
885           trap_raz_wi },
886         /* DBGCLAIMCLR_EL1 */
887         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1001), Op2(0b110),
888           trap_raz_wi },
889         /* DBGAUTHSTATUS_EL1 */
890         { Op0(0b10), Op1(0b000), CRn(0b0111), CRm(0b1110), Op2(0b110),
891           trap_dbgauthstatus_el1 },
892
893         /* MDCCSR_EL1 */
894         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0001), Op2(0b000),
895           trap_raz_wi },
896         /* DBGDTR_EL0 */
897         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0100), Op2(0b000),
898           trap_raz_wi },
899         /* DBGDTR[TR]X_EL0 */
900         { Op0(0b10), Op1(0b011), CRn(0b0000), CRm(0b0101), Op2(0b000),
901           trap_raz_wi },
902
903         /* DBGVCR32_EL2 */
904         { Op0(0b10), Op1(0b100), CRn(0b0000), CRm(0b0111), Op2(0b000),
905           NULL, reset_val, DBGVCR32_EL2, 0 },
906
907         /* MPIDR_EL1 */
908         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b101),
909           NULL, reset_mpidr, MPIDR_EL1 },
910         /* SCTLR_EL1 */
911         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b000),
912           access_vm_reg, reset_val, SCTLR_EL1, 0x00C50078 },
913         /* CPACR_EL1 */
914         { Op0(0b11), Op1(0b000), CRn(0b0001), CRm(0b0000), Op2(0b010),
915           NULL, reset_val, CPACR_EL1, 0 },
916         /* TTBR0_EL1 */
917         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b000),
918           access_vm_reg, reset_unknown, TTBR0_EL1 },
919         /* TTBR1_EL1 */
920         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b001),
921           access_vm_reg, reset_unknown, TTBR1_EL1 },
922         /* TCR_EL1 */
923         { Op0(0b11), Op1(0b000), CRn(0b0010), CRm(0b0000), Op2(0b010),
924           access_vm_reg, reset_val, TCR_EL1, 0 },
925
926         /* AFSR0_EL1 */
927         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b000),
928           access_vm_reg, reset_unknown, AFSR0_EL1 },
929         /* AFSR1_EL1 */
930         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0001), Op2(0b001),
931           access_vm_reg, reset_unknown, AFSR1_EL1 },
932         /* ESR_EL1 */
933         { Op0(0b11), Op1(0b000), CRn(0b0101), CRm(0b0010), Op2(0b000),
934           access_vm_reg, reset_unknown, ESR_EL1 },
935         /* FAR_EL1 */
936         { Op0(0b11), Op1(0b000), CRn(0b0110), CRm(0b0000), Op2(0b000),
937           access_vm_reg, reset_unknown, FAR_EL1 },
938         /* PAR_EL1 */
939         { Op0(0b11), Op1(0b000), CRn(0b0111), CRm(0b0100), Op2(0b000),
940           NULL, reset_unknown, PAR_EL1 },
941
942         /* PMINTENSET_EL1 */
943         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b001),
944           access_pminten, reset_unknown, PMINTENSET_EL1 },
945         /* PMINTENCLR_EL1 */
946         { Op0(0b11), Op1(0b000), CRn(0b1001), CRm(0b1110), Op2(0b010),
947           access_pminten, NULL, PMINTENSET_EL1 },
948
949         /* MAIR_EL1 */
950         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0010), Op2(0b000),
951           access_vm_reg, reset_unknown, MAIR_EL1 },
952         /* AMAIR_EL1 */
953         { Op0(0b11), Op1(0b000), CRn(0b1010), CRm(0b0011), Op2(0b000),
954           access_vm_reg, reset_amair_el1, AMAIR_EL1 },
955
956         /* VBAR_EL1 */
957         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b0000), Op2(0b000),
958           NULL, reset_val, VBAR_EL1, 0 },
959
960         /* ICC_SGI1R_EL1 */
961         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1011), Op2(0b101),
962           access_gic_sgi },
963         /* ICC_SRE_EL1 */
964         { Op0(0b11), Op1(0b000), CRn(0b1100), CRm(0b1100), Op2(0b101),
965           access_gic_sre },
966
967         /* CONTEXTIDR_EL1 */
968         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b001),
969           access_vm_reg, reset_val, CONTEXTIDR_EL1, 0 },
970         /* TPIDR_EL1 */
971         { Op0(0b11), Op1(0b000), CRn(0b1101), CRm(0b0000), Op2(0b100),
972           NULL, reset_unknown, TPIDR_EL1 },
973
974         /* CNTKCTL_EL1 */
975         { Op0(0b11), Op1(0b000), CRn(0b1110), CRm(0b0001), Op2(0b000),
976           NULL, reset_val, CNTKCTL_EL1, 0},
977
978         /* CSSELR_EL1 */
979         { Op0(0b11), Op1(0b010), CRn(0b0000), CRm(0b0000), Op2(0b000),
980           NULL, reset_unknown, CSSELR_EL1 },
981
982         /* PMCR_EL0 */
983         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b000),
984           access_pmcr, reset_pmcr, },
985         /* PMCNTENSET_EL0 */
986         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b001),
987           access_pmcnten, reset_unknown, PMCNTENSET_EL0 },
988         /* PMCNTENCLR_EL0 */
989         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b010),
990           access_pmcnten, NULL, PMCNTENSET_EL0 },
991         /* PMOVSCLR_EL0 */
992         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b011),
993           access_pmovs, NULL, PMOVSSET_EL0 },
994         /* PMSWINC_EL0 */
995         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b100),
996           access_pmswinc, reset_unknown, PMSWINC_EL0 },
997         /* PMSELR_EL0 */
998         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b101),
999           access_pmselr, reset_unknown, PMSELR_EL0 },
1000         /* PMCEID0_EL0 */
1001         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b110),
1002           access_pmceid },
1003         /* PMCEID1_EL0 */
1004         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1100), Op2(0b111),
1005           access_pmceid },
1006         /* PMCCNTR_EL0 */
1007         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b000),
1008           access_pmu_evcntr, reset_unknown, PMCCNTR_EL0 },
1009         /* PMXEVTYPER_EL0 */
1010         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b001),
1011           access_pmu_evtyper },
1012         /* PMXEVCNTR_EL0 */
1013         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1101), Op2(0b010),
1014           access_pmu_evcntr },
1015         /* PMUSERENR_EL0
1016          * This register resets as unknown in 64bit mode while it resets as zero
1017          * in 32bit mode. Here we choose to reset it as zero for consistency.
