Linux-libre 3.12.18-gnu
[librecmc/linux-libre.git] / arch / arm / mm / mmu.c
1 /*
2  *  linux/arch/arm/mm/mmu.c
3  *
4  *  Copyright (C) 1995-2005 Russell King
5  *
6  * This program is free software; you can redistribute it and/or modify
7  * it under the terms of the GNU General Public License version 2 as
8  * published by the Free Software Foundation.
9  */
10 #include <linux/module.h>
11 #include <linux/kernel.h>
12 #include <linux/errno.h>
13 #include <linux/init.h>
14 #include <linux/mman.h>
15 #include <linux/nodemask.h>
16 #include <linux/memblock.h>
17 #include <linux/fs.h>
18 #include <linux/vmalloc.h>
19 #include <linux/sizes.h>
20
21 #include <asm/cp15.h>
22 #include <asm/cputype.h>
23 #include <asm/sections.h>
24 #include <asm/cachetype.h>
25 #include <asm/setup.h>
26 #include <asm/smp_plat.h>
27 #include <asm/tlb.h>
28 #include <asm/highmem.h>
29 #include <asm/system_info.h>
30 #include <asm/traps.h>
31
32 #include <asm/mach/arch.h>
33 #include <asm/mach/map.h>
34 #include <asm/mach/pci.h>
35
36 #include "mm.h"
37 #include "tcm.h"
38
39 /*
40  * empty_zero_page is a special page that is used for
41  * zero-initialized data and COW.
42  */
43 struct page *empty_zero_page;
44 EXPORT_SYMBOL(empty_zero_page);
45
46 /*
47  * The pmd table for the upper-most set of pages.
48  */
49 pmd_t *top_pmd;
50
51 #define CPOLICY_UNCACHED        0
52 #define CPOLICY_BUFFERED        1
53 #define CPOLICY_WRITETHROUGH    2
54 #define CPOLICY_WRITEBACK       3
55 #define CPOLICY_WRITEALLOC      4
56
57 static unsigned int cachepolicy __initdata = CPOLICY_WRITEBACK;
58 static unsigned int ecc_mask __initdata = 0;
59 pgprot_t pgprot_user;
60 pgprot_t pgprot_kernel;
61 pgprot_t pgprot_hyp_device;
62 pgprot_t pgprot_s2;
63 pgprot_t pgprot_s2_device;
64
65 EXPORT_SYMBOL(pgprot_user);
66 EXPORT_SYMBOL(pgprot_kernel);
67
68 struct cachepolicy {
69         const char      policy[16];
70         unsigned int    cr_mask;
71         pmdval_t        pmd;
72         pteval_t        pte;
73         pteval_t        pte_s2;
74 };
75
76 #ifdef CONFIG_ARM_LPAE
77 #define s2_policy(policy)       policy
78 #else
79 #define s2_policy(policy)       0
80 #endif
81
82 static struct cachepolicy cache_policies[] __initdata = {
83         {
84                 .policy         = "uncached",
85                 .cr_mask        = CR_W|CR_C,
86                 .pmd            = PMD_SECT_UNCACHED,
87                 .pte            = L_PTE_MT_UNCACHED,
88                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
89         }, {
90                 .policy         = "buffered",
91                 .cr_mask        = CR_C,
92                 .pmd            = PMD_SECT_BUFFERED,
93                 .pte            = L_PTE_MT_BUFFERABLE,
94                 .pte_s2         = s2_policy(L_PTE_S2_MT_UNCACHED),
95         }, {
96                 .policy         = "writethrough",
97                 .cr_mask        = 0,
98                 .pmd            = PMD_SECT_WT,
99                 .pte            = L_PTE_MT_WRITETHROUGH,
100                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITETHROUGH),
101         }, {
102                 .policy         = "writeback",
103                 .cr_mask        = 0,
104                 .pmd            = PMD_SECT_WB,
105                 .pte            = L_PTE_MT_WRITEBACK,
106                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
107         }, {
108                 .policy         = "writealloc",
109                 .cr_mask        = 0,
110                 .pmd            = PMD_SECT_WBWA,
111                 .pte            = L_PTE_MT_WRITEALLOC,
112                 .pte_s2         = s2_policy(L_PTE_S2_MT_WRITEBACK),
113         }
114 };
115
116 #ifdef CONFIG_CPU_CP15
117 /*
118  * These are useful for identifying cache coherency
119  * problems by allowing the cache or the cache and
120  * writebuffer to be turned off.  (Note: the write
121  * buffer should not be on and the cache off).
122  */
123 static int __init early_cachepolicy(char *p)
124 {
125         int i;
126
127         for (i = 0; i < ARRAY_SIZE(cache_policies); i++) {
128                 int len = strlen(cache_policies[i].policy);
129
130                 if (memcmp(p, cache_policies[i].policy, len) == 0) {
131                         cachepolicy = i;
132                         cr_alignment &= ~cache_policies[i].cr_mask;
133                         cr_no_alignment &= ~cache_policies[i].cr_mask;
134                         break;
135                 }
136         }
137         if (i == ARRAY_SIZE(cache_policies))
138                 printk(KERN_ERR "ERROR: unknown or unsupported cache policy\n");
139         /*
140          * This restriction is partly to do with the way we boot; it is
141          * unpredictable to have memory mapped using two different sets of
142          * memory attributes (shared, type, and cache attribs).  We can not
143          * change these attributes once the initial assembly has setup the
144          * page tables.