1018          */
1019         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b000),
1020           access_pmuserenr, reset_val, PMUSERENR_EL0, 0 },
1021         /* PMOVSSET_EL0 */
1022         { Op0(0b11), Op1(0b011), CRn(0b1001), CRm(0b1110), Op2(0b011),
1023           access_pmovs, reset_unknown, PMOVSSET_EL0 },
1024
1025         /* TPIDR_EL0 */
1026         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b010),
1027           NULL, reset_unknown, TPIDR_EL0 },
1028         /* TPIDRRO_EL0 */
1029         { Op0(0b11), Op1(0b011), CRn(0b1101), CRm(0b0000), Op2(0b011),
1030           NULL, reset_unknown, TPIDRRO_EL0 },
1031
1032         /* PMEVCNTRn_EL0 */
1033         PMU_PMEVCNTR_EL0(0),
1034         PMU_PMEVCNTR_EL0(1),
1035         PMU_PMEVCNTR_EL0(2),
1036         PMU_PMEVCNTR_EL0(3),
1037         PMU_PMEVCNTR_EL0(4),
1038         PMU_PMEVCNTR_EL0(5),
1039         PMU_PMEVCNTR_EL0(6),
1040         PMU_PMEVCNTR_EL0(7),
1041         PMU_PMEVCNTR_EL0(8),
1042         PMU_PMEVCNTR_EL0(9),
1043         PMU_PMEVCNTR_EL0(10),
1044         PMU_PMEVCNTR_EL0(11),
1045         PMU_PMEVCNTR_EL0(12),
1046         PMU_PMEVCNTR_EL0(13),
1047         PMU_PMEVCNTR_EL0(14),
1048         PMU_PMEVCNTR_EL0(15),
1049         PMU_PMEVCNTR_EL0(16),
1050         PMU_PMEVCNTR_EL0(17),
1051         PMU_PMEVCNTR_EL0(18),
1052         PMU_PMEVCNTR_EL0(19),
1053         PMU_PMEVCNTR_EL0(20),
1054         PMU_PMEVCNTR_EL0(21),
1055         PMU_PMEVCNTR_EL0(22),
1056         PMU_PMEVCNTR_EL0(23),
1057         PMU_PMEVCNTR_EL0(24),
1058         PMU_PMEVCNTR_EL0(25),
1059         PMU_PMEVCNTR_EL0(26),
1060         PMU_PMEVCNTR_EL0(27),
1061         PMU_PMEVCNTR_EL0(28),
1062         PMU_PMEVCNTR_EL0(29),
1063         PMU_PMEVCNTR_EL0(30),
1064         /* PMEVTYPERn_EL0 */
1065         PMU_PMEVTYPER_EL0(0),
1066         PMU_PMEVTYPER_EL0(1),
1067         PMU_PMEVTYPER_EL0(2),
1068         PMU_PMEVTYPER_EL0(3),
1069         PMU_PMEVTYPER_EL0(4),
1070         PMU_PMEVTYPER_EL0(5),
1071         PMU_PMEVTYPER_EL0(6),
1072         PMU_PMEVTYPER_EL0(7),
1073         PMU_PMEVTYPER_EL0(8),
1074         PMU_PMEVTYPER_EL0(9),
1075         PMU_PMEVTYPER_EL0(10),
1076         PMU_PMEVTYPER_EL0(11),
1077         PMU_PMEVTYPER_EL0(12),
1078         PMU_PMEVTYPER_EL0(13),
1079         PMU_PMEVTYPER_EL0(14),
1080         PMU_PMEVTYPER_EL0(15),
1081         PMU_PMEVTYPER_EL0(16),
1082         PMU_PMEVTYPER_EL0(17),
1083         PMU_PMEVTYPER_EL0(18),
1084         PMU_PMEVTYPER_EL0(19),
1085         PMU_PMEVTYPER_EL0(20),
1086         PMU_PMEVTYPER_EL0(21),
1087         PMU_PMEVTYPER_EL0(22),
1088         PMU_PMEVTYPER_EL0(23),
1089         PMU_PMEVTYPER_EL0(24),
1090         PMU_PMEVTYPER_EL0(25),
1091         PMU_PMEVTYPER_EL0(26),
1092         PMU_PMEVTYPER_EL0(27),
1093         PMU_PMEVTYPER_EL0(28),
1094         PMU_PMEVTYPER_EL0(29),
1095         PMU_PMEVTYPER_EL0(30),
1096         /* PMCCFILTR_EL0
1097          * This register resets as unknown in 64bit mode while it resets as zero
1098          * in 32bit mode. Here we choose to reset it as zero for consistency.
1099          */
1100         { Op0(0b11), Op1(0b011), CRn(0b1110), CRm(0b1111), Op2(0b111),
1101           access_pmu_evtyper, reset_val, PMCCFILTR_EL0, 0 },
1102
1103         /* DACR32_EL2 */
1104         { Op0(0b11), Op1(0b100), CRn(0b0011), CRm(0b0000), Op2(0b000),
1105           NULL, reset_unknown, DACR32_EL2 },
1106         /* IFSR32_EL2 */
1107         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0000), Op2(0b001),
1108           NULL, reset_unknown, IFSR32_EL2 },
1109         /* FPEXC32_EL2 */
1110         { Op0(0b11), Op1(0b100), CRn(0b0101), CRm(0b0011), Op2(0b000),
1111           NULL, reset_val, FPEXC32_EL2, 0x70 },
1112 };
1113
1114 static bool trap_dbgidr(struct kvm_vcpu *vcpu,
1115                         struct sys_reg_params *p,
1116                         const struct sys_reg_desc *r)
1117 {
1118         if (p->is_write) {
1119                 return ignore_write(vcpu, p);
1120         } else {
1121                 u64 dfr = read_system_reg(SYS_ID_AA64DFR0_EL1);
1122                 u64 pfr = read_system_reg(SYS_ID_AA64PFR0_EL1);
1123                 u32 el3 = !!cpuid_feature_extract_unsigned_field(pfr, ID_AA64PFR0_EL3_SHIFT);
1124
1125                 p->regval = ((((dfr >> ID_AA64DFR0_WRPS_SHIFT) & 0xf) << 28) |
1126                              (((dfr >> ID_AA64DFR0_BRPS_SHIFT) & 0xf) << 24) |
1127                              (((dfr >> ID_AA64DFR0_CTX_CMPS_SHIFT) & 0xf) << 20)
1128                              | (6 << 16) | (el3 << 14) | (el3 << 12));
1129                 return true;
1130         }
1131 }
1132
1133 static bool trap_debug32(struct kvm_vcpu *vcpu,
1134                          struct sys_reg_params *p,
1135                          const struct sys_reg_desc *r)
1136 {
1137         if (p->is_write) {
1138                 vcpu_cp14(vcpu, r->reg) = p->regval;
1139                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1140         } else {
1141                 p->regval = vcpu_cp14(vcpu, r->reg);
1142         }
1143
1144         return true;
1145 }
1146
1147 /* AArch32 debug register mappings
1148  *
1149  * AArch32 DBGBVRn is mapped to DBGBVRn_EL1[31:0]
1150  * AArch32 DBGBXVRn is mapped to DBGBVRn_EL1[63:32]
1151  *
1152  * All control registers and watchpoint value registers are mapped to
1153  * the lower 32 bits of their AArch64 equivalents. We share the trap
1154  * handlers with the above AArch64 code which checks what mode the
1155  * system is in.
1156  */
1157
1158 static bool trap_xvr(struct kvm_vcpu *vcpu,
1159                      struct sys_reg_params *p,
1160                      const struct sys_reg_desc *rd)
1161 {
1162         u64 *dbg_reg = &vcpu->arch.vcpu_debug_state.dbg_bvr[rd->reg];
1163
1164         if (p->is_write) {
1165                 u64 val = *dbg_reg;
1166
1167                 val &= 0xffffffffUL;
1168                 val |= p->regval << 32;
1169                 *dbg_reg = val;
1170
1171                 vcpu->arch.debug_flags |= KVM_ARM64_DEBUG_DIRTY;
1172         } else {
1173                 p->regval = *dbg_reg >> 32;
1174         }
1175
1176         trace_trap_reg(__func__, rd->reg, p->is_write, *dbg_reg);
1177
1178         return true;
1179 }
1180
1181 #define DBG_BCR_BVR_WCR_WVR(n)                                          \
1182         /* DBGBVRn */                                                   \
1183         { Op1( 0), CRn( 0), CRm((n)), Op2( 4), trap_bvr, NULL, n },     \
1184         /* DBGBCRn */                                                   \
1185         { Op1( 0), CRn( 0), CRm((n)), Op2( 5), trap_bcr, NULL, n },     \
1186         /* DBGWVRn */                                                   \
1187         { Op1( 0), CRn( 0), CRm((n)), Op2( 6), trap_wvr, NULL, n },     \
1188         /* DBGWCRn */                                                   \
1189         { Op1( 0), CRn( 0), CRm((n)), Op2( 7), trap_wcr, NULL, n }
1190
1191 #define DBGBXVR(n)                                                      \
1192         { Op1( 0), CRn( 1), CRm((n)), Op2( 1), trap_xvr, NULL, n }
1193
1194 /*
1195  * Trapped cp14 registers. We generally ignore most of the external
1196  * debug, on the principle that they don't really make sense to a
1197  * guest. Revisit this one day, would this principle change.
1198  */
1199 static const struct sys_reg_desc cp14_regs[] = {
1200         /* DBGIDR */
1201         { Op1( 0), CRn( 0), CRm( 0), Op2( 0), trap_dbgidr },
1202         /* DBGDTRRXext */
1203         { Op1( 0), CRn( 0), CRm( 0), Op2( 2), trap_raz_wi },
1204
1205         DBG_BCR_BVR_WCR_WVR(0),
1206         /* DBGDSCRint */
1207         { Op1( 0), CRn( 0), CRm( 1), Op2( 0), trap_raz_wi },
1208         DBG_BCR_BVR_WCR_WVR(1),
1209         /* DBGDCCINT */
1210         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), trap_debug32 },
1211         /* DBGDSCRext */
1212         { Op1( 0), CRn( 0), CRm( 2), Op2( 2), trap_debug32 },
1213         DBG_BCR_BVR_WCR_WVR(2),
1214         /* DBGDTR[RT]Xint */
1215         { Op1( 0), CRn( 0), CRm( 3), Op2( 0), trap_raz_wi },
1216         /* DBGDTR[RT]Xext */
1217         { Op1( 0), CRn( 0), CRm( 3), Op2( 2), trap_raz_wi },
1218         DBG_BCR_BVR_WCR_WVR(3),
1219         DBG_BCR_BVR_WCR_WVR(4),
1220         DBG_BCR_BVR_WCR_WVR(5),
1221         /* DBGWFAR */
1222         { Op1( 0), CRn( 0), CRm( 6), Op2( 0), trap_raz_wi },
1223         /* DBGOSECCR */
1224         { Op1( 0), CRn( 0), CRm( 6), Op2( 2), trap_raz_wi },
1225         DBG_BCR_BVR_WCR_WVR(6),
1226         /* DBGVCR */
1227         { Op1( 0), CRn( 0), CRm( 7), Op2( 0), trap_debug32 },
1228         DBG_BCR_BVR_WCR_WVR(7),
1229         DBG_BCR_BVR_WCR_WVR(8),
1230         DBG_BCR_BVR_WCR_WVR(9),
1231         DBG_BCR_BVR_WCR_WVR(10),
1232         DBG_BCR_BVR_WCR_WVR(11),
1233         DBG_BCR_BVR_WCR_WVR(12),
1234         DBG_BCR_BVR_WCR_WVR(13),
1235         DBG_BCR_BVR_WCR_WVR(14),
1236         DBG_BCR_BVR_WCR_WVR(15),
1237
1238         /* DBGDRAR (32bit) */
1239         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), trap_raz_wi },
1240
1241         DBGBXVR(0),
1242         /* DBGOSLAR */
1243         { Op1( 0), CRn( 1), CRm( 0), Op2( 4), trap_raz_wi },
1244         DBGBXVR(1),
1245         /* DBGOSLSR */
1246         { Op1( 0), CRn( 1), CRm( 1), Op2( 4), trap_oslsr_el1 },
1247         DBGBXVR(2),
1248         DBGBXVR(3),
1249         /* DBGOSDLR */
1250         { Op1( 0), CRn( 1), CRm( 3), Op2( 4), trap_raz_wi },
1251         DBGBXVR(4),
1252         /* DBGPRCR */
1253         { Op1( 0), CRn( 1), CRm( 4), Op2( 4), trap_raz_wi },
1254         DBGBXVR(5),
1255         DBGBXVR(6),
1256         DBGBXVR(7),
1257         DBGBXVR(8),
1258         DBGBXVR(9),
1259         DBGBXVR(10),
1260         DBGBXVR(11),
1261         DBGBXVR(12),
1262         DBGBXVR(13),
1263         DBGBXVR(14),
1264         DBGBXVR(15),
1265
1266         /* DBGDSAR (32bit) */
1267         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), trap_raz_wi },
1268
1269         /* DBGDEVID2 */
1270         { Op1( 0), CRn( 7), CRm( 0), Op2( 7), trap_raz_wi },
1271         /* DBGDEVID1 */
1272         { Op1( 0), CRn( 7), CRm( 1), Op2( 7), trap_raz_wi },
1273         /* DBGDEVID */
1274         { Op1( 0), CRn( 7), CRm( 2), Op2( 7), trap_raz_wi },
1275         /* DBGCLAIMSET */
1276         { Op1( 0), CRn( 7), CRm( 8), Op2( 6), trap_raz_wi },
1277         /* DBGCLAIMCLR */
1278         { Op1( 0), CRn( 7), CRm( 9), Op2( 6), trap_raz_wi },
1279         /* DBGAUTHSTATUS */
1280         { Op1( 0), CRn( 7), CRm(14), Op2( 6), trap_dbgauthstatus_el1 },
1281 };
1282
1283 /* Trapped cp14 64bit registers */
1284 static const struct sys_reg_desc cp14_64_regs[] = {
1285         /* DBGDRAR (64bit) */
1286         { Op1( 0), CRm( 1), .access = trap_raz_wi },
1287
1288         /* DBGDSAR (64bit) */
1289         { Op1( 0), CRm( 2), .access = trap_raz_wi },
1290 };
1291
1292 /* Macro to expand the PMEVCNTRn register */
1293 #define PMU_PMEVCNTR(n)                                                 \
1294         /* PMEVCNTRn */                                                 \
1295         { Op1(0), CRn(0b1110),                                          \
1296           CRm((0b1000 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1297           access_pmu_evcntr }
1298
1299 /* Macro to expand the PMEVTYPERn register */
1300 #define PMU_PMEVTYPER(n)                                                \
1301         /* PMEVTYPERn */                                                \
1302         { Op1(0), CRn(0b1110),                                          \
1303           CRm((0b1100 | (((n) >> 3) & 0x3))), Op2(((n) & 0x7)),         \
1304           access_pmu_evtyper }
1305
1306 /*
1307  * Trapped cp15 registers. TTBR0/TTBR1 get a double encoding,
1308  * depending on the way they are accessed (as a 32bit or a 64bit
1309  * register).