145          */
146         if (cpu_architecture() >= CPU_ARCH_ARMv6) {
147                 printk(KERN_WARNING "Only cachepolicy=writeback supported on ARMv6 and later\n");
148                 cachepolicy = CPOLICY_WRITEBACK;
149         }
150         flush_cache_all();
151         set_cr(cr_alignment);
152         return 0;
153 }
154 early_param("cachepolicy", early_cachepolicy);
155
156 static int __init early_nocache(char *__unused)
157 {
158         char *p = "buffered";
159         printk(KERN_WARNING "nocache is deprecated; use cachepolicy=%s\n", p);
160         early_cachepolicy(p);
161         return 0;
162 }
163 early_param("nocache", early_nocache);
164
165 static int __init early_nowrite(char *__unused)
166 {
167         char *p = "uncached";
168         printk(KERN_WARNING "nowb is deprecated; use cachepolicy=%s\n", p);
169         early_cachepolicy(p);
170         return 0;
171 }
172 early_param("nowb", early_nowrite);
173
174 #ifndef CONFIG_ARM_LPAE
175 static int __init early_ecc(char *p)
176 {
177         if (memcmp(p, "on", 2) == 0)
178                 ecc_mask = PMD_PROTECTION;
179         else if (memcmp(p, "off", 3) == 0)
180                 ecc_mask = 0;
181         return 0;
182 }
183 early_param("ecc", early_ecc);
184 #endif
185
186 static int __init noalign_setup(char *__unused)
187 {
188         cr_alignment &= ~CR_A;
189         cr_no_alignment &= ~CR_A;
190         set_cr(cr_alignment);
191         return 1;
192 }
193 __setup("noalign", noalign_setup);
194
195 #ifndef CONFIG_SMP
196 void adjust_cr(unsigned long mask, unsigned long set)
197 {
198         unsigned long flags;
199
200         mask &= ~CR_A;
201
202         set &= mask;
203
204         local_irq_save(flags);
205
206         cr_no_alignment = (cr_no_alignment & ~mask) | set;
207         cr_alignment = (cr_alignment & ~mask) | set;
208
209         set_cr((get_cr() & ~mask) | set);
210
211         local_irq_restore(flags);
212 }
213 #endif
214
215 #else /* ifdef CONFIG_CPU_CP15 */
216
217 static int __init early_cachepolicy(char *p)
218 {
219         pr_warning("cachepolicy kernel parameter not supported without cp15\n");
220 }
221 early_param("cachepolicy", early_cachepolicy);
222
223 static int __init noalign_setup(char *__unused)
224 {
225         pr_warning("noalign kernel parameter not supported without cp15\n");
226 }
227 __setup("noalign", noalign_setup);
228
229 #endif /* ifdef CONFIG_CPU_CP15 / else */
230
231 #define PROT_PTE_DEVICE         L_PTE_PRESENT|L_PTE_YOUNG|L_PTE_DIRTY|L_PTE_XN
232 #define PROT_PTE_S2_DEVICE      PROT_PTE_DEVICE
233 #define PROT_SECT_DEVICE        PMD_TYPE_SECT|PMD_SECT_AP_WRITE
234
235 static struct mem_type mem_types[] = {
236         [MT_DEVICE] = {           /* Strongly ordered / ARMv6 shared device */
237                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_SHARED |
238                                   L_PTE_SHARED,
239                 .prot_pte_s2    = s2_policy(PROT_PTE_S2_DEVICE) |
240                                   s2_policy(L_PTE_S2_MT_DEV_SHARED) |
241                                   L_PTE_SHARED,
242                 .prot_l1        = PMD_TYPE_TABLE,
243                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_S,
244                 .domain         = DOMAIN_IO,
245         },
246         [MT_DEVICE_NONSHARED] = { /* ARMv6 non-shared device */
247                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_NONSHARED,
248                 .prot_l1        = PMD_TYPE_TABLE,
249                 .prot_sect      = PROT_SECT_DEVICE,
250                 .domain         = DOMAIN_IO,
251         },
252         [MT_DEVICE_CACHED] = {    /* ioremap_cached */
253                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_CACHED,
254                 .prot_l1        = PMD_TYPE_TABLE,
255                 .prot_sect      = PROT_SECT_DEVICE | PMD_SECT_WB,
256                 .domain         = DOMAIN_IO,
257         },
258         [MT_DEVICE_WC] = {      /* ioremap_wc */
259                 .prot_pte       = PROT_PTE_DEVICE | L_PTE_MT_DEV_WC,
260                 .prot_l1        = PMD_TYPE_TABLE,
261                 .prot_sect      = PROT_SECT_DEVICE,
262                 .domain         = DOMAIN_IO,
263         },
264         [MT_UNCACHED] = {
265                 .prot_pte       = PROT_PTE_DEVICE,
266                 .prot_l1        = PMD_TYPE_TABLE,
267                 .prot_sect      = PMD_TYPE_SECT | PMD_SECT_XN,
268                 .domain         = DOMAIN_IO,
269         },
270         [MT_CACHECLEAN] = {
271                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
272                 .domain    = DOMAIN_KERNEL,
273         },
274 #ifndef CONFIG_ARM_LPAE
275         [MT_MINICLEAN] = {
276                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN | PMD_SECT_MINICACHE,
277                 .domain    = DOMAIN_KERNEL,
278         },
279 #endif
280         [MT_LOW_VECTORS] = {
281                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
282                                 L_PTE_RDONLY,
283                 .prot_l1   = PMD_TYPE_TABLE,
284                 .domain    = DOMAIN_USER,
285         },
286         [MT_HIGH_VECTORS] = {
287                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
288                                 L_PTE_USER | L_PTE_RDONLY,
289                 .prot_l1   = PMD_TYPE_TABLE,
290                 .domain    = DOMAIN_USER,
291         },
292         [MT_MEMORY] = {
293                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
294                 .prot_l1   = PMD_TYPE_TABLE,
295                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
296                 .domain    = DOMAIN_KERNEL,
297         },
298         [MT_ROM] = {
299                 .prot_sect = PMD_TYPE_SECT,
300                 .domain    = DOMAIN_KERNEL,
301         },
302         [MT_MEMORY_NONCACHED] = {
303                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
304                                 L_PTE_MT_BUFFERABLE,
305                 .prot_l1   = PMD_TYPE_TABLE,
306                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE,
307                 .domain    = DOMAIN_KERNEL,
308         },
309         [MT_MEMORY_DTCM] = {
310                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
311                                 L_PTE_XN,
312                 .prot_l1   = PMD_TYPE_TABLE,
313                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_XN,
314                 .domain    = DOMAIN_KERNEL,
315         },
316         [MT_MEMORY_ITCM] = {
317                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
318                 .prot_l1   = PMD_TYPE_TABLE,
319                 .domain    = DOMAIN_KERNEL,
320         },
321         [MT_MEMORY_SO] = {
322                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY |
323                                 L_PTE_MT_UNCACHED | L_PTE_XN,
324                 .prot_l1   = PMD_TYPE_TABLE,
325                 .prot_sect = PMD_TYPE_SECT | PMD_SECT_AP_WRITE | PMD_SECT_S |
326                                 PMD_SECT_UNCACHED | PMD_SECT_XN,
327                 .domain    = DOMAIN_KERNEL,
328         },
329         [MT_MEMORY_DMA_READY] = {
330                 .prot_pte  = L_PTE_PRESENT | L_PTE_YOUNG | L_PTE_DIRTY,
331                 .prot_l1   = PMD_TYPE_TABLE,
332                 .domain    = DOMAIN_KERNEL,
333         },
334 };
335
336 const struct mem_type *get_mem_type(unsigned int type)
337 {
338         return type < ARRAY_SIZE(mem_types) ? &mem_types[type] : NULL;
339 }
340 EXPORT_SYMBOL(get_mem_type);
341
342 /*
343  * Adjust the PMD section entries according to the CPU in use.
344  */
345 static void __init build_mem_type_table(void)
346 {
347         struct cachepolicy *cp;
348         unsigned int cr = get_cr();
349         pteval_t user_pgprot, kern_pgprot, vecs_pgprot;
350         pteval_t hyp_device_pgprot, s2_pgprot, s2_device_pgprot;
351         int cpu_arch = cpu_architecture();
352         int i;
353
354         if (cpu_arch < CPU_ARCH_ARMv6) {
355 #if defined(CONFIG_CPU_DCACHE_DISABLE)
356                 if (cachepolicy > CPOLICY_BUFFERED)
357                         cachepolicy = CPOLICY_BUFFERED;
358 #elif defined(CONFIG_CPU_DCACHE_WRITETHROUGH)
359                 if (cachepolicy > CPOLICY_WRITETHROUGH)
360                         cachepolicy = CPOLICY_WRITETHROUGH;
361 #endif
362         }
363         if (cpu_arch < CPU_ARCH_ARMv5) {
364                 if (cachepolicy >= CPOLICY_WRITEALLOC)
365                         cachepolicy = CPOLICY_WRITEBACK;
366                 ecc_mask = 0;
367         }
368         if (is_smp())
369                 cachepolicy = CPOLICY_WRITEALLOC;
370
371         /*
372          * Strip out features not present on earlier architectures.
373          * Pre-ARMv5 CPUs don't have TEX bits.  Pre-ARMv6 CPUs or those
374          * without extended page tables don't have the 'Shared' bit.
375          */
376         if (cpu_arch < CPU_ARCH_ARMv5)
377                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
378                         mem_types[i].prot_sect &= ~PMD_SECT_TEX(7);
379         if ((cpu_arch < CPU_ARCH_ARMv6 || !(cr & CR_XP)) && !cpu_is_xsc3())
380                 for (i = 0; i < ARRAY_SIZE(mem_types); i++)
381                         mem_types[i].prot_sect &= ~PMD_SECT_S;
382
383         /*
384          * ARMv5 and lower, bit 4 must be set for page tables (was: cache
385          * "update-able on write" bit on ARM610).  However, Xscale and
386          * Xscale3 require this bit to be cleared.
387          */
388         if (cpu_is_xscale() || cpu_is_xsc3()) {
389                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
390                         mem_types[i].prot_sect &= ~PMD_BIT4;
391                         mem_types[i].prot_l1 &= ~PMD_BIT4;
392                 }
393         } else if (cpu_arch < CPU_ARCH_ARMv6) {
394                 for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
395                         if (mem_types[i].prot_l1)
396                                 mem_types[i].prot_l1 |= PMD_BIT4;
397                         if (mem_types[i].prot_sect)
398                                 mem_types[i].prot_sect |= PMD_BIT4;
399                 }
400         }
401
402         /*
403          * Mark the device areas according to the CPU/architecture.
404          */
405         if (cpu_is_xsc3() || (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP))) {
406                 if (!cpu_is_xsc3()) {
407                         /*
408                          * Mark device regions on ARMv6+ as execute-never
409                          * to prevent speculative instruction fetches.
410                          */
411                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_XN;
412                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_XN;
413                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_XN;
414                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_XN;
415                 }
416                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
417                         /*
418                          * For ARMv7 with TEX remapping,
419                          * - shared device is SXCB=1100
420                          * - nonshared device is SXCB=0100
421                          * - write combine device mem is SXCB=0001
422                          * (Uncached Normal memory)
423                          */
424                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1);
425                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(1);
426                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
427                 } else if (cpu_is_xsc3()) {
428                         /*
429                          * For Xscale3,
430                          * - shared device is TEXCB=00101
431                          * - nonshared device is TEXCB=01000
432                          * - write combine device mem is TEXCB=00100
433                          * (Inner/Outer Uncacheable in xsc3 parlance)
434                          */
435                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_TEX(1) | PMD_SECT_BUFFERED;
436                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
437                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
438                 } else {
439                         /*
440                          * For ARMv6 and ARMv7 without TEX remapping,
441                          * - shared device is TEXCB=00001
442                          * - nonshared device is TEXCB=01000
443                          * - write combine device mem is TEXCB=00100
444                          * (Uncached Normal in ARMv6 parlance).
445                          */
446                         mem_types[MT_DEVICE].prot_sect |= PMD_SECT_BUFFERED;
447                         mem_types[MT_DEVICE_NONSHARED].prot_sect |= PMD_SECT_TEX(2);
448                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_TEX(1);
449                 }
450         } else {
451                 /*
452                  * On others, write combining is "Uncached/Buffered"
453                  */
454                 mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_BUFFERABLE;
455         }
456
457         /*
458          * Now deal with the memory-type mappings
459          */
460         cp = &cache_policies[cachepolicy];
461         vecs_pgprot = kern_pgprot = user_pgprot = cp->pte;
462         s2_pgprot = cp->pte_s2;
463         hyp_device_pgprot = mem_types[MT_DEVICE].prot_pte;
464         s2_device_pgprot = mem_types[MT_DEVICE].prot_pte_s2;
465
466         /*
467          * ARMv6 and above have extended page tables.
468          */
469         if (cpu_arch >= CPU_ARCH_ARMv6 && (cr & CR_XP)) {
470 #ifndef CONFIG_ARM_LPAE
471                 /*
472                  * Mark cache clean areas and XIP ROM read only
473                  * from SVC mode and no access from userspace.