1310  */
1311 static const struct sys_reg_desc cp15_regs[] = {
1312         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1313
1314         { Op1( 0), CRn( 1), CRm( 0), Op2( 0), access_vm_reg, NULL, c1_SCTLR },
1315         { Op1( 0), CRn( 2), CRm( 0), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1316         { Op1( 0), CRn( 2), CRm( 0), Op2( 1), access_vm_reg, NULL, c2_TTBR1 },
1317         { Op1( 0), CRn( 2), CRm( 0), Op2( 2), access_vm_reg, NULL, c2_TTBCR },
1318         { Op1( 0), CRn( 3), CRm( 0), Op2( 0), access_vm_reg, NULL, c3_DACR },
1319         { Op1( 0), CRn( 5), CRm( 0), Op2( 0), access_vm_reg, NULL, c5_DFSR },
1320         { Op1( 0), CRn( 5), CRm( 0), Op2( 1), access_vm_reg, NULL, c5_IFSR },
1321         { Op1( 0), CRn( 5), CRm( 1), Op2( 0), access_vm_reg, NULL, c5_ADFSR },
1322         { Op1( 0), CRn( 5), CRm( 1), Op2( 1), access_vm_reg, NULL, c5_AIFSR },
1323         { Op1( 0), CRn( 6), CRm( 0), Op2( 0), access_vm_reg, NULL, c6_DFAR },
1324         { Op1( 0), CRn( 6), CRm( 0), Op2( 2), access_vm_reg, NULL, c6_IFAR },
1325
1326         /*
1327          * DC{C,I,CI}SW operations:
1328          */
1329         { Op1( 0), CRn( 7), CRm( 6), Op2( 2), access_dcsw },
1330         { Op1( 0), CRn( 7), CRm(10), Op2( 2), access_dcsw },
1331         { Op1( 0), CRn( 7), CRm(14), Op2( 2), access_dcsw },
1332
1333         /* PMU */
1334         { Op1( 0), CRn( 9), CRm(12), Op2( 0), access_pmcr },
1335         { Op1( 0), CRn( 9), CRm(12), Op2( 1), access_pmcnten },
1336         { Op1( 0), CRn( 9), CRm(12), Op2( 2), access_pmcnten },
1337         { Op1( 0), CRn( 9), CRm(12), Op2( 3), access_pmovs },
1338         { Op1( 0), CRn( 9), CRm(12), Op2( 4), access_pmswinc },
1339         { Op1( 0), CRn( 9), CRm(12), Op2( 5), access_pmselr },
1340         { Op1( 0), CRn( 9), CRm(12), Op2( 6), access_pmceid },
1341         { Op1( 0), CRn( 9), CRm(12), Op2( 7), access_pmceid },
1342         { Op1( 0), CRn( 9), CRm(13), Op2( 0), access_pmu_evcntr },
1343         { Op1( 0), CRn( 9), CRm(13), Op2( 1), access_pmu_evtyper },
1344         { Op1( 0), CRn( 9), CRm(13), Op2( 2), access_pmu_evcntr },
1345         { Op1( 0), CRn( 9), CRm(14), Op2( 0), access_pmuserenr },
1346         { Op1( 0), CRn( 9), CRm(14), Op2( 1), access_pminten },
1347         { Op1( 0), CRn( 9), CRm(14), Op2( 2), access_pminten },
1348         { Op1( 0), CRn( 9), CRm(14), Op2( 3), access_pmovs },
1349
1350         { Op1( 0), CRn(10), CRm( 2), Op2( 0), access_vm_reg, NULL, c10_PRRR },
1351         { Op1( 0), CRn(10), CRm( 2), Op2( 1), access_vm_reg, NULL, c10_NMRR },
1352         { Op1( 0), CRn(10), CRm( 3), Op2( 0), access_vm_reg, NULL, c10_AMAIR0 },
1353         { Op1( 0), CRn(10), CRm( 3), Op2( 1), access_vm_reg, NULL, c10_AMAIR1 },
1354
1355         /* ICC_SRE */
1356         { Op1( 0), CRn(12), CRm(12), Op2( 5), access_gic_sre },
1357
1358         { Op1( 0), CRn(13), CRm( 0), Op2( 1), access_vm_reg, NULL, c13_CID },
1359
1360         /* PMEVCNTRn */
1361         PMU_PMEVCNTR(0),
1362         PMU_PMEVCNTR(1),
1363         PMU_PMEVCNTR(2),
1364         PMU_PMEVCNTR(3),
1365         PMU_PMEVCNTR(4),
1366         PMU_PMEVCNTR(5),
1367         PMU_PMEVCNTR(6),
1368         PMU_PMEVCNTR(7),
1369         PMU_PMEVCNTR(8),
1370         PMU_PMEVCNTR(9),
1371         PMU_PMEVCNTR(10),
1372         PMU_PMEVCNTR(11),
1373         PMU_PMEVCNTR(12),
1374         PMU_PMEVCNTR(13),
1375         PMU_PMEVCNTR(14),
1376         PMU_PMEVCNTR(15),
1377         PMU_PMEVCNTR(16),
1378         PMU_PMEVCNTR(17),
1379         PMU_PMEVCNTR(18),
1380         PMU_PMEVCNTR(19),
1381         PMU_PMEVCNTR(20),
1382         PMU_PMEVCNTR(21),
1383         PMU_PMEVCNTR(22),
1384         PMU_PMEVCNTR(23),
1385         PMU_PMEVCNTR(24),
1386         PMU_PMEVCNTR(25),
1387         PMU_PMEVCNTR(26),
1388         PMU_PMEVCNTR(27),
1389         PMU_PMEVCNTR(28),
1390         PMU_PMEVCNTR(29),
1391         PMU_PMEVCNTR(30),
1392         /* PMEVTYPERn */
1393         PMU_PMEVTYPER(0),
1394         PMU_PMEVTYPER(1),
1395         PMU_PMEVTYPER(2),
1396         PMU_PMEVTYPER(3),
1397         PMU_PMEVTYPER(4),
1398         PMU_PMEVTYPER(5),
1399         PMU_PMEVTYPER(6),
1400         PMU_PMEVTYPER(7),
1401         PMU_PMEVTYPER(8),
1402         PMU_PMEVTYPER(9),
1403         PMU_PMEVTYPER(10),
1404         PMU_PMEVTYPER(11),
1405         PMU_PMEVTYPER(12),
1406         PMU_PMEVTYPER(13),
1407         PMU_PMEVTYPER(14),
1408         PMU_PMEVTYPER(15),
1409         PMU_PMEVTYPER(16),
1410         PMU_PMEVTYPER(17),
1411         PMU_PMEVTYPER(18),
1412         PMU_PMEVTYPER(19),
1413         PMU_PMEVTYPER(20),
1414         PMU_PMEVTYPER(21),
1415         PMU_PMEVTYPER(22),
1416         PMU_PMEVTYPER(23),
1417         PMU_PMEVTYPER(24),
1418         PMU_PMEVTYPER(25),
1419         PMU_PMEVTYPER(26),
1420         PMU_PMEVTYPER(27),
1421         PMU_PMEVTYPER(28),
1422         PMU_PMEVTYPER(29),
1423         PMU_PMEVTYPER(30),
1424         /* PMCCFILTR */
1425         { Op1(0), CRn(14), CRm(15), Op2(7), access_pmu_evtyper },
1426 };
1427
1428 static const struct sys_reg_desc cp15_64_regs[] = {
1429         { Op1( 0), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR0 },
1430         { Op1( 0), CRn( 0), CRm( 9), Op2( 0), access_pmu_evcntr },
1431         { Op1( 0), CRn( 0), CRm(12), Op2( 0), access_gic_sgi },
1432         { Op1( 1), CRn( 0), CRm( 2), Op2( 0), access_vm_reg, NULL, c2_TTBR1 },
1433 };
1434
1435 /* Target specific emulation tables */
1436 static struct kvm_sys_reg_target_table *target_tables[KVM_ARM_NUM_TARGETS];
1437
1438 void kvm_register_target_sys_reg_table(unsigned int target,
1439                                        struct kvm_sys_reg_target_table *table)
1440 {
1441         target_tables[target] = table;
1442 }
1443
1444 /* Get specific register table for this target. */
1445 static const struct sys_reg_desc *get_target_table(unsigned target,
1446                                                    bool mode_is_64,
1447                                                    size_t *num)
1448 {
1449         struct kvm_sys_reg_target_table *table;
1450
1451         table = target_tables[target];
1452         if (mode_is_64) {
1453                 *num = table->table64.num;
1454                 return table->table64.table;
1455         } else {
1456                 *num = table->table32.num;
1457                 return table->table32.table;
1458         }
1459 }
1460
1461 #define reg_to_match_value(x)                                           \
1462         ({                                                              \
1463                 unsigned long val;                                      \
1464                 val  = (x)->Op0 << 14;                                  \
1465                 val |= (x)->Op1 << 11;                                  \
1466                 val |= (x)->CRn << 7;                                   \
1467                 val |= (x)->CRm << 3;                                   \
1468                 val |= (x)->Op2;                                        \
1469                 val;                                                    \
1470          })
1471
1472 static int match_sys_reg(const void *key, const void *elt)
1473 {
1474         const unsigned long pval = (unsigned long)key;
1475         const struct sys_reg_desc *r = elt;
1476
1477         return pval - reg_to_match_value(r);
1478 }
1479
1480 static const struct sys_reg_desc *find_reg(const struct sys_reg_params *params,
1481                                          const struct sys_reg_desc table[],
1482                                          unsigned int num)
1483 {
1484         unsigned long pval = reg_to_match_value(params);
1485
1486         return bsearch((void *)pval, table, num, sizeof(table[0]), match_sys_reg);
1487 }
1488
1489 int kvm_handle_cp14_load_store(struct kvm_vcpu *vcpu, struct kvm_run *run)
1490 {
1491         kvm_inject_undefined(vcpu);
1492         return 1;
1493 }
1494
1495 /*
1496  * emulate_cp --  tries to match a sys_reg access in a handling table, and
1497  *                call the corresponding trap handler.