474                  */
475                 mem_types[MT_ROM].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
476                 mem_types[MT_MINICLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
477                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_APX|PMD_SECT_AP_WRITE;
478 #endif
479
480                 if (is_smp()) {
481                         /*
482                          * Mark memory with the "shared" attribute
483                          * for SMP systems
484                          */
485                         user_pgprot |= L_PTE_SHARED;
486                         kern_pgprot |= L_PTE_SHARED;
487                         vecs_pgprot |= L_PTE_SHARED;
488                         s2_pgprot |= L_PTE_SHARED;
489                         mem_types[MT_DEVICE_WC].prot_sect |= PMD_SECT_S;
490                         mem_types[MT_DEVICE_WC].prot_pte |= L_PTE_SHARED;
491                         mem_types[MT_DEVICE_CACHED].prot_sect |= PMD_SECT_S;
492                         mem_types[MT_DEVICE_CACHED].prot_pte |= L_PTE_SHARED;
493                         mem_types[MT_MEMORY].prot_sect |= PMD_SECT_S;
494                         mem_types[MT_MEMORY].prot_pte |= L_PTE_SHARED;
495                         mem_types[MT_MEMORY_DMA_READY].prot_pte |= L_PTE_SHARED;
496                         mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_S;
497                         mem_types[MT_MEMORY_NONCACHED].prot_pte |= L_PTE_SHARED;
498                 }
499         }
500
501         /*
502          * Non-cacheable Normal - intended for memory areas that must
503          * not cause dirty cache line writebacks when used
504          */
505         if (cpu_arch >= CPU_ARCH_ARMv6) {
506                 if (cpu_arch >= CPU_ARCH_ARMv7 && (cr & CR_TRE)) {
507                         /* Non-cacheable Normal is XCB = 001 */
508                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
509                                 PMD_SECT_BUFFERED;
510                 } else {
511                         /* For both ARMv6 and non-TEX-remapping ARMv7 */
512                         mem_types[MT_MEMORY_NONCACHED].prot_sect |=
513                                 PMD_SECT_TEX(1);
514                 }
515         } else {
516                 mem_types[MT_MEMORY_NONCACHED].prot_sect |= PMD_SECT_BUFFERABLE;
517         }
518
519 #ifdef CONFIG_ARM_LPAE
520         /*
521          * Do not generate access flag faults for the kernel mappings.
522          */
523         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
524                 mem_types[i].prot_pte |= PTE_EXT_AF;
525                 if (mem_types[i].prot_sect)
526                         mem_types[i].prot_sect |= PMD_SECT_AF;
527         }
528         kern_pgprot |= PTE_EXT_AF;
529         vecs_pgprot |= PTE_EXT_AF;
530 #endif
531
532         for (i = 0; i < 16; i++) {
533                 pteval_t v = pgprot_val(protection_map[i]);
534                 protection_map[i] = __pgprot(v | user_pgprot);
535         }
536
537         mem_types[MT_LOW_VECTORS].prot_pte |= vecs_pgprot;
538         mem_types[MT_HIGH_VECTORS].prot_pte |= vecs_pgprot;
539
540         pgprot_user   = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | user_pgprot);
541         pgprot_kernel = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG |
542                                  L_PTE_DIRTY | kern_pgprot);
543         pgprot_s2  = __pgprot(L_PTE_PRESENT | L_PTE_YOUNG | s2_pgprot);
544         pgprot_s2_device  = __pgprot(s2_device_pgprot);
545         pgprot_hyp_device  = __pgprot(hyp_device_pgprot);
546
547         mem_types[MT_LOW_VECTORS].prot_l1 |= ecc_mask;
548         mem_types[MT_HIGH_VECTORS].prot_l1 |= ecc_mask;
549         mem_types[MT_MEMORY].prot_sect |= ecc_mask | cp->pmd;
550         mem_types[MT_MEMORY].prot_pte |= kern_pgprot;
551         mem_types[MT_MEMORY_DMA_READY].prot_pte |= kern_pgprot;
552         mem_types[MT_MEMORY_NONCACHED].prot_sect |= ecc_mask;
553         mem_types[MT_ROM].prot_sect |= cp->pmd;
554
555         switch (cp->pmd) {
556         case PMD_SECT_WT:
557                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WT;
558                 break;
559         case PMD_SECT_WB:
560         case PMD_SECT_WBWA:
561                 mem_types[MT_CACHECLEAN].prot_sect |= PMD_SECT_WB;
562                 break;
563         }
564         printk("Memory policy: ECC %sabled, Data cache %s\n",
565                 ecc_mask ? "en" : "dis", cp->policy);
566
567         for (i = 0; i < ARRAY_SIZE(mem_types); i++) {
568                 struct mem_type *t = &mem_types[i];
569                 if (t->prot_l1)
570                         t->prot_l1 |= PMD_DOMAIN(t->domain);
571                 if (t->prot_sect)
572                         t->prot_sect |= PMD_DOMAIN(t->domain);
573         }
574 }
575
576 #ifdef CONFIG_ARM_DMA_MEM_BUFFERABLE
577 pgprot_t phys_mem_access_prot(struct file *file, unsigned long pfn,
578                               unsigned long size, pgprot_t vma_prot)
579 {
580         if (!pfn_valid(pfn))
581                 return pgprot_noncached(vma_prot);
582         else if (file->f_flags & O_SYNC)
583                 return pgprot_writecombine(vma_prot);
584         return vma_prot;
585 }
586 EXPORT_SYMBOL(phys_mem_access_prot);
587 #endif
588
589 #define vectors_base()  (vectors_high() ? 0xffff0000 : 0)
590
591 static void __init *early_alloc_aligned(unsigned long sz, unsigned long align)
592 {
593         void *ptr = __va(memblock_alloc(sz, align));
594         memset(ptr, 0, sz);
595         return ptr;
596 }
597
598 static void __init *early_alloc(unsigned long sz)
599 {
600         return early_alloc_aligned(sz, sz);
601 }
602
603 static pte_t * __init early_pte_alloc(pmd_t *pmd, unsigned long addr, unsigned long prot)
604 {
605         if (pmd_none(*pmd)) {
606                 pte_t *pte = early_alloc(PTE_HWTABLE_OFF + PTE_HWTABLE_SIZE);
607                 __pmd_populate(pmd, __pa(pte), prot);
608         }
609         BUG_ON(pmd_bad(*pmd));
610         return pte_offset_kernel(pmd, addr);
611 }
612
613 static void __init alloc_init_pte(pmd_t *pmd, unsigned long addr,
614                                   unsigned long end, unsigned long pfn,
615                                   const struct mem_type *type)
616 {
617         pte_t *pte = early_pte_alloc(pmd, addr, type->prot_l1);
618         do {
619                 set_pte_ext(pte, pfn_pte(pfn, __pgprot(type->prot_pte)), 0);
620                 pfn++;
621         } while (pte++, addr += PAGE_SIZE, addr != end);
622 }
623
624 static void __init __map_init_section(pmd_t *pmd, unsigned long addr,
625                         unsigned long end, phys_addr_t phys,
626                         const struct mem_type *type)
627 {
628         pmd_t *p = pmd;
629
630 #ifndef CONFIG_ARM_LPAE
631         /*
632          * In classic MMU format, puds and pmds are folded in to
633          * the pgds. pmd_offset gives the PGD entry. PGDs refer to a
634          * group of L1 entries making up one logical pointer to
635          * an L2 table (2MB), where as PMDs refer to the individual
636          * L1 entries (1MB). Hence increment to get the correct
637          * offset for odd 1MB sections.
638          * (See arch/arm/include/asm/pgtable-2level.h)
639          */
640         if (addr & SECTION_SIZE)
641                 pmd++;
642 #endif
643         do {
644                 *pmd = __pmd(phys | type->prot_sect);
645                 phys += SECTION_SIZE;
646         } while (pmd++, addr += SECTION_SIZE, addr != end);
647
648         flush_pmd_entry(p);
649 }
650
651 static void __init alloc_init_pmd(pud_t *pud, unsigned long addr,
652                                       unsigned long end, phys_addr_t phys,
653                                       const struct mem_type *type)
654 {
655         pmd_t *pmd = pmd_offset(pud, addr);
656         unsigned long next;
657
658         do {
659                 /*
660                  * With LPAE, we must loop over to map
661                  * all the pmds for the given range.
662                  */
663                 next = pmd_addr_end(addr, end);
664
665                 /*
666                  * Try a section mapping - addr, next and phys must all be
667                  * aligned to a section boundary.
668                  */
669                 if (type->prot_sect &&
670                                 ((addr | next | phys) & ~SECTION_MASK) == 0) {
671                         __map_init_section(pmd, addr, next, phys, type);
672                 } else {
673                         alloc_init_pte(pmd, addr, next,
674                                                 __phys_to_pfn(phys), type);
675                 }
676
677                 phys += next - addr;
678
679         } while (pmd++, addr = next, addr != end);
680 }
681
682 static void __init alloc_init_pud(pgd_t *pgd, unsigned long addr,
683                                   unsigned long end, phys_addr_t phys,
684                                   const struct mem_type *type)
685 {
686         pud_t *pud = pud_offset(pgd, addr);
687         unsigned long next;
688
689         do {
690                 next = pud_addr_end(addr, end);
691                 alloc_init_pmd(pud, addr, next, phys, type);
692                 phys += next - addr;
693         } while (pud++, addr = next, addr != end);
694 }
695
696 #ifndef CONFIG_ARM_LPAE
697 static void __init create_36bit_mapping(struct map_desc *md,
698                                         const struct mem_type *type)
699 {
700         unsigned long addr, length, end;
701         phys_addr_t phys;
702         pgd_t *pgd;
703
704         addr = md->virtual;
705         phys = __pfn_to_phys(md->pfn);
706         length = PAGE_ALIGN(md->length);
707
708         if (!(cpu_architecture() >= CPU_ARCH_ARMv6 || cpu_is_xsc3())) {
709                 printk(KERN_ERR "MM: CPU does not support supersection "
710                        "mapping for 0x%08llx at 0x%08lx\n",
711                        (long long)__pfn_to_phys((u64)md->pfn), addr);
712                 return;
713         }
714
715         /* N.B. ARMv6 supersections are only defined to work with domain 0.
716          *      Since domain assignments can in fact be arbitrary, the
717          *      'domain == 0' check below is required to insure that ARMv6
718          *      supersections are only allocated for domain 0 regardless
719          *      of the actual domain assignments in use.
720          */
721         if (type->domain) {
722                 printk(KERN_ERR "MM: invalid domain in supersection "
723                        "mapping for 0x%08llx at 0x%08lx\n",
724                        (long long)__pfn_to_phys((u64)md->pfn), addr);
725                 return;
726         }
727
728         if ((addr | length | __pfn_to_phys(md->pfn)) & ~SUPERSECTION_MASK) {
729                 printk(KERN_ERR "MM: cannot create mapping for 0x%08llx"
730                        " at 0x%08lx invalid alignment\n",
731                        (long long)__pfn_to_phys((u64)md->pfn), addr);
732                 return;
733         }
734
735         /*
736          * Shift bits [35:32] of address into bits [23:20] of PMD
737          * (See ARMv6 spec).
738          */
739         phys |= (((md->pfn >> (32 - PAGE_SHIFT)) & 0xF) << 20);
740
741         pgd = pgd_offset_k(addr);
742         end = addr + length;
743         do {
744                 pud_t *pud = pud_offset(pgd, addr);
745                 pmd_t *pmd = pmd_offset(pud, addr);
746                 int i;
747
748                 for (i = 0; i < 16; i++)
749                         *pmd++ = __pmd(phys | type->prot_sect | PMD_SECT_SUPER);
750
751                 addr += SUPERSECTION_SIZE;
752                 phys += SUPERSECTION_SIZE;
753                 pgd += SUPERSECTION_SIZE >> PGDIR_SHIFT;
754         } while (addr != end);
755 }
756 #endif  /* !CONFIG_ARM_LPAE */
757
758 /*
759  * Create the page directory entries and any necessary
760  * page tables for the mapping specified by `md'.  We
761  * are able to cope here with varying sizes and address
762  * offsets, and we take full advantage of sections and
763  * supersections.
764  */
765 static void __init create_mapping(struct map_desc *md)
766 {
767         unsigned long addr, length, end;
768         phys_addr_t phys;
769         const struct mem_type *type;
770         pgd_t *pgd;
771
772         if (md->virtual != vectors_base() && md->virtual < TASK_SIZE) {
773                 printk(KERN_WARNING "BUG: not creating mapping for 0x%08llx"
774                        " at 0x%08lx in user region\n",
775                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
776                 return;
777         }
778
779         if ((md->type == MT_DEVICE || md->type == MT_ROM) &&
780             md->virtual >= PAGE_OFFSET &&
781             (md->virtual < VMALLOC_START || md->virtual >= VMALLOC_END)) {
782                 printk(KERN_WARNING "BUG: mapping for 0x%08llx"
783                        " at 0x%08lx out of vmalloc space\n",
784                        (long long)__pfn_to_phys((u64)md->pfn), md->virtual);
785         }
786
787         type = &mem_types[md->type];
788
789 #ifndef CONFIG_ARM_LPAE
790         /*
791          * Catch 36-bit addresses
792          */
793         if (md->pfn >= 0x100000) {
794                 create_36bit_mapping(md, type);
795                 return;
796         }
797 #endif
798
799         addr = md->virtual & PAGE_MASK;
800         phys = __pfn_to_phys(md->pfn);
801         length = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
802
803         if (type->prot_l1 == 0 && ((addr | phys | length) & ~SECTION_MASK)) {
804                 printk(KERN_WARNING "BUG: map for 0x%08llx at 0x%08lx can not "
805                        "be mapped using pages, ignoring.\n",
806                        (long long)__pfn_to_phys(md->pfn), addr);
807                 return;
808         }
809
810         pgd = pgd_offset_k(addr);
811         end = addr + length;
812         do {
813                 unsigned long next = pgd_addr_end(addr, end);
814
815                 alloc_init_pud(pgd, addr, next, phys, type);
816
817                 phys += next - addr;
818                 addr = next;
819         } while (pgd++, addr != end);
820 }
821
822 /*