1498  *
1499  * @params: pointer to the descriptor of the access
1500  * @table: array of trap descriptors
1501  * @num: size of the trap descriptor array
1502  *
1503  * Return 0 if the access has been handled, and -1 if not.
1504  */
1505 static int emulate_cp(struct kvm_vcpu *vcpu,
1506                       struct sys_reg_params *params,
1507                       const struct sys_reg_desc *table,
1508                       size_t num)
1509 {
1510         const struct sys_reg_desc *r;
1511
1512         if (!table)
1513                 return -1;      /* Not handled */
1514
1515         r = find_reg(params, table, num);
1516
1517         if (r) {
1518                 /*
1519                  * Not having an accessor means that we have
1520                  * configured a trap that we don't know how to
1521                  * handle. This certainly qualifies as a gross bug
1522                  * that should be fixed right away.
1523                  */
1524                 BUG_ON(!r->access);
1525
1526                 if (likely(r->access(vcpu, params, r))) {
1527                         /* Skip instruction, since it was emulated */
1528                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1529                         /* Handled */
1530                         return 0;
1531                 }
1532         }
1533
1534         /* Not handled */
1535         return -1;
1536 }
1537
1538 static void unhandled_cp_access(struct kvm_vcpu *vcpu,
1539                                 struct sys_reg_params *params)
1540 {
1541         u8 hsr_ec = kvm_vcpu_trap_get_class(vcpu);
1542         int cp = -1;
1543
1544         switch(hsr_ec) {
1545         case ESR_ELx_EC_CP15_32:
1546         case ESR_ELx_EC_CP15_64:
1547                 cp = 15;
1548                 break;
1549         case ESR_ELx_EC_CP14_MR:
1550         case ESR_ELx_EC_CP14_64:
1551                 cp = 14;
1552                 break;
1553         default:
1554                 WARN_ON(1);
1555         }
1556
1557         kvm_err("Unsupported guest CP%d access at: %08lx\n",
1558                 cp, *vcpu_pc(vcpu));
1559         print_sys_reg_instr(params);
1560         kvm_inject_undefined(vcpu);
1561 }
1562
1563 /**
1564  * kvm_handle_cp_64 -- handles a mrrc/mcrr trap on a guest CP14/CP15 access
1565  * @vcpu: The VCPU pointer
1566  * @run:  The kvm_run struct
1567  */
1568 static int kvm_handle_cp_64(struct kvm_vcpu *vcpu,
1569                             const struct sys_reg_desc *global,
1570                             size_t nr_global,
1571                             const struct sys_reg_desc *target_specific,
1572                             size_t nr_specific)
1573 {
1574         struct sys_reg_params params;
1575         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1576         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1577         int Rt2 = (hsr >> 10) & 0x1f;
1578
1579         params.is_aarch32 = true;
1580         params.is_32bit = false;
1581         params.CRm = (hsr >> 1) & 0xf;
1582         params.is_write = ((hsr & 1) == 0);
1583
1584         params.Op0 = 0;
1585         params.Op1 = (hsr >> 16) & 0xf;
1586         params.Op2 = 0;
1587         params.CRn = 0;
1588
1589         /*
1590          * Make a 64-bit value out of Rt and Rt2. As we use the same trap
1591          * backends between AArch32 and AArch64, we get away with it.
1592          */
1593         if (params.is_write) {
1594                 params.regval = vcpu_get_reg(vcpu, Rt) & 0xffffffff;
1595                 params.regval |= vcpu_get_reg(vcpu, Rt2) << 32;
1596         }
1597
1598         if (!emulate_cp(vcpu, &params, target_specific, nr_specific))
1599                 goto out;
1600         if (!emulate_cp(vcpu, &params, global, nr_global))
1601                 goto out;
1602
1603         unhandled_cp_access(vcpu, &params);
1604
1605 out:
1606         /* Split up the value between registers for the read side */
1607         if (!params.is_write) {
1608                 vcpu_set_reg(vcpu, Rt, lower_32_bits(params.regval));
1609                 vcpu_set_reg(vcpu, Rt2, upper_32_bits(params.regval));
1610         }
1611
1612         return 1;
1613 }
1614
1615 /**
1616  * kvm_handle_cp_32 -- handles a mrc/mcr trap on a guest CP14/CP15 access
1617  * @vcpu: The VCPU pointer
1618  * @run:  The kvm_run struct
1619  */
1620 static int kvm_handle_cp_32(struct kvm_vcpu *vcpu,
1621                             const struct sys_reg_desc *global,
1622                             size_t nr_global,
1623                             const struct sys_reg_desc *target_specific,
1624                             size_t nr_specific)
1625 {
1626         struct sys_reg_params params;
1627         u32 hsr = kvm_vcpu_get_hsr(vcpu);
1628         int Rt  = kvm_vcpu_sys_get_rt(vcpu);
1629
1630         params.is_aarch32 = true;
1631         params.is_32bit = true;
1632         params.CRm = (hsr >> 1) & 0xf;
1633         params.regval = vcpu_get_reg(vcpu, Rt);
1634         params.is_write = ((hsr & 1) == 0);
1635         params.CRn = (hsr >> 10) & 0xf;
1636         params.Op0 = 0;
1637         params.Op1 = (hsr >> 14) & 0x7;
1638         params.Op2 = (hsr >> 17) & 0x7;
1639
1640         if (!emulate_cp(vcpu, &params, target_specific, nr_specific) ||
1641             !emulate_cp(vcpu, &params, global, nr_global)) {
1642                 if (!params.is_write)
1643                         vcpu_set_reg(vcpu, Rt, params.regval);
1644                 return 1;
1645         }
1646
1647         unhandled_cp_access(vcpu, &params);
1648         return 1;
1649 }
1650
1651 int kvm_handle_cp15_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1652 {
1653         const struct sys_reg_desc *target_specific;
1654         size_t num;
1655
1656         target_specific = get_target_table(vcpu->arch.target, false, &num);
1657         return kvm_handle_cp_64(vcpu,
1658                                 cp15_64_regs, ARRAY_SIZE(cp15_64_regs),
1659                                 target_specific, num);
1660 }
1661
1662 int kvm_handle_cp15_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1663 {
1664         const struct sys_reg_desc *target_specific;
1665         size_t num;
1666
1667         target_specific = get_target_table(vcpu->arch.target, false, &num);
1668         return kvm_handle_cp_32(vcpu,
1669                                 cp15_regs, ARRAY_SIZE(cp15_regs),
1670                                 target_specific, num);
1671 }
1672
1673 int kvm_handle_cp14_64(struct kvm_vcpu *vcpu, struct kvm_run *run)
1674 {
1675         return kvm_handle_cp_64(vcpu,
1676                                 cp14_64_regs, ARRAY_SIZE(cp14_64_regs),
1677                                 NULL, 0);
1678 }
1679
1680 int kvm_handle_cp14_32(struct kvm_vcpu *vcpu, struct kvm_run *run)
1681 {
1682         return kvm_handle_cp_32(vcpu,
1683                                 cp14_regs, ARRAY_SIZE(cp14_regs),
1684                                 NULL, 0);
1685 }
1686
1687 static int emulate_sys_reg(struct kvm_vcpu *vcpu,
1688                            struct sys_reg_params *params)
1689 {
1690         size_t num;
1691         const struct sys_reg_desc *table, *r;
1692
1693         table = get_target_table(vcpu->arch.target, true, &num);
1694
1695         /* Search target-specific then generic table. */
1696         r = find_reg(params, table, num);
1697         if (!r)
1698                 r = find_reg(params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1699
1700         if (likely(r)) {
1701                 /*
1702                  * Not having an accessor means that we have
1703                  * configured a trap that we don't know how to
1704                  * handle. This certainly qualifies as a gross bug
1705                  * that should be fixed right away.