823  * Create the architecture specific mappings
824  */
825 void __init iotable_init(struct map_desc *io_desc, int nr)
826 {
827         struct map_desc *md;
828         struct vm_struct *vm;
829         struct static_vm *svm;
830
831         if (!nr)
832                 return;
833
834         svm = early_alloc_aligned(sizeof(*svm) * nr, __alignof__(*svm));
835
836         for (md = io_desc; nr; md++, nr--) {
837                 create_mapping(md);
838
839                 vm = &svm->vm;
840                 vm->addr = (void *)(md->virtual & PAGE_MASK);
841                 vm->size = PAGE_ALIGN(md->length + (md->virtual & ~PAGE_MASK));
842                 vm->phys_addr = __pfn_to_phys(md->pfn);
843                 vm->flags = VM_IOREMAP | VM_ARM_STATIC_MAPPING;
844                 vm->flags |= VM_ARM_MTYPE(md->type);
845                 vm->caller = iotable_init;
846                 add_static_vm_early(svm++);
847         }
848 }
849
850 void __init vm_reserve_area_early(unsigned long addr, unsigned long size,
851                                   void *caller)
852 {
853         struct vm_struct *vm;
854         struct static_vm *svm;
855
856         svm = early_alloc_aligned(sizeof(*svm), __alignof__(*svm));
857
858         vm = &svm->vm;
859         vm->addr = (void *)addr;
860         vm->size = size;
861         vm->flags = VM_IOREMAP | VM_ARM_EMPTY_MAPPING;
862         vm->caller = caller;
863         add_static_vm_early(svm);
864 }
865
866 #ifndef CONFIG_ARM_LPAE
867
868 /*
869  * The Linux PMD is made of two consecutive section entries covering 2MB
870  * (see definition in include/asm/pgtable-2level.h).  However a call to
871  * create_mapping() may optimize static mappings by using individual
872  * 1MB section mappings.  This leaves the actual PMD potentially half
873  * initialized if the top or bottom section entry isn't used, leaving it
874  * open to problems if a subsequent ioremap() or vmalloc() tries to use
875  * the virtual space left free by that unused section entry.
876  *
877  * Let's avoid the issue by inserting dummy vm entries covering the unused
878  * PMD halves once the static mappings are in place.
879  */
880
881 static void __init pmd_empty_section_gap(unsigned long addr)
882 {
883         vm_reserve_area_early(addr, SECTION_SIZE, pmd_empty_section_gap);
884 }
885
886 static void __init fill_pmd_gaps(void)
887 {
888         struct static_vm *svm;
889         struct vm_struct *vm;
890         unsigned long addr, next = 0;
891         pmd_t *pmd;
892
893         list_for_each_entry(svm, &static_vmlist, list) {
894                 vm = &svm->vm;
895                 addr = (unsigned long)vm->addr;
896                 if (addr < next)
897                         continue;
898
899                 /*
900                  * Check if this vm starts on an odd section boundary.
901                  * If so and the first section entry for this PMD is free
902                  * then we block the corresponding virtual address.
903                  */
904                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
905                         pmd = pmd_off_k(addr);
906                         if (pmd_none(*pmd))
907                                 pmd_empty_section_gap(addr & PMD_MASK);
908                 }
909
910                 /*
911                  * Then check if this vm ends on an odd section boundary.
912                  * If so and the second section entry for this PMD is empty
913                  * then we block the corresponding virtual address.
914                  */
915                 addr += vm->size;
916                 if ((addr & ~PMD_MASK) == SECTION_SIZE) {
917                         pmd = pmd_off_k(addr) + 1;
918                         if (pmd_none(*pmd))
919                                 pmd_empty_section_gap(addr);
920                 }
921
922                 /* no need to look at any vm entry until we hit the next PMD */
923                 next = (addr + PMD_SIZE - 1) & PMD_MASK;
924         }
925 }
926
927 #else
928 #define fill_pmd_gaps() do { } while (0)
929 #endif
930
931 #if defined(CONFIG_PCI) && !defined(CONFIG_NEED_MACH_IO_H)
932 static void __init pci_reserve_io(void)
933 {
934         struct static_vm *svm;
935
936         svm = find_static_vm_vaddr((void *)PCI_IO_VIRT_BASE);
937         if (svm)
938                 return;
939
940         vm_reserve_area_early(PCI_IO_VIRT_BASE, SZ_2M, pci_reserve_io);
941 }
942 #else
943 #define pci_reserve_io() do { } while (0)
944 #endif
945
946 #ifdef CONFIG_DEBUG_LL
947 void __init debug_ll_io_init(void)
948 {
949         struct map_desc map;
950
951         debug_ll_addr(&map.pfn, &map.virtual);
952         if (!map.pfn || !map.virtual)
953                 return;
954         map.pfn = __phys_to_pfn(map.pfn);
955         map.virtual &= PAGE_MASK;
956         map.length = PAGE_SIZE;
957         map.type = MT_DEVICE;
958         iotable_init(&map, 1);
959 }
960 #endif
961
962 static void * __initdata vmalloc_min =
963         (void *)(VMALLOC_END - (240 << 20) - VMALLOC_OFFSET);
964
965 /*
966  * vmalloc=size forces the vmalloc area to be exactly 'size'
967  * bytes. This can be used to increase (or decrease) the vmalloc
968  * area - the default is 240m.
969  */
970 static int __init early_vmalloc(char *arg)
971 {
972         unsigned long vmalloc_reserve = memparse(arg, NULL);
973
974         if (vmalloc_reserve < SZ_16M) {
975                 vmalloc_reserve = SZ_16M;
976                 printk(KERN_WARNING
977                         "vmalloc area too small, limiting to %luMB\n",
978                         vmalloc_reserve >> 20);
979         }
980
981         if (vmalloc_reserve > VMALLOC_END - (PAGE_OFFSET + SZ_32M)) {
982                 vmalloc_reserve = VMALLOC_END - (PAGE_OFFSET + SZ_32M);
983                 printk(KERN_WARNING
984                         "vmalloc area is too big, limiting to %luMB\n",
985                         vmalloc_reserve >> 20);
986         }
987
988         vmalloc_min = (void *)(VMALLOC_END - vmalloc_reserve);
989         return 0;
990 }
991 early_param("vmalloc", early_vmalloc);
992
993 phys_addr_t arm_lowmem_limit __initdata = 0;
994
995 void __init sanity_check_meminfo(void)
996 {
997         phys_addr_t memblock_limit = 0;
998         int i, j, highmem = 0;
999         phys_addr_t vmalloc_limit = __pa(vmalloc_min - 1) + 1;
1000
1001         for (i = 0, j = 0; i < meminfo.nr_banks; i++) {
1002                 struct membank *bank = &meminfo.bank[j];
1003                 phys_addr_t size_limit;
1004
1005                 *bank = meminfo.bank[i];
1006                 size_limit = bank->size;
1007
1008                 if (bank->start >= vmalloc_limit)
1009                         highmem = 1;
1010                 else
1011                         size_limit = vmalloc_limit - bank->start;
1012
1013                 bank->highmem = highmem;
1014
1015 #ifdef CONFIG_HIGHMEM
1016                 /*
1017                  * Split those memory banks which are partially overlapping
1018                  * the vmalloc area greatly simplifying things later.