1706                  */
1707                 BUG_ON(!r->access);
1708
1709                 if (likely(r->access(vcpu, params, r))) {
1710                         /* Skip instruction, since it was emulated */
1711                         kvm_skip_instr(vcpu, kvm_vcpu_trap_il_is32bit(vcpu));
1712                         return 1;
1713                 }
1714                 /* If access function fails, it should complain. */
1715         } else {
1716                 kvm_err("Unsupported guest sys_reg access at: %lx\n",
1717                         *vcpu_pc(vcpu));
1718                 print_sys_reg_instr(params);
1719         }
1720         kvm_inject_undefined(vcpu);
1721         return 1;
1722 }
1723
1724 static void reset_sys_reg_descs(struct kvm_vcpu *vcpu,
1725                               const struct sys_reg_desc *table, size_t num)
1726 {
1727         unsigned long i;
1728
1729         for (i = 0; i < num; i++)
1730                 if (table[i].reset)
1731                         table[i].reset(vcpu, &table[i]);
1732 }
1733
1734 /**
1735  * kvm_handle_sys_reg -- handles a mrs/msr trap on a guest sys_reg access
1736  * @vcpu: The VCPU pointer
1737  * @run:  The kvm_run struct
1738  */
1739 int kvm_handle_sys_reg(struct kvm_vcpu *vcpu, struct kvm_run *run)
1740 {
1741         struct sys_reg_params params;
1742         unsigned long esr = kvm_vcpu_get_hsr(vcpu);
1743         int Rt = kvm_vcpu_sys_get_rt(vcpu);
1744         int ret;
1745
1746         trace_kvm_handle_sys_reg(esr);
1747
1748         params.is_aarch32 = false;
1749         params.is_32bit = false;
1750         params.Op0 = (esr >> 20) & 3;
1751         params.Op1 = (esr >> 14) & 0x7;
1752         params.CRn = (esr >> 10) & 0xf;
1753         params.CRm = (esr >> 1) & 0xf;
1754         params.Op2 = (esr >> 17) & 0x7;
1755         params.regval = vcpu_get_reg(vcpu, Rt);
1756         params.is_write = !(esr & 1);
1757
1758         ret = emulate_sys_reg(vcpu, &params);
1759
1760         if (!params.is_write)
1761                 vcpu_set_reg(vcpu, Rt, params.regval);
1762         return ret;
1763 }
1764
1765 /******************************************************************************
1766  * Userspace API
1767  *****************************************************************************/
1768
1769 static bool index_to_params(u64 id, struct sys_reg_params *params)
1770 {
1771         switch (id & KVM_REG_SIZE_MASK) {
1772         case KVM_REG_SIZE_U64:
1773                 /* Any unused index bits means it's not valid. */
1774                 if (id & ~(KVM_REG_ARCH_MASK | KVM_REG_SIZE_MASK
1775                               | KVM_REG_ARM_COPROC_MASK
1776                               | KVM_REG_ARM64_SYSREG_OP0_MASK
1777                               | KVM_REG_ARM64_SYSREG_OP1_MASK
1778                               | KVM_REG_ARM64_SYSREG_CRN_MASK
1779                               | KVM_REG_ARM64_SYSREG_CRM_MASK
1780                               | KVM_REG_ARM64_SYSREG_OP2_MASK))
1781                         return false;
1782                 params->Op0 = ((id & KVM_REG_ARM64_SYSREG_OP0_MASK)
1783                                >> KVM_REG_ARM64_SYSREG_OP0_SHIFT);
1784                 params->Op1 = ((id & KVM_REG_ARM64_SYSREG_OP1_MASK)
1785                                >> KVM_REG_ARM64_SYSREG_OP1_SHIFT);
1786                 params->CRn = ((id & KVM_REG_ARM64_SYSREG_CRN_MASK)
1787                                >> KVM_REG_ARM64_SYSREG_CRN_SHIFT);
1788                 params->CRm = ((id & KVM_REG_ARM64_SYSREG_CRM_MASK)
1789                                >> KVM_REG_ARM64_SYSREG_CRM_SHIFT);
1790                 params->Op2 = ((id & KVM_REG_ARM64_SYSREG_OP2_MASK)
1791                                >> KVM_REG_ARM64_SYSREG_OP2_SHIFT);
1792                 return true;
1793         default:
1794                 return false;
1795         }
1796 }
1797
1798 /* Decode an index value, and find the sys_reg_desc entry. */
1799 static const struct sys_reg_desc *index_to_sys_reg_desc(struct kvm_vcpu *vcpu,
1800                                                     u64 id)
1801 {
1802         size_t num;
1803         const struct sys_reg_desc *table, *r;
1804         struct sys_reg_params params;
1805
1806         /* We only do sys_reg for now. */
1807         if ((id & KVM_REG_ARM_COPROC_MASK) != KVM_REG_ARM64_SYSREG)
1808                 return NULL;
1809
1810         if (!index_to_params(id, &params))
1811                 return NULL;
1812
1813         table = get_target_table(vcpu->arch.target, true, &num);
1814         r = find_reg(&params, table, num);
1815         if (!r)
1816                 r = find_reg(&params, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
1817
1818         /* Not saved in the sys_reg array? */
1819         if (r && !r->reg)
1820                 r = NULL;
1821
1822         return r;
1823 }
1824
1825 /*
1826  * These are the invariant sys_reg registers: we let the guest see the
1827  * host versions of these, so they're part of the guest state.
1828  *
1829  * A future CPU may provide a mechanism to present different values to
1830  * the guest, or a future kvm may trap them.
1831  */
1832
1833 #define FUNCTION_INVARIANT(reg)                                         \
1834         static void get_##reg(struct kvm_vcpu *v,                       \
1835                               const struct sys_reg_desc *r)             \
1836         {                                                               \
1837                 ((struct sys_reg_desc *)r)->val = read_sysreg(reg);     \
1838         }
1839
1840 FUNCTION_INVARIANT(midr_el1)
1841 FUNCTION_INVARIANT(ctr_el0)
1842 FUNCTION_INVARIANT(revidr_el1)
1843 FUNCTION_INVARIANT(id_pfr0_el1)
1844 FUNCTION_INVARIANT(id_pfr1_el1)
1845 FUNCTION_INVARIANT(id_dfr0_el1)
1846 FUNCTION_INVARIANT(id_afr0_el1)
1847 FUNCTION_INVARIANT(id_mmfr0_el1)
1848 FUNCTION_INVARIANT(id_mmfr1_el1)
1849 FUNCTION_INVARIANT(id_mmfr2_el1)
1850 FUNCTION_INVARIANT(id_mmfr3_el1)
1851 FUNCTION_INVARIANT(id_isar0_el1)
1852 FUNCTION_INVARIANT(id_isar1_el1)
1853 FUNCTION_INVARIANT(id_isar2_el1)
1854 FUNCTION_INVARIANT(id_isar3_el1)
1855 FUNCTION_INVARIANT(id_isar4_el1)
1856 FUNCTION_INVARIANT(id_isar5_el1)
1857 FUNCTION_INVARIANT(clidr_el1)
1858 FUNCTION_INVARIANT(aidr_el1)
1859
1860 /* ->val is filled in by kvm_sys_reg_table_init() */
1861 static struct sys_reg_desc invariant_sys_regs[] = {
1862         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b000),
1863           NULL, get_midr_el1 },
1864         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0000), Op2(0b110),
1865           NULL, get_revidr_el1 },
1866         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b000),
1867           NULL, get_id_pfr0_el1 },
1868         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b001),
1869           NULL, get_id_pfr1_el1 },
1870         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b010),
1871           NULL, get_id_dfr0_el1 },
1872         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b011),
1873           NULL, get_id_afr0_el1 },
1874         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b100),
1875           NULL, get_id_mmfr0_el1 },
1876         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b101),
1877           NULL, get_id_mmfr1_el1 },
1878         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b110),
1879           NULL, get_id_mmfr2_el1 },
1880         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0001), Op2(0b111),
1881           NULL, get_id_mmfr3_el1 },
1882         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b000),
1883           NULL, get_id_isar0_el1 },
1884         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b001),
1885           NULL, get_id_isar1_el1 },
1886         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b010),
1887           NULL, get_id_isar2_el1 },
1888         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b011),
1889           NULL, get_id_isar3_el1 },
1890         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b100),
1891           NULL, get_id_isar4_el1 },
1892         { Op0(0b11), Op1(0b000), CRn(0b0000), CRm(0b0010), Op2(0b101),
1893           NULL, get_id_isar5_el1 },
1894         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b001),
1895           NULL, get_clidr_el1 },
1896         { Op0(0b11), Op1(0b001), CRn(0b0000), CRm(0b0000), Op2(0b111),
1897           NULL, get_aidr_el1 },
1898         { Op0(0b11), Op1(0b011), CRn(0b0000), CRm(0b0000), Op2(0b001),
1899           NULL, get_ctr_el0 },
1900 };
1901
1902 static int reg_from_user(u64 *val, const void __user *uaddr, u64 id)
1903 {
1904         if (copy_from_user(val, uaddr, KVM_REG_SIZE(id)) != 0)
1905                 return -EFAULT;
1906         return 0;
1907 }
1908
1909 static int reg_to_user(void __user *uaddr, const u64 *val, u64 id)
1910 {
1911         if (copy_to_user(uaddr, val, KVM_REG_SIZE(id)) != 0)
1912                 return -EFAULT;
1913         return 0;
1914 }
1915
1916 static int get_invariant_sys_reg(u64 id, void __user *uaddr)
1917 {
1918         struct sys_reg_params params;
1919         const struct sys_reg_desc *r;
1920
1921         if (!index_to_params(id, &params))
1922                 return -ENOENT;
1923
1924         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1925         if (!r)
1926                 return -ENOENT;
1927
1928         return reg_to_user(uaddr, &r->val, id);
1929 }
1930
1931 static int set_invariant_sys_reg(u64 id, void __user *uaddr)
1932 {
1933         struct sys_reg_params params;
1934         const struct sys_reg_desc *r;
1935         int err;
1936         u64 val = 0; /* Make sure high bits are 0 for 32-bit regs */
1937
1938         if (!index_to_params(id, &params))
1939                 return -ENOENT;
1940         r = find_reg(&params, invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs));
1941         if (!r)
1942                 return -ENOENT;
1943
1944         err = reg_from_user(&val, uaddr, id);
1945         if (err)
1946                 return err;
1947
1948         /* This is what we mean by invariant: you can't change it. */
1949         if (r->val != val)
1950                 return -EINVAL;
1951
1952         return 0;
1953 }
1954
1955 static bool is_valid_cache(u32 val)
1956 {
1957         u32 level, ctype;
1958
1959         if (val >= CSSELR_MAX)
1960                 return false;
1961
1962         /* Bottom bit is Instruction or Data bit.  Next 3 bits are level. */
1963         level = (val >> 1);
1964         ctype = (cache_levels >> (level * 3)) & 7;
1965
1966         switch (ctype) {
1967         case 0: /* No cache */
1968                 return false;
1969         case 1: /* Instruction cache only */
1970                 return (val & 1);
1971         case 2: /* Data cache only */
1972         case 4: /* Unified cache */
1973                 return !(val & 1);
1974         case 3: /* Separate instruction and data caches */
1975                 return true;
1976         default: /* Reserved: we can't know instruction or data. */
1977                 return false;
1978         }
1979 }
1980
1981 static int demux_c15_get(u64 id, void __user *uaddr)
1982 {
1983         u32 val;
1984         u32 __user *uval = uaddr;
1985
1986         /* Fail if we have unknown bits set. */
1987         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
1988                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
1989                 return -ENOENT;
1990
1991         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
1992         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
1993                 if (KVM_REG_SIZE(id) != 4)
1994                         return -ENOENT;
1995                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
1996                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
1997                 if (!is_valid_cache(val))
1998                         return -ENOENT;
1999
2000                 return put_user(get_ccsidr(val), uval);
2001         default:
2002                 return -ENOENT;
2003         }
2004 }
2005
2006 static int demux_c15_set(u64 id, void __user *uaddr)
2007 {
2008         u32 val, newval;
2009         u32 __user *uval = uaddr;
2010
2011         /* Fail if we have unknown bits set. */
2012         if (id & ~(KVM_REG_ARCH_MASK|KVM_REG_SIZE_MASK|KVM_REG_ARM_COPROC_MASK
2013                    | ((1 << KVM_REG_ARM_COPROC_SHIFT)-1)))
2014                 return -ENOENT;
2015
2016         switch (id & KVM_REG_ARM_DEMUX_ID_MASK) {
2017         case KVM_REG_ARM_DEMUX_ID_CCSIDR:
2018                 if (KVM_REG_SIZE(id) != 4)
2019                         return -ENOENT;
2020                 val = (id & KVM_REG_ARM_DEMUX_VAL_MASK)
2021                         >> KVM_REG_ARM_DEMUX_VAL_SHIFT;
2022                 if (!is_valid_cache(val))
2023                         return -ENOENT;
2024
2025                 if (get_user(newval, uval))
2026                         return -EFAULT;
2027
2028                 /* This is also invariant: you can't change it. */
2029                 if (newval != get_ccsidr(val))
2030                         return -EINVAL;
2031                 return 0;
2032         default:
2033                 return -ENOENT;
2034         }
2035 }
2036
2037 int kvm_arm_sys_reg_get_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2038 {
2039         const struct sys_reg_desc *r;
2040         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2041
2042         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2043                 return demux_c15_get(reg->id, uaddr);
2044
2045         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2046                 return -ENOENT;
2047
2048         r = index_to_sys_reg_desc(vcpu, reg->id);
2049         if (!r)