1019                  */
1020                 if (!highmem && bank->size > size_limit) {
1021                         if (meminfo.nr_banks >= NR_BANKS) {
1022                                 printk(KERN_CRIT "NR_BANKS too low, "
1023                                                  "ignoring high memory\n");
1024                         } else {
1025                                 memmove(bank + 1, bank,
1026                                         (meminfo.nr_banks - i) * sizeof(*bank));
1027                                 meminfo.nr_banks++;
1028                                 i++;
1029                                 bank[1].size -= size_limit;
1030                                 bank[1].start = vmalloc_limit;
1031                                 bank[1].highmem = highmem = 1;
1032                                 j++;
1033                         }
1034                         bank->size = size_limit;
1035                 }
1036 #else
1037                 /*
1038                  * Highmem banks not allowed with !CONFIG_HIGHMEM.
1039                  */
1040                 if (highmem) {
1041                         printk(KERN_NOTICE "Ignoring RAM at %.8llx-%.8llx "
1042                                "(!CONFIG_HIGHMEM).\n",
1043                                (unsigned long long)bank->start,
1044                                (unsigned long long)bank->start + bank->size - 1);
1045                         continue;
1046                 }
1047
1048                 /*
1049                  * Check whether this memory bank would partially overlap
1050                  * the vmalloc area.
1051                  */
1052                 if (bank->size > size_limit) {
1053                         printk(KERN_NOTICE "Truncating RAM at %.8llx-%.8llx "
1054                                "to -%.8llx (vmalloc region overlap).\n",
1055                                (unsigned long long)bank->start,
1056                                (unsigned long long)bank->start + bank->size - 1,
1057                                (unsigned long long)bank->start + size_limit - 1);
1058                         bank->size = size_limit;
1059                 }
1060 #endif
1061                 if (!bank->highmem) {
1062                         phys_addr_t bank_end = bank->start + bank->size;
1063
1064                         if (bank_end > arm_lowmem_limit)
1065                                 arm_lowmem_limit = bank_end;
1066
1067                         /*
1068                          * Find the first non-section-aligned page, and point
1069                          * memblock_limit at it. This relies on rounding the
1070                          * limit down to be section-aligned, which happens at
1071                          * the end of this function.
1072                          *
1073                          * With this algorithm, the start or end of almost any
1074                          * bank can be non-section-aligned. The only exception
1075                          * is that the start of the bank 0 must be section-
1076                          * aligned, since otherwise memory would need to be
1077                          * allocated when mapping the start of bank 0, which
1078                          * occurs before any free memory is mapped.
1079                          */
1080                         if (!memblock_limit) {
1081                                 if (!IS_ALIGNED(bank->start, SECTION_SIZE))
1082                                         memblock_limit = bank->start;
1083                                 else if (!IS_ALIGNED(bank_end, SECTION_SIZE))
1084                                         memblock_limit = bank_end;
1085                         }
1086                 }
1087                 j++;
1088         }
1089 #ifdef CONFIG_HIGHMEM
1090         if (highmem) {
1091                 const char *reason = NULL;
1092
1093                 if (cache_is_vipt_aliasing()) {
1094                         /*
1095                          * Interactions between kmap and other mappings
1096                          * make highmem support with aliasing VIPT caches
1097                          * rather difficult.
1098                          */
1099                         reason = "with VIPT aliasing cache";
1100                 }
1101                 if (reason) {
1102                         printk(KERN_CRIT "HIGHMEM is not supported %s, ignoring high memory\n",
1103                                 reason);
1104                         while (j > 0 && meminfo.bank[j - 1].highmem)
1105                                 j--;
1106                 }
1107         }
1108 #endif
1109         meminfo.nr_banks = j;
1110         high_memory = __va(arm_lowmem_limit - 1) + 1;
1111
1112         /*
1113          * Round the memblock limit down to a section size.  This
1114          * helps to ensure that we will allocate memory from the
1115          * last full section, which should be mapped.
1116          */
1117         if (memblock_limit)
1118                 memblock_limit = round_down(memblock_limit, SECTION_SIZE);
1119         if (!memblock_limit)
1120                 memblock_limit = arm_lowmem_limit;
1121
1122         memblock_set_current_limit(memblock_limit);
1123 }
1124
1125 static inline void prepare_page_table(void)
1126 {
1127         unsigned long addr;
1128         phys_addr_t end;
1129
1130         /*
1131          * Clear out all the mappings below the kernel image.
1132          */
1133         for (addr = 0; addr < MODULES_VADDR; addr += PMD_SIZE)
1134                 pmd_clear(pmd_off_k(addr));
1135
1136 #ifdef CONFIG_XIP_KERNEL
1137         /* The XIP kernel is mapped in the module area -- skip over it */
1138         addr = ((unsigned long)_etext + PMD_SIZE - 1) & PMD_MASK;
1139 #endif
1140         for ( ; addr < PAGE_OFFSET; addr += PMD_SIZE)
1141                 pmd_clear(pmd_off_k(addr));
1142
1143         /*
1144          * Find the end of the first block of lowmem.
1145          */
1146         end = memblock.memory.regions[0].base + memblock.memory.regions[0].size;
1147         if (end >= arm_lowmem_limit)
1148                 end = arm_lowmem_limit;
1149
1150         /*
1151          * Clear out all the kernel space mappings, except for the first
1152          * memory bank, up to the vmalloc region.
1153          */
1154         for (addr = __phys_to_virt(end);
1155              addr < VMALLOC_START; addr += PMD_SIZE)
1156                 pmd_clear(pmd_off_k(addr));
1157 }
1158
1159 #ifdef CONFIG_ARM_LPAE
1160 /* the first page is reserved for pgd */
1161 #define SWAPPER_PG_DIR_SIZE     (PAGE_SIZE + \
1162                                  PTRS_PER_PGD * PTRS_PER_PMD * sizeof(pmd_t))
1163 #else
1164 #define SWAPPER_PG_DIR_SIZE     (PTRS_PER_PGD * sizeof(pgd_t))
1165 #endif
1166
1167 /*
1168  * Reserve the special regions of memory
1169  */
1170 void __init arm_mm_memblock_reserve(void)
1171 {
1172         /*
1173          * Reserve the page tables.  These are already in use,
1174          * and can only be in node 0.
1175          */
1176         memblock_reserve(__pa(swapper_pg_dir), SWAPPER_PG_DIR_SIZE);
1177
1178 #ifdef CONFIG_SA1111
1179         /*
1180          * Because of the SA1111 DMA bug, we want to preserve our
1181          * precious DMA-able memory...
1182          */
1183         memblock_reserve(PHYS_OFFSET, __pa(swapper_pg_dir) - PHYS_OFFSET);
1184 #endif
1185 }
1186
1187 /*
1188  * Set up the device mappings.  Since we clear out the page tables for all
1189  * mappings above VMALLOC_START, we will remove any debug device mappings.
1190  * This means you have to be careful how you debug this function, or any
1191  * called function.  This means you can't use any function or debugging
1192  * method which may touch any device, otherwise the kernel _will_ crash.
1193  */
1194 static void __init devicemaps_init(const struct machine_desc *mdesc)
1195 {
1196         struct map_desc map;
1197         unsigned long addr;
1198         void *vectors;
1199
1200         /*
1201          * Allocate the vector page early.
1202          */
1203         vectors = early_alloc(PAGE_SIZE * 2);
1204
1205         early_trap_init(vectors);
1206
1207         for (addr = VMALLOC_START; addr; addr += PMD_SIZE)
1208                 pmd_clear(pmd_off_k(addr));
1209
1210         /*
1211          * Map the kernel if it is XIP.
1212          * It is always first in the modulearea.
1213          */
1214 #ifdef CONFIG_XIP_KERNEL
1215         map.pfn = __phys_to_pfn(CONFIG_XIP_PHYS_ADDR & SECTION_MASK);
1216         map.virtual = MODULES_VADDR;
1217         map.length = ((unsigned long)_etext - map.virtual + ~SECTION_MASK) & SECTION_MASK;
1218         map.type = MT_ROM;
1219         create_mapping(&map);
1220 #endif
1221
1222         /*
1223          * Map the cache flushing regions.
1224          */
1225 #ifdef FLUSH_BASE
1226         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS);
1227         map.virtual = FLUSH_BASE;
1228         map.length = SZ_1M;
1229         map.type = MT_CACHECLEAN;
1230         create_mapping(&map);
1231 #endif
1232 #ifdef FLUSH_BASE_MINICACHE
1233         map.pfn = __phys_to_pfn(FLUSH_BASE_PHYS + SZ_1M);
1234         map.virtual = FLUSH_BASE_MINICACHE;
1235         map.length = SZ_1M;
1236         map.type = MT_MINICLEAN;
1237         create_mapping(&map);
1238 #endif
1239
1240         /*
1241          * Create a mapping for the machine vectors at the high-vectors
1242          * location (0xffff0000).  If we aren't using high-vectors, also
1243          * create a mapping at the low-vectors virtual address.
1244          */
1245         map.pfn = __phys_to_pfn(virt_to_phys(vectors));
1246         map.virtual = 0xffff0000;
1247         map.length = PAGE_SIZE;
1248 #ifdef CONFIG_KUSER_HELPERS
1249         map.type = MT_HIGH_VECTORS;
1250 #else
1251         map.type = MT_LOW_VECTORS;
1252 #endif
1253         create_mapping(&map);
1254
1255         if (!vectors_high()) {
1256                 map.virtual = 0;
1257                 map.length = PAGE_SIZE * 2;
1258                 map.type = MT_LOW_VECTORS;
1259                 create_mapping(&map);
1260         }
1261
1262         /* Now create a kernel read-only mapping */
1263         map.pfn += 1;
1264         map.virtual = 0xffff0000 + PAGE_SIZE;
1265         map.length = PAGE_SIZE;
1266         map.type = MT_LOW_VECTORS;
1267         create_mapping(&map);
1268
1269         /*
1270          * Ask the machine support to map in the statically mapped devices.
1271          */
1272         if (mdesc->map_io)
1273                 mdesc->map_io();
1274         else
1275                 debug_ll_io_init();
1276         fill_pmd_gaps();
1277
1278         /* Reserve fixed i/o space in VMALLOC region */
1279         pci_reserve_io();
1280
1281         /*
1282          * Finally flush the caches and tlb to ensure that we're in a
1283          * consistent state wrt the writebuffer.  This also ensures that
1284          * any write-allocated cache lines in the vector page are written
1285          * back.  After this point, we can start to touch devices again.
1286          */
1287         local_flush_tlb_all();
1288         flush_cache_all();
1289 }
1290
1291 static void __init kmap_init(void)
1292 {
1293 #ifdef CONFIG_HIGHMEM
1294         pkmap_page_table = early_pte_alloc(pmd_off_k(PKMAP_BASE),
1295                 PKMAP_BASE, _PAGE_KERNEL_TABLE);
1296 #endif
1297 }
1298
1299 static void __init map_lowmem(void)
1300 {
1301         struct memblock_region *reg;
1302
1303         /* Map all the lowmem memory banks. */
1304         for_each_memblock(memory, reg) {
1305                 phys_addr_t start = reg->base;
1306                 phys_addr_t end = start + reg->size;
1307                 struct map_desc map;
1308
1309                 if (end > arm_lowmem_limit)
1310                         end = arm_lowmem_limit;
1311                 if (start >= end)
1312                         break;
1313
1314                 map.pfn = __phys_to_pfn(start);
1315                 map.virtual = __phys_to_virt(start);
1316                 map.length = end - start;
1317                 map.type = MT_MEMORY;
1318
1319                 create_mapping(&map);
1320         }
1321 }
1322
1323 /*
1324  * paging_init() sets up the page tables, initialises the zone memory
1325  * maps, and sets up the zero page, bad page and bad page tables.
1326  */
1327 void __init paging_init(const struct machine_desc *mdesc)
1328 {
1329         void *zero_page;
1330
1331         build_mem_type_table();
1332         prepare_page_table();
1333         map_lowmem();
1334         dma_contiguous_remap();
1335         devicemaps_init(mdesc);
1336         kmap_init();
1337         tcm_init();
1338
1339         top_pmd = pmd_off_k(0xffff0000);
1340
1341         /* allocate the zero page. */
1342         zero_page = early_alloc(PAGE_SIZE);
1343
1344         bootmem_init();
1345
1346         empty_zero_page = virt_to_page(zero_page);
1347         __flush_dcache_page(NULL, empty_zero_page);
1348 }