2050                 return get_invariant_sys_reg(reg->id, uaddr);
2051
2052         if (r->get_user)
2053                 return (r->get_user)(vcpu, r, reg, uaddr);
2054
2055         return reg_to_user(uaddr, &vcpu_sys_reg(vcpu, r->reg), reg->id);
2056 }
2057
2058 int kvm_arm_sys_reg_set_reg(struct kvm_vcpu *vcpu, const struct kvm_one_reg *reg)
2059 {
2060         const struct sys_reg_desc *r;
2061         void __user *uaddr = (void __user *)(unsigned long)reg->addr;
2062
2063         if ((reg->id & KVM_REG_ARM_COPROC_MASK) == KVM_REG_ARM_DEMUX)
2064                 return demux_c15_set(reg->id, uaddr);
2065
2066         if (KVM_REG_SIZE(reg->id) != sizeof(__u64))
2067                 return -ENOENT;
2068
2069         r = index_to_sys_reg_desc(vcpu, reg->id);
2070         if (!r)
2071                 return set_invariant_sys_reg(reg->id, uaddr);
2072
2073         if (r->set_user)
2074                 return (r->set_user)(vcpu, r, reg, uaddr);
2075
2076         return reg_from_user(&vcpu_sys_reg(vcpu, r->reg), uaddr, reg->id);
2077 }
2078
2079 static unsigned int num_demux_regs(void)
2080 {
2081         unsigned int i, count = 0;
2082
2083         for (i = 0; i < CSSELR_MAX; i++)
2084                 if (is_valid_cache(i))
2085                         count++;
2086
2087         return count;
2088 }
2089
2090 static int write_demux_regids(u64 __user *uindices)
2091 {
2092         u64 val = KVM_REG_ARM64 | KVM_REG_SIZE_U32 | KVM_REG_ARM_DEMUX;
2093         unsigned int i;
2094
2095         val |= KVM_REG_ARM_DEMUX_ID_CCSIDR;
2096         for (i = 0; i < CSSELR_MAX; i++) {
2097                 if (!is_valid_cache(i))
2098                         continue;
2099                 if (put_user(val | i, uindices))
2100                         return -EFAULT;
2101                 uindices++;
2102         }
2103         return 0;
2104 }
2105
2106 static u64 sys_reg_to_index(const struct sys_reg_desc *reg)
2107 {
2108         return (KVM_REG_ARM64 | KVM_REG_SIZE_U64 |
2109                 KVM_REG_ARM64_SYSREG |
2110                 (reg->Op0 << KVM_REG_ARM64_SYSREG_OP0_SHIFT) |
2111                 (reg->Op1 << KVM_REG_ARM64_SYSREG_OP1_SHIFT) |
2112                 (reg->CRn << KVM_REG_ARM64_SYSREG_CRN_SHIFT) |
2113                 (reg->CRm << KVM_REG_ARM64_SYSREG_CRM_SHIFT) |
2114                 (reg->Op2 << KVM_REG_ARM64_SYSREG_OP2_SHIFT));
2115 }
2116
2117 static bool copy_reg_to_user(const struct sys_reg_desc *reg, u64 __user **uind)
2118 {
2119         if (!*uind)
2120                 return true;
2121
2122         if (put_user(sys_reg_to_index(reg), *uind))
2123                 return false;
2124
2125         (*uind)++;
2126         return true;
2127 }
2128
2129 /* Assumed ordered tables, see kvm_sys_reg_table_init. */
2130 static int walk_sys_regs(struct kvm_vcpu *vcpu, u64 __user *uind)
2131 {
2132         const struct sys_reg_desc *i1, *i2, *end1, *end2;
2133         unsigned int total = 0;
2134         size_t num;
2135
2136         /* We check for duplicates here, to allow arch-specific overrides. */
2137         i1 = get_target_table(vcpu->arch.target, true, &num);
2138         end1 = i1 + num;
2139         i2 = sys_reg_descs;
2140         end2 = sys_reg_descs + ARRAY_SIZE(sys_reg_descs);
2141
2142         BUG_ON(i1 == end1 || i2 == end2);
2143
2144         /* Walk carefully, as both tables may refer to the same register. */
2145         while (i1 || i2) {
2146                 int cmp = cmp_sys_reg(i1, i2);
2147                 /* target-specific overrides generic entry. */
2148                 if (cmp <= 0) {
2149                         /* Ignore registers we trap but don't save. */
2150                         if (i1->reg) {
2151                                 if (!copy_reg_to_user(i1, &uind))
2152                                         return -EFAULT;
2153                                 total++;
2154                         }
2155                 } else {
2156                         /* Ignore registers we trap but don't save. */
2157                         if (i2->reg) {
2158                                 if (!copy_reg_to_user(i2, &uind))
2159                                         return -EFAULT;
2160                                 total++;
2161                         }
2162                 }
2163
2164                 if (cmp <= 0 && ++i1 == end1)
2165                         i1 = NULL;
2166                 if (cmp >= 0 && ++i2 == end2)
2167                         i2 = NULL;
2168         }
2169         return total;
2170 }
2171
2172 unsigned long kvm_arm_num_sys_reg_descs(struct kvm_vcpu *vcpu)
2173 {
2174         return ARRAY_SIZE(invariant_sys_regs)
2175                 + num_demux_regs()
2176                 + walk_sys_regs(vcpu, (u64 __user *)NULL);
2177 }
2178
2179 int kvm_arm_copy_sys_reg_indices(struct kvm_vcpu *vcpu, u64 __user *uindices)
2180 {
2181         unsigned int i;
2182         int err;
2183
2184         /* Then give them all the invariant registers' indices. */
2185         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++) {
2186                 if (put_user(sys_reg_to_index(&invariant_sys_regs[i]), uindices))
2187                         return -EFAULT;
2188                 uindices++;
2189         }
2190
2191         err = walk_sys_regs(vcpu, uindices);
2192         if (err < 0)
2193                 return err;
2194         uindices += err;
2195
2196         return write_demux_regids(uindices);
2197 }
2198
2199 static int check_sysreg_table(const struct sys_reg_desc *table, unsigned int n)
2200 {
2201         unsigned int i;
2202
2203         for (i = 1; i < n; i++) {
2204                 if (cmp_sys_reg(&table[i-1], &table[i]) >= 0) {
2205                         kvm_err("sys_reg table %p out of order (%d)\n", table, i - 1);
2206                         return 1;
2207                 }
2208         }
2209
2210         return 0;
2211 }
2212
2213 void kvm_sys_reg_table_init(void)
2214 {
2215         unsigned int i;
2216         struct sys_reg_desc clidr;
2217
2218         /* Make sure tables are unique and in order. */
2219         BUG_ON(check_sysreg_table(sys_reg_descs, ARRAY_SIZE(sys_reg_descs)));
2220         BUG_ON(check_sysreg_table(cp14_regs, ARRAY_SIZE(cp14_regs)));
2221         BUG_ON(check_sysreg_table(cp14_64_regs, ARRAY_SIZE(cp14_64_regs)));
2222         BUG_ON(check_sysreg_table(cp15_regs, ARRAY_SIZE(cp15_regs)));
2223         BUG_ON(check_sysreg_table(cp15_64_regs, ARRAY_SIZE(cp15_64_regs)));
2224         BUG_ON(check_sysreg_table(invariant_sys_regs, ARRAY_SIZE(invariant_sys_regs)));
2225
2226         /* We abuse the reset function to overwrite the table itself. */
2227         for (i = 0; i < ARRAY_SIZE(invariant_sys_regs); i++)
2228                 invariant_sys_regs[i].reset(NULL, &invariant_sys_regs[i]);
2229
2230         /*
2231          * CLIDR format is awkward, so clean it up.  See ARM B4.1.20:
2232          *
2233          *   If software reads the Cache Type fields from Ctype1
2234          *   upwards, once it has seen a value of 0b000, no caches
2235          *   exist at further-out levels of the hierarchy. So, for
2236          *   example, if Ctype3 is the first Cache Type field with a
2237          *   value of 0b000, the values of Ctype4 to Ctype7 must be
2238          *   ignored.
2239          */
2240         get_clidr_el1(NULL, &clidr); /* Ugly... */
2241         cache_levels = clidr.val;
2242         for (i = 0; i < 7; i++)
2243                 if (((cache_levels >> (i*3)) & 7) == 0)
2244                         break;
2245         /* Clear all higher bits. */
2246         cache_levels &= (1 << (i*3))-1;
2247 }
2248
2249 /**
2250  * kvm_reset_sys_regs - sets system registers to reset value
2251  * @vcpu: The VCPU pointer
2252  *
2253  * This function finds the right table above and sets the registers on the
2254  * virtual CPU struct to their architecturally defined reset values.
2255  */
2256 void kvm_reset_sys_regs(struct kvm_vcpu *vcpu)
2257 {
2258         size_t num;
2259         const struct sys_reg_desc *table;
2260
2261         /* Catch someone adding a register without putting in reset entry. */
2262         memset(&vcpu->arch.ctxt.sys_regs, 0x42, sizeof(vcpu->arch.ctxt.sys_regs));
2263
2264         /* Generic chip reset first (so target could override). */
2265         reset_sys_reg_descs(vcpu, sys_reg_descs, ARRAY_SIZE(sys_reg_descs));
2266
2267         table = get_target_table(vcpu->arch.target, true, &num);
2268         reset_sys_reg_descs(vcpu, table, num);
2269
2270         for (num = 1; num < NR_SYS_REGS; num++)
2271                 if (vcpu_sys_reg(vcpu, num) == 0x4242424242424242)
2272                         panic("Didn't reset vcpu_sys_reg(%zi)", num);
2273 }